Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment

Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, publi...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 150; pp. 528 - 535
Main Authors He, Ruiwen, Li, Yunzi, Xiang, Ping, Li, Chao, Zhou, Chunyang, Zhang, Shujun, Cui, Xinyi, Ma, Lena Q.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g−1, with significantly lower concentrations in dorm dust (median = 0.30 μg g−1) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g−1 with significantly lower concentrations in dorm dust (379 μg g−1) than those in the other three types of dust (767, 515, and 731 μg g−1). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg−1 d−1. However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust. •Indoor dust was collected from house, office, dorm, public microenvironments (PME).•OPFRs/PAEs were 0.01–63.2/5.49–2161  μg g−1 with the lowest levels in dorm dust.•Bioaccessibility was 8.18–54.5%/1.21–81.1% for OPFRs/PAEs.•No compound pose risk higher than reference dose if considering bioaccessibility.
AbstractList Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 mu g g-1, with significantly lower concentrations in dorm dust (median = 0.30 mu g g-1) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 mu g g-1 with significantly lower concentrations in dorm dust (379 mu g g-1) than those in the other three types of dust (767, 515, and 731 mu g g-1). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 mu g kg-1 d-1. However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust.
Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g(-1), with significantly lower concentrations in dorm dust (median = 0.30 μg g(-1)) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g(-1) with significantly lower concentrations in dorm dust (379 μg g(-1)) than those in the other three types of dust (767, 515, and 731 μg g(-1)). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg(-1) d(-1). However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust.
Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g−1, with significantly lower concentrations in dorm dust (median = 0.30 μg g−1) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g−1 with significantly lower concentrations in dorm dust (379 μg g−1) than those in the other three types of dust (767, 515, and 731 μg g−1). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg−1 d−1. However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust.
Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g−1, with significantly lower concentrations in dorm dust (median = 0.30 μg g−1) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g−1 with significantly lower concentrations in dorm dust (379 μg g−1) than those in the other three types of dust (767, 515, and 731 μg g−1). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg−1 d−1. However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust. •Indoor dust was collected from house, office, dorm, public microenvironments (PME).•OPFRs/PAEs were 0.01–63.2/5.49–2161  μg g−1 with the lowest levels in dorm dust.•Bioaccessibility was 8.18–54.5%/1.21–81.1% for OPFRs/PAEs.•No compound pose risk higher than reference dose if considering bioaccessibility.
Author Xiang, Ping
Cui, Xinyi
Li, Yunzi
Zhou, Chunyang
He, Ruiwen
Li, Chao
Zhang, Shujun
Ma, Lena Q.
Author_xml – sequence: 1
  givenname: Ruiwen
  surname: He
  fullname: He, Ruiwen
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
– sequence: 2
  givenname: Yunzi
  surname: Li
  fullname: Li, Yunzi
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
– sequence: 3
  givenname: Ping
  orcidid: 0000-0002-0870-8551
  surname: Xiang
  fullname: Xiang, Ping
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
– sequence: 4
  givenname: Chao
  surname: Li
  fullname: Li, Chao
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
– sequence: 5
  givenname: Chunyang
  surname: Zhou
  fullname: Zhou, Chunyang
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
– sequence: 6
  givenname: Shujun
  surname: Zhang
  fullname: Zhang, Shujun
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
– sequence: 7
  givenname: Xinyi
  surname: Cui
  fullname: Cui, Xinyi
  email: lizzycui@nju.edu.cn
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
– sequence: 8
  givenname: Lena Q.
  surname: Ma
  fullname: Ma, Lena Q.
  email: lqma@ufl.edu
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26585356$$D View this record in MEDLINE/PubMed
BookMark eNqNks1q3DAUhUVJaSZpX6Gou248kWTLlrspzdA_CGTR7oV-rmtNbcmVNIG8Qx86cieB0k0HBIKj754r6Z4LdOaDB4TeULKlhLZX-60ZYQ5pGSHClhHKi74lonuGNlR0fUVZL87QhpCGVy2v-Tm6SGlPSCnm_Qt0zlouitxu0O_b-EP5sIyrW4iHhIdJzYAjZBWt8jlh5S1exjyqSWXAkDLEhJ0vy4YQsT2kjIcYZmzdMJQL-YxnZ2IAf-di8HMR0jt87YIyBlJy2k0u3_-xjS79xCqlIq_YS_R8UFOCV4_7Jfr26eP33Zfq5vbz192Hm8rwhuVKC2YGbTXj1g6trRntdU2EplypWlvSDho06zroe8tprUlna9uzGkg96Ka-RG-PrksMvw7lPXJ2ycA0KQ_hkCQVjDdUcC5OQIkgTUdY-3-0E5w1jHJe0NeP6EHPYOUS3azivXyaSgHeH4HyiylFGKRxWWUXfI7KTZISueZA7uVfOZBrDtajkoPi0P_j8NTklNrdsRbKCO4cRJmMA2_AuggmSxvcCS4PUUDZUQ
CitedBy_id crossref_primary_10_1016_j_envint_2023_108254
crossref_primary_10_1111_ina_13030
crossref_primary_10_1016_j_scitotenv_2022_154027
crossref_primary_10_1021_jasms_2c00060
crossref_primary_10_1016_j_envpol_2024_123569
crossref_primary_10_1016_j_scitotenv_2019_06_055
crossref_primary_10_1016_j_envint_2024_108933
crossref_primary_10_3390_toxics9120350
crossref_primary_10_1016_j_chemosphere_2017_05_167
crossref_primary_10_1016_j_scitotenv_2024_173182
crossref_primary_10_1007_s10653_023_01620_w
crossref_primary_10_1016_j_trac_2020_116040
crossref_primary_10_1016_j_chemosphere_2017_10_066
crossref_primary_10_1016_j_jhazmat_2024_134423
crossref_primary_10_1016_j_trac_2024_117653
crossref_primary_10_1016_j_scitotenv_2020_138505
crossref_primary_10_1007_s11356_021_13347_1
crossref_primary_10_1016_j_ecoenv_2018_11_038
crossref_primary_10_1016_j_envpol_2024_123295
crossref_primary_10_1016_j_trac_2017_03_005
crossref_primary_10_1111_ina_12514
crossref_primary_10_1007_s40572_019_00258_0
crossref_primary_10_1016_j_scitotenv_2018_07_127
crossref_primary_10_1007_s11356_021_14848_9
crossref_primary_10_1016_j_buildenv_2022_109135
crossref_primary_10_1016_j_scitotenv_2021_146806
crossref_primary_10_1097_EE9_0000000000000251
crossref_primary_10_3390_biomedicines10061438
crossref_primary_10_1007_s11356_019_05335_3
crossref_primary_10_1016_j_envres_2020_110222
crossref_primary_10_1007_s10661_019_7303_9
crossref_primary_10_1021_acs_est_9b00229
crossref_primary_10_1016_j_envpol_2019_113332
crossref_primary_10_1016_j_scitotenv_2018_11_369
crossref_primary_10_1007_s00128_021_03424_z
crossref_primary_10_1016_j_indenv_2024_100009
crossref_primary_10_1021_acs_est_8b02933
crossref_primary_10_1016_j_chemosphere_2017_08_038
crossref_primary_10_1016_j_envint_2018_09_013
crossref_primary_10_1155_2019_2674852
crossref_primary_10_1016_j_envres_2020_110373
crossref_primary_10_1016_j_ijheh_2020_113630
crossref_primary_10_1016_j_scitotenv_2021_146667
crossref_primary_10_1016_j_scitotenv_2023_161739
crossref_primary_10_1016_j_envpol_2018_10_060
crossref_primary_10_1016_j_jes_2021_07_029
crossref_primary_10_1016_j_scitotenv_2019_134502
crossref_primary_10_1016_j_aquatox_2023_106588
crossref_primary_10_1016_j_envres_2017_12_014
crossref_primary_10_1016_j_scitotenv_2016_04_187
crossref_primary_10_1016_j_scitotenv_2023_162157
crossref_primary_10_1016_j_envint_2017_03_021
crossref_primary_10_1016_j_chemosphere_2018_02_003
crossref_primary_10_1016_j_envint_2017_11_028
crossref_primary_10_1016_j_envpol_2019_04_022
crossref_primary_10_1016_j_chemosphere_2020_126632
crossref_primary_10_1007_s00128_020_03058_7
crossref_primary_10_1021_acs_est_1c00195
crossref_primary_10_1016_j_neuro_2019_03_007
crossref_primary_10_1016_j_buildenv_2020_106853
crossref_primary_10_1016_j_envpol_2019_01_107
crossref_primary_10_1016_j_chemosphere_2017_11_123
crossref_primary_10_1016_j_envres_2018_10_033
crossref_primary_10_1016_j_jclepro_2021_125851
crossref_primary_10_1016_j_scitotenv_2018_12_260
crossref_primary_10_1016_j_chemosphere_2023_139879
crossref_primary_10_3390_atmos14040612
crossref_primary_10_1016_j_jenvman_2022_116601
crossref_primary_10_1155_2023_4655289
crossref_primary_10_1007_s11356_018_2494_0
crossref_primary_10_1016_j_buildenv_2021_107813
crossref_primary_10_1016_j_envres_2024_120513
crossref_primary_10_1007_s10653_016_9856_7
crossref_primary_10_1016_j_envint_2016_04_013
crossref_primary_10_1016_j_envpol_2020_114800
crossref_primary_10_1093_jat_bky048
crossref_primary_10_1111_ina_12782
crossref_primary_10_1016_j_reprotox_2016_12_003
crossref_primary_10_3390_toxics12030195
crossref_primary_10_1016_j_chemosphere_2019_05_242
crossref_primary_10_1016_j_scitotenv_2018_09_340
crossref_primary_10_1016_j_ijheh_2022_114078
crossref_primary_10_1016_j_jhazmat_2024_133778
crossref_primary_10_1016_j_scitotenv_2019_02_076
crossref_primary_10_1016_j_scitotenv_2020_142001
crossref_primary_10_1016_j_toxlet_2021_11_010
crossref_primary_10_1039_D0EM00284D
crossref_primary_10_1016_j_jhazmat_2024_135717
crossref_primary_10_1016_j_chemosphere_2017_03_124
crossref_primary_10_1177_1420326X211010212
crossref_primary_10_1016_j_envint_2020_106261
crossref_primary_10_1111_ina_12397
crossref_primary_10_1016_j_envint_2019_105056
crossref_primary_10_1016_j_envpol_2023_121576
crossref_primary_10_1016_j_envint_2020_105972
crossref_primary_10_3390_ijms20122874
crossref_primary_10_3390_molecules26216628
crossref_primary_10_2139_ssrn_4158188
crossref_primary_10_1016_j_chemosphere_2022_136600
crossref_primary_10_1016_j_envpol_2021_118685
crossref_primary_10_1021_acs_est_3c08432
crossref_primary_10_3103_S0147687419020029
crossref_primary_10_1016_j_cscee_2022_100267
crossref_primary_10_1016_j_jhazmat_2018_05_058
crossref_primary_10_1080_09603123_2024_2313184
crossref_primary_10_1016_j_envpol_2018_08_085
crossref_primary_10_3390_toxics12070505
crossref_primary_10_1016_j_chemosphere_2024_143545
crossref_primary_10_1016_j_jiec_2021_03_051
crossref_primary_10_1016_j_envint_2018_01_024
crossref_primary_10_1016_j_envpol_2023_123147
crossref_primary_10_1007_s00216_019_01615_6
crossref_primary_10_1360_nso_20230011
crossref_primary_10_1007_s00204_024_03841_z
crossref_primary_10_1016_j_scitotenv_2019_02_098
crossref_primary_10_1016_j_envpol_2020_114311
crossref_primary_10_1016_j_envres_2023_115703
crossref_primary_10_1016_j_scitotenv_2016_11_210
crossref_primary_10_25259_JRHM_10_2024
crossref_primary_10_1021_acs_estlett_8b00113
crossref_primary_10_1016_j_envpol_2023_123131
crossref_primary_10_1016_j_jhazmat_2018_03_035
crossref_primary_10_1016_j_envint_2023_107871
crossref_primary_10_1016_j_scitotenv_2017_11_097
crossref_primary_10_3390_ijerph182312469
crossref_primary_10_1016_j_scitotenv_2024_172045
crossref_primary_10_1016_j_scitotenv_2019_133981
crossref_primary_10_1039_C8AY00138C
crossref_primary_10_1016_j_scitotenv_2022_157251
crossref_primary_10_1016_j_scitotenv_2020_136494
crossref_primary_10_1021_acs_est_2c04183
crossref_primary_10_1016_j_envpol_2018_02_040
crossref_primary_10_1016_j_tiv_2023_105607
crossref_primary_10_1080_10643389_2022_2087428
crossref_primary_10_1210_endocr_bqaa168
Cites_doi 10.1078/1438-4639-00309
10.1021/es0264596
10.1111/ina.12048
10.1021/es5039547
10.1021/es980631h
10.1021/es9014019
10.1021/es200925h
10.1016/j.trac.2012.12.004
10.1016/S0045-6535(03)00666-0
10.1111/ina.12001
10.1021/es032524f
10.1016/j.envint.2011.05.012
10.1016/j.envint.2013.12.011
10.1016/j.atmosenv.2013.04.071
10.1289/ehp.0901332
10.1016/j.tox.2005.08.012
10.1021/es505857e
10.1146/annurev.publhealth.012809.103714
10.1021/es300379v
10.1186/s12940-015-0024-9
10.1021/es500516u
10.1021/es503918m
10.1021/es2002106
10.1021/es501224b
10.1289/ehp.99107721
10.2134/jeq2004.1343
10.1016/j.chroma.2006.11.046
10.1021/acs.est.5b01233
10.1021/es501078s
10.1016/j.chemosphere.2013.09.085
10.1016/j.envint.2008.12.007
10.1021/es2004705
10.1016/j.jhazmat.2013.04.039
10.1016/j.chemosphere.2014.02.036
10.1021/es4025996
10.1016/j.envint.2010.11.010
10.1016/j.chemosphere.2012.03.067
10.1016/S0021-9673(02)02007-1
10.1080/10643380903044178
10.1021/es020636l
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7TV
7U7
C1K
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.chemosphere.2015.10.087
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Pollution Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Pollution Abstracts
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database
Pollution Abstracts
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 535
ExternalDocumentID 26585356
10_1016_j_chemosphere_2015_10_087
S0045653515302824
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7TV
7U7
C1K
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c542t-b82cfbdb25ddf6d3219b308b15aa3bd06fbeb277e99d513b07d3d923e03fb43
IEDL.DBID .~1
ISSN 0045-6535
IngestDate Fri Jul 11 16:58:02 EDT 2025
Fri Jul 11 13:59:37 EDT 2025
Fri Jul 11 05:59:27 EDT 2025
Thu Apr 03 06:59:20 EDT 2025
Thu Apr 24 23:11:59 EDT 2025
Tue Jul 01 00:45:18 EDT 2025
Fri Feb 23 02:20:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bioaccessibility
Phthalate esters
Organophosphorus flame retardants
Risk assessment
Indoor dust
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-b82cfbdb25ddf6d3219b308b15aa3bd06fbeb277e99d513b07d3d923e03fb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0870-8551
PMID 26585356
PQID 1785242155
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1825418558
proquest_miscellaneous_1808047026
proquest_miscellaneous_1785242155
pubmed_primary_26585356
crossref_citationtrail_10_1016_j_chemosphere_2015_10_087
crossref_primary_10_1016_j_chemosphere_2015_10_087
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2015_10_087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2016
2016-05-00
2016-May
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cao, Xu, Covaci, Wu, Yu, Wang, Deng, Huang (bib6) 2014; 65
Kim, Choi, Jung, Lee, Min, Yoon (bib19) 2013; 47
Su, Crump, Letcher, Kennedy (bib33) 2014; 48
Brandsma, de Boer, Leonards, Cofino, Covaci, Leonards (bib4) 2013; 43
Rudel, Camann, Spengler, Korn, Brody (bib31) 2003; 37
Halden (bib16) 2010; 31
IARC (International Agency for Research on Cancer) (bib17) 1990; vol. 48
Guo, Kannan (bib15) 2011; 45
European Flame Retardants Association (CEFIC) (bib8) 2011
Philippat, Bennett, Krakowiak, Rose, Hwang, Hertz-Picciotto (bib26) 2015; 14
Wang, Wu, Huang, Kang, Cheung, Wong (bib41) 2013; 261
Meeker, Stapleton (bib23) 2010; 118
Rostami, Juhasz (bib29) 2011; 41
Wang, Huang, Wu, Kang, Wang, Cheung, Wong (bib40) 2013; 77
Marklund, Andersson, Haglund (bib22) 2003; 53
Ou (bib25) 2011; 30
Clausen, Lindeberg, Bille, Nilsson, Hansen, Svensmark, Bøwadt (bib10) 2003; 986
Gevao, Al-Ghadban, Bahloul, Uddin, Zafar (bib14) 2013; 23
Stapleton, Klosterhaus, Eagle, Fuh, Meeker, Blum, Webster (bib32) 2009; 43
Takigami, Suzuki, Hirai, Ishikawa, Sunami, Sakai (bib35) 2009; 35
Sun, Wu, Gan (bib34) 2015; 49
Cao, Xu, Covaci, Wu, Wang, Yu, Wang, Huang, Deng, Wang (bib7) 2014; 48
Yu, Pang, Li, Li, Zhang, Yu, Feng, Wu, Sheng, Fu (bib42) 2012; 42
Ballesteros-Gómez, Van den Eede, Covaci (bib2) 2015; 49
Cequier, Ionas, Covaci, Marcé, Becher, Thomsen (bib9) 2014; 48
Van de Wiele, Verstraete, Siciliano (bib37) 2004; 33
Fang, Stapleton (bib12) 2014; 48
Abdallah, Covaci (bib1) 2014; 48
Mercier, Glorennec, Thomas, Le Bot (bib24) 2011; 45
Ehlers, Luthy (bib11) 2003; 37
Brandsma, de Boer, van Velzen, Leonards (bib5) 2014; 116
García, Rodríguez, Cela (bib13) 2007; 1152
Ruby, Fehling, Paustenbach, Landenberger, Holsapple (bib30) 2002; 36
Kubwabo, Rasmussen, Fan, Kosarac, Wu, Zidek, Kuchta (bib20) 2013; 23
Becker, Seiwert, Angerer, Heger, Koch, Nagorka, Roßkamp, Schlüter, Seifert, Ullrich (bib3) 2004; 207
Van der Veen, de Boer (bib39) 2012; 88
Kang, Man, Cheung, Wong (bib18) 2012; 46
Pu, Lee, Galinsky, Carlson (bib27) 2006; 217
Yu, Yang, Wang, Huang, Zhang, Zhang, Fu (bib43) 2013; 93
Rodriguez, Basta, Casteel, Pace (bib28) 1999; 33
Tilston, Gibson, Collins (bib36) 2011; 45
Lewis, Fortune, Willis, Camann, Antley (bib21) 1999; 107
Van den Eede, Dirtu, Neels, Covaci (bib38) 2011; 37
Marklund (10.1016/j.chemosphere.2015.10.087_bib22) 2003; 53
Ou (10.1016/j.chemosphere.2015.10.087_bib25) 2011; 30
Kim (10.1016/j.chemosphere.2015.10.087_bib19) 2013; 47
European Flame Retardants Association (CEFIC) (10.1016/j.chemosphere.2015.10.087_bib8) 2011
Becker (10.1016/j.chemosphere.2015.10.087_bib3) 2004; 207
Brandsma (10.1016/j.chemosphere.2015.10.087_bib4) 2013; 43
Abdallah (10.1016/j.chemosphere.2015.10.087_bib1) 2014; 48
Yu (10.1016/j.chemosphere.2015.10.087_bib43) 2013; 93
Cao (10.1016/j.chemosphere.2015.10.087_bib7) 2014; 48
Gevao (10.1016/j.chemosphere.2015.10.087_bib14) 2013; 23
Fang (10.1016/j.chemosphere.2015.10.087_bib12) 2014; 48
Tilston (10.1016/j.chemosphere.2015.10.087_bib36) 2011; 45
Kang (10.1016/j.chemosphere.2015.10.087_bib18) 2012; 46
Van den Eede (10.1016/j.chemosphere.2015.10.087_bib38) 2011; 37
Rodriguez (10.1016/j.chemosphere.2015.10.087_bib28) 1999; 33
Ruby (10.1016/j.chemosphere.2015.10.087_bib30) 2002; 36
Lewis (10.1016/j.chemosphere.2015.10.087_bib21) 1999; 107
Cequier (10.1016/j.chemosphere.2015.10.087_bib9) 2014; 48
Takigami (10.1016/j.chemosphere.2015.10.087_bib35) 2009; 35
Yu (10.1016/j.chemosphere.2015.10.087_bib42) 2012; 42
Halden (10.1016/j.chemosphere.2015.10.087_bib16) 2010; 31
Stapleton (10.1016/j.chemosphere.2015.10.087_bib32) 2009; 43
Wang (10.1016/j.chemosphere.2015.10.087_bib41) 2013; 261
Van de Wiele (10.1016/j.chemosphere.2015.10.087_bib37) 2004; 33
Kubwabo (10.1016/j.chemosphere.2015.10.087_bib20) 2013; 23
Van der Veen (10.1016/j.chemosphere.2015.10.087_bib39) 2012; 88
Wang (10.1016/j.chemosphere.2015.10.087_bib40) 2013; 77
Rostami (10.1016/j.chemosphere.2015.10.087_bib29) 2011; 41
Mercier (10.1016/j.chemosphere.2015.10.087_bib24) 2011; 45
Clausen (10.1016/j.chemosphere.2015.10.087_bib10) 2003; 986
Philippat (10.1016/j.chemosphere.2015.10.087_bib26) 2015; 14
Rudel (10.1016/j.chemosphere.2015.10.087_bib31) 2003; 37
IARC (International Agency for Research on Cancer) (10.1016/j.chemosphere.2015.10.087_bib17) 1990; vol. 48
Pu (10.1016/j.chemosphere.2015.10.087_bib27) 2006; 217
Su (10.1016/j.chemosphere.2015.10.087_bib33) 2014; 48
Brandsma (10.1016/j.chemosphere.2015.10.087_bib5) 2014; 116
Ehlers (10.1016/j.chemosphere.2015.10.087_bib11) 2003; 37
Cao (10.1016/j.chemosphere.2015.10.087_bib6) 2014; 65
Meeker (10.1016/j.chemosphere.2015.10.087_bib23) 2010; 118
Sun (10.1016/j.chemosphere.2015.10.087_bib34) 2015; 49
García (10.1016/j.chemosphere.2015.10.087_bib13) 2007; 1152
Guo (10.1016/j.chemosphere.2015.10.087_bib15) 2011; 45
Ballesteros-Gómez (10.1016/j.chemosphere.2015.10.087_bib2) 2015; 49
References_xml – volume: 46
  start-page: 8422
  year: 2012
  end-page: 8430
  ident: bib18
  article-title: Risk assessment of human exposure to bioaccessible phthalate esters via indoor dust around the Pearl River Delta
  publication-title: Environ. Sci. Technol.
– volume: 217
  start-page: 14
  year: 2006
  end-page: 21
  ident: bib27
  article-title: Bioavailability of 2, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB118) and 2, 2′, 5, 5′-tetrachlorobiphenyl (PCB52) from soils using a rat model and a physiologically based extraction test
  publication-title: Toxicology
– volume: 48
  start-page: 13511
  year: 2014
  end-page: 13519
  ident: bib33
  article-title: Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 7490
  year: 2009
  end-page: 7495
  ident: bib32
  article-title: Detection of organophosphate flame retardants in furniture foam and US house dust
  publication-title: Environ. Sci. Technol.
– volume: 77
  start-page: 525
  year: 2013
  end-page: 533
  ident: bib40
  article-title: Risk assessment of bioaccessible organochlorine pesticides exposure via indoor and outdoor dust
  publication-title: Atmos. Environ.
– volume: 45
  start-page: 3788
  year: 2011
  end-page: 3794
  ident: bib15
  article-title: Comparative assessment of human exposure to phthalate esters from house dust in China and the United States
  publication-title: Environ. Sci. Technol.
– volume: 107
  start-page: 721
  year: 1999
  end-page: 726
  ident: bib21
  article-title: Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size
  publication-title: Environ. Health Perspect.
– year: 2011
  ident: bib8
  article-title: What Are FRs? Flame Retardant Market Statistics
– volume: 23
  start-page: 126
  year: 2013
  end-page: 133
  ident: bib14
  article-title: Phthalates in indoor dust in Kuwait: implications for non-dietary human exposure
  publication-title: Indoor Air
– volume: 35
  start-page: 688
  year: 2009
  end-page: 693
  ident: bib35
  article-title: Flame retardants in indoor dust and air of a hotel in Japan
  publication-title: Environ. Int.
– volume: 41
  start-page: 623
  year: 2011
  end-page: 656
  ident: bib29
  article-title: Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 53
  start-page: 1137
  year: 2003
  end-page: 1146
  ident: bib22
  article-title: Screening of organophosphorus compounds and their distribution in various indoor environments
  publication-title: Chemosphere
– volume: 33
  start-page: 1343
  year: 2004
  end-page: 1353
  ident: bib37
  article-title: Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract
  publication-title: J. Environ. Qual.
– volume: 207
  start-page: 409
  year: 2004
  end-page: 417
  ident: bib3
  article-title: DEHP metabolites in urine of children and DEHP in house dust
  publication-title: Int. J. Hyg. Environ. Heal
– volume: 118
  start-page: 318
  year: 2010
  end-page: 323
  ident: bib23
  article-title: House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters
  publication-title: Environ. Health Persp
– volume: 49
  start-page: 8471
  year: 2015
  end-page: 8478
  ident: bib34
  article-title: Uptake and metabolism of phthalate esters by edible plants
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 8839
  year: 2014
  end-page: 8846
  ident: bib7
  article-title: Distribution patterns of brominated, chlorinated and phosphorous flame retardants with particle size in indoor and outdoor dust and implications for human exposure
  publication-title: Environ. Sci. Technol.
– volume: vol. 48
  start-page: 109
  year: 1990
  end-page: 120
  ident: bib17
  article-title: Monographs on the Evaluation of Carcinogenic Risks to Humans
  publication-title: Some Flame Retardantsand Textile Chemicals, and Exposures in the Textile Manufacturing Industry
– volume: 36
  start-page: 4905
  year: 2002
  end-page: 4911
  ident: bib30
  article-title: Oral bioaccessibility of dioxins/furans at low concentrations (50–350 ppt toxicity equivalent) in soil
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 295A
  year: 2003
  end-page: 302A
  ident: bib11
  article-title: Contaminant bioavailability in soil and sediment
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 217
  year: 2013
  end-page: 228
  ident: bib4
  article-title: Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study
  publication-title: TrAC Trends Anal. Chem.
– volume: 1152
  start-page: 280
  year: 2007
  end-page: 286
  ident: bib13
  article-title: Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples
  publication-title: J. Chromatogr. A
– volume: 14
  start-page: 56
  year: 2015
  ident: bib26
  article-title: Phthalate concentrations in house dust in relation to autism spectrum disorder and developmental delay in the Childhood Autism Risks from Genetics and the Environment (CHARGE) study
  publication-title: Environ. Health
– volume: 31
  start-page: 179
  year: 2010
  end-page: 194
  ident: bib16
  article-title: Plastics and health risks
  publication-title: Annu. Rev. Publ. Health
– volume: 93
  start-page: 2603
  year: 2013
  end-page: 2611
  ident: bib43
  article-title: Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters
  publication-title: Chemosphere
– volume: 49
  start-page: 3897
  year: 2015
  end-page: 3904
  ident: bib2
  article-title: In vitro human metabolism of the flame retardant resorcinol bis(diphenylphosphate) (RDP)
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 4543
  year: 2003
  end-page: 4553
  ident: bib31
  article-title: Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 642
  year: 1999
  end-page: 649
  ident: bib28
  article-title: An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 4782
  year: 2014
  ident: bib1
  article-title: Organophosphate flame retardants in indoor dust from egypt: implications for human exposure
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 6827
  year: 2014
  end-page: 6835
  ident: bib9
  article-title: Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 6716
  year: 2011
  end-page: 6727
  ident: bib24
  article-title: Organic contamination of settled house dust, a review for exposure assessment purposes
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 210
  year: 2011
  end-page: 215
  ident: bib25
  article-title: Developments of organic phosphorus flame retardant industry in China
  publication-title: Chem. Ind. Eng. Prog
– volume: 48
  start-page: 13323
  year: 2014
  end-page: 13330
  ident: bib12
  article-title: Evaluating the bioaccessibility of flame retardants in house dust using an in vitro Tenax bead-assisted sorptive physiologically based method
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 454
  year: 2011
  end-page: 461
  ident: bib38
  article-title: Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust
  publication-title: Environ. Int.
– volume: 261
  start-page: 753
  year: 2013
  end-page: 762
  ident: bib41
  article-title: Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure
  publication-title: J. Hazard. Mater.
– volume: 986
  start-page: 179
  year: 2003
  end-page: 190
  ident: bib10
  article-title: Simultaneous extraction of di (2-ethylhexyl) phthalate and nonionic surfactants from house dust: concentrations in floor dust from 15 Danish schools
  publication-title: J. Chromatogr. A
– volume: 65
  start-page: 100
  year: 2014
  end-page: 106
  ident: bib6
  article-title: Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust
  publication-title: Environ. Int.
– volume: 23
  start-page: 506
  year: 2013
  end-page: 514
  ident: bib20
  article-title: Analysis of selected phthalates in Canadian indoor dust collected using household vacuum and standardized sampling techniques
  publication-title: Indoor Air
– volume: 45
  start-page: 5301
  year: 2011
  end-page: 5308
  ident: bib36
  article-title: Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH
  publication-title: Environ. Sci. Technol.
– volume: 116
  start-page: 3
  year: 2014
  end-page: 9
  ident: bib5
  article-title: Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment
  publication-title: Chemosphere
– volume: 88
  start-page: 1119
  year: 2012
  end-page: 1153
  ident: bib39
  article-title: Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis
  publication-title: Chemosphere
– volume: 42
  start-page: 124
  year: 2012
  end-page: 131
  ident: bib42
  article-title: Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in-and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs
  publication-title: Environ. Int.
– volume: 47
  start-page: 12459
  year: 2013
  end-page: 12468
  ident: bib19
  article-title: Phthalate levels in nursery schools and related factors
  publication-title: Environ. Sci. Technol.
– volume: 207
  start-page: 409
  year: 2004
  ident: 10.1016/j.chemosphere.2015.10.087_bib3
  article-title: DEHP metabolites in urine of children and DEHP in house dust
  publication-title: Int. J. Hyg. Environ. Heal
  doi: 10.1078/1438-4639-00309
– volume: 37
  start-page: 4543
  year: 2003
  ident: 10.1016/j.chemosphere.2015.10.087_bib31
  article-title: Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0264596
– volume: 23
  start-page: 506
  year: 2013
  ident: 10.1016/j.chemosphere.2015.10.087_bib20
  article-title: Analysis of selected phthalates in Canadian indoor dust collected using household vacuum and standardized sampling techniques
  publication-title: Indoor Air
  doi: 10.1111/ina.12048
– volume: 48
  start-page: 13511
  year: 2014
  ident: 10.1016/j.chemosphere.2015.10.087_bib33
  article-title: Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5039547
– volume: 33
  start-page: 642
  year: 1999
  ident: 10.1016/j.chemosphere.2015.10.087_bib28
  article-title: An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980631h
– volume: 43
  start-page: 7490
  year: 2009
  ident: 10.1016/j.chemosphere.2015.10.087_bib32
  article-title: Detection of organophosphate flame retardants in furniture foam and US house dust
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9014019
– volume: 45
  start-page: 6716
  year: 2011
  ident: 10.1016/j.chemosphere.2015.10.087_bib24
  article-title: Organic contamination of settled house dust, a review for exposure assessment purposes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es200925h
– volume: 43
  start-page: 217
  year: 2013
  ident: 10.1016/j.chemosphere.2015.10.087_bib4
  article-title: Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2012.12.004
– volume: 53
  start-page: 1137
  year: 2003
  ident: 10.1016/j.chemosphere.2015.10.087_bib22
  article-title: Screening of organophosphorus compounds and their distribution in various indoor environments
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(03)00666-0
– volume: 23
  start-page: 126
  year: 2013
  ident: 10.1016/j.chemosphere.2015.10.087_bib14
  article-title: Phthalates in indoor dust in Kuwait: implications for non-dietary human exposure
  publication-title: Indoor Air
  doi: 10.1111/ina.12001
– volume: 37
  start-page: 295A
  year: 2003
  ident: 10.1016/j.chemosphere.2015.10.087_bib11
  article-title: Contaminant bioavailability in soil and sediment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es032524f
– volume: 42
  start-page: 124
  year: 2012
  ident: 10.1016/j.chemosphere.2015.10.087_bib42
  article-title: Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in-and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2011.05.012
– volume: 65
  start-page: 100
  year: 2014
  ident: 10.1016/j.chemosphere.2015.10.087_bib6
  article-title: Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2013.12.011
– volume: 77
  start-page: 525
  year: 2013
  ident: 10.1016/j.chemosphere.2015.10.087_bib40
  article-title: Risk assessment of bioaccessible organochlorine pesticides exposure via indoor and outdoor dust
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.04.071
– volume: 118
  start-page: 318
  year: 2010
  ident: 10.1016/j.chemosphere.2015.10.087_bib23
  article-title: House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters
  publication-title: Environ. Health Persp
  doi: 10.1289/ehp.0901332
– volume: 217
  start-page: 14
  year: 2006
  ident: 10.1016/j.chemosphere.2015.10.087_bib27
  article-title: Bioavailability of 2, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB118) and 2, 2′, 5, 5′-tetrachlorobiphenyl (PCB52) from soils using a rat model and a physiologically based extraction test
  publication-title: Toxicology
  doi: 10.1016/j.tox.2005.08.012
– volume: 49
  start-page: 3897
  year: 2015
  ident: 10.1016/j.chemosphere.2015.10.087_bib2
  article-title: In vitro human metabolism of the flame retardant resorcinol bis(diphenylphosphate) (RDP)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505857e
– volume: 31
  start-page: 179
  year: 2010
  ident: 10.1016/j.chemosphere.2015.10.087_bib16
  article-title: Plastics and health risks
  publication-title: Annu. Rev. Publ. Health
  doi: 10.1146/annurev.publhealth.012809.103714
– volume: 46
  start-page: 8422
  year: 2012
  ident: 10.1016/j.chemosphere.2015.10.087_bib18
  article-title: Risk assessment of human exposure to bioaccessible phthalate esters via indoor dust around the Pearl River Delta
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300379v
– volume: 14
  start-page: 56
  year: 2015
  ident: 10.1016/j.chemosphere.2015.10.087_bib26
  article-title: Phthalate concentrations in house dust in relation to autism spectrum disorder and developmental delay in the Childhood Autism Risks from Genetics and the Environment (CHARGE) study
  publication-title: Environ. Health
  doi: 10.1186/s12940-015-0024-9
– volume: 48
  start-page: 6827
  year: 2014
  ident: 10.1016/j.chemosphere.2015.10.087_bib9
  article-title: Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500516u
– volume: 48
  start-page: 13323
  year: 2014
  ident: 10.1016/j.chemosphere.2015.10.087_bib12
  article-title: Evaluating the bioaccessibility of flame retardants in house dust using an in vitro Tenax bead-assisted sorptive physiologically based method
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503918m
– volume: 45
  start-page: 3788
  year: 2011
  ident: 10.1016/j.chemosphere.2015.10.087_bib15
  article-title: Comparative assessment of human exposure to phthalate esters from house dust in China and the United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2002106
– volume: 48
  start-page: 8839
  year: 2014
  ident: 10.1016/j.chemosphere.2015.10.087_bib7
  article-title: Distribution patterns of brominated, chlorinated and phosphorous flame retardants with particle size in indoor and outdoor dust and implications for human exposure
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501224b
– volume: 107
  start-page: 721
  year: 1999
  ident: 10.1016/j.chemosphere.2015.10.087_bib21
  article-title: Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.99107721
– volume: vol. 48
  start-page: 109
  year: 1990
  ident: 10.1016/j.chemosphere.2015.10.087_bib17
  article-title: Monographs on the Evaluation of Carcinogenic Risks to Humans
– volume: 33
  start-page: 1343
  year: 2004
  ident: 10.1016/j.chemosphere.2015.10.087_bib37
  article-title: Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2004.1343
– volume: 1152
  start-page: 280
  year: 2007
  ident: 10.1016/j.chemosphere.2015.10.087_bib13
  article-title: Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2006.11.046
– volume: 49
  start-page: 8471
  year: 2015
  ident: 10.1016/j.chemosphere.2015.10.087_bib34
  article-title: Uptake and metabolism of phthalate esters by edible plants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01233
– volume: 48
  start-page: 4782
  year: 2014
  ident: 10.1016/j.chemosphere.2015.10.087_bib1
  article-title: Organophosphate flame retardants in indoor dust from egypt: implications for human exposure
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501078s
– year: 2011
  ident: 10.1016/j.chemosphere.2015.10.087_bib8
– volume: 93
  start-page: 2603
  year: 2013
  ident: 10.1016/j.chemosphere.2015.10.087_bib43
  article-title: Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.09.085
– volume: 35
  start-page: 688
  year: 2009
  ident: 10.1016/j.chemosphere.2015.10.087_bib35
  article-title: Flame retardants in indoor dust and air of a hotel in Japan
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2008.12.007
– volume: 45
  start-page: 5301
  year: 2011
  ident: 10.1016/j.chemosphere.2015.10.087_bib36
  article-title: Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2004705
– volume: 261
  start-page: 753
  year: 2013
  ident: 10.1016/j.chemosphere.2015.10.087_bib41
  article-title: Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.04.039
– volume: 116
  start-page: 3
  year: 2014
  ident: 10.1016/j.chemosphere.2015.10.087_bib5
  article-title: Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.02.036
– volume: 47
  start-page: 12459
  year: 2013
  ident: 10.1016/j.chemosphere.2015.10.087_bib19
  article-title: Phthalate levels in nursery schools and related factors
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4025996
– volume: 37
  start-page: 454
  year: 2011
  ident: 10.1016/j.chemosphere.2015.10.087_bib38
  article-title: Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2010.11.010
– volume: 88
  start-page: 1119
  year: 2012
  ident: 10.1016/j.chemosphere.2015.10.087_bib39
  article-title: Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.03.067
– volume: 986
  start-page: 179
  year: 2003
  ident: 10.1016/j.chemosphere.2015.10.087_bib10
  article-title: Simultaneous extraction of di (2-ethylhexyl) phthalate and nonionic surfactants from house dust: concentrations in floor dust from 15 Danish schools
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(02)02007-1
– volume: 41
  start-page: 623
  year: 2011
  ident: 10.1016/j.chemosphere.2015.10.087_bib29
  article-title: Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380903044178
– volume: 36
  start-page: 4905
  year: 2002
  ident: 10.1016/j.chemosphere.2015.10.087_bib30
  article-title: Oral bioaccessibility of dioxins/furans at low concentrations (50–350 ppt toxicity equivalent) in soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es020636l
– volume: 30
  start-page: 210
  year: 2011
  ident: 10.1016/j.chemosphere.2015.10.087_bib25
  article-title: Developments of organic phosphorus flame retardant industry in China
  publication-title: Chem. Ind. Eng. Prog
SSID ssj0001659
Score 2.5416954
Snippet Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs)....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 528
SubjectTerms Adult
adults
Air Pollution, Indoor - analysis
Bioaccessibility
Bioavailability
Biological Availability
dimethyl phthalate
Dust
Dust - analysis
Environmental Exposure - analysis
Environmental Pollutants - analysis
Esters
flame retardants
Flame Retardants - analysis
Houses
Housing
Humans
Indoor
Indoor dust
Infant
Infants
Ingestion
Organophosphorus Compounds - analysis
Organophosphorus flame retardants
phosphates
Phthalate esters
Phthalates
Phthalic Acids - analysis
Risk Assessment
Universities
Workplace
Title Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment
URI https://dx.doi.org/10.1016/j.chemosphere.2015.10.087
https://www.ncbi.nlm.nih.gov/pubmed/26585356
https://www.proquest.com/docview/1785242155
https://www.proquest.com/docview/1808047026
https://www.proquest.com/docview/1825418558
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSttcSps-sn0EBXp1YluSZYdc0iVh29Jc2kJuRmPJ7JbEXna9h1zyC_KjO-PHJoU2BAq-2JaMpBlrvkHfzAB8VJnBIrRh4DKMyUHxPsiQvFZJSC5VqIxCjnf-dpZMfqov5_p8A8ZDLAzTKvu9v9vT2926f3LQr-bBfDbjGF9GI5IMsmTHgXOCKmVYy_evb2keUaI7CKx0wK2fwN4tx4vW5bJecvw-Z8yM9D4TvZhd93cb9S8M2tqi0-fwrAeR4rgb5wvY8NU2PB0Ptdu24fFJm4z66iXctMGW9XzKA6gXq6UoSQe8YJrhwjEJRtjKifm0mdoLwp2izZywFLOKLlfXC8GlPQRHoYihmEojLpnGdzdG7lB8mtW2Lb7Y0W2v2s8ycV3YdfLPV_D99OTHeBL0FRiCQqu4CTCNixIdxtq5MnGStjeUYYqRtlaiC5MSyTM3xmeZ05HE0DjpCDL6UJao5GvYrOrK74AgWEcmsowNcn2TVGNRGJsSGiqzMraoRpAOK54XfXJyrpFxkQ8stF_5HWHlLCx-RcIaQbzuOu8ydDyk09Eg1vwPdcvJkjyk-96gCjlJls9YbOXr1TKPTKr5lF3re9pwLk9lyPu9rw157oSldDqCN52urWcXE2okTU7e_t8k3sEW3SUde_M9bDaLlf9ACKvB3fYX2oVHx5-_Ts5-A7vbK3Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIigXBIXC8nQlrmmT2M4DcYFVqwXaXihSb5YndrSL2mS1mz30wi_gRzOTx7ZIUFVCyim2o9gz9nwjfzMD8E7lKRahDQOXY0wOivdBjuS1SkJymUKVKuR45-OTZPJdfTnTZxswHmJhmFbZn_3dmd6e1v2b_X419-ezGcf4MhqRZJAlOw7qDtxVtH25jMHezyueR5ToDgMrHXD3-7B7RfKihbmolxzAzykzI73HTC-m1_3dSP0LhLbG6PARPOxRpPjY_ehj2PDVNmyNh-Jt23DvoM1GffkEfrXRlvV8yj9QL1ZLUZISeME8w4VjFoywlRPzaTO15wQ8RZs6YSlmFT2urheCa3sIDkMRQzWVRlwwj-96kNx78WlW27b6Yse3vWw_y8x1YdfZP5_Ct8OD0_Ek6EswBIVWcRNgFhclOoy1c2XiJJ1vKMMMI22tRBcmJZJrnqY-z52OJIapk44wow9liUruwGZVV_45CMJ1ZCPLOEUucJJpLIrUZgSHyryMLaoRZMOKm6LPTs5FMs7NQEP7Ya4Jy7CwuImENYJ4PXTepei4zaAPg1jNH_pmyJTcZvjuoAqGJMuXLLby9WppojTTfM2u9Q19OJmnSsn9vakPue4EpnQ2gmedrq1nFxNsJE1OXvzfJN7C1uT0-MgcfT75-hIeUEvSUTlfwWazWPnXBLcafNNup99JyC0E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organophosphorus+flame+retardants+and+phthalate+esters+in+indoor+dust+from+different+microenvironments%3A+Bioaccessibility+and+risk+assessment&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=He%2C+Ruiwen&rft.au=Li%2C+Yunzi&rft.au=Xiang%2C+Ping&rft.au=Li%2C+Chao&rft.date=2016-05-01&rft.issn=0045-6535&rft.volume=150&rft.spage=528&rft.epage=535&rft_id=info:doi/10.1016%2Fj.chemosphere.2015.10.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2015_10_087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon