White Blood Cell Segmentation by Color-Space-Based K-Means Clustering

White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytom...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 14; no. 9; pp. 16128 - 16147
Main Authors Zhang, Congcong, Xiao, Xiaoyan, Li, Xiaomei, Chen, Ying-Jie, Zhen, Wu, Chang, Jun, Zheng, Chengyun, Liu, Zhi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.09.2014
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.
AbstractList White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.
White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.
Author Zhang, Congcong
Zhen, Wu
Liu, Zhi
Li, Xiaomei
Zheng, Chengyun
Chang, Jun
Xiao, Xiaoyan
Chen, Ying-Jie
AuthorAffiliation 1 School of Information Science and Engineering, Shandong University, Jinan 250100, China; E-Mails: zhangcongcong@mail.sdu.edu.cn (C.Zha.); changjun@sdu.edu.cn (J.C.)
4 Department of Hematology, the Second Hospital of Shandong University, Jinan 250100, China
2 Department of nephrology, Qilu Hospital of Shandong University, Jinan 250012, China; E-Mail: xiaoyanxiao2007@163.com
3 Department of Oncology, the Second Hospital of Shandong University, Jinan 250100, China; E-Mails: sdulixiaomei@163.com (X.L.); lz505@163.com (Y.-J.C.); qinghuanjn@gmail.com (W.Z.)
AuthorAffiliation_xml – name: 4 Department of Hematology, the Second Hospital of Shandong University, Jinan 250100, China
– name: 3 Department of Oncology, the Second Hospital of Shandong University, Jinan 250100, China; E-Mails: sdulixiaomei@163.com (X.L.); lz505@163.com (Y.-J.C.); qinghuanjn@gmail.com (W.Z.)
– name: 2 Department of nephrology, Qilu Hospital of Shandong University, Jinan 250012, China; E-Mail: xiaoyanxiao2007@163.com
– name: 1 School of Information Science and Engineering, Shandong University, Jinan 250100, China; E-Mails: zhangcongcong@mail.sdu.edu.cn (C.Zha.); changjun@sdu.edu.cn (J.C.)
Author_xml – sequence: 1
  givenname: Congcong
  surname: Zhang
  fullname: Zhang, Congcong
– sequence: 2
  givenname: Xiaoyan
  surname: Xiao
  fullname: Xiao, Xiaoyan
– sequence: 3
  givenname: Xiaomei
  surname: Li
  fullname: Li, Xiaomei
– sequence: 4
  givenname: Ying-Jie
  surname: Chen
  fullname: Chen, Ying-Jie
– sequence: 5
  givenname: Wu
  surname: Zhen
  fullname: Zhen, Wu
– sequence: 6
  givenname: Jun
  surname: Chang
  fullname: Chang, Jun
– sequence: 7
  givenname: Chengyun
  surname: Zheng
  fullname: Zheng, Chengyun
– sequence: 8
  givenname: Zhi
  surname: Liu
  fullname: Liu, Zhi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25256107$$D View this record in MEDLINE/PubMed
BookMark eNptkk1rFTEUhoNU7Idu_AEy4EaE0XxPshHs0Gqx4qKKy5BJztzmkju5JjNC_71pb61tcZWQ8-TlPec9h2hvShMg9JLgd4xp_L4QjjWRhKon6IBwyltFKd67d99Hh6WsMaaMMfUM7VNBhSS4O0AnPy_DDM1xTMk3PcTYXMBqA9Ns55CmZrhq-hRTbi-21kF7bAv45kv7FexUmj4uZYYcptVz9HS0scCL2_MI_Tg9-d5_bs-_fTrrP563TnA6t4NTI1bAxmG0VGDiBu0ZxpIA7ljnPbUMRm-FrYQgVjmhrebMcj04poVkR-hsp-uTXZttDhubr0yywdw8pLwyNs_BRTBaOc24BsUc5YRqTb3XnlLuPOHd0FWtDzut7TJswLvac7bxgejDyhQuzSr9NpxiReS1mTe3Ajn9WqDMZhOKqyO0E6SlGCKk5JhoKSr6-hG6Tkue6qhMzU3UHiXWlXp139Gdlb9pVeDtDnA5lZJhvEMINterYP6tQoXxI9iFXaq1mxD_9-UP0G6zIQ
CitedBy_id crossref_primary_10_1016_j_micron_2018_01_010
crossref_primary_10_1016_j_bbe_2018_03_002
crossref_primary_10_1007_s11760_019_01586_2
crossref_primary_10_1016_j_cmpb_2017_08_010
crossref_primary_10_1002_ima_22372
crossref_primary_10_7717_peerj_13537
crossref_primary_10_1109_ACCESS_2020_3020123
crossref_primary_10_3390_s16111963
crossref_primary_10_1088_1757_899X_928_7_072081
crossref_primary_10_1088_1755_1315_243_1_012024
crossref_primary_10_1016_j_cmpb_2017_09_011
crossref_primary_10_1007_s11042_022_12285_5
crossref_primary_10_1016_j_cmpb_2016_07_002
crossref_primary_10_1088_1757_899X_396_1_012038
crossref_primary_10_1007_s10916_019_1219_3
crossref_primary_10_3390_s17081791
crossref_primary_10_1039_C6LC00778C
crossref_primary_10_1155_2018_7235795
crossref_primary_10_1016_j_compbiomed_2023_106551
crossref_primary_10_1021_acs_analchem_4c06646
crossref_primary_10_13005_bpj_2328
crossref_primary_10_1007_s10278_019_00288_y
crossref_primary_10_1002_jbio_201800488
crossref_primary_10_32417_1997_4868_2024_24_01_59_85
crossref_primary_10_1016_j_patrec_2019_03_024
crossref_primary_10_1111_exsy_12813
crossref_primary_10_1109_ACCESS_2019_2954457
crossref_primary_10_1007_s11277_023_10424_1
crossref_primary_10_1109_RBME_2020_3004639
crossref_primary_10_1088_1742_6596_1569_2_022054
crossref_primary_10_1002_mp_13904
crossref_primary_10_3390_math8071070
crossref_primary_10_1155_2022_9934144
crossref_primary_10_1109_ACCESS_2020_2970485
crossref_primary_10_1166_jmihi_2021_3757
crossref_primary_10_1016_j_compmedimag_2020_101813
crossref_primary_10_1007_s11277_021_08534_9
crossref_primary_10_1007_s13755_017_0038_5
crossref_primary_10_3390_s150922561
crossref_primary_10_1016_j_compbiomed_2024_109579
crossref_primary_10_1109_ACCESS_2021_3083703
crossref_primary_10_3390_e22050567
crossref_primary_10_3390_s151129594
crossref_primary_10_1177_1748301818813322
crossref_primary_10_53941_ijndi_2024_100022
crossref_primary_10_1109_ACCESS_2022_3182800
crossref_primary_10_1364_OE_445001
crossref_primary_10_1016_j_tice_2021_101653
crossref_primary_10_3233_JIFS_189065
crossref_primary_10_1007_s10916_019_1185_9
crossref_primary_10_1371_journal_pone_0240015
crossref_primary_10_1007_s12975_019_00754_3
crossref_primary_10_2139_ssrn_4835684
crossref_primary_10_3390_sym10120743
crossref_primary_10_1002_cpe_5133
crossref_primary_10_1109_JBHI_2023_3238726
crossref_primary_10_1007_s11042_018_7107_x
crossref_primary_10_1016_j_knosys_2021_108008
crossref_primary_10_1016_j_measurement_2017_11_002
crossref_primary_10_1002_jbio_202200174
crossref_primary_10_1016_j_compbiomed_2019_103568
crossref_primary_10_3390_e23111522
crossref_primary_10_1155_2016_9514707
crossref_primary_10_1177_1748301818770839
crossref_primary_10_1002_jemt_24706
crossref_primary_10_1088_1742_6596_1502_1_012038
crossref_primary_10_2339_politeknik_464541
crossref_primary_10_1007_s11517_020_02180_2
crossref_primary_10_1016_j_ijleo_2018_02_026
Cites_doi 10.1109/TSMCB.2007.912940
10.1016/j.micron.2014.04.001
10.1109/TIM.2008.2006726
10.1109/ICOSP.2006.345648
10.1002/cyto.a.20550
10.1016/j.micron.2011.03.009
10.1016/j.micron.2013.09.006
10.1109/I2MTC.2012.6229443
10.1109/SIBGRAPI.2007.33
10.1007/s00521-011-0522-9
10.1007/s12575-009-9011-2
10.1016/j.eswa.2012.01.114
10.1109/ICBNMT.2011.6156011
10.1177/25.7.70454
ContentType Journal Article
Copyright Copyright MDPI AG 2014
2014 by the authors; licensee MDPI, Basel, Switzerland. 2014
Copyright_xml – notice: Copyright MDPI AG 2014
– notice: 2014 by the authors; licensee MDPI, Basel, Switzerland. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s140916128
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 16147
ExternalDocumentID oai_doaj_org_article_98c9349e83c2412992dd9d224cd147b7
PMC4208166
3470529621
25256107
10_3390_s140916128
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c542t-bc8f08e3fbfa2501cb9d30061e0737dd2a3efda5a3fb51a8c59a943a49bc39563
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:10 EDT 2025
Thu Aug 21 14:13:00 EDT 2025
Fri Jul 11 11:48:38 EDT 2025
Fri Jul 25 02:31:09 EDT 2025
Mon Jul 21 05:21:48 EDT 2025
Tue Jul 01 00:40:21 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/3.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-bc8f08e3fbfa2501cb9d30061e0737dd2a3efda5a3fb51a8c59a943a49bc39563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1615943609?pq-origsite=%requestingapplication%
PMID 25256107
PQID 1615943609
PQPubID 2032333
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_98c9349e83c2412992dd9d224cd147b7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4208166
proquest_miscellaneous_1566401965
proquest_journals_1615943609
pubmed_primary_25256107
crossref_primary_10_3390_s140916128
crossref_citationtrail_10_3390_s140916128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2014
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Saraswat (ref_8) 2014; 65
Osowski (ref_14) 2009; 58
Zheng (ref_15) 2014; 56
Pan (ref_18) 2006; 4
Sadeghian (ref_12) 2009; 11
Pan (ref_17) 2012; 21
Chan (ref_24) 2008; 38
Zack (ref_13) 1977; 25
Shirley (ref_21) 2001; 21
ref_23
ref_22
Ko (ref_11) 2011; 42
ref_20
ref_1
ref_3
ref_2
ref_9
Pan (ref_16) 2012; 39
Zheng (ref_10) 2013; 28
ref_5
ref_4
ref_7
Gudla (ref_19) 2008; 73
ref_6
References_xml – volume: 38
  start-page: 353
  year: 2008
  ident: ref_24
  article-title: Edge enhancement nucleus and cytoplast contour detector of cervical smear Images
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2007.912940
– volume: 65
  start-page: 20
  year: 2014
  ident: ref_8
  article-title: Automated microscopic image analysis for leukocytes identification: A survey
  publication-title: Micron
  doi: 10.1016/j.micron.2014.04.001
– volume: 58
  start-page: 2159
  year: 2009
  ident: ref_14
  article-title: Application of support vector machine and genetic algorithm for improved blood cell recognition
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2008.2006726
– ident: ref_9
– ident: ref_7
  doi: 10.1109/ICOSP.2006.345648
– volume: 73
  start-page: 451
  year: 2008
  ident: ref_19
  article-title: A highthroughput system for segmenting nuclei using multiscale techniques
  publication-title: Cytom. Part A
  doi: 10.1002/cyto.a.20550
– ident: ref_3
– volume: 4
  start-page: 637
  year: 2006
  ident: ref_18
  article-title: Robust segmentation for low quality cell images from blood and bone marrow
  publication-title: Int. J. Control Autom. Syst.
– volume: 28
  start-page: 614
  year: 2013
  ident: ref_10
  article-title: White blood cell segmentation using expectation-maximization and automatic support vector machine learning in Chinese
  publication-title: J. Data Acquis. Process.
– volume: 42
  start-page: 695
  year: 2011
  ident: ref_11
  article-title: Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake
  publication-title: Micron
  doi: 10.1016/j.micron.2011.03.009
– ident: ref_2
– volume: 56
  start-page: 17
  year: 2014
  ident: ref_15
  article-title: A novel algorithm based on visual saliency attention for localization and segmentation in rapidly-stained leukocyte images
  publication-title: Micron
  doi: 10.1016/j.micron.2013.09.006
– ident: ref_5
  doi: 10.1109/I2MTC.2012.6229443
– ident: ref_4
  doi: 10.1109/SIBGRAPI.2007.33
– volume: 21
  start-page: 1217
  year: 2012
  ident: ref_17
  article-title: Leukocyte image segmentation by visual attention and extreme learning machine
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0522-9
– volume: 11
  start-page: 196
  year: 2009
  ident: ref_12
  article-title: A framework for white blood cell segmentation in microscopic blood images using digital image processing
  publication-title: Biol. Proced. Online
  doi: 10.1007/s12575-009-9011-2
– volume: 39
  start-page: 7479
  year: 2012
  ident: ref_16
  article-title: Leukocyte image segmentation using simulated visual attention
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.114
– ident: ref_1
– volume: 21
  start-page: 34
  year: 2001
  ident: ref_21
  article-title: Color Transfer between Images
  publication-title: IEEE Corn.
– ident: ref_6
  doi: 10.1109/ICBNMT.2011.6156011
– ident: ref_22
– ident: ref_23
– ident: ref_20
– volume: 25
  start-page: 741
  year: 1977
  ident: ref_13
  article-title: Automatic measurement of sister chromatid exchange frequency
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/25.7.70454
SSID ssj0023338
Score 2.4579887
Snippet White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 16128
SubjectTerms Accuracy
Algorithms
Blood
Cluster Analysis
Color
color space decomposition
Cytoplasm
Humans
Image Cytometry
Image Processing, Computer-Assisted
Immune system
k-means clusters
Leukocyte Count
Leukocytes
Leukocytes - cytology
Methods
Morphology
Performance evaluation
segmentation
Sensors
Support vector machines
white blood cell
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIN4GCjGBhsNrEzsMjjVpVIFhKpW6Rn4BUUtTHwL_nnKQhRZVYWOOzZd_Fvu_k83cI3SZ-J9EmMIRbHhAmQ0vgDNQk4onSgnOrbJHl-xwNRuxhHI4bpb5cTlhJD1wqrg19OGXcJFSBs4HDM9Caa3A8SvsslsU7cvB5q2CqCrUoRF4lGSmFoL49d7ROgG1czfWG-ylY-jdBy98Zkg2X099HexVWxPflHA_QlskP0W6DQfAI9YoCd7jr0s9xaiYTPDSvH9V7ohzLL5zC6TYjQwiNDemCy9L4kTwZcFA4nSwdSwKMc4xG_d5LOiBVZQSiQhYsiFSJ7SSGWmkFYBhfSa6pQyMGdmysdSCosVqEAiRCXyQq5IIzKhiXikJERE_Qdj7NzRnC0B642z4qY3BosRSRhX5Gg21hb8fGQ3crhWWqog131SsmGYQPTrnZj3I9dFPLfpZkGRuluk7vtYQjuC4-gNmzyuzZX2b3UGtltazadfPMoVdYZtThHrqum2G_uEsQkZvpEmQAv7KCR9FDp6WR65kEYeDgJAwer5l_barrLfn7W8HJ7bIU_Cg6_4-1XaAdgGWszGRroe3FbGkuAfos5FXxl38DBHQAew
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuNBDxZvwqFy1lx4MG9t5-IAQuwKhVnChK3GL_FyQ0my77Erw7xkn2ZRFq17jieXMeDzfyJNvAL7lcS-3jjkqvWRU6MRTPAMtTWVurJLSG19X-d6m10Px4z65X4F5_85WgU9LU7vQT2o4KU-e_76co8OfhYwTU_bTp0DahMiF5R9gDSNSFhz0RnS3CYxjHtZQk76TXwhGNWf_MqD5vl7yTQC62oBPLXIkF42pN2HFVVvw8Q2f4DZc1u3uSD8Uo5OBK0ty50a_27-LKqJfyADPugm9w0TZ0T4GMEt-0huH4YoMylngTMB5dmB4dflrcE3bPgnUJIJNqTa57-WOe-0VIprYaGl5wCYO_TezlinuvFWJQokkVrlJpJKCKyG14Zgf8V1YrcaV2weC4yzc_XGdYXjLtEo9vucsWho9PXMRfJ8rrDAtiXjoZVEWmEwE5Rb_lBvB1072T0OdsVSqH_TeSQS66_rBeDIqWu8pcONILqTLuUH7YgRl1kqL6MPYWGQ6i-BobrVivoWKgGXxM9OejOBLN4zeE65EVOXGM5RBNCtqVsUI9hojdythCQvgEifPFsy_sNTFkerxoWboDjULcZoe_H9Zh7CO8Es0FWtHsDqdzNwxQpyp_lzv31cCL_pr
  priority: 102
  providerName: Scholars Portal
Title White Blood Cell Segmentation by Color-Space-Based K-Means Clustering
URI https://www.ncbi.nlm.nih.gov/pubmed/25256107
https://www.proquest.com/docview/1615943609
https://www.proquest.com/docview/1566401965
https://pubmed.ncbi.nlm.nih.gov/PMC4208166
https://doaj.org/article/98c9349e83c2412992dd9d224cd147b7
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8Sa0XRnBhYPVTewk9gl1V7tUoFaIUmlvkZ8FacmWfRz4951xvC9UcckhnljW2OP5xp58Q8gHmfel84VnKqiCCVMGBnugY5WS1mmlgg0xy_eyOr8WXyblJB24LVJa5XpPjBu1m1k8Iz9FZKIEr_rq0-0fhlWj8HY1ldB4SA6RugxTuurJNuDiEH91lKQcQvvTBZI7QT9YeX3HCUWu_vsA5r95kjuOZ_yUPEmIkZ51U_yMPPDtc_J4h0fwBRnFMnd0gEnodOinU3rlb36nv4paav7SIexxc3YFAbJnA3Bcjn5lFx7cFB1OV8iVAP28JNfj0Y_hOUv1EZgtRbFkxsrQl54HEzQgmdwa5ThiEg92WztXaO6D06UGiTLX0pZKgwq1UMZyiIv4K3LQzlr_hlBoL_DOj5sa3FptdBXgO-9ghsHCa5-Rj2uFNTaRh2MNi2kDQQQqt9kqNyPvN7K3HWXGvVID1PtGAmmu44vZ_KZJVtPAglFcKC-5BaQBnrNwTjlAHdblojZ1Ro7Xs9Yk21s025WSkXebZrAavArRrZ-tQAZQrIhsihl53U3yZiRFWSCohM7rvenfG-p-S_vrZ2TmxlyFvKre_n9YR-QRwC7RZaodk4PlfOVPANosTS-uX3jK8eceORyMLr9978VjAnheCHkHk7_9Ig
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOQAHxLMECgwCDhxGTWbymgNC7NJqy7a9tJX2FuaVgrRkyz6E-qf4jdh57ANV3HrNOJORx_ZnZzw2wLs8CnPnheeqVILHJik52kDHU5Vbp5UqbVln-Z6kg_P46ygZbcGf7i4MpVV2NrE21G5i6R_5HnkmKpZpqD5d_uLUNYpOV7sWGo1YDP3VbwzZZh8Pv-D-vhfiYP-sP-BtVwFuk1jMubF5GeZelqbUiP-RNcpJQnKP0p45J7T0pdOJRook0rlNlMYP61gZKzGakDjvLbiNwBuSRmWjVYAnMd5rSqBKqcK9GRWTwnVTp_c10Kt7A1zn0P6bl7kGdAcP4H7robLPjUg9hC1fPYJ7a3ULH8N-3VaP9SjpnfX9eMxO_cXP9hZTxcwV66NNnfJTDMg97yFQOjbkxx5hkfXHC6rNgPM8gfMb4dxT2K4mlX8GDMcFnTFKkyGMZkanJb7nHUoUWpTMB_ChY1hh22Ll1DNjXGDQQswtVswN4O2S9rIp0XEtVY_4vqSgstr1g8n0omi1tEABVTJWPpcWPRtEauGccujlWBfFmckC2O12rWh1fVasJDOAN8th1FI6etGVnyyQBr3muK7eGMBOs8nLlYhEkBOLk2cb27-x1M2R6sf3uhI45UZEafr8_8t6DXcGZ8dHxdHhyfAF3EWXL26y5HZhez5d-JfoVs3Nq1qWGXy7aeX5CxN3NuE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgBBw7Wbuy8fECI3XbVslAhlUp7C34WpCVb9iHUv8avYybJvlDFrdd4YjnjeXwTj2cAXhdxt3BeeK6CEjwxaeBoAx3PVGGdVirYUGf5HmeHp8nHUTragT_LuzCUVrm0ibWhdhNL_8g7hExUIrOu6oQ2LeLL_uD9-S9OHaTopHXZTqMRkaG_-I3h2-zd0T7u9RshBgdf-4e87TDAbZqIOTe2CN3Cy2CCRiwQW6OcJK_uUfJz54SWPjidaqRIY13YVGlchE6UsRIjC4nzXoPruUxj0rF8tA72JMZ-TTlUKVW3M6PCUvgN1PV9wwHWfQIuA7f_5mhuOL3BHbjdolX2oRGvu7Djq3twa6OG4X04qFvssR4lwLO-H4_ZiT_72d5oqpi5YH20r1N-gsG55z10mo4N-WePLpL1xwuq04DzPIDTK-HcQ9itJpV_DAzHBZ03SpOjS82NzgK-5x1KF1qX3Efwdsmw0raFy6l_xrjEAIaYW66ZG8GrFe15U67jUqoe8X1FQSW26weT6VnZamyJwqpkonwhLaIc9NrCOeUQ8VgXJ7nJI9hb7lrZ6v2sXEtpBC9Xw6ixdAyjKz9ZIA0i6KSu5BjBo2aTVysRqSBAi5PnW9u_tdTtkerH97oqOOVJxFn25P_LegE3UG3KT0fHw6dwE9Ff0iTM7cHufLrwzxBhzc3zWpQZfLtq3fkLXXw7Fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+Blood+Cell+Segmentation+by+Color-Space-Based+K-Means+Clustering&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Congcong&rft.au=Xiao%2C+Xiaoyan&rft.au=Li%2C+Xiaomei&rft.au=Chen%2C+Ying-Jie&rft.date=2014-09-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=14&rft.issue=9&rft.spage=16128&rft_id=info:doi/10.3390%2Fs140916128&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3470529621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon