Weakly Supervised Deep Learning for Brain Disease Prognosis Using MRI and Incomplete Clinical Scores

As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies oft...

Full description

Saved in:
Bibliographic Details
Published inIEEE Transactions on Cybernetics Vol. 50; no. 7; pp. 3381 - 3392
Main Authors Liu, Mingxia, Zhang, Jun, Lian, Chunfeng, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2020
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2019.2904186

Cover

Loading…
Abstract As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features (e.g., image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a weakly supervised densely connected neural network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multiscale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly supervised densely connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. The experimental results on 1469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects.
AbstractList As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features (e.g., image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a weakly supervised densely connected neural network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multiscale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly supervised densely connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. The experimental results on 1469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects.
As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features ( e.g. , image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a w eakly-superv ise d Densely-connected Neural Network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multi-scale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly-supervised densely-connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. Experimental results on 1,469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects.
As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features (e.g., image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a weakly supervised densely connected neural network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multiscale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly supervised densely connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. The experimental results on 1469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects.As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the stage of pathology and predict future development of the disease. Due to incomplete clinical labels/scores, previous learning-based studies often simply discard subjects without ground-truth scores. This would result in limited training data for learning reliable and robust models. Also, existing methods focus only on using hand-crafted features (e.g., image intensity or tissue volume) of MRI data, and these features may not be well coordinated with prediction models. In this paper, we propose a weakly supervised densely connected neural network (wiseDNN) for brain disease prognosis using baseline MRI data and incomplete clinical scores. Specifically, we first extract multiscale image patches (located by anatomical landmarks) from MRI to capture local-to-global structural information of images, and then develop a weakly supervised densely connected network for task-oriented extraction of imaging features and joint prediction of multiple clinical measures. A weighted loss function is further employed to make full use of all available subjects (even those without ground-truth scores at certain time-points) for network training. The experimental results on 1469 subjects from both ADNI-1 and ADNI-2 datasets demonstrate that our proposed method can efficiently predict future clinical measures of subjects.
Author Liu, Mingxia
Shen, Dinggang
Zhang, Jun
Lian, Chunfeng
Author_xml – sequence: 1
  givenname: Mingxia
  orcidid: 0000-0002-0598-5692
  surname: Liu
  fullname: Liu, Mingxia
  email: mxliu1226@gmail.com
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 2
  givenname: Jun
  orcidid: 0000-0001-5579-7094
  surname: Zhang
  fullname: Zhang, Jun
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 3
  givenname: Chunfeng
  orcidid: 0000-0002-9319-6633
  surname: Lian
  fullname: Lian, Chunfeng
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 4
  givenname: Dinggang
  orcidid: 0000-0002-7934-5698
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://cir.nii.ac.jp/crid/1872272492895874048$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/30932861$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhoNUbK39ASJIoF54s2s-J8mNYLdqF1YU2yJehezM2TV1NpkmM4X-ezPsutRemEA-n_dwTt48RwchBkDoJSVTSol5dzX7eTZlhJopM0RQXT1BR4xWesKYkgf7daUO0UnON6Q0XY6MfoYOOTGc6YoeoeYHuN_tPb4cOkh3PkODzwE6vACXgg9rvIoJnyXnAz4vty4D_pbiOsTsM77OI_Hl-xy70OB5qOOma6EHPGt98LVr8WUdE-QX6OnKtRlOdvMxuv708Wp2MVl8_TyffVhMailYP6kZkwRAEsKBQMlUKtloENSthFCNpA3ThC6XknAJXLqyATBMKAZGE0X5MXq_jdsNyw00NYQ-udZ2yW9curfRefvvTfC_7DreWU24kGYM8HYXIMXbAXJvNz7X0LYuQByyZeW9VelMFPT0EXoThxRKeZYJKiQXnLJCvX6Y0T6VvwYUgG6BOsWcE6z2CCV29NmOPtvRZ7vzuWjUI03te9f7OBbl2_8q32yVwfsiGkeqVfkwTBimjdRKEKEL9mqLeQDYJ6QrJTTj_A9DX71u
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107067
crossref_primary_10_1109_TPAMI_2022_3185773
crossref_primary_10_1109_TIP_2024_3382600
crossref_primary_10_1109_TAI_2024_3416420
crossref_primary_10_48121_jihsam_1533583
crossref_primary_10_1016_j_neucom_2020_05_037
crossref_primary_10_1109_TMI_2023_3294182
crossref_primary_10_1016_j_ifacol_2020_12_1182
crossref_primary_10_1038_s41598_019_54548_6
crossref_primary_10_1109_TMI_2021_3139161
crossref_primary_10_1088_1361_6560_abf200
crossref_primary_10_1007_s11042_023_16928_z
crossref_primary_10_1080_00207721_2020_1784492
crossref_primary_10_1016_j_mri_2021_10_031
crossref_primary_10_1109_JAS_2023_123591
crossref_primary_10_1109_TCYB_2021_3126817
crossref_primary_10_1007_s10916_023_01941_4
crossref_primary_10_3389_fncom_2021_769982
crossref_primary_10_1088_1361_6560_accac8
crossref_primary_10_1016_j_eswa_2021_115374
crossref_primary_10_1007_s11831_022_09733_8
crossref_primary_10_3389_fnagi_2022_871706
crossref_primary_10_1038_s41598_024_62712_w
crossref_primary_10_1109_TPAMI_2024_3471800
crossref_primary_10_1007_s11831_023_09967_0
crossref_primary_10_1016_j_jfranklin_2024_01_029
crossref_primary_10_1016_j_neucom_2019_07_030
crossref_primary_10_1016_j_compeleceng_2019_05_014
crossref_primary_10_1109_TCYB_2023_3300832
crossref_primary_10_1038_s41598_024_78712_9
crossref_primary_10_3233_KES_220007
crossref_primary_10_1088_1361_6560_ac5ed5
crossref_primary_10_1016_j_neucom_2021_06_097
crossref_primary_10_1109_TMI_2022_3170879
crossref_primary_10_1109_TCYB_2019_2955178
crossref_primary_10_1049_cit2_12291
crossref_primary_10_1007_s11042_021_10928_7
crossref_primary_10_3389_fcomp_2024_1386514
crossref_primary_10_26599_BDMA_2024_9020025
crossref_primary_10_1109_TPAMI_2021_3074313
crossref_primary_10_1007_s40031_021_00571_z
crossref_primary_10_1109_TMI_2021_3070780
crossref_primary_10_1016_j_asej_2021_04_010
crossref_primary_10_3390_pr8050536
crossref_primary_10_1109_TCYB_2020_3035282
crossref_primary_10_1109_TCYB_2023_3344641
crossref_primary_10_1007_s11042_024_19677_9
crossref_primary_10_1016_j_knosys_2019_105438
crossref_primary_10_3390_app10072443
crossref_primary_10_1109_TCYB_2020_3005859
crossref_primary_10_1016_j_amc_2021_126369
crossref_primary_10_1016_j_neucom_2021_01_020
crossref_primary_10_1109_TCYB_2020_2992433
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1007_s11071_024_09341_0
crossref_primary_10_1016_j_media_2020_101891
crossref_primary_10_1109_TCYB_2022_3223528
Cites_doi 10.1073/pnas.090106797
10.1109/TMI.2016.2538465
10.1142/S0218001414500098
10.1109/TNNLS.2016.2520964
10.1017/CBO9780511804441
10.1016/j.neuroimage.2011.09.069
10.1109/42.668698
10.1109/TMI.2016.2582386
10.1109/JBHI.2017.2704614
10.1073/pnas.200033797
10.1212/WNL.42.1.183
10.1176/appi.ajp.162.12.2233
10.1007/978-3-319-58347-1_1
10.1016/j.neuroimage.2014.05.078
10.1006/nimg.2000.0582
10.1016/j.neuroimage.2013.06.033
10.1016/j.nicl.2012.10.002
10.1016/j.neuroimage.2012.03.059
10.1097/00002093-200307000-00010
10.1073/pnas.052587399
10.1073/pnas.1530467100
10.1016/j.media.2017.10.005
10.1038/nrneurol.2009.215
10.1109/TMI.2016.2515021
10.1109/TIP.2012.2214045
10.1002/hbm.22254
10.1212/WNL.52.7.1397
10.1109/TMI.2006.886812
10.1016/j.neuroimage.2005.09.054
10.1002/jmri.21049
10.1016/j.neuroimage.2011.01.062
10.1016/j.neuroimage.2012.01.055
10.1097/00004728-199803000-00032
10.1073/pnas.070039597
10.1016/j.biopsych.2007.03.015
10.1093/brain/119.6.2001
10.1109/CVPR.2016.90
10.1006/nimg.2001.0848
10.1016/j.neuroimage.2010.06.013
10.1109/TIP.2018.2799706
10.1109/42.906424
10.1093/brain/awp062
10.1016/j.media.2016.05.004
10.1109/TCYB.2016.2644718
10.1016/j.neuroimage.2013.08.015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TCYB.2019.2904186
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3392
ExternalDocumentID PMC8034591
30932861
10_1109_TCYB_2019_2904186
8674823
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIH
  grantid: EB006733; EB008374; EB009634; MH100217; AG041721; AG042599; AG010129; AG030514
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIA NIH HHS
  grantid: P30 AG010129
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
– fundername: NIA NIH HHS
  grantid: K01 AG030514
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
RIG
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c542t-c2250ee5003e0e898575d8e41af447d51d2801bb5035e35a801ee92472e980713
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Aug 21 18:43:00 EDT 2025
Fri Jul 11 09:09:33 EDT 2025
Sun Jun 29 15:21:04 EDT 2025
Thu Jan 02 22:41:59 EST 2025
Thu Apr 24 23:02:35 EDT 2025
Tue Jul 01 00:53:53 EDT 2025
Fri Jun 27 00:05:04 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-c2250ee5003e0e898575d8e41af447d51d2801bb5035e35a801ee92472e980713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
M. Liu and J. Zhang contributed equally to this study.
ORCID 0000-0001-5579-7094
0000-0002-9319-6633
0000-0002-0598-5692
0000-0002-7934-5698
0000-0002-0166-0807
OpenAccessLink https://cir.nii.ac.jp/crid/1872272492895874048
PMID 30932861
PQID 2414534312
PQPubID 85422
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCYB_2019_2904186
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034591
proquest_journals_2414534312
crossref_citationtrail_10_1109_TCYB_2019_2904186
pubmed_primary_30932861
ieee_primary_8674823
nii_cinii_1872272492895874048
proquest_miscellaneous_2201717124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE Transactions on Cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref53
huang (ref49) 2016
ref55
ref11
ref54
ref10
ref17
liu (ref46) 0
ref16
ref19
ref18
çiçek (ref50) 2016
friedman (ref24) 2001; 1
ref48
zhang (ref15) 2017
ref47
ref42
ref41
ref43
pan (ref58) 2018
sarraf (ref45) 2017
khvostikov (ref44) 2018
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
abadi (ref52) 2016
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref26
ref25
li (ref14) 2017
ref20
ref22
ref21
ref28
chollet (ref51) 2015
ref27
lian (ref7) 0
ref29
ref60
coupé (ref23) 2012
goodfellow (ref57) 2014
long (ref59) 2016
References_xml – ident: ref39
  doi: 10.1073/pnas.090106797
– ident: ref13
  doi: 10.1109/TMI.2016.2538465
– ident: ref27
  doi: 10.1142/S0218001414500098
– year: 2016
  ident: ref49
  article-title: Densely connected convolutional networks
  publication-title: arXiv preprint arXiv 1608 06993
– ident: ref33
  doi: 10.1109/TNNLS.2016.2520964
– ident: ref53
  doi: 10.1017/CBO9780511804441
– year: 2017
  ident: ref45
  article-title: DeepAD: Alzheimer's disease classification via deep convolutional neural networks using MRI and fMRI
  publication-title: BioRxiv
– year: 2018
  ident: ref44
  article-title: 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies
  publication-title: arXiv preprint arXiv 1801 00257
– volume: 1
  year: 2001
  ident: ref24
  publication-title: The Elements of Statistical Learning
– year: 0
  ident: ref7
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 0
  ident: ref46
  article-title: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer's disease diagnosis
  publication-title: IEEE Trans Biomed Eng
– ident: ref11
  doi: 10.1016/j.neuroimage.2011.09.069
– ident: ref48
  doi: 10.1109/42.668698
– ident: ref42
  doi: 10.1109/TMI.2016.2582386
– ident: ref6
  doi: 10.1109/JBHI.2017.2704614
– ident: ref28
  doi: 10.1073/pnas.200033797
– ident: ref34
  doi: 10.1212/WNL.42.1.183
– ident: ref20
  doi: 10.1176/appi.ajp.162.12.2233
– ident: ref60
  doi: 10.1007/978-3-319-58347-1_1
– start-page: 265
  year: 2016
  ident: ref52
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: Proc USENIX Symp Operating Syst Design and Implementation
– year: 2017
  ident: ref14
  article-title: Deep ordinal ranking for multi-category diagnosis of Alzheimer's disease using hippocampal MRI data
  publication-title: arXiv preprint arXiv 1709 01922
– ident: ref17
  doi: 10.1016/j.neuroimage.2014.05.078
– ident: ref18
  doi: 10.1006/nimg.2000.0582
– ident: ref8
  doi: 10.1016/j.neuroimage.2013.06.033
– ident: ref40
  doi: 10.1016/j.nicl.2012.10.002
– ident: ref31
  doi: 10.1016/j.neuroimage.2012.03.059
– ident: ref36
  doi: 10.1097/00002093-200307000-00010
– ident: ref2
  doi: 10.1073/pnas.052587399
– ident: ref25
  doi: 10.1073/pnas.1530467100
– start-page: 455
  year: 2018
  ident: ref58
  article-title: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer's disease diagnosis
  publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention
– ident: ref16
  doi: 10.1016/j.media.2017.10.005
– start-page: 136
  year: 2016
  ident: ref59
  article-title: Unsupervised domain adaptation with residual transfer networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1038/nrneurol.2009.215
– ident: ref9
  doi: 10.1109/TMI.2016.2515021
– ident: ref43
  doi: 10.1109/TIP.2012.2214045
– ident: ref41
  doi: 10.1002/hbm.22254
– ident: ref35
  doi: 10.1212/WNL.52.7.1397
– ident: ref21
  doi: 10.1109/TMI.2006.886812
– ident: ref54
  doi: 10.1016/j.neuroimage.2005.09.054
– ident: ref10
  doi: 10.1002/jmri.21049
– year: 2017
  ident: ref15
  article-title: Multi-task dictionary learning based convolutional neural network for computer aided diagnosis with longitudinal images
  publication-title: arXiv preprint arXiv 1709 05206
– ident: ref30
  doi: 10.1016/j.neuroimage.2011.01.062
– ident: ref37
  doi: 10.1016/j.neuroimage.2012.01.055
– ident: ref47
  doi: 10.1097/00004728-199803000-00032
– ident: ref26
  doi: 10.1073/pnas.070039597
– year: 2015
  ident: ref51
  publication-title: Keras
– ident: ref22
  doi: 10.1016/j.biopsych.2007.03.015
– ident: ref1
  doi: 10.1093/brain/119.6.2001
– ident: ref56
  doi: 10.1109/CVPR.2016.90
– ident: ref19
  doi: 10.1006/nimg.2001.0848
– ident: ref29
  doi: 10.1016/j.neuroimage.2010.06.013
– ident: ref5
  doi: 10.1109/TIP.2018.2799706
– ident: ref55
  doi: 10.1109/42.906424
– start-page: 2672
  year: 2014
  ident: ref57
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref3
  doi: 10.1093/brain/awp062
– start-page: 1
  year: 2012
  ident: ref23
  article-title: Patch-based morphometry: Application to Alzheimer's disease
  publication-title: Proc Alzheimers Assoc Int Conf
– ident: ref12
  doi: 10.1016/j.media.2016.05.004
– ident: ref38
  doi: 10.1109/TCYB.2016.2644718
– ident: ref32
  doi: 10.1016/j.neuroimage.2013.08.015
– start-page: 424
  year: 2016
  ident: ref50
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc MICCAI
SSID ssj0000816898
ssib030782693
ssib053388983
Score 2.5304475
Snippet As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps to assess the...
As a hot topic in brain disease prognosis, predicting clinical measures of subjects based on brain magnetic resonance imaging (MRI) data helps assess the stage...
SourceID pubmedcentral
proquest
pubmed
crossref
nii
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3381
SubjectTerms Algorithms
Alzheimer Disease
Alzheimer Disease - diagnostic imaging
Alzheimer’s disease (AD)
Brain
Brain - diagnostic imaging
Brain diseases
Brain modeling
clinical score
Deep Learning
disease prognosis
Diseases
Feature extraction
Humans
Image Interpretation, Computer-Assisted
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medical prognosis
neural network
Neural networks
Prediction models
Prognosis
Prognostics and health management
Supervised Machine Learning
Training
weakly supervised learning
Title Weakly Supervised Deep Learning for Brain Disease Prognosis Using MRI and Incomplete Clinical Scores
URI https://ieeexplore.ieee.org/document/8674823
https://cir.nii.ac.jp/crid/1872272492895874048
https://www.ncbi.nlm.nih.gov/pubmed/30932861
https://www.proquest.com/docview/2414534312
https://www.proquest.com/docview/2201717124
https://pubmed.ncbi.nlm.nih.gov/PMC8034591
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrgApTwCLTISB0Bkm_gR20faUhWkRYi2opyiJJ4tq66yq-7uof31zDjeiK0qxCVKZEeRNeOZbzyTbxh76xrhvJEydU6bVIEapRb9auq1V42sJTSBjmH4rTg5V18v9MUG-9j_CwMAofgMBnQbcvl-2izpqGzfUmcMITfZJgZu3b9a_XlKaCARWt8KvEkRVZiYxMwzt392-OuA6rjcQLhM5ZY6F1EOUNgiX_NIocUK-pl2PL4Pc94tnfzLFx0_YsPVKroSlKvBclEPmts7BI__u8zH7GEEpfxTp0XbbAPaJ2w7bvs5fxe5qd_vMP8TqqvJDT9dzsjIzMHzI4AZjzStlxwxMD-gthP8qEv98O_XUyrmG895KE_gwx9feNV6jpaJytkRtPNITjrhp0SqOX_Kzo8_nx2epLFRQ9poJRZpg0YhA9BoISADlAJiQG9B5dVIKeN17gU6wrrWmdQgdYUPABj4GQHOUpj8jG210xZeMK4QMeBYIY3C2KXIqjqTsnDeilHeKKMSlq2EVTaRxZyaaUzKEM1kriRRlyTqMoo6YR_6V2Ydhce_Ju-QQPqJURYJ20ONwC_SNbdGCENUi9ZpammobMJ2V7pSRiMwLxEcKS0RoYmEvemHcftSTqZqYbrEOYIIiwyirIQ971Sr__ZKQRNm1pSun0DU4Osj7fh3oAi3mVTa5S_vX80r9kDQsUGoOt5lW4vrJewhtlrUr8Om-gM9_hhz
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeIAXYIyPwAZG4gEQ6RJ_xPYj25g6WCfEOjGeoiS-QrUqrdb2Af567pw0otOEeIkc2VFk3fnuZ9_5d4y9dpVw3kgZO6dNrECNYot-Nfbaq0qWEqpAxzA4zfrn6tOFvthg77u7MAAQks-gR80Qy_fTaklHZXuWKmMIeYvdRr-v0-a2VneiEkpIhOK3Ahsx4grThjHTxO0ND77vUyaX6wmXqNRS7SKKAgqbpWs-KRRZQU9Tj8c3oc7ryZN_eaOj-2ywmkeThHLZWy7KXvX7GsXj_070AbvXwlL-odGjLbYB9UO21S78OX_TslO_3Wb-GxSXk1_8bDkjMzMHzw8BZrwlav3BEQXzfSo8wQ-b4A__cjWldL7xnIcEBT74esyL2nO0TZTQjrCdt_SkE35GtJrzR-z86OPwoB-3pRriSiuxiCs0CwmARhsBCaAUEAV6CyotRkoZr1Mv0BWWpU6kBqkLfAHArZ8R4CxtlB-zzXpaw1PGFWIG7MukUbh7yZKiTKTMnLdilFbKqIglK2HlVctjTuU0JnnYzyQuJ1HnJOq8FXXE3nWfzBoSj38N3iaBdANbWURsFzUC_0jP1BohDJEtWqepqKGyEdtZ6UremoF5jvBIaYkYTUTsVdeNC5iiMkUN0yWOEURZZBBnRexJo1rdv1cKGjGzpnTdACIHX--pxz8DSbhNpNIufXbzbF6yO_3h4CQ_OT79_JzdFXSIEHKQd9jm4moJu4i0FuWLsMD-AAEGG7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+Supervised+Deep+Learning+for+Brain+Disease+Prognosis+Using+MRI+and+Incomplete+Clinical+Scores&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Mingxia&rft.au=Zhang%2C+Jun&rft.au=Lian%2C+Chunfeng&rft.au=Shen%2C+Dinggang&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=7&rft.spage=3381&rft_id=info:doi/10.1109%2FTCYB.2019.2904186&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon