Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells

It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen ). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 343; no. 6175; p. 1119
Main Authors Lee, Mark N., Ye, Chun, Villani, Alexandra-Chloé, Raj, Towfique, Li, Weibo, Eisenhaure, Thomas M., Imboywa, Selina H., Chipendo, Portia I., Ran, F. Ann, Slowikowski, Kamil, Ward, Lucas D., Raddassi, Khadir, McCabe, Cristin, Lee, Michelle H., Frohlich, Irene Y., Hafler, David A., Kellis, Manolis, Raychaudhuri, Soumya, Zhang, Feng, Stranger, Barbara E., Benoist, Christophe O., De Jager, Philip L., Regev, Aviv, Hacohen, Nir
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 07.03.2014
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.1246980

Cover

Loading…
Abstract It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen ). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. ( 10.1126/science.1246980 ) analyzed the expression of more than 400 genes, in dendritic cells from 534 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. ( 10.1126/science.1246949 ) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner. Mapping of human host-pathogen gene-by-environment interactions identifies pathogen-specific loci. [Also see Perspective by Gregersen ] Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.
AbstractList Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to E. coli lipopolysaccharide, influenza or interferon-β (IFNβ). We localized and validated causal variants to binding sites of pathogen-activated STAT and IRF transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I interferon induction in response to influenza infection. Our results reveal common alleles that explain inter-individual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.
Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.
Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.
It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen ). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. ( 10.1126/science.1246980 ) analyzed the expression of more than 400 genes, in dendritic cells from 534 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. ( 10.1126/science.1246949 ) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner. Mapping of human host-pathogen gene-by-environment interactions identifies pathogen-specific loci. [Also see Perspective by Gregersen ] Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.
Introduction; Variation in an individual's response to environmental factors is likely to influence susceptibility to complex human diseases. The genetic basis of such variation is poorly understood. Here, we identify natural genetic variants that underlie variation in the host innate immune response to infection and analyze the mechanisms by which such variants alter these responses.; Identifying the genetic basis of variability in the host response to pathogens. A cohort of 534 individuals donated blood for (a) genotyping of common DNA variants and (b) isolation of immune DCs. DCs were stimulated with viral and bacterial components, and the variability in individuals' gene expression responses was mapped to specific DNA variants, which were then shown to affect binding of particular transcription factors.; Methods; We derived dendritic cells (DCs) from peripheral blood monocytes of healthy individuals (295 Caucasians, 122 African Americans, 117 East Asians) and stimulated them with Escherichia coli lipopolysaccharide (LPS), influenza virus, or the cytokine interferon-β (IFN-β) to generate 1598 transcriptional profiles. We genotyped each of these individuals at sites of common genetic variation and identified the genetic variants that best explain variation in gene expression and gene induction between individuals. We then tested mechanistic predictions from these associations using synthetic promoter constructs and genome engineering.; Results; We identified 264 loci containing genetic variants associated with variation in absolute gene expression in human DCs, of which 121 loci were associated with variation in the induction of gene expression by one or more stimuli. Fine-mapping identified candidate causal single-nucleotide polymorphisms (SNPs) associated with expression variance, and deeper functional experiments localized three of these SNPs to the binding sites of stimulus-activated transcription factors. We also identified a cis variant in the transcription factor, IRF7, associated in trans with the induction of a module of antiviral genes in response to influenza infection. Of the identified genetic variants, 35 were also associated with autoimmune or infectious disease loci found by genome-wide association studies.; Discussion; The genetic variants we uncover and the molecular basis for their action provide mechanistic explanations and principles for how the innate immune response to pathogens and cytokines varies across individuals. Our results also link disease-associated variants to specific immune pathways in DCs, which provides greater insight into mechanisms underlying complex human phenotypes. Extending our approach to many immune cell types and pathways will provide a global map linking human genetic variants to specific immunological processes. [PUBLICATION ABSTRACT] It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. (10.1126/science.1246980) analyzed the expression of more than 400 genes, in dendritic cells from 30 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. (10.1126/science.1246949) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner. [PUBLICATION ABSTRACT] Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases. [PUBLICATION ABSTRACT]
Immune Variation It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. (10.1126/science.1246980) analyzed the expression of more than 400 genes, in dendritic cells from 30 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. (10.1126/science.1246949) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner.
Author Imboywa, Selina H.
McCabe, Cristin
Chipendo, Portia I.
Lee, Mark N.
Li, Weibo
Villani, Alexandra-Chloé
Hacohen, Nir
Ye, Chun
Frohlich, Irene Y.
Regev, Aviv
Raj, Towfique
Lee, Michelle H.
Raddassi, Khadir
Slowikowski, Kamil
Kellis, Manolis
Raychaudhuri, Soumya
Benoist, Christophe O.
Ran, F. Ann
Hafler, David A.
Stranger, Barbara E.
Eisenhaure, Thomas M.
Ward, Lucas D.
Zhang, Feng
De Jager, Philip L.
AuthorAffiliation 4 Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham & Women's Hospital, Boston MA 02115, USA
3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
7 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
10 Arthritis Research UK Epidemiology Unit, Musculoskeletal Research Group, University of Manchester, Manchester Academic Health Sciences Centre, UK
1 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
8 Department of Neurology, Yale School of Medicine, CT 06511, USA
11 McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA
14 Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA
15 Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
17 Howard Hughes Medical Institute
2 Harvard Medical School, Boston, MA 02115, USA
9 Divisions of Genetics and Rheumatol
AuthorAffiliation_xml – name: 1 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– name: 7 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: 16 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: 3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
– name: 13 Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
– name: 15 Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
– name: 2 Harvard Medical School, Boston, MA 02115, USA
– name: 4 Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham & Women's Hospital, Boston MA 02115, USA
– name: 10 Arthritis Research UK Epidemiology Unit, Musculoskeletal Research Group, University of Manchester, Manchester Academic Health Sciences Centre, UK
– name: 11 McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA
– name: 17 Howard Hughes Medical Institute
– name: 12 Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA
– name: 8 Department of Neurology, Yale School of Medicine, CT 06511, USA
– name: 9 Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
– name: 14 Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA
– name: 5 Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
– name: 6 Bioinformatics and Integrative Genomics, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
Author_xml – sequence: 1
  givenname: Mark N.
  surname: Lee
  fullname: Lee, Mark N.
– sequence: 2
  givenname: Chun
  surname: Ye
  fullname: Ye, Chun
– sequence: 3
  givenname: Alexandra-Chloé
  surname: Villani
  fullname: Villani, Alexandra-Chloé
– sequence: 4
  givenname: Towfique
  surname: Raj
  fullname: Raj, Towfique
– sequence: 5
  givenname: Weibo
  surname: Li
  fullname: Li, Weibo
– sequence: 6
  givenname: Thomas M.
  surname: Eisenhaure
  fullname: Eisenhaure, Thomas M.
– sequence: 7
  givenname: Selina H.
  surname: Imboywa
  fullname: Imboywa, Selina H.
– sequence: 8
  givenname: Portia I.
  surname: Chipendo
  fullname: Chipendo, Portia I.
– sequence: 9
  givenname: F. Ann
  surname: Ran
  fullname: Ran, F. Ann
– sequence: 10
  givenname: Kamil
  surname: Slowikowski
  fullname: Slowikowski, Kamil
– sequence: 11
  givenname: Lucas D.
  surname: Ward
  fullname: Ward, Lucas D.
– sequence: 12
  givenname: Khadir
  surname: Raddassi
  fullname: Raddassi, Khadir
– sequence: 13
  givenname: Cristin
  surname: McCabe
  fullname: McCabe, Cristin
– sequence: 14
  givenname: Michelle H.
  surname: Lee
  fullname: Lee, Michelle H.
– sequence: 15
  givenname: Irene Y.
  surname: Frohlich
  fullname: Frohlich, Irene Y.
– sequence: 16
  givenname: David A.
  surname: Hafler
  fullname: Hafler, David A.
– sequence: 17
  givenname: Manolis
  surname: Kellis
  fullname: Kellis, Manolis
– sequence: 18
  givenname: Soumya
  surname: Raychaudhuri
  fullname: Raychaudhuri, Soumya
– sequence: 19
  givenname: Feng
  surname: Zhang
  fullname: Zhang, Feng
– sequence: 20
  givenname: Barbara E.
  surname: Stranger
  fullname: Stranger, Barbara E.
– sequence: 21
  givenname: Christophe O.
  surname: Benoist
  fullname: Benoist, Christophe O.
– sequence: 22
  givenname: Philip L.
  surname: De Jager
  fullname: De Jager, Philip L.
– sequence: 23
  givenname: Aviv
  surname: Regev
  fullname: Regev, Aviv
– sequence: 24
  givenname: Nir
  surname: Hacohen
  fullname: Hacohen, Nir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24604203$$D View this record in MEDLINE/PubMed
BookMark eNqFks9rFDEUx4NU7LZ69qQMePEybV5-zEwugqzaChVFq9eQzbzZZplJtklG8L83y26lFsTTO7zP98v3_TghRz54JOQ50DMA1pwn69BbPAMmGtXRR2QBVMlaMcqPyIJS3tQdbeUxOUlpQ2npKf6EHBeaisIsyPUyTFPw1QV6zM5WP0x0xudUfQr9PJqM1ReTb8Iaff0NfXJ-XX3FtA0-Yaqcry7nyfjqHfo-up1-ieOYnpLHgxkTPjvUU_L9w_vr5WV99fni4_LtVW2lYLm2YLkcEJhcMd6AEpwL6IyRRlBu237FGdLByp532A3AYGWVZYL1BhhthoGfkjd73-28mrC36HM0o95GN5n4Swfj9N8d7270OvzUouyrFVAMXh8MYridMWU9uWTLCMZjmJNmZWVcMVHy_A8FSSWTlLaqoK8eoJswR182USjgoJQSbaFe3g__J_XdbQog94CNIaWIg7Yum-zCbhY3aqB69wP68AP68ANFd_5Ad2f9b8WLvWKTcoj3krTlJIzx3yrwvpA
CODEN SCIEAS
CitedBy_id crossref_primary_10_3390_biomedicines13010099
crossref_primary_10_4049_jimmunol_1401280
crossref_primary_10_1126_science_1251426
crossref_primary_10_1172_JCI78086
crossref_primary_10_4049_jimmunol_2200030
crossref_primary_10_1016_j_mib_2017_09_012
crossref_primary_10_1093_hmg_ddw061
crossref_primary_10_1146_annurev_genom_120319_095026
crossref_primary_10_1038_ncomms6236
crossref_primary_10_1016_j_molmed_2015_04_002
crossref_primary_10_1016_j_celrep_2016_08_011
crossref_primary_10_1016_j_trsl_2015_06_018
crossref_primary_10_1016_j_jalz_2016_07_004
crossref_primary_10_1016_j_jisp_2020_04_003
crossref_primary_10_1371_journal_pgen_1008009
crossref_primary_10_1371_journal_pgen_1010567
crossref_primary_10_1080_19490976_2021_1921927
crossref_primary_10_3389_fcell_2021_673502
crossref_primary_10_1093_bioinformatics_btu802
crossref_primary_10_1146_annurev_immunol_032414_112151
crossref_primary_10_1016_j_mce_2018_06_002
crossref_primary_10_4049_jimmunol_2100671
crossref_primary_10_1038_nbt_4042
crossref_primary_10_3389_fimmu_2016_00587
crossref_primary_10_1093_bioinformatics_btv568
crossref_primary_10_1186_s12864_020_06966_4
crossref_primary_10_1016_j_smim_2015_02_004
crossref_primary_10_1038_nature18285
crossref_primary_10_1038_ncomms8545
crossref_primary_10_1214_20_AOAS1332
crossref_primary_10_1161_ATVBAHA_114_304455
crossref_primary_10_4049_jimmunol_1900031
crossref_primary_10_3390_pathogens13070561
crossref_primary_10_1038_npjgenmed_2016_6
crossref_primary_10_1038_s41467_023_38994_5
crossref_primary_10_1093_ibd_izy109
crossref_primary_10_1038_ng_3936
crossref_primary_10_1186_s12974_015_0263_2
crossref_primary_10_3389_fmed_2022_754440
crossref_primary_10_1002_ana_24442
crossref_primary_10_3389_fimmu_2017_00425
crossref_primary_10_1136_annrheumdis_2014_206367
crossref_primary_10_1016_j_atherosclerosis_2018_10_005
crossref_primary_10_1172_jci_insight_87899
crossref_primary_10_1038_nm_4140
crossref_primary_10_1146_annurev_genom_101422_100437
crossref_primary_10_1371_journal_pgen_1009684
crossref_primary_10_1016_j_imbio_2014_11_004
crossref_primary_10_1021_acschembio_0c00662
crossref_primary_10_1093_bfgp_ely015
crossref_primary_10_1093_nar_gkz433
crossref_primary_10_3389_fgene_2020_00402
crossref_primary_10_1073_pnas_1706070114
crossref_primary_10_1126_science_abg0928
crossref_primary_10_1093_bib_bbw014
crossref_primary_10_1186_s13073_015_0186_7
crossref_primary_10_26508_lsa_202000650
crossref_primary_10_1038_nm_4139
crossref_primary_10_1016_j_coviro_2018_11_010
crossref_primary_10_3389_fimmu_2017_00679
crossref_primary_10_1016_j_chom_2014_11_004
crossref_primary_10_1016_j_tim_2020_09_006
crossref_primary_10_1038_s41584_019_0217_7
crossref_primary_10_1126_sciimmunol_aah5861
crossref_primary_10_1002_cti2_1356
crossref_primary_10_1038_nm_4370
crossref_primary_10_1016_j_coi_2014_12_007
crossref_primary_10_1101_gr_209759_116
crossref_primary_10_1016_j_coi_2014_12_003
crossref_primary_10_1186_s12859_016_1387_9
crossref_primary_10_1038_s41467_019_12348_6
crossref_primary_10_1371_journal_pgen_1006952
crossref_primary_10_7554_eLife_85235
crossref_primary_10_1016_j_smim_2023_101842
crossref_primary_10_1038_s41588_019_0505_9
crossref_primary_10_2147_JIR_S363538
crossref_primary_10_1016_j_coi_2014_07_001
crossref_primary_10_1111_voxs_12217
crossref_primary_10_1038_mi_2017_19
crossref_primary_10_1038_s41588_022_01056_5
crossref_primary_10_1038_ncomms8971
crossref_primary_10_1038_s41588_018_0046_7
crossref_primary_10_1016_j_it_2015_07_006
crossref_primary_10_1111_febs_15885
crossref_primary_10_1186_s13059_016_1078_x
crossref_primary_10_1038_s41590_020_0677_6
crossref_primary_10_7554_eLife_63852
crossref_primary_10_1016_j_clim_2020_108498
crossref_primary_10_1016_j_biocel_2018_03_012
crossref_primary_10_1038_nmeth_4298
crossref_primary_10_1111_jfb_13627
crossref_primary_10_1073_pnas_1714765115
crossref_primary_10_1038_srep29338
crossref_primary_10_1016_j_tig_2023_02_014
crossref_primary_10_1038_nature24265
crossref_primary_10_1016_j_jaci_2017_05_015
crossref_primary_10_1038_s41588_023_01421_y
crossref_primary_10_1371_journal_pgen_1009493
crossref_primary_10_1038_s41467_021_21854_5
crossref_primary_10_1093_nar_gky856
crossref_primary_10_1016_j_tig_2020_09_007
crossref_primary_10_1161_ATVBAHA_114_304925
crossref_primary_10_3390_v7072800
crossref_primary_10_1016_j_cell_2014_12_003
crossref_primary_10_1126_scitranslmed_aag1974
crossref_primary_10_1111_tan_13598
crossref_primary_10_1038_s41576_020_00297_6
crossref_primary_10_1038_s41467_020_17477_x
crossref_primary_10_1038_s41598_021_00528_8
crossref_primary_10_1126_science_abf1970
crossref_primary_10_1093_hmg_ddx254
crossref_primary_10_3390_cells10123544
crossref_primary_10_3390_ijms16036432
crossref_primary_10_1093_genetics_iyaa051
crossref_primary_10_1073_pnas_1811758115
crossref_primary_10_1038_s41588_024_01668_z
crossref_primary_10_1007_s10875_018_0512_0
crossref_primary_10_1016_j_cell_2019_02_033
crossref_primary_10_1007_s12016_014_8419_x
crossref_primary_10_1038_s41588_018_0156_2
crossref_primary_10_1093_emph_eox019
crossref_primary_10_1186_s13075_014_0514_0
crossref_primary_10_1016_j_xgen_2024_100654
crossref_primary_10_1016_j_jhep_2016_12_008
crossref_primary_10_7554_eLife_67077
crossref_primary_10_1016_j_tig_2017_01_010
crossref_primary_10_1093_genetics_iyab016
crossref_primary_10_1186_s13072_015_0050_4
crossref_primary_10_1016_j_exphem_2014_04_005
crossref_primary_10_1016_j_coisb_2017_01_002
crossref_primary_10_1016_j_immuni_2015_05_003
crossref_primary_10_1371_journal_pbio_3002311
crossref_primary_10_1016_j_fsi_2023_108944
crossref_primary_10_1016_j_coi_2018_05_012
crossref_primary_10_1016_j_gde_2014_07_004
crossref_primary_10_1371_journal_pgen_1007961
crossref_primary_10_1007_s00702_017_1745_4
crossref_primary_10_1038_nri_2016_125
crossref_primary_10_1038_s41588_023_01623_4
crossref_primary_10_1039_C4RA15794J
crossref_primary_10_1093_sleep_zsaa099
crossref_primary_10_1007_s11894_016_0512_2
crossref_primary_10_1038_s41467_020_19131_y
crossref_primary_10_1016_j_coi_2014_06_001
crossref_primary_10_1016_j_coi_2014_06_002
crossref_primary_10_1534_genetics_118_301768
crossref_primary_10_1038_s41590_018_0121_3
crossref_primary_10_1016_j_jaut_2015_07_007
crossref_primary_10_5808_GI_2016_14_4_173
crossref_primary_10_1021_acsinfecdis_9b00080
crossref_primary_10_1038_s41588_023_01555_z
crossref_primary_10_1002_hep_30056
crossref_primary_10_1007_s11926_017_0695_z
crossref_primary_10_1016_j_immuni_2017_07_017
crossref_primary_10_1038_srep21193
crossref_primary_10_1093_bib_bbae593
crossref_primary_10_1084_jem_20161942
crossref_primary_10_1186_s13059_018_1601_3
crossref_primary_10_1186_s13059_022_02702_1
crossref_primary_10_1016_j_coisb_2016_12_018
crossref_primary_10_1038_s41588_021_00976_y
crossref_primary_10_1093_emph_eoae014
crossref_primary_10_1126_science_aaf5453
crossref_primary_10_1186_s13059_019_1912_z
crossref_primary_10_1002_cyto_a_24269
crossref_primary_10_1016_j_heliyon_2021_e06755
crossref_primary_10_1186_s13059_023_02959_0
crossref_primary_10_1016_j_cmet_2021_06_004
crossref_primary_10_1126_science_1254665
crossref_primary_10_7554_eLife_35471
crossref_primary_10_1016_j_ajhg_2019_07_016
crossref_primary_10_1016_j_cell_2016_10_055
crossref_primary_10_1146_annurev_cellbio_100913_012908
crossref_primary_10_1038_s41591_022_02095_5
crossref_primary_10_1111_imm_12796
crossref_primary_10_1016_j_tig_2020_08_009
crossref_primary_10_1038_s41588_024_01776_w
crossref_primary_10_1126_scitranslmed_aaf7165
crossref_primary_10_1016_j_trsl_2014_09_011
crossref_primary_10_1186_s13293_017_0153_7
crossref_primary_10_1097_MD_0000000000000281
crossref_primary_10_1038_s41593_018_0240_z
crossref_primary_10_1093_hmg_ddab372
crossref_primary_10_1093_aje_kwx229
crossref_primary_10_1146_annurev_immunol_020711_075049
crossref_primary_10_1189_jlb_3RI0315_095R
crossref_primary_10_4236_wjcd_2021_117032
crossref_primary_10_1038_s41588_020_0644_z
crossref_primary_10_1038_s41467_017_00366_1
crossref_primary_10_3390_v10080423
crossref_primary_10_7554_eLife_60645
crossref_primary_10_1016_j_cell_2016_09_024
crossref_primary_10_1371_journal_pgen_1005111
crossref_primary_10_1016_j_cell_2016_09_025
crossref_primary_10_1080_19491034_2016_1238998
crossref_primary_10_1016_j_clim_2017_09_019
crossref_primary_10_1126_sciimmunol_abm2508
crossref_primary_10_1016_j_cell_2018_10_022
crossref_primary_10_1016_j_immuni_2016_10_025
crossref_primary_10_1021_acsomega_0c01249
crossref_primary_10_1016_j_immuni_2022_10_004
crossref_primary_10_1016_j_cell_2015_12_032
crossref_primary_10_1016_j_bbadis_2014_04_024
crossref_primary_10_1016_j_paed_2018_05_003
crossref_primary_10_1371_journal_pgen_1005908
crossref_primary_10_1534_genetics_117_300381
crossref_primary_10_1186_s13073_015_0182_y
crossref_primary_10_1016_j_gde_2018_06_009
crossref_primary_10_1016_j_ajhg_2024_03_014
crossref_primary_10_1099_jgv_0_000632
crossref_primary_10_3389_fmicb_2020_512581
crossref_primary_10_1128_JVI_00121_20
crossref_primary_10_7554_eLife_90091
crossref_primary_10_1016_j_peptides_2022_170893
crossref_primary_10_1186_s13059_021_02471_3
crossref_primary_10_1016_j_coviro_2015_04_010
crossref_primary_10_1126_science_1260793
crossref_primary_10_1038_nri3653
crossref_primary_10_1101_gr_240390_118
crossref_primary_10_1186_s12859_016_1323_z
crossref_primary_10_7554_eLife_07571
crossref_primary_10_1038_s41467_022_30893_5
crossref_primary_10_1053_j_gastro_2016_01_031
crossref_primary_10_1038_s41467_025_56379_8
crossref_primary_10_1093_aje_kwv187
crossref_primary_10_3390_microorganisms11010173
crossref_primary_10_1016_j_bpg_2015_04_004
crossref_primary_10_1016_j_gene_2016_10_029
crossref_primary_10_1101_gr_276765_122
crossref_primary_10_1080_17460441_2016_1195366
crossref_primary_10_1016_j_stem_2018_11_018
crossref_primary_10_1111_imr_12815
crossref_primary_10_5802_crbiol_30
crossref_primary_10_1093_jnci_djab212
crossref_primary_10_1152_ajplung_00237_2021
crossref_primary_10_1371_journal_pgen_1005064
crossref_primary_10_1053_j_gastro_2016_04_007
crossref_primary_10_3390_genes8060167
crossref_primary_10_1016_j_ajhg_2021_08_014
crossref_primary_10_1371_journal_pone_0195788
crossref_primary_10_1093_nar_gkv1340
crossref_primary_10_1186_s13073_014_0092_4
crossref_primary_10_1016_j_coi_2014_05_001
crossref_primary_10_1016_j_biopsych_2022_09_033
crossref_primary_10_1016_j_virusres_2016_01_005
crossref_primary_10_1146_annurev_genet_080320_010449
crossref_primary_10_1038_ng_3745
crossref_primary_10_1097_BOR_0000000000000086
crossref_primary_10_1016_j_coi_2014_09_007
crossref_primary_10_1016_j_tig_2016_02_003
crossref_primary_10_1371_journal_pgen_1005619
crossref_primary_10_1016_j_cels_2017_02_009
crossref_primary_10_1016_j_jaut_2015_08_004
crossref_primary_10_1038_s41467_023_44191_1
crossref_primary_10_1111_sji_12894
crossref_primary_10_1038_s41576_018_0083_1
crossref_primary_10_1016_j_coi_2020_05_005
crossref_primary_10_3389_fgene_2019_01204
crossref_primary_10_1016_S2665_9913_19_30134_1
crossref_primary_10_1039_C6MB00240D
crossref_primary_10_1126_scitranslmed_aai7635
crossref_primary_10_1093_biomet_asz010
crossref_primary_10_3389_fimmu_2021_669400
crossref_primary_10_1371_journal_pgen_1006382
crossref_primary_10_1371_journal_pcbi_1005537
crossref_primary_10_1038_nrg3891
crossref_primary_10_1016_j_celrep_2015_06_058
crossref_primary_10_1038_s41584_024_01137_1
crossref_primary_10_1016_j_cell_2016_10_017
crossref_primary_10_1016_j_cell_2016_10_018
crossref_primary_10_3389_fimmu_2019_02848
crossref_primary_10_1038_ng_3737
crossref_primary_10_1016_j_smim_2015_03_002
crossref_primary_10_1038_s41467_024_48615_4
crossref_primary_10_1038_s41467_022_35742_z
crossref_primary_10_1038_nrg_2015_33
crossref_primary_10_1016_j_ajhg_2019_11_015
crossref_primary_10_1097_BOR_0000000000000094
crossref_primary_10_1186_s10020_019_0102_5
crossref_primary_10_1016_j_smim_2015_03_003
crossref_primary_10_1186_s13073_016_0329_5
crossref_primary_10_1016_j_xgen_2023_100290
crossref_primary_10_1038_s41467_020_20337_3
crossref_primary_10_1038_s41590_023_01590_2
crossref_primary_10_1021_acs_nanolett_8b03149
crossref_primary_10_1038_s41598_020_75129_y
crossref_primary_10_1093_bioinformatics_btae411
crossref_primary_10_1007_s11892_016_0758_y
crossref_primary_10_1097_SLA_0000000000002141
crossref_primary_10_1002_eji_202350519
crossref_primary_10_1186_s12920_015_0078_0
crossref_primary_10_3389_fimmu_2018_00477
crossref_primary_10_1371_journal_pgen_1007458
crossref_primary_10_1371_journal_pgen_1008549
crossref_primary_10_1016_j_cell_2016_10_020
crossref_primary_10_1038_s41598_019_46468_2
crossref_primary_10_3389_fimmu_2021_624632
crossref_primary_10_1016_j_plantsci_2019_01_006
crossref_primary_10_1126_sciimmunol_aag3160
crossref_primary_10_1016_j_it_2016_12_007
crossref_primary_10_1038_s41590_023_01588_w
crossref_primary_10_1007_s00251_018_1092_0
crossref_primary_10_1007_s00439_017_1764_0
crossref_primary_10_1126_science_aah4573
crossref_primary_10_1371_journal_pgen_1009199
crossref_primary_10_1016_j_ijid_2020_02_018
crossref_primary_10_1038_srep17302
crossref_primary_10_1111_imr_13329
crossref_primary_10_1186_s13054_022_04208_5
crossref_primary_10_1186_s13073_016_0345_5
crossref_primary_10_1016_j_molmet_2020_101041
crossref_primary_10_1016_j_schres_2022_04_003
crossref_primary_10_1038_gene_2016_12
Cites_doi 10.1186/gb-2010-11-10-r106
10.1016/j.cell.2009.12.018
10.1126/science.1231143
10.1093/nar/gkr917
10.1093/bioinformatics/btq033
10.1038/nbt.2519
10.1038/nature11247
10.1038/nmeth.2207
10.1038/ni.1863
10.1038/nrg2764
10.1038/nri1900
10.1146/annurev-immunol-030409-101221
10.1016/j.smim.2011.01.015
10.1073/pnas.1115761109
10.1038/nbt1385
10.1371/journal.pbio.0060083
10.1056/NEJMoa0903753
10.1038/nature01434
10.1371/journal.pgen.0020222
10.1038/nature11632
10.1016/j.cell.2009.12.017
10.1038/nature11582
10.1038/nature10808
10.1038/nrg2809
10.1126/science.1232033
10.1016/j.cell.2010.01.022
10.1126/science.1183621
10.1038/nature10921
10.1016/j.cell.2012.08.043
10.1016/j.ajhg.2010.02.002
10.1016/j.ajhg.2009.11.016
10.1016/j.ajhg.2011.09.002
10.1038/ng1847
10.1038/ng2142
10.1038/ng.2467
10.1016/j.ajhg.2011.04.014
10.1146/annurev-immunol-020711-074950
10.1146/annurev-immunol-031210-101340
10.1038/nature07940
10.1038/nature08463
10.1073/pnas.1530509100
10.1146/annurev.biochem.67.1.227
10.1086/519795
10.1101/gr.137323.112
10.1371/journal.pgen.0030161
10.1038/ng.81
10.1371/journal.pgen.1002639
10.1093/bioinformatics/bts163
10.1038/nrg3575
10.1016/j.molcel.2012.07.030
10.1038/nrg2612
10.4049/jimmunol.181.10.7157
10.1038/ng.2205
10.1016/j.ajhg.2009.01.005
10.1038/nrg3622
ContentType Journal Article
Copyright Copyright © 2014 American Association for the Advancement of Science
Copyright © 2014, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2014 American Association for the Advancement of Science
– notice: Copyright © 2014, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1126/science.1246980
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1119
ExternalDocumentID PMC4124741
3267670241
24604203
10_1126_science_1246980
24743322
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: P50 HG006193
– fundername: NIAMS NIH HHS
  grantid: R01 AR063759
– fundername: NIAID NIH HHS
  grantid: U19 AI082630
– fundername: Howard Hughes Medical Institute
– fundername: NCCDPHP CDC HHS
  grantid: DP1 MH100706
– fundername: NIA NIH HHS
  grantid: F32 AG043267
– fundername: NIDDK NIH HHS
  grantid: R01 DK097768
– fundername: NIGMS NIH HHS
  grantid: T32 GM007753
– fundername: NIGMS NIH HHS
  grantid: RC2 GM093080
– fundername: NCI NIH HHS
  grantid: DP1 CA174427
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c542t-c1c35fe125b23619433418aa5a403c7db32e0fc5d38e8f121bc9c242da1206ff3
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 13:47:51 EDT 2025
Tue Aug 05 11:11:04 EDT 2025
Mon Jul 21 10:14:57 EDT 2025
Fri Jul 25 10:44:31 EDT 2025
Mon Jul 21 06:01:48 EDT 2025
Tue Jul 01 04:10:09 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
Thu Jul 03 22:43:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6175
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-c1c35fe125b23619433418aa5a403c7db32e0fc5d38e8f121bc9c242da1206ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://hdl.handle.net/1721.1/96695
PMID 24604203
PQID 1513199947
PQPubID 1256
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4124741
proquest_miscellaneous_2000392440
proquest_miscellaneous_1505250079
proquest_journals_1513199947
pubmed_primary_24604203
crossref_citationtrail_10_1126_science_1246980
crossref_primary_10_1126_science_1246980
jstor_primary_24743322
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-07
PublicationDateYYYYMMDD 2014-03-07
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2014
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
21963258 - Am J Hum Genet. 2011 Oct 7;89(4):496-506
12646919 - Nature. 2003 Mar 20;422(6929):297-302
24166029 - Nat Rev Genet. 2013 Dec;14(12):824
17873874 - Nat Genet. 2007 Oct;39(10):1217-24
16932750 - Nat Rev Immunol. 2006 Sep;6(9):644-58
18416601 - PLoS Biol. 2008 Apr 15;6(4):e83
17907809 - PLoS Genet. 2007 Sep;3(9):1724-35
20299548 - Science. 2010 Apr 9;328(5975):232-5
18981137 - J Immunol. 2008 Nov 15;181(10):7157-65
22064851 - Nucleic Acids Res. 2012 Jan;40(Database issue):D930-4
23503680 - Nat Biotechnol. 2013 Apr;31(4):342-9
19759533 - Nature. 2009 Oct 8;461(7265):798-801
21565292 - Am J Hum Genet. 2011 May 13;88(5):586-98
20170901 - Am J Hum Genet. 2010 Mar 12;86(3):399-410
24604188 - Science. 2014 Mar 7;343(6175):1087-8
18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25
24296534 - Nat Rev Genet. 2014 Jan;15(1):34-48
19584810 - Nat Rev Genet. 2009 Aug;10(8):565-77
23064520 - Nat Methods. 2012 Nov;9(11):1120-5
24662379 - Nat Rev Immunol. 2014 Apr;14(4):212
23287722 - Science. 2013 Feb 15;339(6121):823-6
23128226 - Nature. 2012 Nov 1;491(7422):56-65
23128233 - Nature. 2012 Nov 1;491(7422):119-24
20192809 - Annu Rev Immunol. 2010;28:535-71
9759489 - Annu Rev Biochem. 1998;67:227-64
19349959 - Nature. 2009 May 28;459(7246):587-91
23287718 - Science. 2013 Feb 15;339(6121):819-23
22233810 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1204-9
22446628 - Nature. 2012 Apr 26;484(7395):519-23
22955989 - Genome Res. 2012 Sep;22(9):1790-7
23516985 - Annu Rev Immunol. 2013;31:563-604
20404851 - Nat Immunol. 2010 May;11(5):373-84
23101632 - Cell. 2012 Oct 26;151(3):658-70
21219183 - Annu Rev Immunol. 2011;29:185-214
23143594 - Nat Genet. 2012 Dec;44(12):1341-8
22955616 - Nature. 2012 Sep 6;489(7414):57-74
18204446 - Nat Genet. 2008 Feb;40(2):204-10
20212493 - Nat Rev Genet. 2010 Apr;11(4):259-72
22307276 - Nature. 2012 Feb 16;482(7385):390-4
20018961 - N Engl J Med. 2009 Dec 31;361(27):2609-18
20303872 - Cell. 2010 Mar 19;140(6):805-20
17196041 - PLoS Genet. 2006 Dec 29;2(12):e222
20479774 - Nat Rev Genet. 2010 Jun;11(6):446-50
21288738 - Semin Immunol. 2011 Apr;23(2):67-83
20064371 - Cell. 2009 Dec 24;139(7):1243-54
References_xml – ident: e_1_3_2_56_2
  doi: 10.1186/gb-2010-11-10-r106
– ident: e_1_3_2_47_2
  doi: 10.1016/j.cell.2009.12.018
– ident: e_1_3_2_70_2
  doi: 10.1126/science.1231143
– ident: e_1_3_2_66_2
  doi: 10.1093/nar/gkr917
– ident: e_1_3_2_68_2
  doi: 10.1093/bioinformatics/btq033
– ident: e_1_3_2_7_2
  doi: 10.1038/nbt.2519
– ident: e_1_3_2_65_2
  doi: 10.1038/nature11247
– ident: e_1_3_2_27_2
  doi: 10.1038/nmeth.2207
– ident: e_1_3_2_54_2
  doi: 10.1038/nmeth.2207
– ident: e_1_3_2_21_2
  doi: 10.1038/ni.1863
– ident: e_1_3_2_3_2
  doi: 10.1038/nrg2764
– ident: e_1_3_2_50_2
  doi: 10.1038/ni.1863
– ident: e_1_3_2_33_2
  doi: 10.1038/nri1900
– ident: e_1_3_2_39_2
  doi: 10.1146/annurev-immunol-030409-101221
– ident: e_1_3_2_12_2
  doi: 10.1016/j.smim.2011.01.015
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.1115761109
– ident: e_1_3_2_19_2
  doi: 10.1038/nbt1385
– ident: e_1_3_2_9_2
  doi: 10.1371/journal.pbio.0060083
– ident: e_1_3_2_26_2
– ident: e_1_3_2_18_2
  doi: 10.1056/NEJMoa0903753
– ident: e_1_3_2_30_2
  doi: 10.1038/nature11247
– ident: e_1_3_2_6_2
  doi: 10.1038/nature01434
– ident: e_1_3_2_10_2
  doi: 10.1371/journal.pgen.0020222
– ident: e_1_3_2_69_2
  doi: 10.1038/nature11632
– ident: e_1_3_2_24_2
  doi: 10.1016/j.cell.2009.12.017
– ident: e_1_3_2_15_2
  doi: 10.1038/nature11582
– ident: e_1_3_2_45_2
  doi: 10.1038/nature10808
– ident: e_1_3_2_4_2
  doi: 10.1038/nrg2809
– ident: e_1_3_2_28_2
– ident: e_1_3_2_36_2
  doi: 10.1126/science.1232033
– ident: e_1_3_2_11_2
  doi: 10.1016/j.cell.2010.01.022
– ident: e_1_3_2_46_2
  doi: 10.1126/science.1183621
– ident: e_1_3_2_51_2
  doi: 10.1016/j.cell.2010.01.022
– ident: e_1_3_2_31_2
  doi: 10.1093/nar/gkr917
– ident: e_1_3_2_73_2
  doi: 10.1038/nature10921
– ident: e_1_3_2_8_2
  doi: 10.1016/j.cell.2012.08.043
– ident: e_1_3_2_41_2
  doi: 10.1016/j.ajhg.2010.02.002
– ident: e_1_3_2_64_2
  doi: 10.1016/j.ajhg.2009.11.016
– ident: e_1_3_2_13_2
  doi: 10.1016/j.ajhg.2011.09.002
– ident: e_1_3_2_57_2
  doi: 10.1038/ng1847
– ident: e_1_3_2_5_2
  doi: 10.1038/ng2142
– ident: e_1_3_2_16_2
  doi: 10.1038/ng.2467
– ident: e_1_3_2_35_2
  doi: 10.1126/science.1231143
– ident: e_1_3_2_61_2
  doi: 10.1016/j.ajhg.2011.04.014
– ident: e_1_3_2_14_2
  doi: 10.1146/annurev-immunol-020711-074950
– ident: e_1_3_2_22_2
  doi: 10.1146/annurev-immunol-031210-101340
– ident: e_1_3_2_29_2
  doi: 10.1016/j.ajhg.2011.04.014
– ident: e_1_3_2_40_2
  doi: 10.1038/nature07940
– ident: e_1_3_2_17_2
  doi: 10.1038/nature08463
– ident: e_1_3_2_60_2
  doi: 10.1073/pnas.1530509100
– ident: e_1_3_2_43_2
  doi: 10.1038/nature11632
– ident: e_1_3_2_53_2
  doi: 10.1146/annurev.biochem.67.1.227
– ident: e_1_3_2_58_2
  doi: 10.1086/519795
– ident: e_1_3_2_23_2
  doi: 10.1146/annurev.biochem.67.1.227
– ident: e_1_3_2_55_2
  doi: 10.1038/nbt1385
– ident: e_1_3_2_32_2
  doi: 10.1101/gr.137323.112
– ident: e_1_3_2_52_2
  doi: 10.1146/annurev-immunol-031210-101340
– ident: e_1_3_2_20_2
  doi: 10.1371/journal.pgen.0030161
– ident: e_1_3_2_72_2
  doi: 10.1016/j.cell.2009.12.017
– ident: e_1_3_2_38_2
  doi: 10.1038/ng.81
– ident: e_1_3_2_71_2
  doi: 10.1371/journal.pgen.1002639
– ident: e_1_3_2_59_2
  doi: 10.1093/bioinformatics/bts163
– ident: e_1_3_2_2_2
  doi: 10.1038/nrg3575
– ident: e_1_3_2_25_2
  doi: 10.1038/nature10921
– ident: e_1_3_2_67_2
  doi: 10.1016/j.molcel.2012.07.030
– ident: e_1_3_2_63_2
  doi: 10.1038/ng.2467
– ident: e_1_3_2_34_2
  doi: 10.1038/nrg2612
– ident: e_1_3_2_37_2
  doi: 10.4049/jimmunol.181.10.7157
– ident: e_1_3_2_48_2
  doi: 10.1038/ng.2205
– ident: e_1_3_2_49_2
  doi: 10.1073/pnas.1115761109
– ident: e_1_3_2_62_2
  doi: 10.1016/j.ajhg.2009.01.005
– ident: e_1_3_2_44_2
  doi: 10.1038/nrg3622
– reference: 21288738 - Semin Immunol. 2011 Apr;23(2):67-83
– reference: 20212493 - Nat Rev Genet. 2010 Apr;11(4):259-72
– reference: 17196041 - PLoS Genet. 2006 Dec 29;2(12):e222
– reference: 20404851 - Nat Immunol. 2010 May;11(5):373-84
– reference: 22307276 - Nature. 2012 Feb 16;482(7385):390-4
– reference: 17873874 - Nat Genet. 2007 Oct;39(10):1217-24
– reference: 23128233 - Nature. 2012 Nov 1;491(7422):119-24
– reference: 19759533 - Nature. 2009 Oct 8;461(7265):798-801
– reference: 20192809 - Annu Rev Immunol. 2010;28:535-71
– reference: 19584810 - Nat Rev Genet. 2009 Aug;10(8):565-77
– reference: 23128226 - Nature. 2012 Nov 1;491(7422):56-65
– reference: 23503680 - Nat Biotechnol. 2013 Apr;31(4):342-9
– reference: 20303872 - Cell. 2010 Mar 19;140(6):805-20
– reference: 18204446 - Nat Genet. 2008 Feb;40(2):204-10
– reference: 16932750 - Nat Rev Immunol. 2006 Sep;6(9):644-58
– reference: 23287718 - Science. 2013 Feb 15;339(6121):819-23
– reference: 23101632 - Cell. 2012 Oct 26;151(3):658-70
– reference: 22064851 - Nucleic Acids Res. 2012 Jan;40(Database issue):D930-4
– reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74
– reference: 21963258 - Am J Hum Genet. 2011 Oct 7;89(4):496-506
– reference: 17907809 - PLoS Genet. 2007 Sep;3(9):1724-35
– reference: 22446628 - Nature. 2012 Apr 26;484(7395):519-23
– reference: 23287722 - Science. 2013 Feb 15;339(6121):823-6
– reference: 9759489 - Annu Rev Biochem. 1998;67:227-64
– reference: 24604188 - Science. 2014 Mar 7;343(6175):1087-8
– reference: 20299548 - Science. 2010 Apr 9;328(5975):232-5
– reference: 24166029 - Nat Rev Genet. 2013 Dec;14(12):824
– reference: 23064520 - Nat Methods. 2012 Nov;9(11):1120-5
– reference: 23516985 - Annu Rev Immunol. 2013;31:563-604
– reference: 18981137 - J Immunol. 2008 Nov 15;181(10):7157-65
– reference: 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25
– reference: 21565292 - Am J Hum Genet. 2011 May 13;88(5):586-98
– reference: 20064371 - Cell. 2009 Dec 24;139(7):1243-54
– reference: 20479774 - Nat Rev Genet. 2010 Jun;11(6):446-50
– reference: 21219183 - Annu Rev Immunol. 2011;29:185-214
– reference: 24296534 - Nat Rev Genet. 2014 Jan;15(1):34-48
– reference: 22233810 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1204-9
– reference: 12646919 - Nature. 2003 Mar 20;422(6929):297-302
– reference: 20170901 - Am J Hum Genet. 2010 Mar 12;86(3):399-410
– reference: 19349959 - Nature. 2009 May 28;459(7246):587-91
– reference: 20018961 - N Engl J Med. 2009 Dec 31;361(27):2609-18
– reference: 24662379 - Nat Rev Immunol. 2014 Apr;14(4):212
– reference: 22955989 - Genome Res. 2012 Sep;22(9):1790-7
– reference: 23143594 - Nat Genet. 2012 Dec;44(12):1341-8
– reference: 18416601 - PLoS Biol. 2008 Apr 15;6(4):e83
SSID ssj0009593
Score 2.5855548
Snippet It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective...
Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and...
Introduction; Variation in an individual's response to environmental factors is likely to influence susceptibility to complex human diseases. The genetic basis...
Immune Variation It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1119
SubjectTerms Adult
Autoimmune Diseases - genetics
Communicable Diseases
Communicable Diseases - genetics
dendritic cells
Dendritic Cells - drug effects
Dendritic Cells - immunology
Deoxyribonucleic acid
DNA
E coli
Environmental factors
Environmental Influences
Escherichia coli
Feedback (Response)
Female
gene expression
Gene mapping
Gene-Environment Interaction
genes
Genetic diversity
Genetic Loci
Genetic variance
genetic variation
Genetics
Genome-Wide Association Study
HEK293 Cells
Host-Pathogen Interactions - genetics
Humans
Immune response
Infectious diseases
Influenza A virus
Interferon Regulatory Factor-7 - genetics
interferon-beta
Interferon-beta - pharmacology
Lipopolysaccharides - immunology
Logical Thinking
Male
Middle Aged
monocytes
Pathogens
Polymorphism, Single Nucleotide
Quantitative Trait Loci
RESEARCH ARTICLE SUMMARY
STAT Transcription Factors - genetics
Stimuli
Toll-like receptor 3
Transcriptome
Young Adult
Title Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells
URI https://www.jstor.org/stable/24743322
https://www.ncbi.nlm.nih.gov/pubmed/24604203
https://www.proquest.com/docview/1513199947
https://www.proquest.com/docview/1505250079
https://www.proquest.com/docview/2000392440
https://pubmed.ncbi.nlm.nih.gov/PMC4124741
Volume 343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqTUi8IDYYFAYyEg9DKFNi5_rYtVTlsgmxbhpPke046qYqRWv7AL-Sn8TxJa47tYjxElWx00Q5X-zv2Od8B6G3WVTnMsuiIK9oHMQ84wELqyyoYTZhMkpZqHOrTs_S0UX86Sq56nR-e1FLywU_Fr825pX8j1XhHNhVZcnew7LuT-EE_Ab7whEsDMd_srHK7lCqGDBeKd3VS_B7dVjL6axSVbmkEuCfzODy4FzFqZtAOxUSq6Ow7AL-QDaVrnfwvi-n07nPVtsPH1io29nx7OlCFHsmkKCNK7CXeYsMNtxHJQat9n6-myDEydLh81KVQNI1ptrEm1sW9CfTmdnO91bEay07-43d-KsWUazDtjKHs_EqbeY-D-6P5FZI2cxjZvAOVd1JElJ_dKdGBcrCGPhasnni8EpdymMgPWlhKkytS3SPeufl18Gw_PLx7PN6q6EEROnfAe0Bf3yXgOMCU8Vu72RwMtwqBG3lprxErvbua0zJBMtucoPuRvN69Gj8GD2yfg3uGZDuoY5s9tEDU-n05z7as692jo-s0Pm7J2hs8IstfnGLX9ziF9_FL3b4xdcN1vjFDr9Y4_cpuhh-GPdHga3yEYgkJotARIImtQSizZUQUBFTIFY5YwmLQyqyilMiw1okFc1lXkck4qIQQCwrFpEwrWt6gHaaWSOfI5wCV-Z5WFeZEDGXEYexp6gKwSRjBa9kFx23b7QUVgJfVWKZltoVJmlpTVBaE3TRkbvgh1F_2d71QJvI9SNxprQBSRcdtjYr7dgxL4FnUyUAEmdd9MY1w8iututYI2dL1UfVmAQOX2zvQ3RyPVB0uP8zAwPvAVKYkUPaRdkaQFwHpSy_3tJcT7TCvCpJD67Gi78_-kv0cPVpH6Kdxe1SvgKKvuCvLer_ACrA6zw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+Genetic+Variants+Modulate+Pathogen-Sensing+Responses+in+Human+Dendritic+Cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Lee%2C+Mark+N&rft.au=Ye%2C+Chun&rft.au=Villani%2C+Alexandra-Chlo%C3%A9&rft.au=Towfique+Raj&rft.date=2014-03-07&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=343&rft.issue=6175&rft_id=info:doi/10.1126%2Fscience.1246980&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3267670241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon