White Blood Cell Segmentation by Color-Space-Based K-Means Clustering
White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytom...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 14; no. 9; pp. 16128 - 16147 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.09.2014
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy. |
---|---|
AbstractList | White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy. White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy. |
Author | Zhang, Congcong Zhen, Wu Liu, Zhi Li, Xiaomei Zheng, Chengyun Chang, Jun Xiao, Xiaoyan Chen, Ying-Jie |
AuthorAffiliation | 1 School of Information Science and Engineering, Shandong University, Jinan 250100, China; E-Mails: zhangcongcong@mail.sdu.edu.cn (C.Zha.); changjun@sdu.edu.cn (J.C.) 4 Department of Hematology, the Second Hospital of Shandong University, Jinan 250100, China 2 Department of nephrology, Qilu Hospital of Shandong University, Jinan 250012, China; E-Mail: xiaoyanxiao2007@163.com 3 Department of Oncology, the Second Hospital of Shandong University, Jinan 250100, China; E-Mails: sdulixiaomei@163.com (X.L.); lz505@163.com (Y.-J.C.); qinghuanjn@gmail.com (W.Z.) |
AuthorAffiliation_xml | – name: 4 Department of Hematology, the Second Hospital of Shandong University, Jinan 250100, China – name: 3 Department of Oncology, the Second Hospital of Shandong University, Jinan 250100, China; E-Mails: sdulixiaomei@163.com (X.L.); lz505@163.com (Y.-J.C.); qinghuanjn@gmail.com (W.Z.) – name: 2 Department of nephrology, Qilu Hospital of Shandong University, Jinan 250012, China; E-Mail: xiaoyanxiao2007@163.com – name: 1 School of Information Science and Engineering, Shandong University, Jinan 250100, China; E-Mails: zhangcongcong@mail.sdu.edu.cn (C.Zha.); changjun@sdu.edu.cn (J.C.) |
Author_xml | – sequence: 1 givenname: Congcong surname: Zhang fullname: Zhang, Congcong – sequence: 2 givenname: Xiaoyan surname: Xiao fullname: Xiao, Xiaoyan – sequence: 3 givenname: Xiaomei surname: Li fullname: Li, Xiaomei – sequence: 4 givenname: Ying-Jie surname: Chen fullname: Chen, Ying-Jie – sequence: 5 givenname: Wu surname: Zhen fullname: Zhen, Wu – sequence: 6 givenname: Jun surname: Chang fullname: Chang, Jun – sequence: 7 givenname: Chengyun surname: Zheng fullname: Zheng, Chengyun – sequence: 8 givenname: Zhi surname: Liu fullname: Liu, Zhi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25256107$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1rFTEUhoNU7Idu_AEy4EaE0XxPshHs0Gqx4qKKy5BJztzmkju5JjNC_71pb61tcZWQ8-TlPec9h2hvShMg9JLgd4xp_L4QjjWRhKon6IBwyltFKd67d99Hh6WsMaaMMfUM7VNBhSS4O0AnPy_DDM1xTMk3PcTYXMBqA9Ns55CmZrhq-hRTbi-21kF7bAv45kv7FexUmj4uZYYcptVz9HS0scCL2_MI_Tg9-d5_bs-_fTrrP563TnA6t4NTI1bAxmG0VGDiBu0ZxpIA7ljnPbUMRm-FrYQgVjmhrebMcj04poVkR-hsp-uTXZttDhubr0yywdw8pLwyNs_BRTBaOc24BsUc5YRqTb3XnlLuPOHd0FWtDzut7TJswLvac7bxgejDyhQuzSr9NpxiReS1mTe3Ajn9WqDMZhOKqyO0E6SlGCKk5JhoKSr6-hG6Tkue6qhMzU3UHiXWlXp139Gdlb9pVeDtDnA5lZJhvEMINterYP6tQoXxI9iFXaq1mxD_9-UP0G6zIQ |
CitedBy_id | crossref_primary_10_1016_j_micron_2018_01_010 crossref_primary_10_1016_j_bbe_2018_03_002 crossref_primary_10_1007_s11760_019_01586_2 crossref_primary_10_1016_j_cmpb_2017_08_010 crossref_primary_10_1002_ima_22372 crossref_primary_10_7717_peerj_13537 crossref_primary_10_1109_ACCESS_2020_3020123 crossref_primary_10_3390_s16111963 crossref_primary_10_1088_1757_899X_928_7_072081 crossref_primary_10_1088_1755_1315_243_1_012024 crossref_primary_10_1016_j_cmpb_2017_09_011 crossref_primary_10_1007_s11042_022_12285_5 crossref_primary_10_1016_j_cmpb_2016_07_002 crossref_primary_10_1088_1757_899X_396_1_012038 crossref_primary_10_1007_s10916_019_1219_3 crossref_primary_10_3390_s17081791 crossref_primary_10_1039_C6LC00778C crossref_primary_10_1155_2018_7235795 crossref_primary_10_1016_j_compbiomed_2023_106551 crossref_primary_10_1021_acs_analchem_4c06646 crossref_primary_10_13005_bpj_2328 crossref_primary_10_1007_s10278_019_00288_y crossref_primary_10_1002_jbio_201800488 crossref_primary_10_32417_1997_4868_2024_24_01_59_85 crossref_primary_10_1016_j_patrec_2019_03_024 crossref_primary_10_1111_exsy_12813 crossref_primary_10_1109_ACCESS_2019_2954457 crossref_primary_10_1007_s11277_023_10424_1 crossref_primary_10_1109_RBME_2020_3004639 crossref_primary_10_1088_1742_6596_1569_2_022054 crossref_primary_10_1002_mp_13904 crossref_primary_10_3390_math8071070 crossref_primary_10_1155_2022_9934144 crossref_primary_10_1109_ACCESS_2020_2970485 crossref_primary_10_1166_jmihi_2021_3757 crossref_primary_10_1016_j_compmedimag_2020_101813 crossref_primary_10_1007_s11277_021_08534_9 crossref_primary_10_1007_s13755_017_0038_5 crossref_primary_10_3390_s150922561 crossref_primary_10_1016_j_compbiomed_2024_109579 crossref_primary_10_1109_ACCESS_2021_3083703 crossref_primary_10_3390_e22050567 crossref_primary_10_3390_s151129594 crossref_primary_10_1177_1748301818813322 crossref_primary_10_53941_ijndi_2024_100022 crossref_primary_10_1109_ACCESS_2022_3182800 crossref_primary_10_1364_OE_445001 crossref_primary_10_1016_j_tice_2021_101653 crossref_primary_10_3233_JIFS_189065 crossref_primary_10_1007_s10916_019_1185_9 crossref_primary_10_1371_journal_pone_0240015 crossref_primary_10_1007_s12975_019_00754_3 crossref_primary_10_2139_ssrn_4835684 crossref_primary_10_3390_sym10120743 crossref_primary_10_1002_cpe_5133 crossref_primary_10_1109_JBHI_2023_3238726 crossref_primary_10_1007_s11042_018_7107_x crossref_primary_10_1016_j_knosys_2021_108008 crossref_primary_10_1016_j_measurement_2017_11_002 crossref_primary_10_1002_jbio_202200174 crossref_primary_10_1016_j_compbiomed_2019_103568 crossref_primary_10_3390_e23111522 crossref_primary_10_1155_2016_9514707 crossref_primary_10_1177_1748301818770839 crossref_primary_10_1002_jemt_24706 crossref_primary_10_1088_1742_6596_1502_1_012038 crossref_primary_10_2339_politeknik_464541 crossref_primary_10_1007_s11517_020_02180_2 crossref_primary_10_1016_j_ijleo_2018_02_026 |
Cites_doi | 10.1109/TSMCB.2007.912940 10.1016/j.micron.2014.04.001 10.1109/TIM.2008.2006726 10.1109/ICOSP.2006.345648 10.1002/cyto.a.20550 10.1016/j.micron.2011.03.009 10.1016/j.micron.2013.09.006 10.1109/I2MTC.2012.6229443 10.1109/SIBGRAPI.2007.33 10.1007/s00521-011-0522-9 10.1007/s12575-009-9011-2 10.1016/j.eswa.2012.01.114 10.1109/ICBNMT.2011.6156011 10.1177/25.7.70454 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2014 2014 by the authors; licensee MDPI, Basel, Switzerland. 2014 |
Copyright_xml | – notice: Copyright MDPI AG 2014 – notice: 2014 by the authors; licensee MDPI, Basel, Switzerland. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s140916128 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
EndPage | 16147 |
ExternalDocumentID | oai_doaj_org_article_98c9349e83c2412992dd9d224cd147b7 PMC4208166 3470529621 25256107 10_3390_s140916128 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c542t-bc8f08e3fbfa2501cb9d30061e0737dd2a3efda5a3fb51a8c59a943a49bc39563 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:10 EDT 2025 Thu Aug 21 14:13:00 EDT 2025 Fri Jul 11 11:48:38 EDT 2025 Fri Jul 25 02:31:09 EDT 2025 Mon Jul 21 05:21:48 EDT 2025 Tue Jul 01 00:40:21 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-bc8f08e3fbfa2501cb9d30061e0737dd2a3efda5a3fb51a8c59a943a49bc39563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1615943609?pq-origsite=%requestingapplication% |
PMID | 25256107 |
PQID | 1615943609 |
PQPubID | 2032333 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_98c9349e83c2412992dd9d224cd147b7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4208166 proquest_miscellaneous_1566401965 proquest_journals_1615943609 pubmed_primary_25256107 crossref_primary_10_3390_s140916128 crossref_citationtrail_10_3390_s140916128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2014 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Saraswat (ref_8) 2014; 65 Osowski (ref_14) 2009; 58 Zheng (ref_15) 2014; 56 Pan (ref_18) 2006; 4 Sadeghian (ref_12) 2009; 11 Pan (ref_17) 2012; 21 Chan (ref_24) 2008; 38 Zack (ref_13) 1977; 25 Shirley (ref_21) 2001; 21 ref_23 ref_22 Ko (ref_11) 2011; 42 ref_20 ref_1 ref_3 ref_2 ref_9 Pan (ref_16) 2012; 39 Zheng (ref_10) 2013; 28 ref_5 ref_4 ref_7 Gudla (ref_19) 2008; 73 ref_6 |
References_xml | – volume: 38 start-page: 353 year: 2008 ident: ref_24 article-title: Edge enhancement nucleus and cytoplast contour detector of cervical smear Images publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2007.912940 – volume: 65 start-page: 20 year: 2014 ident: ref_8 article-title: Automated microscopic image analysis for leukocytes identification: A survey publication-title: Micron doi: 10.1016/j.micron.2014.04.001 – volume: 58 start-page: 2159 year: 2009 ident: ref_14 article-title: Application of support vector machine and genetic algorithm for improved blood cell recognition publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2008.2006726 – ident: ref_9 – ident: ref_7 doi: 10.1109/ICOSP.2006.345648 – volume: 73 start-page: 451 year: 2008 ident: ref_19 article-title: A highthroughput system for segmenting nuclei using multiscale techniques publication-title: Cytom. Part A doi: 10.1002/cyto.a.20550 – ident: ref_3 – volume: 4 start-page: 637 year: 2006 ident: ref_18 article-title: Robust segmentation for low quality cell images from blood and bone marrow publication-title: Int. J. Control Autom. Syst. – volume: 28 start-page: 614 year: 2013 ident: ref_10 article-title: White blood cell segmentation using expectation-maximization and automatic support vector machine learning in Chinese publication-title: J. Data Acquis. Process. – volume: 42 start-page: 695 year: 2011 ident: ref_11 article-title: Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake publication-title: Micron doi: 10.1016/j.micron.2011.03.009 – ident: ref_2 – volume: 56 start-page: 17 year: 2014 ident: ref_15 article-title: A novel algorithm based on visual saliency attention for localization and segmentation in rapidly-stained leukocyte images publication-title: Micron doi: 10.1016/j.micron.2013.09.006 – ident: ref_5 doi: 10.1109/I2MTC.2012.6229443 – ident: ref_4 doi: 10.1109/SIBGRAPI.2007.33 – volume: 21 start-page: 1217 year: 2012 ident: ref_17 article-title: Leukocyte image segmentation by visual attention and extreme learning machine publication-title: Neural Comput. Appl. doi: 10.1007/s00521-011-0522-9 – volume: 11 start-page: 196 year: 2009 ident: ref_12 article-title: A framework for white blood cell segmentation in microscopic blood images using digital image processing publication-title: Biol. Proced. Online doi: 10.1007/s12575-009-9011-2 – volume: 39 start-page: 7479 year: 2012 ident: ref_16 article-title: Leukocyte image segmentation using simulated visual attention publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.114 – ident: ref_1 – volume: 21 start-page: 34 year: 2001 ident: ref_21 article-title: Color Transfer between Images publication-title: IEEE Corn. – ident: ref_6 doi: 10.1109/ICBNMT.2011.6156011 – ident: ref_22 – ident: ref_23 – ident: ref_20 – volume: 25 start-page: 741 year: 1977 ident: ref_13 article-title: Automatic measurement of sister chromatid exchange frequency publication-title: J. Histochem. Cytochem. doi: 10.1177/25.7.70454 |
SSID | ssj0023338 |
Score | 2.4579887 |
Snippet | White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 16128 |
SubjectTerms | Accuracy Algorithms Blood Cluster Analysis Color color space decomposition Cytoplasm Humans Image Cytometry Image Processing, Computer-Assisted Immune system k-means clusters Leukocyte Count Leukocytes Leukocytes - cytology Methods Morphology Performance evaluation segmentation Sensors Support vector machines white blood cell |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIN4GCjGBhsNrEzsMjjVpVIFhKpW6Rn4BUUtTHwL_nnKQhRZVYWOOzZd_Fvu_k83cI3SZ-J9EmMIRbHhAmQ0vgDNQk4onSgnOrbJHl-xwNRuxhHI4bpb5cTlhJD1wqrg19OGXcJFSBs4HDM9Caa3A8SvsslsU7cvB5q2CqCrUoRF4lGSmFoL49d7ROgG1czfWG-ylY-jdBy98Zkg2X099HexVWxPflHA_QlskP0W6DQfAI9YoCd7jr0s9xaiYTPDSvH9V7ohzLL5zC6TYjQwiNDemCy9L4kTwZcFA4nSwdSwKMc4xG_d5LOiBVZQSiQhYsiFSJ7SSGWmkFYBhfSa6pQyMGdmysdSCosVqEAiRCXyQq5IIzKhiXikJERE_Qdj7NzRnC0B642z4qY3BosRSRhX5Gg21hb8fGQ3crhWWqog131SsmGYQPTrnZj3I9dFPLfpZkGRuluk7vtYQjuC4-gNmzyuzZX2b3UGtltazadfPMoVdYZtThHrqum2G_uEsQkZvpEmQAv7KCR9FDp6WR65kEYeDgJAwer5l_barrLfn7W8HJ7bIU_Cg6_4-1XaAdgGWszGRroe3FbGkuAfos5FXxl38DBHQAew priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuNBDxZvwqFy1lx4MG9t5-IAQuwKhVnChK3GL_FyQ0my77Erw7xkn2ZRFq17jieXMeDzfyJNvAL7lcS-3jjkqvWRU6MRTPAMtTWVurJLSG19X-d6m10Px4z65X4F5_85WgU9LU7vQT2o4KU-e_76co8OfhYwTU_bTp0DahMiF5R9gDSNSFhz0RnS3CYxjHtZQk76TXwhGNWf_MqD5vl7yTQC62oBPLXIkF42pN2HFVVvw8Q2f4DZc1u3uSD8Uo5OBK0ty50a_27-LKqJfyADPugm9w0TZ0T4GMEt-0huH4YoMylngTMB5dmB4dflrcE3bPgnUJIJNqTa57-WOe-0VIprYaGl5wCYO_TezlinuvFWJQokkVrlJpJKCKyG14Zgf8V1YrcaV2weC4yzc_XGdYXjLtEo9vucsWho9PXMRfJ8rrDAtiXjoZVEWmEwE5Rb_lBvB1072T0OdsVSqH_TeSQS66_rBeDIqWu8pcONILqTLuUH7YgRl1kqL6MPYWGQ6i-BobrVivoWKgGXxM9OejOBLN4zeE65EVOXGM5RBNCtqVsUI9hojdythCQvgEifPFsy_sNTFkerxoWboDjULcZoe_H9Zh7CO8Es0FWtHsDqdzNwxQpyp_lzv31cCL_pr priority: 102 providerName: Scholars Portal |
Title | White Blood Cell Segmentation by Color-Space-Based K-Means Clustering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25256107 https://www.proquest.com/docview/1615943609 https://www.proquest.com/docview/1566401965 https://pubmed.ncbi.nlm.nih.gov/PMC4208166 https://doaj.org/article/98c9349e83c2412992dd9d224cd147b7 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8Sa0XRnBhYPVTewk9gl1V7tUoFaIUmlvkZ8FacmWfRz4951xvC9UcckhnljW2OP5xp58Q8gHmfel84VnKqiCCVMGBnugY5WS1mmlgg0xy_eyOr8WXyblJB24LVJa5XpPjBu1m1k8Iz9FZKIEr_rq0-0fhlWj8HY1ldB4SA6RugxTuurJNuDiEH91lKQcQvvTBZI7QT9YeX3HCUWu_vsA5r95kjuOZ_yUPEmIkZ51U_yMPPDtc_J4h0fwBRnFMnd0gEnodOinU3rlb36nv4paav7SIexxc3YFAbJnA3Bcjn5lFx7cFB1OV8iVAP28JNfj0Y_hOUv1EZgtRbFkxsrQl54HEzQgmdwa5ThiEg92WztXaO6D06UGiTLX0pZKgwq1UMZyiIv4K3LQzlr_hlBoL_DOj5sa3FptdBXgO-9ghsHCa5-Rj2uFNTaRh2MNi2kDQQQqt9kqNyPvN7K3HWXGvVID1PtGAmmu44vZ_KZJVtPAglFcKC-5BaQBnrNwTjlAHdblojZ1Ro7Xs9Yk21s025WSkXebZrAavArRrZ-tQAZQrIhsihl53U3yZiRFWSCohM7rvenfG-p-S_vrZ2TmxlyFvKre_n9YR-QRwC7RZaodk4PlfOVPANosTS-uX3jK8eceORyMLr9978VjAnheCHkHk7_9Ig |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOQAHxLMECgwCDhxGTWbymgNC7NJqy7a9tJX2FuaVgrRkyz6E-qf4jdh57ANV3HrNOJORx_ZnZzw2wLs8CnPnheeqVILHJik52kDHU5Vbp5UqbVln-Z6kg_P46ygZbcGf7i4MpVV2NrE21G5i6R_5HnkmKpZpqD5d_uLUNYpOV7sWGo1YDP3VbwzZZh8Pv-D-vhfiYP-sP-BtVwFuk1jMubF5GeZelqbUiP-RNcpJQnKP0p45J7T0pdOJRook0rlNlMYP61gZKzGakDjvLbiNwBuSRmWjVYAnMd5rSqBKqcK9GRWTwnVTp_c10Kt7A1zn0P6bl7kGdAcP4H7robLPjUg9hC1fPYJ7a3ULH8N-3VaP9SjpnfX9eMxO_cXP9hZTxcwV66NNnfJTDMg97yFQOjbkxx5hkfXHC6rNgPM8gfMb4dxT2K4mlX8GDMcFnTFKkyGMZkanJb7nHUoUWpTMB_ChY1hh22Ll1DNjXGDQQswtVswN4O2S9rIp0XEtVY_4vqSgstr1g8n0omi1tEABVTJWPpcWPRtEauGccujlWBfFmckC2O12rWh1fVasJDOAN8th1FI6etGVnyyQBr3muK7eGMBOs8nLlYhEkBOLk2cb27-x1M2R6sf3uhI45UZEafr8_8t6DXcGZ8dHxdHhyfAF3EWXL26y5HZhez5d-JfoVs3Nq1qWGXy7aeX5CxN3NuE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgBBw7Wbuy8fECI3XbVslAhlUp7C34WpCVb9iHUv8avYybJvlDFrdd4YjnjeXwTj2cAXhdxt3BeeK6CEjwxaeBoAx3PVGGdVirYUGf5HmeHp8nHUTragT_LuzCUVrm0ibWhdhNL_8g7hExUIrOu6oQ2LeLL_uD9-S9OHaTopHXZTqMRkaG_-I3h2-zd0T7u9RshBgdf-4e87TDAbZqIOTe2CN3Cy2CCRiwQW6OcJK_uUfJz54SWPjidaqRIY13YVGlchE6UsRIjC4nzXoPruUxj0rF8tA72JMZ-TTlUKVW3M6PCUvgN1PV9wwHWfQIuA7f_5mhuOL3BHbjdolX2oRGvu7Djq3twa6OG4X04qFvssR4lwLO-H4_ZiT_72d5oqpi5YH20r1N-gsG55z10mo4N-WePLpL1xwuq04DzPIDTK-HcQ9itJpV_DAzHBZ03SpOjS82NzgK-5x1KF1qX3Efwdsmw0raFy6l_xrjEAIaYW66ZG8GrFe15U67jUqoe8X1FQSW26weT6VnZamyJwqpkonwhLaIc9NrCOeUQ8VgXJ7nJI9hb7lrZ6v2sXEtpBC9Xw6ixdAyjKz9ZIA0i6KSu5BjBo2aTVysRqSBAi5PnW9u_tdTtkerH97oqOOVJxFn25P_LegE3UG3KT0fHw6dwE9Ff0iTM7cHufLrwzxBhzc3zWpQZfLtq3fkLXXw7Fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+Blood+Cell+Segmentation+by+Color-Space-Based+K-Means+Clustering&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Congcong&rft.au=Xiao%2C+Xiaoyan&rft.au=Li%2C+Xiaomei&rft.au=Chen%2C+Ying-Jie&rft.date=2014-09-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=14&rft.issue=9&rft.spage=16128&rft_id=info:doi/10.3390%2Fs140916128&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3470529621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |