Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells
It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen ). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 343; no. 6175; p. 1119 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
07.03.2014
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.1246980 |
Cover
Loading…
Abstract | It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by
Gregersen
). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression.
M. N. Lee
et al.
(
10.1126/science.1246980
) analyzed the expression of more than 400 genes, in dendritic cells from 534 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways.
Fairfax
et al.
(
10.1126/science.1246949
) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner.
Mapping of human host-pathogen gene-by-environment interactions identifies pathogen-specific loci.
[Also see Perspective by
Gregersen
]
Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to
Escherichia coli
lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in
IRF7
that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases. |
---|---|
AbstractList | Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in
cis
with variation in expression responses to
E. coli
lipopolysaccharide, influenza or interferon-β (IFNβ). We localized and validated causal variants to binding sites of pathogen-activated STAT and IRF transcription factors. We also identified a common variant in
IRF7
that is associated in
trans
with type I interferon induction in response to influenza infection. Our results reveal common alleles that explain inter-individual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases. Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases. Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases. It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen ). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. ( 10.1126/science.1246980 ) analyzed the expression of more than 400 genes, in dendritic cells from 534 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. ( 10.1126/science.1246949 ) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner. Mapping of human host-pathogen gene-by-environment interactions identifies pathogen-specific loci. [Also see Perspective by Gregersen ] Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases. Introduction; Variation in an individual's response to environmental factors is likely to influence susceptibility to complex human diseases. The genetic basis of such variation is poorly understood. Here, we identify natural genetic variants that underlie variation in the host innate immune response to infection and analyze the mechanisms by which such variants alter these responses.; Identifying the genetic basis of variability in the host response to pathogens. A cohort of 534 individuals donated blood for (a) genotyping of common DNA variants and (b) isolation of immune DCs. DCs were stimulated with viral and bacterial components, and the variability in individuals' gene expression responses was mapped to specific DNA variants, which were then shown to affect binding of particular transcription factors.; Methods; We derived dendritic cells (DCs) from peripheral blood monocytes of healthy individuals (295 Caucasians, 122 African Americans, 117 East Asians) and stimulated them with Escherichia coli lipopolysaccharide (LPS), influenza virus, or the cytokine interferon-β (IFN-β) to generate 1598 transcriptional profiles. We genotyped each of these individuals at sites of common genetic variation and identified the genetic variants that best explain variation in gene expression and gene induction between individuals. We then tested mechanistic predictions from these associations using synthetic promoter constructs and genome engineering.; Results; We identified 264 loci containing genetic variants associated with variation in absolute gene expression in human DCs, of which 121 loci were associated with variation in the induction of gene expression by one or more stimuli. Fine-mapping identified candidate causal single-nucleotide polymorphisms (SNPs) associated with expression variance, and deeper functional experiments localized three of these SNPs to the binding sites of stimulus-activated transcription factors. We also identified a cis variant in the transcription factor, IRF7, associated in trans with the induction of a module of antiviral genes in response to influenza infection. Of the identified genetic variants, 35 were also associated with autoimmune or infectious disease loci found by genome-wide association studies.; Discussion; The genetic variants we uncover and the molecular basis for their action provide mechanistic explanations and principles for how the innate immune response to pathogens and cytokines varies across individuals. Our results also link disease-associated variants to specific immune pathways in DCs, which provides greater insight into mechanisms underlying complex human phenotypes. Extending our approach to many immune cell types and pathways will provide a global map linking human genetic variants to specific immunological processes. [PUBLICATION ABSTRACT] It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. (10.1126/science.1246980) analyzed the expression of more than 400 genes, in dendritic cells from 30 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. (10.1126/science.1246949) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner. [PUBLICATION ABSTRACT] Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases. [PUBLICATION ABSTRACT] Immune Variation It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. (10.1126/science.1246980) analyzed the expression of more than 400 genes, in dendritic cells from 30 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. (10.1126/science.1246949) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner. |
Author | Imboywa, Selina H. McCabe, Cristin Chipendo, Portia I. Lee, Mark N. Li, Weibo Villani, Alexandra-Chloé Hacohen, Nir Ye, Chun Frohlich, Irene Y. Regev, Aviv Raj, Towfique Lee, Michelle H. Raddassi, Khadir Slowikowski, Kamil Kellis, Manolis Raychaudhuri, Soumya Benoist, Christophe O. Ran, F. Ann Hafler, David A. Stranger, Barbara E. Eisenhaure, Thomas M. Ward, Lucas D. Zhang, Feng De Jager, Philip L. |
AuthorAffiliation | 4 Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham & Women's Hospital, Boston MA 02115, USA 3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA 7 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 10 Arthritis Research UK Epidemiology Unit, Musculoskeletal Research Group, University of Manchester, Manchester Academic Health Sciences Centre, UK 1 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 8 Department of Neurology, Yale School of Medicine, CT 06511, USA 11 McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA 14 Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA 15 Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA 17 Howard Hughes Medical Institute 2 Harvard Medical School, Boston, MA 02115, USA 9 Divisions of Genetics and Rheumatol |
AuthorAffiliation_xml | – name: 1 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – name: 7 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: 16 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: 3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA – name: 13 Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA – name: 15 Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA – name: 2 Harvard Medical School, Boston, MA 02115, USA – name: 4 Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham & Women's Hospital, Boston MA 02115, USA – name: 10 Arthritis Research UK Epidemiology Unit, Musculoskeletal Research Group, University of Manchester, Manchester Academic Health Sciences Centre, UK – name: 11 McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA – name: 17 Howard Hughes Medical Institute – name: 12 Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA – name: 8 Department of Neurology, Yale School of Medicine, CT 06511, USA – name: 9 Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA – name: 14 Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA – name: 5 Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA – name: 6 Bioinformatics and Integrative Genomics, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA |
Author_xml | – sequence: 1 givenname: Mark N. surname: Lee fullname: Lee, Mark N. – sequence: 2 givenname: Chun surname: Ye fullname: Ye, Chun – sequence: 3 givenname: Alexandra-Chloé surname: Villani fullname: Villani, Alexandra-Chloé – sequence: 4 givenname: Towfique surname: Raj fullname: Raj, Towfique – sequence: 5 givenname: Weibo surname: Li fullname: Li, Weibo – sequence: 6 givenname: Thomas M. surname: Eisenhaure fullname: Eisenhaure, Thomas M. – sequence: 7 givenname: Selina H. surname: Imboywa fullname: Imboywa, Selina H. – sequence: 8 givenname: Portia I. surname: Chipendo fullname: Chipendo, Portia I. – sequence: 9 givenname: F. Ann surname: Ran fullname: Ran, F. Ann – sequence: 10 givenname: Kamil surname: Slowikowski fullname: Slowikowski, Kamil – sequence: 11 givenname: Lucas D. surname: Ward fullname: Ward, Lucas D. – sequence: 12 givenname: Khadir surname: Raddassi fullname: Raddassi, Khadir – sequence: 13 givenname: Cristin surname: McCabe fullname: McCabe, Cristin – sequence: 14 givenname: Michelle H. surname: Lee fullname: Lee, Michelle H. – sequence: 15 givenname: Irene Y. surname: Frohlich fullname: Frohlich, Irene Y. – sequence: 16 givenname: David A. surname: Hafler fullname: Hafler, David A. – sequence: 17 givenname: Manolis surname: Kellis fullname: Kellis, Manolis – sequence: 18 givenname: Soumya surname: Raychaudhuri fullname: Raychaudhuri, Soumya – sequence: 19 givenname: Feng surname: Zhang fullname: Zhang, Feng – sequence: 20 givenname: Barbara E. surname: Stranger fullname: Stranger, Barbara E. – sequence: 21 givenname: Christophe O. surname: Benoist fullname: Benoist, Christophe O. – sequence: 22 givenname: Philip L. surname: De Jager fullname: De Jager, Philip L. – sequence: 23 givenname: Aviv surname: Regev fullname: Regev, Aviv – sequence: 24 givenname: Nir surname: Hacohen fullname: Hacohen, Nir |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24604203$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9rFDEUx4NU7LZ69qQMePEybV5-zEwugqzaChVFq9eQzbzZZplJtklG8L83y26lFsTTO7zP98v3_TghRz54JOQ50DMA1pwn69BbPAMmGtXRR2QBVMlaMcqPyIJS3tQdbeUxOUlpQ2npKf6EHBeaisIsyPUyTFPw1QV6zM5WP0x0xudUfQr9PJqM1ReTb8Iaff0NfXJ-XX3FtA0-Yaqcry7nyfjqHfo-up1-ieOYnpLHgxkTPjvUU_L9w_vr5WV99fni4_LtVW2lYLm2YLkcEJhcMd6AEpwL6IyRRlBu237FGdLByp532A3AYGWVZYL1BhhthoGfkjd73-28mrC36HM0o95GN5n4Swfj9N8d7270OvzUouyrFVAMXh8MYridMWU9uWTLCMZjmJNmZWVcMVHy_A8FSSWTlLaqoK8eoJswR182USjgoJQSbaFe3g__J_XdbQog94CNIaWIg7Yum-zCbhY3aqB69wP68AP68ANFd_5Ad2f9b8WLvWKTcoj3krTlJIzx3yrwvpA |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_3390_biomedicines13010099 crossref_primary_10_4049_jimmunol_1401280 crossref_primary_10_1126_science_1251426 crossref_primary_10_1172_JCI78086 crossref_primary_10_4049_jimmunol_2200030 crossref_primary_10_1016_j_mib_2017_09_012 crossref_primary_10_1093_hmg_ddw061 crossref_primary_10_1146_annurev_genom_120319_095026 crossref_primary_10_1038_ncomms6236 crossref_primary_10_1016_j_molmed_2015_04_002 crossref_primary_10_1016_j_celrep_2016_08_011 crossref_primary_10_1016_j_trsl_2015_06_018 crossref_primary_10_1016_j_jalz_2016_07_004 crossref_primary_10_1016_j_jisp_2020_04_003 crossref_primary_10_1371_journal_pgen_1008009 crossref_primary_10_1371_journal_pgen_1010567 crossref_primary_10_1080_19490976_2021_1921927 crossref_primary_10_3389_fcell_2021_673502 crossref_primary_10_1093_bioinformatics_btu802 crossref_primary_10_1146_annurev_immunol_032414_112151 crossref_primary_10_1016_j_mce_2018_06_002 crossref_primary_10_4049_jimmunol_2100671 crossref_primary_10_1038_nbt_4042 crossref_primary_10_3389_fimmu_2016_00587 crossref_primary_10_1093_bioinformatics_btv568 crossref_primary_10_1186_s12864_020_06966_4 crossref_primary_10_1016_j_smim_2015_02_004 crossref_primary_10_1038_nature18285 crossref_primary_10_1038_ncomms8545 crossref_primary_10_1214_20_AOAS1332 crossref_primary_10_1161_ATVBAHA_114_304455 crossref_primary_10_4049_jimmunol_1900031 crossref_primary_10_3390_pathogens13070561 crossref_primary_10_1038_npjgenmed_2016_6 crossref_primary_10_1038_s41467_023_38994_5 crossref_primary_10_1093_ibd_izy109 crossref_primary_10_1038_ng_3936 crossref_primary_10_1186_s12974_015_0263_2 crossref_primary_10_3389_fmed_2022_754440 crossref_primary_10_1002_ana_24442 crossref_primary_10_3389_fimmu_2017_00425 crossref_primary_10_1136_annrheumdis_2014_206367 crossref_primary_10_1016_j_atherosclerosis_2018_10_005 crossref_primary_10_1172_jci_insight_87899 crossref_primary_10_1038_nm_4140 crossref_primary_10_1146_annurev_genom_101422_100437 crossref_primary_10_1371_journal_pgen_1009684 crossref_primary_10_1016_j_imbio_2014_11_004 crossref_primary_10_1021_acschembio_0c00662 crossref_primary_10_1093_bfgp_ely015 crossref_primary_10_1093_nar_gkz433 crossref_primary_10_3389_fgene_2020_00402 crossref_primary_10_1073_pnas_1706070114 crossref_primary_10_1126_science_abg0928 crossref_primary_10_1093_bib_bbw014 crossref_primary_10_1186_s13073_015_0186_7 crossref_primary_10_26508_lsa_202000650 crossref_primary_10_1038_nm_4139 crossref_primary_10_1016_j_coviro_2018_11_010 crossref_primary_10_3389_fimmu_2017_00679 crossref_primary_10_1016_j_chom_2014_11_004 crossref_primary_10_1016_j_tim_2020_09_006 crossref_primary_10_1038_s41584_019_0217_7 crossref_primary_10_1126_sciimmunol_aah5861 crossref_primary_10_1002_cti2_1356 crossref_primary_10_1038_nm_4370 crossref_primary_10_1016_j_coi_2014_12_007 crossref_primary_10_1101_gr_209759_116 crossref_primary_10_1016_j_coi_2014_12_003 crossref_primary_10_1186_s12859_016_1387_9 crossref_primary_10_1038_s41467_019_12348_6 crossref_primary_10_1371_journal_pgen_1006952 crossref_primary_10_7554_eLife_85235 crossref_primary_10_1016_j_smim_2023_101842 crossref_primary_10_1038_s41588_019_0505_9 crossref_primary_10_2147_JIR_S363538 crossref_primary_10_1016_j_coi_2014_07_001 crossref_primary_10_1111_voxs_12217 crossref_primary_10_1038_mi_2017_19 crossref_primary_10_1038_s41588_022_01056_5 crossref_primary_10_1038_ncomms8971 crossref_primary_10_1038_s41588_018_0046_7 crossref_primary_10_1016_j_it_2015_07_006 crossref_primary_10_1111_febs_15885 crossref_primary_10_1186_s13059_016_1078_x crossref_primary_10_1038_s41590_020_0677_6 crossref_primary_10_7554_eLife_63852 crossref_primary_10_1016_j_clim_2020_108498 crossref_primary_10_1016_j_biocel_2018_03_012 crossref_primary_10_1038_nmeth_4298 crossref_primary_10_1111_jfb_13627 crossref_primary_10_1073_pnas_1714765115 crossref_primary_10_1038_srep29338 crossref_primary_10_1016_j_tig_2023_02_014 crossref_primary_10_1038_nature24265 crossref_primary_10_1016_j_jaci_2017_05_015 crossref_primary_10_1038_s41588_023_01421_y crossref_primary_10_1371_journal_pgen_1009493 crossref_primary_10_1038_s41467_021_21854_5 crossref_primary_10_1093_nar_gky856 crossref_primary_10_1016_j_tig_2020_09_007 crossref_primary_10_1161_ATVBAHA_114_304925 crossref_primary_10_3390_v7072800 crossref_primary_10_1016_j_cell_2014_12_003 crossref_primary_10_1126_scitranslmed_aag1974 crossref_primary_10_1111_tan_13598 crossref_primary_10_1038_s41576_020_00297_6 crossref_primary_10_1038_s41467_020_17477_x crossref_primary_10_1038_s41598_021_00528_8 crossref_primary_10_1126_science_abf1970 crossref_primary_10_1093_hmg_ddx254 crossref_primary_10_3390_cells10123544 crossref_primary_10_3390_ijms16036432 crossref_primary_10_1093_genetics_iyaa051 crossref_primary_10_1073_pnas_1811758115 crossref_primary_10_1038_s41588_024_01668_z crossref_primary_10_1007_s10875_018_0512_0 crossref_primary_10_1016_j_cell_2019_02_033 crossref_primary_10_1007_s12016_014_8419_x crossref_primary_10_1038_s41588_018_0156_2 crossref_primary_10_1093_emph_eox019 crossref_primary_10_1186_s13075_014_0514_0 crossref_primary_10_1016_j_xgen_2024_100654 crossref_primary_10_1016_j_jhep_2016_12_008 crossref_primary_10_7554_eLife_67077 crossref_primary_10_1016_j_tig_2017_01_010 crossref_primary_10_1093_genetics_iyab016 crossref_primary_10_1186_s13072_015_0050_4 crossref_primary_10_1016_j_exphem_2014_04_005 crossref_primary_10_1016_j_coisb_2017_01_002 crossref_primary_10_1016_j_immuni_2015_05_003 crossref_primary_10_1371_journal_pbio_3002311 crossref_primary_10_1016_j_fsi_2023_108944 crossref_primary_10_1016_j_coi_2018_05_012 crossref_primary_10_1016_j_gde_2014_07_004 crossref_primary_10_1371_journal_pgen_1007961 crossref_primary_10_1007_s00702_017_1745_4 crossref_primary_10_1038_nri_2016_125 crossref_primary_10_1038_s41588_023_01623_4 crossref_primary_10_1039_C4RA15794J crossref_primary_10_1093_sleep_zsaa099 crossref_primary_10_1007_s11894_016_0512_2 crossref_primary_10_1038_s41467_020_19131_y crossref_primary_10_1016_j_coi_2014_06_001 crossref_primary_10_1016_j_coi_2014_06_002 crossref_primary_10_1534_genetics_118_301768 crossref_primary_10_1038_s41590_018_0121_3 crossref_primary_10_1016_j_jaut_2015_07_007 crossref_primary_10_5808_GI_2016_14_4_173 crossref_primary_10_1021_acsinfecdis_9b00080 crossref_primary_10_1038_s41588_023_01555_z crossref_primary_10_1002_hep_30056 crossref_primary_10_1007_s11926_017_0695_z crossref_primary_10_1016_j_immuni_2017_07_017 crossref_primary_10_1038_srep21193 crossref_primary_10_1093_bib_bbae593 crossref_primary_10_1084_jem_20161942 crossref_primary_10_1186_s13059_018_1601_3 crossref_primary_10_1186_s13059_022_02702_1 crossref_primary_10_1016_j_coisb_2016_12_018 crossref_primary_10_1038_s41588_021_00976_y crossref_primary_10_1093_emph_eoae014 crossref_primary_10_1126_science_aaf5453 crossref_primary_10_1186_s13059_019_1912_z crossref_primary_10_1002_cyto_a_24269 crossref_primary_10_1016_j_heliyon_2021_e06755 crossref_primary_10_1186_s13059_023_02959_0 crossref_primary_10_1016_j_cmet_2021_06_004 crossref_primary_10_1126_science_1254665 crossref_primary_10_7554_eLife_35471 crossref_primary_10_1016_j_ajhg_2019_07_016 crossref_primary_10_1016_j_cell_2016_10_055 crossref_primary_10_1146_annurev_cellbio_100913_012908 crossref_primary_10_1038_s41591_022_02095_5 crossref_primary_10_1111_imm_12796 crossref_primary_10_1016_j_tig_2020_08_009 crossref_primary_10_1038_s41588_024_01776_w crossref_primary_10_1126_scitranslmed_aaf7165 crossref_primary_10_1016_j_trsl_2014_09_011 crossref_primary_10_1186_s13293_017_0153_7 crossref_primary_10_1097_MD_0000000000000281 crossref_primary_10_1038_s41593_018_0240_z crossref_primary_10_1093_hmg_ddab372 crossref_primary_10_1093_aje_kwx229 crossref_primary_10_1146_annurev_immunol_020711_075049 crossref_primary_10_1189_jlb_3RI0315_095R crossref_primary_10_4236_wjcd_2021_117032 crossref_primary_10_1038_s41588_020_0644_z crossref_primary_10_1038_s41467_017_00366_1 crossref_primary_10_3390_v10080423 crossref_primary_10_7554_eLife_60645 crossref_primary_10_1016_j_cell_2016_09_024 crossref_primary_10_1371_journal_pgen_1005111 crossref_primary_10_1016_j_cell_2016_09_025 crossref_primary_10_1080_19491034_2016_1238998 crossref_primary_10_1016_j_clim_2017_09_019 crossref_primary_10_1126_sciimmunol_abm2508 crossref_primary_10_1016_j_cell_2018_10_022 crossref_primary_10_1016_j_immuni_2016_10_025 crossref_primary_10_1021_acsomega_0c01249 crossref_primary_10_1016_j_immuni_2022_10_004 crossref_primary_10_1016_j_cell_2015_12_032 crossref_primary_10_1016_j_bbadis_2014_04_024 crossref_primary_10_1016_j_paed_2018_05_003 crossref_primary_10_1371_journal_pgen_1005908 crossref_primary_10_1534_genetics_117_300381 crossref_primary_10_1186_s13073_015_0182_y crossref_primary_10_1016_j_gde_2018_06_009 crossref_primary_10_1016_j_ajhg_2024_03_014 crossref_primary_10_1099_jgv_0_000632 crossref_primary_10_3389_fmicb_2020_512581 crossref_primary_10_1128_JVI_00121_20 crossref_primary_10_7554_eLife_90091 crossref_primary_10_1016_j_peptides_2022_170893 crossref_primary_10_1186_s13059_021_02471_3 crossref_primary_10_1016_j_coviro_2015_04_010 crossref_primary_10_1126_science_1260793 crossref_primary_10_1038_nri3653 crossref_primary_10_1101_gr_240390_118 crossref_primary_10_1186_s12859_016_1323_z crossref_primary_10_7554_eLife_07571 crossref_primary_10_1038_s41467_022_30893_5 crossref_primary_10_1053_j_gastro_2016_01_031 crossref_primary_10_1038_s41467_025_56379_8 crossref_primary_10_1093_aje_kwv187 crossref_primary_10_3390_microorganisms11010173 crossref_primary_10_1016_j_bpg_2015_04_004 crossref_primary_10_1016_j_gene_2016_10_029 crossref_primary_10_1101_gr_276765_122 crossref_primary_10_1080_17460441_2016_1195366 crossref_primary_10_1016_j_stem_2018_11_018 crossref_primary_10_1111_imr_12815 crossref_primary_10_5802_crbiol_30 crossref_primary_10_1093_jnci_djab212 crossref_primary_10_1152_ajplung_00237_2021 crossref_primary_10_1371_journal_pgen_1005064 crossref_primary_10_1053_j_gastro_2016_04_007 crossref_primary_10_3390_genes8060167 crossref_primary_10_1016_j_ajhg_2021_08_014 crossref_primary_10_1371_journal_pone_0195788 crossref_primary_10_1093_nar_gkv1340 crossref_primary_10_1186_s13073_014_0092_4 crossref_primary_10_1016_j_coi_2014_05_001 crossref_primary_10_1016_j_biopsych_2022_09_033 crossref_primary_10_1016_j_virusres_2016_01_005 crossref_primary_10_1146_annurev_genet_080320_010449 crossref_primary_10_1038_ng_3745 crossref_primary_10_1097_BOR_0000000000000086 crossref_primary_10_1016_j_coi_2014_09_007 crossref_primary_10_1016_j_tig_2016_02_003 crossref_primary_10_1371_journal_pgen_1005619 crossref_primary_10_1016_j_cels_2017_02_009 crossref_primary_10_1016_j_jaut_2015_08_004 crossref_primary_10_1038_s41467_023_44191_1 crossref_primary_10_1111_sji_12894 crossref_primary_10_1038_s41576_018_0083_1 crossref_primary_10_1016_j_coi_2020_05_005 crossref_primary_10_3389_fgene_2019_01204 crossref_primary_10_1016_S2665_9913_19_30134_1 crossref_primary_10_1039_C6MB00240D crossref_primary_10_1126_scitranslmed_aai7635 crossref_primary_10_1093_biomet_asz010 crossref_primary_10_3389_fimmu_2021_669400 crossref_primary_10_1371_journal_pgen_1006382 crossref_primary_10_1371_journal_pcbi_1005537 crossref_primary_10_1038_nrg3891 crossref_primary_10_1016_j_celrep_2015_06_058 crossref_primary_10_1038_s41584_024_01137_1 crossref_primary_10_1016_j_cell_2016_10_017 crossref_primary_10_1016_j_cell_2016_10_018 crossref_primary_10_3389_fimmu_2019_02848 crossref_primary_10_1038_ng_3737 crossref_primary_10_1016_j_smim_2015_03_002 crossref_primary_10_1038_s41467_024_48615_4 crossref_primary_10_1038_s41467_022_35742_z crossref_primary_10_1038_nrg_2015_33 crossref_primary_10_1016_j_ajhg_2019_11_015 crossref_primary_10_1097_BOR_0000000000000094 crossref_primary_10_1186_s10020_019_0102_5 crossref_primary_10_1016_j_smim_2015_03_003 crossref_primary_10_1186_s13073_016_0329_5 crossref_primary_10_1016_j_xgen_2023_100290 crossref_primary_10_1038_s41467_020_20337_3 crossref_primary_10_1038_s41590_023_01590_2 crossref_primary_10_1021_acs_nanolett_8b03149 crossref_primary_10_1038_s41598_020_75129_y crossref_primary_10_1093_bioinformatics_btae411 crossref_primary_10_1007_s11892_016_0758_y crossref_primary_10_1097_SLA_0000000000002141 crossref_primary_10_1002_eji_202350519 crossref_primary_10_1186_s12920_015_0078_0 crossref_primary_10_3389_fimmu_2018_00477 crossref_primary_10_1371_journal_pgen_1007458 crossref_primary_10_1371_journal_pgen_1008549 crossref_primary_10_1016_j_cell_2016_10_020 crossref_primary_10_1038_s41598_019_46468_2 crossref_primary_10_3389_fimmu_2021_624632 crossref_primary_10_1016_j_plantsci_2019_01_006 crossref_primary_10_1126_sciimmunol_aag3160 crossref_primary_10_1016_j_it_2016_12_007 crossref_primary_10_1038_s41590_023_01588_w crossref_primary_10_1007_s00251_018_1092_0 crossref_primary_10_1007_s00439_017_1764_0 crossref_primary_10_1126_science_aah4573 crossref_primary_10_1371_journal_pgen_1009199 crossref_primary_10_1016_j_ijid_2020_02_018 crossref_primary_10_1038_srep17302 crossref_primary_10_1111_imr_13329 crossref_primary_10_1186_s13054_022_04208_5 crossref_primary_10_1186_s13073_016_0345_5 crossref_primary_10_1016_j_molmet_2020_101041 crossref_primary_10_1016_j_schres_2022_04_003 crossref_primary_10_1038_gene_2016_12 |
Cites_doi | 10.1186/gb-2010-11-10-r106 10.1016/j.cell.2009.12.018 10.1126/science.1231143 10.1093/nar/gkr917 10.1093/bioinformatics/btq033 10.1038/nbt.2519 10.1038/nature11247 10.1038/nmeth.2207 10.1038/ni.1863 10.1038/nrg2764 10.1038/nri1900 10.1146/annurev-immunol-030409-101221 10.1016/j.smim.2011.01.015 10.1073/pnas.1115761109 10.1038/nbt1385 10.1371/journal.pbio.0060083 10.1056/NEJMoa0903753 10.1038/nature01434 10.1371/journal.pgen.0020222 10.1038/nature11632 10.1016/j.cell.2009.12.017 10.1038/nature11582 10.1038/nature10808 10.1038/nrg2809 10.1126/science.1232033 10.1016/j.cell.2010.01.022 10.1126/science.1183621 10.1038/nature10921 10.1016/j.cell.2012.08.043 10.1016/j.ajhg.2010.02.002 10.1016/j.ajhg.2009.11.016 10.1016/j.ajhg.2011.09.002 10.1038/ng1847 10.1038/ng2142 10.1038/ng.2467 10.1016/j.ajhg.2011.04.014 10.1146/annurev-immunol-020711-074950 10.1146/annurev-immunol-031210-101340 10.1038/nature07940 10.1038/nature08463 10.1073/pnas.1530509100 10.1146/annurev.biochem.67.1.227 10.1086/519795 10.1101/gr.137323.112 10.1371/journal.pgen.0030161 10.1038/ng.81 10.1371/journal.pgen.1002639 10.1093/bioinformatics/bts163 10.1038/nrg3575 10.1016/j.molcel.2012.07.030 10.1038/nrg2612 10.4049/jimmunol.181.10.7157 10.1038/ng.2205 10.1016/j.ajhg.2009.01.005 10.1038/nrg3622 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Association for the Advancement of Science Copyright © 2014, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2014 American Association for the Advancement of Science – notice: Copyright © 2014, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1126/science.1246980 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1119 |
ExternalDocumentID | PMC4124741 3267670241 24604203 10_1126_science_1246980 24743322 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: P50 HG006193 – fundername: NIAMS NIH HHS grantid: R01 AR063759 – fundername: NIAID NIH HHS grantid: U19 AI082630 – fundername: Howard Hughes Medical Institute – fundername: NCCDPHP CDC HHS grantid: DP1 MH100706 – fundername: NIA NIH HHS grantid: F32 AG043267 – fundername: NIDDK NIH HHS grantid: R01 DK097768 – fundername: NIGMS NIH HHS grantid: T32 GM007753 – fundername: NIGMS NIH HHS grantid: RC2 GM093080 – fundername: NCI NIH HHS grantid: DP1 CA174427 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX ABCQX CITATION K-O CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c542t-c1c35fe125b23619433418aa5a403c7db32e0fc5d38e8f121bc9c242da1206ff3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 13:47:51 EDT 2025 Tue Aug 05 11:11:04 EDT 2025 Mon Jul 21 10:14:57 EDT 2025 Fri Jul 25 10:44:31 EDT 2025 Mon Jul 21 06:01:48 EDT 2025 Tue Jul 01 04:10:09 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Thu Jul 03 22:43:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6175 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-c1c35fe125b23619433418aa5a403c7db32e0fc5d38e8f121bc9c242da1206ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://hdl.handle.net/1721.1/96695 |
PMID | 24604203 |
PQID | 1513199947 |
PQPubID | 1256 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4124741 proquest_miscellaneous_2000392440 proquest_miscellaneous_1505250079 proquest_journals_1513199947 pubmed_primary_24604203 crossref_citationtrail_10_1126_science_1246980 crossref_primary_10_1126_science_1246980 jstor_primary_24743322 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-07 |
PublicationDateYYYYMMDD | 2014-03-07 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2014 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 21963258 - Am J Hum Genet. 2011 Oct 7;89(4):496-506 12646919 - Nature. 2003 Mar 20;422(6929):297-302 24166029 - Nat Rev Genet. 2013 Dec;14(12):824 17873874 - Nat Genet. 2007 Oct;39(10):1217-24 16932750 - Nat Rev Immunol. 2006 Sep;6(9):644-58 18416601 - PLoS Biol. 2008 Apr 15;6(4):e83 17907809 - PLoS Genet. 2007 Sep;3(9):1724-35 20299548 - Science. 2010 Apr 9;328(5975):232-5 18981137 - J Immunol. 2008 Nov 15;181(10):7157-65 22064851 - Nucleic Acids Res. 2012 Jan;40(Database issue):D930-4 23503680 - Nat Biotechnol. 2013 Apr;31(4):342-9 19759533 - Nature. 2009 Oct 8;461(7265):798-801 21565292 - Am J Hum Genet. 2011 May 13;88(5):586-98 20170901 - Am J Hum Genet. 2010 Mar 12;86(3):399-410 24604188 - Science. 2014 Mar 7;343(6175):1087-8 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25 24296534 - Nat Rev Genet. 2014 Jan;15(1):34-48 19584810 - Nat Rev Genet. 2009 Aug;10(8):565-77 23064520 - Nat Methods. 2012 Nov;9(11):1120-5 24662379 - Nat Rev Immunol. 2014 Apr;14(4):212 23287722 - Science. 2013 Feb 15;339(6121):823-6 23128226 - Nature. 2012 Nov 1;491(7422):56-65 23128233 - Nature. 2012 Nov 1;491(7422):119-24 20192809 - Annu Rev Immunol. 2010;28:535-71 9759489 - Annu Rev Biochem. 1998;67:227-64 19349959 - Nature. 2009 May 28;459(7246):587-91 23287718 - Science. 2013 Feb 15;339(6121):819-23 22233810 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1204-9 22446628 - Nature. 2012 Apr 26;484(7395):519-23 22955989 - Genome Res. 2012 Sep;22(9):1790-7 23516985 - Annu Rev Immunol. 2013;31:563-604 20404851 - Nat Immunol. 2010 May;11(5):373-84 23101632 - Cell. 2012 Oct 26;151(3):658-70 21219183 - Annu Rev Immunol. 2011;29:185-214 23143594 - Nat Genet. 2012 Dec;44(12):1341-8 22955616 - Nature. 2012 Sep 6;489(7414):57-74 18204446 - Nat Genet. 2008 Feb;40(2):204-10 20212493 - Nat Rev Genet. 2010 Apr;11(4):259-72 22307276 - Nature. 2012 Feb 16;482(7385):390-4 20018961 - N Engl J Med. 2009 Dec 31;361(27):2609-18 20303872 - Cell. 2010 Mar 19;140(6):805-20 17196041 - PLoS Genet. 2006 Dec 29;2(12):e222 20479774 - Nat Rev Genet. 2010 Jun;11(6):446-50 21288738 - Semin Immunol. 2011 Apr;23(2):67-83 20064371 - Cell. 2009 Dec 24;139(7):1243-54 |
References_xml | – ident: e_1_3_2_56_2 doi: 10.1186/gb-2010-11-10-r106 – ident: e_1_3_2_47_2 doi: 10.1016/j.cell.2009.12.018 – ident: e_1_3_2_70_2 doi: 10.1126/science.1231143 – ident: e_1_3_2_66_2 doi: 10.1093/nar/gkr917 – ident: e_1_3_2_68_2 doi: 10.1093/bioinformatics/btq033 – ident: e_1_3_2_7_2 doi: 10.1038/nbt.2519 – ident: e_1_3_2_65_2 doi: 10.1038/nature11247 – ident: e_1_3_2_27_2 doi: 10.1038/nmeth.2207 – ident: e_1_3_2_54_2 doi: 10.1038/nmeth.2207 – ident: e_1_3_2_21_2 doi: 10.1038/ni.1863 – ident: e_1_3_2_3_2 doi: 10.1038/nrg2764 – ident: e_1_3_2_50_2 doi: 10.1038/ni.1863 – ident: e_1_3_2_33_2 doi: 10.1038/nri1900 – ident: e_1_3_2_39_2 doi: 10.1146/annurev-immunol-030409-101221 – ident: e_1_3_2_12_2 doi: 10.1016/j.smim.2011.01.015 – ident: e_1_3_2_42_2 doi: 10.1073/pnas.1115761109 – ident: e_1_3_2_19_2 doi: 10.1038/nbt1385 – ident: e_1_3_2_9_2 doi: 10.1371/journal.pbio.0060083 – ident: e_1_3_2_26_2 – ident: e_1_3_2_18_2 doi: 10.1056/NEJMoa0903753 – ident: e_1_3_2_30_2 doi: 10.1038/nature11247 – ident: e_1_3_2_6_2 doi: 10.1038/nature01434 – ident: e_1_3_2_10_2 doi: 10.1371/journal.pgen.0020222 – ident: e_1_3_2_69_2 doi: 10.1038/nature11632 – ident: e_1_3_2_24_2 doi: 10.1016/j.cell.2009.12.017 – ident: e_1_3_2_15_2 doi: 10.1038/nature11582 – ident: e_1_3_2_45_2 doi: 10.1038/nature10808 – ident: e_1_3_2_4_2 doi: 10.1038/nrg2809 – ident: e_1_3_2_28_2 – ident: e_1_3_2_36_2 doi: 10.1126/science.1232033 – ident: e_1_3_2_11_2 doi: 10.1016/j.cell.2010.01.022 – ident: e_1_3_2_46_2 doi: 10.1126/science.1183621 – ident: e_1_3_2_51_2 doi: 10.1016/j.cell.2010.01.022 – ident: e_1_3_2_31_2 doi: 10.1093/nar/gkr917 – ident: e_1_3_2_73_2 doi: 10.1038/nature10921 – ident: e_1_3_2_8_2 doi: 10.1016/j.cell.2012.08.043 – ident: e_1_3_2_41_2 doi: 10.1016/j.ajhg.2010.02.002 – ident: e_1_3_2_64_2 doi: 10.1016/j.ajhg.2009.11.016 – ident: e_1_3_2_13_2 doi: 10.1016/j.ajhg.2011.09.002 – ident: e_1_3_2_57_2 doi: 10.1038/ng1847 – ident: e_1_3_2_5_2 doi: 10.1038/ng2142 – ident: e_1_3_2_16_2 doi: 10.1038/ng.2467 – ident: e_1_3_2_35_2 doi: 10.1126/science.1231143 – ident: e_1_3_2_61_2 doi: 10.1016/j.ajhg.2011.04.014 – ident: e_1_3_2_14_2 doi: 10.1146/annurev-immunol-020711-074950 – ident: e_1_3_2_22_2 doi: 10.1146/annurev-immunol-031210-101340 – ident: e_1_3_2_29_2 doi: 10.1016/j.ajhg.2011.04.014 – ident: e_1_3_2_40_2 doi: 10.1038/nature07940 – ident: e_1_3_2_17_2 doi: 10.1038/nature08463 – ident: e_1_3_2_60_2 doi: 10.1073/pnas.1530509100 – ident: e_1_3_2_43_2 doi: 10.1038/nature11632 – ident: e_1_3_2_53_2 doi: 10.1146/annurev.biochem.67.1.227 – ident: e_1_3_2_58_2 doi: 10.1086/519795 – ident: e_1_3_2_23_2 doi: 10.1146/annurev.biochem.67.1.227 – ident: e_1_3_2_55_2 doi: 10.1038/nbt1385 – ident: e_1_3_2_32_2 doi: 10.1101/gr.137323.112 – ident: e_1_3_2_52_2 doi: 10.1146/annurev-immunol-031210-101340 – ident: e_1_3_2_20_2 doi: 10.1371/journal.pgen.0030161 – ident: e_1_3_2_72_2 doi: 10.1016/j.cell.2009.12.017 – ident: e_1_3_2_38_2 doi: 10.1038/ng.81 – ident: e_1_3_2_71_2 doi: 10.1371/journal.pgen.1002639 – ident: e_1_3_2_59_2 doi: 10.1093/bioinformatics/bts163 – ident: e_1_3_2_2_2 doi: 10.1038/nrg3575 – ident: e_1_3_2_25_2 doi: 10.1038/nature10921 – ident: e_1_3_2_67_2 doi: 10.1016/j.molcel.2012.07.030 – ident: e_1_3_2_63_2 doi: 10.1038/ng.2467 – ident: e_1_3_2_34_2 doi: 10.1038/nrg2612 – ident: e_1_3_2_37_2 doi: 10.4049/jimmunol.181.10.7157 – ident: e_1_3_2_48_2 doi: 10.1038/ng.2205 – ident: e_1_3_2_49_2 doi: 10.1073/pnas.1115761109 – ident: e_1_3_2_62_2 doi: 10.1016/j.ajhg.2009.01.005 – ident: e_1_3_2_44_2 doi: 10.1038/nrg3622 – reference: 21288738 - Semin Immunol. 2011 Apr;23(2):67-83 – reference: 20212493 - Nat Rev Genet. 2010 Apr;11(4):259-72 – reference: 17196041 - PLoS Genet. 2006 Dec 29;2(12):e222 – reference: 20404851 - Nat Immunol. 2010 May;11(5):373-84 – reference: 22307276 - Nature. 2012 Feb 16;482(7385):390-4 – reference: 17873874 - Nat Genet. 2007 Oct;39(10):1217-24 – reference: 23128233 - Nature. 2012 Nov 1;491(7422):119-24 – reference: 19759533 - Nature. 2009 Oct 8;461(7265):798-801 – reference: 20192809 - Annu Rev Immunol. 2010;28:535-71 – reference: 19584810 - Nat Rev Genet. 2009 Aug;10(8):565-77 – reference: 23128226 - Nature. 2012 Nov 1;491(7422):56-65 – reference: 23503680 - Nat Biotechnol. 2013 Apr;31(4):342-9 – reference: 20303872 - Cell. 2010 Mar 19;140(6):805-20 – reference: 18204446 - Nat Genet. 2008 Feb;40(2):204-10 – reference: 16932750 - Nat Rev Immunol. 2006 Sep;6(9):644-58 – reference: 23287718 - Science. 2013 Feb 15;339(6121):819-23 – reference: 23101632 - Cell. 2012 Oct 26;151(3):658-70 – reference: 22064851 - Nucleic Acids Res. 2012 Jan;40(Database issue):D930-4 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 21963258 - Am J Hum Genet. 2011 Oct 7;89(4):496-506 – reference: 17907809 - PLoS Genet. 2007 Sep;3(9):1724-35 – reference: 22446628 - Nature. 2012 Apr 26;484(7395):519-23 – reference: 23287722 - Science. 2013 Feb 15;339(6121):823-6 – reference: 9759489 - Annu Rev Biochem. 1998;67:227-64 – reference: 24604188 - Science. 2014 Mar 7;343(6175):1087-8 – reference: 20299548 - Science. 2010 Apr 9;328(5975):232-5 – reference: 24166029 - Nat Rev Genet. 2013 Dec;14(12):824 – reference: 23064520 - Nat Methods. 2012 Nov;9(11):1120-5 – reference: 23516985 - Annu Rev Immunol. 2013;31:563-604 – reference: 18981137 - J Immunol. 2008 Nov 15;181(10):7157-65 – reference: 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25 – reference: 21565292 - Am J Hum Genet. 2011 May 13;88(5):586-98 – reference: 20064371 - Cell. 2009 Dec 24;139(7):1243-54 – reference: 20479774 - Nat Rev Genet. 2010 Jun;11(6):446-50 – reference: 21219183 - Annu Rev Immunol. 2011;29:185-214 – reference: 24296534 - Nat Rev Genet. 2014 Jan;15(1):34-48 – reference: 22233810 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1204-9 – reference: 12646919 - Nature. 2003 Mar 20;422(6929):297-302 – reference: 20170901 - Am J Hum Genet. 2010 Mar 12;86(3):399-410 – reference: 19349959 - Nature. 2009 May 28;459(7246):587-91 – reference: 20018961 - N Engl J Med. 2009 Dec 31;361(27):2609-18 – reference: 24662379 - Nat Rev Immunol. 2014 Apr;14(4):212 – reference: 22955989 - Genome Res. 2012 Sep;22(9):1790-7 – reference: 23143594 - Nat Genet. 2012 Dec;44(12):1341-8 – reference: 18416601 - PLoS Biol. 2008 Apr 15;6(4):e83 |
SSID | ssj0009593 |
Score | 2.5855548 |
Snippet | It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective... Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and... Introduction; Variation in an individual's response to environmental factors is likely to influence susceptibility to complex human diseases. The genetic basis... Immune Variation It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1119 |
SubjectTerms | Adult Autoimmune Diseases - genetics Communicable Diseases Communicable Diseases - genetics dendritic cells Dendritic Cells - drug effects Dendritic Cells - immunology Deoxyribonucleic acid DNA E coli Environmental factors Environmental Influences Escherichia coli Feedback (Response) Female gene expression Gene mapping Gene-Environment Interaction genes Genetic diversity Genetic Loci Genetic variance genetic variation Genetics Genome-Wide Association Study HEK293 Cells Host-Pathogen Interactions - genetics Humans Immune response Infectious diseases Influenza A virus Interferon Regulatory Factor-7 - genetics interferon-beta Interferon-beta - pharmacology Lipopolysaccharides - immunology Logical Thinking Male Middle Aged monocytes Pathogens Polymorphism, Single Nucleotide Quantitative Trait Loci RESEARCH ARTICLE SUMMARY STAT Transcription Factors - genetics Stimuli Toll-like receptor 3 Transcriptome Young Adult |
Title | Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells |
URI | https://www.jstor.org/stable/24743322 https://www.ncbi.nlm.nih.gov/pubmed/24604203 https://www.proquest.com/docview/1513199947 https://www.proquest.com/docview/1505250079 https://www.proquest.com/docview/2000392440 https://pubmed.ncbi.nlm.nih.gov/PMC4124741 |
Volume | 343 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqTUi8IDYYFAYyEg9DKFNi5_rYtVTlsgmxbhpPke046qYqRWv7AL-Sn8TxJa47tYjxElWx00Q5X-zv2Od8B6G3WVTnMsuiIK9oHMQ84wELqyyoYTZhMkpZqHOrTs_S0UX86Sq56nR-e1FLywU_Fr825pX8j1XhHNhVZcnew7LuT-EE_Ab7whEsDMd_srHK7lCqGDBeKd3VS_B7dVjL6axSVbmkEuCfzODy4FzFqZtAOxUSq6Ow7AL-QDaVrnfwvi-n07nPVtsPH1io29nx7OlCFHsmkKCNK7CXeYsMNtxHJQat9n6-myDEydLh81KVQNI1ptrEm1sW9CfTmdnO91bEay07-43d-KsWUazDtjKHs_EqbeY-D-6P5FZI2cxjZvAOVd1JElJ_dKdGBcrCGPhasnni8EpdymMgPWlhKkytS3SPeufl18Gw_PLx7PN6q6EEROnfAe0Bf3yXgOMCU8Vu72RwMtwqBG3lprxErvbua0zJBMtucoPuRvN69Gj8GD2yfg3uGZDuoY5s9tEDU-n05z7as692jo-s0Pm7J2hs8IstfnGLX9ziF9_FL3b4xdcN1vjFDr9Y4_cpuhh-GPdHga3yEYgkJotARIImtQSizZUQUBFTIFY5YwmLQyqyilMiw1okFc1lXkck4qIQQCwrFpEwrWt6gHaaWSOfI5wCV-Z5WFeZEDGXEYexp6gKwSRjBa9kFx23b7QUVgJfVWKZltoVJmlpTVBaE3TRkbvgh1F_2d71QJvI9SNxprQBSRcdtjYr7dgxL4FnUyUAEmdd9MY1w8iututYI2dL1UfVmAQOX2zvQ3RyPVB0uP8zAwPvAVKYkUPaRdkaQFwHpSy_3tJcT7TCvCpJD67Gi78_-kv0cPVpH6Kdxe1SvgKKvuCvLer_ACrA6zw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+Genetic+Variants+Modulate+Pathogen-Sensing+Responses+in+Human+Dendritic+Cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Lee%2C+Mark+N&rft.au=Ye%2C+Chun&rft.au=Villani%2C+Alexandra-Chlo%C3%A9&rft.au=Towfique+Raj&rft.date=2014-03-07&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=343&rft.issue=6175&rft_id=info:doi/10.1126%2Fscience.1246980&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3267670241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |