Weakly Supervised Deep Learning for Brain Disease Prognosis Using MRI and Incomplete Clinical Scores
As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies oft...
Saved in:
Published in | IEEE Transactions on Cybernetics Vol. 50; no. 7; pp. 3381 - 3392 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2020
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2019.2904186 |
Cover
Loading…
Abstract | As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features (e.g., image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a weakly supervised densely connected neural network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multiscale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly supervised densely connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. The experimental results on 1469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects. |
---|---|
AbstractList | As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features (e.g., image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a weakly supervised densely connected neural network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multiscale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly supervised densely connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. The experimental results on 1469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects. As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features ( e.g. , image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a w eakly-superv ise d Densely-connected Neural Network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multi-scale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly-supervised densely-connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. Experimental results on 1,469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects. As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features (e.g., image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a weakly supervised densely connected neural network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multiscale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly supervised densely connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. The experimental results on 1469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects.As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features (e.g., image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a weakly supervised densely connected neural network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multiscale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly supervised densely connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. The experimental results on 1469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects. |
Author | Liu, Mingxia Shen, Dinggang Zhang, Jun Lian, Chunfeng |
Author_xml | – sequence: 1 givenname: Mingxia orcidid: 0000-0002-0598-5692 surname: Liu fullname: Liu, Mingxia email: mxliu1226@gmail.com organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 2 givenname: Jun orcidid: 0000-0001-5579-7094 surname: Zhang fullname: Zhang, Jun organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 3 givenname: Chunfeng orcidid: 0000-0002-9319-6633 surname: Lian fullname: Lian, Chunfeng organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 4 givenname: Dinggang orcidid: 0000-0002-7934-5698 surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://cir.nii.ac.jp/crid/1872272492895874048$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/30932861$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1rFDEUhoNUbK39ASJIoF54s2s-J8mNYLdqF1YU2yJehezM2TV1NpkmM4X-ezPsutRemEA-n_dwTt48RwchBkDoJSVTSol5dzX7eTZlhJopM0RQXT1BR4xWesKYkgf7daUO0UnON6Q0XY6MfoYOOTGc6YoeoeYHuN_tPb4cOkh3PkODzwE6vACXgg9rvIoJnyXnAz4vty4D_pbiOsTsM77OI_Hl-xy70OB5qOOma6EHPGt98LVr8WUdE-QX6OnKtRlOdvMxuv708Wp2MVl8_TyffVhMailYP6kZkwRAEsKBQMlUKtloENSthFCNpA3ThC6XknAJXLqyATBMKAZGE0X5MXq_jdsNyw00NYQ-udZ2yW9curfRefvvTfC_7DreWU24kGYM8HYXIMXbAXJvNz7X0LYuQByyZeW9VelMFPT0EXoThxRKeZYJKiQXnLJCvX6Y0T6VvwYUgG6BOsWcE6z2CCV29NmOPtvRZ7vzuWjUI03te9f7OBbl2_8q32yVwfsiGkeqVfkwTBimjdRKEKEL9mqLeQDYJ6QrJTTj_A9DX71u |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107067 crossref_primary_10_1109_TPAMI_2022_3185773 crossref_primary_10_1109_TIP_2024_3382600 crossref_primary_10_1109_TAI_2024_3416420 crossref_primary_10_48121_jihsam_1533583 crossref_primary_10_1016_j_neucom_2020_05_037 crossref_primary_10_1109_TMI_2023_3294182 crossref_primary_10_1016_j_ifacol_2020_12_1182 crossref_primary_10_1038_s41598_019_54548_6 crossref_primary_10_1109_TMI_2021_3139161 crossref_primary_10_1088_1361_6560_abf200 crossref_primary_10_1007_s11042_023_16928_z crossref_primary_10_1080_00207721_2020_1784492 crossref_primary_10_1016_j_mri_2021_10_031 crossref_primary_10_1109_JAS_2023_123591 crossref_primary_10_1109_TCYB_2021_3126817 crossref_primary_10_1007_s10916_023_01941_4 crossref_primary_10_3389_fncom_2021_769982 crossref_primary_10_1088_1361_6560_accac8 crossref_primary_10_1016_j_eswa_2021_115374 crossref_primary_10_1007_s11831_022_09733_8 crossref_primary_10_3389_fnagi_2022_871706 crossref_primary_10_1038_s41598_024_62712_w crossref_primary_10_1109_TPAMI_2024_3471800 crossref_primary_10_1007_s11831_023_09967_0 crossref_primary_10_1016_j_jfranklin_2024_01_029 crossref_primary_10_1016_j_neucom_2019_07_030 crossref_primary_10_1016_j_compeleceng_2019_05_014 crossref_primary_10_1109_TCYB_2023_3300832 crossref_primary_10_1038_s41598_024_78712_9 crossref_primary_10_3233_KES_220007 crossref_primary_10_1088_1361_6560_ac5ed5 crossref_primary_10_1016_j_neucom_2021_06_097 crossref_primary_10_1109_TMI_2022_3170879 crossref_primary_10_1109_TCYB_2019_2955178 crossref_primary_10_1049_cit2_12291 crossref_primary_10_1007_s11042_021_10928_7 crossref_primary_10_3389_fcomp_2024_1386514 crossref_primary_10_26599_BDMA_2024_9020025 crossref_primary_10_1109_TPAMI_2021_3074313 crossref_primary_10_1007_s40031_021_00571_z crossref_primary_10_1109_TMI_2021_3070780 crossref_primary_10_1016_j_asej_2021_04_010 crossref_primary_10_3390_pr8050536 crossref_primary_10_1109_TCYB_2020_3035282 crossref_primary_10_1109_TCYB_2023_3344641 crossref_primary_10_1007_s11042_024_19677_9 crossref_primary_10_1016_j_knosys_2019_105438 crossref_primary_10_3390_app10072443 crossref_primary_10_1109_TCYB_2020_3005859 crossref_primary_10_1016_j_amc_2021_126369 crossref_primary_10_1016_j_neucom_2021_01_020 crossref_primary_10_1109_TCYB_2020_2992433 crossref_primary_10_1016_j_artmed_2022_102332 crossref_primary_10_1007_s11071_024_09341_0 crossref_primary_10_1016_j_media_2020_101891 crossref_primary_10_1109_TCYB_2022_3223528 |
Cites_doi | 10.1073/pnas.090106797 10.1109/TMI.2016.2538465 10.1142/S0218001414500098 10.1109/TNNLS.2016.2520964 10.1017/CBO9780511804441 10.1016/j.neuroimage.2011.09.069 10.1109/42.668698 10.1109/TMI.2016.2582386 10.1109/JBHI.2017.2704614 10.1073/pnas.200033797 10.1212/WNL.42.1.183 10.1176/appi.ajp.162.12.2233 10.1007/978-3-319-58347-1_1 10.1016/j.neuroimage.2014.05.078 10.1006/nimg.2000.0582 10.1016/j.neuroimage.2013.06.033 10.1016/j.nicl.2012.10.002 10.1016/j.neuroimage.2012.03.059 10.1097/00002093-200307000-00010 10.1073/pnas.052587399 10.1073/pnas.1530467100 10.1016/j.media.2017.10.005 10.1038/nrneurol.2009.215 10.1109/TMI.2016.2515021 10.1109/TIP.2012.2214045 10.1002/hbm.22254 10.1212/WNL.52.7.1397 10.1109/TMI.2006.886812 10.1016/j.neuroimage.2005.09.054 10.1002/jmri.21049 10.1016/j.neuroimage.2011.01.062 10.1016/j.neuroimage.2012.01.055 10.1097/00004728-199803000-00032 10.1073/pnas.070039597 10.1016/j.biopsych.2007.03.015 10.1093/brain/119.6.2001 10.1109/CVPR.2016.90 10.1006/nimg.2001.0848 10.1016/j.neuroimage.2010.06.013 10.1109/TIP.2018.2799706 10.1109/42.906424 10.1093/brain/awp062 10.1016/j.media.2016.05.004 10.1109/TCYB.2016.2644718 10.1016/j.neuroimage.2013.08.015 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1109/TCYB.2019.2904186 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 3392 |
ExternalDocumentID | PMC8034591 30932861 10_1109_TCYB_2019_2904186 8674823 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NIH grantid: EB006733; EB008374; EB009634; MH100217; AG041721; AG042599; AG010129; AG030514 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIA NIH HHS grantid: R01 AG042599 – fundername: NIA NIH HHS grantid: P30 AG010129 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIA NIH HHS grantid: R01 AG041721 – fundername: NIMH NIH HHS grantid: R01 MH100217 – fundername: NIA NIH HHS grantid: K01 AG030514 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS RIG RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c542t-c2250ee5003e0e898575d8e41af447d51d2801bb5035e35a801ee92472e980713 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Aug 21 18:43:00 EDT 2025 Fri Jul 11 09:09:33 EDT 2025 Sun Jun 29 15:21:04 EDT 2025 Thu Jan 02 22:41:59 EST 2025 Thu Apr 24 23:02:35 EDT 2025 Tue Jul 01 00:53:53 EDT 2025 Fri Jun 27 00:05:04 EDT 2025 Wed Aug 27 02:30:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-c2250ee5003e0e898575d8e41af447d51d2801bb5035e35a801ee92472e980713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 M. Liu and J. Zhang contributed equally to this study. |
ORCID | 0000-0001-5579-7094 0000-0002-9319-6633 0000-0002-0598-5692 0000-0002-7934-5698 0000-0002-0166-0807 |
OpenAccessLink | https://cir.nii.ac.jp/crid/1872272492895874048 |
PMID | 30932861 |
PQID | 2414534312 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2019_2904186 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034591 proquest_journals_2414534312 crossref_citationtrail_10_1109_TCYB_2019_2904186 pubmed_primary_30932861 ieee_primary_8674823 nii_cinii_1872272492895874048 proquest_miscellaneous_2201717124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE Transactions on Cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2020 |
Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref53 huang (ref49) 2016 ref55 ref11 ref54 ref10 ref17 liu (ref46) 0 ref16 ref19 ref18 çiçek (ref50) 2016 friedman (ref24) 2001; 1 ref48 zhang (ref15) 2017 ref47 ref42 ref41 ref43 pan (ref58) 2018 sarraf (ref45) 2017 khvostikov (ref44) 2018 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 abadi (ref52) 2016 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref26 ref25 li (ref14) 2017 ref20 ref22 ref21 ref28 chollet (ref51) 2015 ref27 lian (ref7) 0 ref29 ref60 coupé (ref23) 2012 goodfellow (ref57) 2014 long (ref59) 2016 |
References_xml | – ident: ref39 doi: 10.1073/pnas.090106797 – ident: ref13 doi: 10.1109/TMI.2016.2538465 – ident: ref27 doi: 10.1142/S0218001414500098 – year: 2016 ident: ref49 article-title: Densely connected convolutional networks publication-title: arXiv preprint arXiv 1608 06993 – ident: ref33 doi: 10.1109/TNNLS.2016.2520964 – ident: ref53 doi: 10.1017/CBO9780511804441 – year: 2017 ident: ref45 article-title: DeepAD: Alzheimer's disease classification via deep convolutional neural networks using MRI and fMRI publication-title: BioRxiv – year: 2018 ident: ref44 article-title: 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies publication-title: arXiv preprint arXiv 1801 00257 – volume: 1 year: 2001 ident: ref24 publication-title: The Elements of Statistical Learning – year: 0 ident: ref7 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI publication-title: IEEE Trans Pattern Anal Mach Intell – year: 0 ident: ref46 article-title: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer's disease diagnosis publication-title: IEEE Trans Biomed Eng – ident: ref11 doi: 10.1016/j.neuroimage.2011.09.069 – ident: ref48 doi: 10.1109/42.668698 – ident: ref42 doi: 10.1109/TMI.2016.2582386 – ident: ref6 doi: 10.1109/JBHI.2017.2704614 – ident: ref28 doi: 10.1073/pnas.200033797 – ident: ref34 doi: 10.1212/WNL.42.1.183 – ident: ref20 doi: 10.1176/appi.ajp.162.12.2233 – ident: ref60 doi: 10.1007/978-3-319-58347-1_1 – start-page: 265 year: 2016 ident: ref52 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc USENIX Symp Operating Syst Design and Implementation – year: 2017 ident: ref14 article-title: Deep ordinal ranking for multi-category diagnosis of Alzheimer's disease using hippocampal MRI data publication-title: arXiv preprint arXiv 1709 01922 – ident: ref17 doi: 10.1016/j.neuroimage.2014.05.078 – ident: ref18 doi: 10.1006/nimg.2000.0582 – ident: ref8 doi: 10.1016/j.neuroimage.2013.06.033 – ident: ref40 doi: 10.1016/j.nicl.2012.10.002 – ident: ref31 doi: 10.1016/j.neuroimage.2012.03.059 – ident: ref36 doi: 10.1097/00002093-200307000-00010 – ident: ref2 doi: 10.1073/pnas.052587399 – ident: ref25 doi: 10.1073/pnas.1530467100 – start-page: 455 year: 2018 ident: ref58 article-title: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer's disease diagnosis publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – ident: ref16 doi: 10.1016/j.media.2017.10.005 – start-page: 136 year: 2016 ident: ref59 article-title: Unsupervised domain adaptation with residual transfer networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref4 doi: 10.1038/nrneurol.2009.215 – ident: ref9 doi: 10.1109/TMI.2016.2515021 – ident: ref43 doi: 10.1109/TIP.2012.2214045 – ident: ref41 doi: 10.1002/hbm.22254 – ident: ref35 doi: 10.1212/WNL.52.7.1397 – ident: ref21 doi: 10.1109/TMI.2006.886812 – ident: ref54 doi: 10.1016/j.neuroimage.2005.09.054 – ident: ref10 doi: 10.1002/jmri.21049 – year: 2017 ident: ref15 article-title: Multi-task dictionary learning based convolutional neural network for computer aided diagnosis with longitudinal images publication-title: arXiv preprint arXiv 1709 05206 – ident: ref30 doi: 10.1016/j.neuroimage.2011.01.062 – ident: ref37 doi: 10.1016/j.neuroimage.2012.01.055 – ident: ref47 doi: 10.1097/00004728-199803000-00032 – ident: ref26 doi: 10.1073/pnas.070039597 – year: 2015 ident: ref51 publication-title: Keras – ident: ref22 doi: 10.1016/j.biopsych.2007.03.015 – ident: ref1 doi: 10.1093/brain/119.6.2001 – ident: ref56 doi: 10.1109/CVPR.2016.90 – ident: ref19 doi: 10.1006/nimg.2001.0848 – ident: ref29 doi: 10.1016/j.neuroimage.2010.06.013 – ident: ref5 doi: 10.1109/TIP.2018.2799706 – ident: ref55 doi: 10.1109/42.906424 – start-page: 2672 year: 2014 ident: ref57 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref3 doi: 10.1093/brain/awp062 – start-page: 1 year: 2012 ident: ref23 article-title: Patch-based morphometry: Application to Alzheimer's disease publication-title: Proc Alzheimers Assoc Int Conf – ident: ref12 doi: 10.1016/j.media.2016.05.004 – ident: ref38 doi: 10.1109/TCYB.2016.2644718 – ident: ref32 doi: 10.1016/j.neuroimage.2013.08.015 – start-page: 424 year: 2016 ident: ref50 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc MICCAI |
SSID | ssj0000816898 ssib030782693 ssib053388983 |
Score | 2.5304475 |
Snippet | As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the... As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps assess the stage... |
SourceID | pubmedcentral proquest pubmed crossref nii ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3381 |
SubjectTerms | Algorithms Alzheimer Disease Alzheimer Disease - diagnostic imaging Alzheimer’s disease (AD) Brain Brain - diagnostic imaging Brain diseases Brain modeling clinical score Deep Learning disease prognosis Diseases Feature extraction Humans Image Interpretation, Computer-Assisted Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging Magnetic Resonance Imaging - methods Medical imaging Medical prognosis neural network Neural networks Prediction models Prognosis Prognostics and health management Supervised Machine Learning Training weakly supervised learning |
Title | Weakly Supervised Deep Learning for Brain Disease Prognosis Using MRI and Incomplete Clinical Scores |
URI | https://ieeexplore.ieee.org/document/8674823 https://cir.nii.ac.jp/crid/1872272492895874048 https://www.ncbi.nlm.nih.gov/pubmed/30932861 https://www.proquest.com/docview/2414534312 https://www.proquest.com/docview/2201717124 https://pubmed.ncbi.nlm.nih.gov/PMC8034591 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrgApTwCLTISB0Bkm_gR20faUhWkRYi2opyiJJ4tq66yq-7uof31zDjeiK0qxCVKZEeRNeOZbzyTbxh76xrhvJEydU6bVIEapRb9auq1V42sJTSBjmH4rTg5V18v9MUG-9j_CwMAofgMBnQbcvl-2izpqGzfUmcMITfZJgZu3b9a_XlKaCARWt8KvEkRVZiYxMwzt392-OuA6rjcQLhM5ZY6F1EOUNgiX_NIocUK-pl2PL4Pc94tnfzLFx0_YsPVKroSlKvBclEPmts7BI__u8zH7GEEpfxTp0XbbAPaJ2w7bvs5fxe5qd_vMP8TqqvJDT9dzsjIzMHzI4AZjzStlxwxMD-gthP8qEv98O_XUyrmG895KE_gwx9feNV6jpaJytkRtPNITjrhp0SqOX_Kzo8_nx2epLFRQ9poJRZpg0YhA9BoISADlAJiQG9B5dVIKeN17gU6wrrWmdQgdYUPABj4GQHOUpj8jG210xZeMK4QMeBYIY3C2KXIqjqTsnDeilHeKKMSlq2EVTaRxZyaaUzKEM1kriRRlyTqMoo6YR_6V2Ydhce_Ju-QQPqJURYJ20ONwC_SNbdGCENUi9ZpammobMJ2V7pSRiMwLxEcKS0RoYmEvemHcftSTqZqYbrEOYIIiwyirIQ971Sr__ZKQRNm1pSun0DU4Osj7fh3oAi3mVTa5S_vX80r9kDQsUGoOt5lW4vrJewhtlrUr8Om-gM9_hhz |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeIAXYIyPwAZG4gEQ6RJ_xPYj25g6WCfEOjGeoiS-QrUqrdb2Af567pw0otOEeIkc2VFk3fnuZ9_5d4y9dpVw3kgZO6dNrECNYot-Nfbaq0qWEqpAxzA4zfrn6tOFvthg77u7MAAQks-gR80Qy_fTaklHZXuWKmMIeYvdRr-v0-a2VneiEkpIhOK3Ahsx4grThjHTxO0ND77vUyaX6wmXqNRS7SKKAgqbpWs-KRRZQU9Tj8c3oc7ryZN_eaOj-2ywmkeThHLZWy7KXvX7GsXj_070AbvXwlL-odGjLbYB9UO21S78OX_TslO_3Wb-GxSXk1_8bDkjMzMHzw8BZrwlav3BEQXzfSo8wQ-b4A__cjWldL7xnIcEBT74esyL2nO0TZTQjrCdt_SkE35GtJrzR-z86OPwoB-3pRriSiuxiCs0CwmARhsBCaAUEAV6CyotRkoZr1Mv0BWWpU6kBqkLfAHArZ8R4CxtlB-zzXpaw1PGFWIG7MukUbh7yZKiTKTMnLdilFbKqIglK2HlVctjTuU0JnnYzyQuJ1HnJOq8FXXE3nWfzBoSj38N3iaBdANbWURsFzUC_0jP1BohDJEtWqepqKGyEdtZ6UremoF5jvBIaYkYTUTsVdeNC5iiMkUN0yWOEURZZBBnRexJo1rdv1cKGjGzpnTdACIHX--pxz8DSbhNpNIufXbzbF6yO_3h4CQ_OT79_JzdFXSIEHKQd9jm4moJu4i0FuWLsMD-AAEGG7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+Supervised+Deep+Learning+for+Brain+Disease+Prognosis+Using+MRI+and+Incomplete+Clinical+Scores&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Mingxia&rft.au=Zhang%2C+Jun&rft.au=Lian%2C+Chunfeng&rft.au=Shen%2C+Dinggang&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=7&rft.spage=3381&rft_id=info:doi/10.1109%2FTCYB.2019.2904186&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |