Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment
Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, publi...
Saved in:
Published in | Chemosphere (Oxford) Vol. 150; pp. 528 - 535 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g−1, with significantly lower concentrations in dorm dust (median = 0.30 μg g−1) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g−1 with significantly lower concentrations in dorm dust (379 μg g−1) than those in the other three types of dust (767, 515, and 731 μg g−1). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg−1 d−1. However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust.
•Indoor dust was collected from house, office, dorm, public microenvironments (PME).•OPFRs/PAEs were 0.01–63.2/5.49–2161 μg g−1 with the lowest levels in dorm dust.•Bioaccessibility was 8.18–54.5%/1.21–81.1% for OPFRs/PAEs.•No compound pose risk higher than reference dose if considering bioaccessibility. |
---|---|
AbstractList | Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 mu g g-1, with significantly lower concentrations in dorm dust (median = 0.30 mu g g-1) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 mu g g-1 with significantly lower concentrations in dorm dust (379 mu g g-1) than those in the other three types of dust (767, 515, and 731 mu g g-1). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 mu g kg-1 d-1. However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust. Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g(-1), with significantly lower concentrations in dorm dust (median = 0.30 μg g(-1)) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g(-1) with significantly lower concentrations in dorm dust (379 μg g(-1)) than those in the other three types of dust (767, 515, and 731 μg g(-1)). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg(-1) d(-1). However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust. Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g−1, with significantly lower concentrations in dorm dust (median = 0.30 μg g−1) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g−1 with significantly lower concentrations in dorm dust (379 μg g−1) than those in the other three types of dust (767, 515, and 731 μg g−1). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg−1 d−1. However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust. Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g−1, with significantly lower concentrations in dorm dust (median = 0.30 μg g−1) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g−1 with significantly lower concentrations in dorm dust (379 μg g−1) than those in the other three types of dust (767, 515, and 731 μg g−1). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg−1 d−1. However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust. •Indoor dust was collected from house, office, dorm, public microenvironments (PME).•OPFRs/PAEs were 0.01–63.2/5.49–2161 μg g−1 with the lowest levels in dorm dust.•Bioaccessibility was 8.18–54.5%/1.21–81.1% for OPFRs/PAEs.•No compound pose risk higher than reference dose if considering bioaccessibility. |
Author | Xiang, Ping Cui, Xinyi Li, Yunzi Zhou, Chunyang He, Ruiwen Li, Chao Zhang, Shujun Ma, Lena Q. |
Author_xml | – sequence: 1 givenname: Ruiwen surname: He fullname: He, Ruiwen organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China – sequence: 2 givenname: Yunzi surname: Li fullname: Li, Yunzi organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China – sequence: 3 givenname: Ping orcidid: 0000-0002-0870-8551 surname: Xiang fullname: Xiang, Ping organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China – sequence: 4 givenname: Chao surname: Li fullname: Li, Chao organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China – sequence: 5 givenname: Chunyang surname: Zhou fullname: Zhou, Chunyang organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China – sequence: 6 givenname: Shujun surname: Zhang fullname: Zhang, Shujun organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China – sequence: 7 givenname: Xinyi surname: Cui fullname: Cui, Xinyi email: lizzycui@nju.edu.cn organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China – sequence: 8 givenname: Lena Q. surname: Ma fullname: Ma, Lena Q. email: lqma@ufl.edu organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26585356$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1q3DAUhUVJaSZpX6Gou248kWTLlrspzdA_CGTR7oV-rmtNbcmVNIG8Qx86cieB0k0HBIKj754r6Z4LdOaDB4TeULKlhLZX-60ZYQ5pGSHClhHKi74lonuGNlR0fUVZL87QhpCGVy2v-Tm6SGlPSCnm_Qt0zlouitxu0O_b-EP5sIyrW4iHhIdJzYAjZBWt8jlh5S1exjyqSWXAkDLEhJ0vy4YQsT2kjIcYZmzdMJQL-YxnZ2IAf-di8HMR0jt87YIyBlJy2k0u3_-xjS79xCqlIq_YS_R8UFOCV4_7Jfr26eP33Zfq5vbz192Hm8rwhuVKC2YGbTXj1g6trRntdU2EplypWlvSDho06zroe8tprUlna9uzGkg96Ka-RG-PrksMvw7lPXJ2ycA0KQ_hkCQVjDdUcC5OQIkgTUdY-3-0E5w1jHJe0NeP6EHPYOUS3azivXyaSgHeH4HyiylFGKRxWWUXfI7KTZISueZA7uVfOZBrDtajkoPi0P_j8NTklNrdsRbKCO4cRJmMA2_AuggmSxvcCS4PUUDZUQ |
CitedBy_id | crossref_primary_10_1016_j_envint_2023_108254 crossref_primary_10_1111_ina_13030 crossref_primary_10_1016_j_scitotenv_2022_154027 crossref_primary_10_1021_jasms_2c00060 crossref_primary_10_1016_j_envpol_2024_123569 crossref_primary_10_1016_j_scitotenv_2019_06_055 crossref_primary_10_1016_j_envint_2024_108933 crossref_primary_10_3390_toxics9120350 crossref_primary_10_1016_j_chemosphere_2017_05_167 crossref_primary_10_1016_j_scitotenv_2024_173182 crossref_primary_10_1007_s10653_023_01620_w crossref_primary_10_1016_j_trac_2020_116040 crossref_primary_10_1016_j_chemosphere_2017_10_066 crossref_primary_10_1016_j_jhazmat_2024_134423 crossref_primary_10_1016_j_trac_2024_117653 crossref_primary_10_1016_j_scitotenv_2020_138505 crossref_primary_10_1007_s11356_021_13347_1 crossref_primary_10_1016_j_ecoenv_2018_11_038 crossref_primary_10_1016_j_envpol_2024_123295 crossref_primary_10_1016_j_trac_2017_03_005 crossref_primary_10_1111_ina_12514 crossref_primary_10_1007_s40572_019_00258_0 crossref_primary_10_1016_j_scitotenv_2018_07_127 crossref_primary_10_1007_s11356_021_14848_9 crossref_primary_10_1016_j_buildenv_2022_109135 crossref_primary_10_1016_j_scitotenv_2021_146806 crossref_primary_10_1097_EE9_0000000000000251 crossref_primary_10_3390_biomedicines10061438 crossref_primary_10_1007_s11356_019_05335_3 crossref_primary_10_1016_j_envres_2020_110222 crossref_primary_10_1007_s10661_019_7303_9 crossref_primary_10_1021_acs_est_9b00229 crossref_primary_10_1016_j_envpol_2019_113332 crossref_primary_10_1016_j_scitotenv_2018_11_369 crossref_primary_10_1007_s00128_021_03424_z crossref_primary_10_1016_j_indenv_2024_100009 crossref_primary_10_1021_acs_est_8b02933 crossref_primary_10_1016_j_chemosphere_2017_08_038 crossref_primary_10_1016_j_envint_2018_09_013 crossref_primary_10_1155_2019_2674852 crossref_primary_10_1016_j_envres_2020_110373 crossref_primary_10_1016_j_ijheh_2020_113630 crossref_primary_10_1016_j_scitotenv_2021_146667 crossref_primary_10_1016_j_scitotenv_2023_161739 crossref_primary_10_1016_j_envpol_2018_10_060 crossref_primary_10_1016_j_jes_2021_07_029 crossref_primary_10_1016_j_scitotenv_2019_134502 crossref_primary_10_1016_j_aquatox_2023_106588 crossref_primary_10_1016_j_envres_2017_12_014 crossref_primary_10_1016_j_scitotenv_2016_04_187 crossref_primary_10_1016_j_scitotenv_2023_162157 crossref_primary_10_1016_j_envint_2017_03_021 crossref_primary_10_1016_j_chemosphere_2018_02_003 crossref_primary_10_1016_j_envint_2017_11_028 crossref_primary_10_1016_j_envpol_2019_04_022 crossref_primary_10_1016_j_chemosphere_2020_126632 crossref_primary_10_1007_s00128_020_03058_7 crossref_primary_10_1021_acs_est_1c00195 crossref_primary_10_1016_j_neuro_2019_03_007 crossref_primary_10_1016_j_buildenv_2020_106853 crossref_primary_10_1016_j_envpol_2019_01_107 crossref_primary_10_1016_j_chemosphere_2017_11_123 crossref_primary_10_1016_j_envres_2018_10_033 crossref_primary_10_1016_j_jclepro_2021_125851 crossref_primary_10_1016_j_scitotenv_2018_12_260 crossref_primary_10_1016_j_chemosphere_2023_139879 crossref_primary_10_3390_atmos14040612 crossref_primary_10_1016_j_jenvman_2022_116601 crossref_primary_10_1155_2023_4655289 crossref_primary_10_1007_s11356_018_2494_0 crossref_primary_10_1016_j_buildenv_2021_107813 crossref_primary_10_1016_j_envres_2024_120513 crossref_primary_10_1007_s10653_016_9856_7 crossref_primary_10_1016_j_envint_2016_04_013 crossref_primary_10_1016_j_envpol_2020_114800 crossref_primary_10_1093_jat_bky048 crossref_primary_10_1111_ina_12782 crossref_primary_10_1016_j_reprotox_2016_12_003 crossref_primary_10_3390_toxics12030195 crossref_primary_10_1016_j_chemosphere_2019_05_242 crossref_primary_10_1016_j_scitotenv_2018_09_340 crossref_primary_10_1016_j_ijheh_2022_114078 crossref_primary_10_1016_j_jhazmat_2024_133778 crossref_primary_10_1016_j_scitotenv_2019_02_076 crossref_primary_10_1016_j_scitotenv_2020_142001 crossref_primary_10_1016_j_toxlet_2021_11_010 crossref_primary_10_1039_D0EM00284D crossref_primary_10_1016_j_jhazmat_2024_135717 crossref_primary_10_1016_j_chemosphere_2017_03_124 crossref_primary_10_1177_1420326X211010212 crossref_primary_10_1016_j_envint_2020_106261 crossref_primary_10_1111_ina_12397 crossref_primary_10_1016_j_envint_2019_105056 crossref_primary_10_1016_j_envpol_2023_121576 crossref_primary_10_1016_j_envint_2020_105972 crossref_primary_10_3390_ijms20122874 crossref_primary_10_3390_molecules26216628 crossref_primary_10_2139_ssrn_4158188 crossref_primary_10_1016_j_chemosphere_2022_136600 crossref_primary_10_1016_j_envpol_2021_118685 crossref_primary_10_1021_acs_est_3c08432 crossref_primary_10_3103_S0147687419020029 crossref_primary_10_1016_j_cscee_2022_100267 crossref_primary_10_1016_j_jhazmat_2018_05_058 crossref_primary_10_1080_09603123_2024_2313184 crossref_primary_10_1016_j_envpol_2018_08_085 crossref_primary_10_3390_toxics12070505 crossref_primary_10_1016_j_chemosphere_2024_143545 crossref_primary_10_1016_j_jiec_2021_03_051 crossref_primary_10_1016_j_envint_2018_01_024 crossref_primary_10_1016_j_envpol_2023_123147 crossref_primary_10_1007_s00216_019_01615_6 crossref_primary_10_1360_nso_20230011 crossref_primary_10_1007_s00204_024_03841_z crossref_primary_10_1016_j_scitotenv_2019_02_098 crossref_primary_10_1016_j_envpol_2020_114311 crossref_primary_10_1016_j_envres_2023_115703 crossref_primary_10_1016_j_scitotenv_2016_11_210 crossref_primary_10_25259_JRHM_10_2024 crossref_primary_10_1021_acs_estlett_8b00113 crossref_primary_10_1016_j_envpol_2023_123131 crossref_primary_10_1016_j_jhazmat_2018_03_035 crossref_primary_10_1016_j_envint_2023_107871 crossref_primary_10_1016_j_scitotenv_2017_11_097 crossref_primary_10_3390_ijerph182312469 crossref_primary_10_1016_j_scitotenv_2024_172045 crossref_primary_10_1016_j_scitotenv_2019_133981 crossref_primary_10_1039_C8AY00138C crossref_primary_10_1016_j_scitotenv_2022_157251 crossref_primary_10_1016_j_scitotenv_2020_136494 crossref_primary_10_1021_acs_est_2c04183 crossref_primary_10_1016_j_envpol_2018_02_040 crossref_primary_10_1016_j_tiv_2023_105607 crossref_primary_10_1080_10643389_2022_2087428 crossref_primary_10_1210_endocr_bqaa168 |
Cites_doi | 10.1078/1438-4639-00309 10.1021/es0264596 10.1111/ina.12048 10.1021/es5039547 10.1021/es980631h 10.1021/es9014019 10.1021/es200925h 10.1016/j.trac.2012.12.004 10.1016/S0045-6535(03)00666-0 10.1111/ina.12001 10.1021/es032524f 10.1016/j.envint.2011.05.012 10.1016/j.envint.2013.12.011 10.1016/j.atmosenv.2013.04.071 10.1289/ehp.0901332 10.1016/j.tox.2005.08.012 10.1021/es505857e 10.1146/annurev.publhealth.012809.103714 10.1021/es300379v 10.1186/s12940-015-0024-9 10.1021/es500516u 10.1021/es503918m 10.1021/es2002106 10.1021/es501224b 10.1289/ehp.99107721 10.2134/jeq2004.1343 10.1016/j.chroma.2006.11.046 10.1021/acs.est.5b01233 10.1021/es501078s 10.1016/j.chemosphere.2013.09.085 10.1016/j.envint.2008.12.007 10.1021/es2004705 10.1016/j.jhazmat.2013.04.039 10.1016/j.chemosphere.2014.02.036 10.1021/es4025996 10.1016/j.envint.2010.11.010 10.1016/j.chemosphere.2012.03.067 10.1016/S0021-9673(02)02007-1 10.1080/10643380903044178 10.1021/es020636l |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 7TV 7U7 C1K SOI 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2015.10.087 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Pollution Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Pollution Abstracts Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database Pollution Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 535 |
ExternalDocumentID | 26585356 10_1016_j_chemosphere_2015_10_087 S0045653515302824 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7ST 7TV 7U7 C1K SOI 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c542t-b82cfbdb25ddf6d3219b308b15aa3bd06fbeb277e99d513b07d3d923e03fb43 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 |
IngestDate | Fri Jul 11 16:58:02 EDT 2025 Fri Jul 11 13:59:37 EDT 2025 Fri Jul 11 05:59:27 EDT 2025 Thu Apr 03 06:59:20 EDT 2025 Thu Apr 24 23:11:59 EDT 2025 Tue Jul 01 00:45:18 EDT 2025 Fri Feb 23 02:20:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bioaccessibility Phthalate esters Organophosphorus flame retardants Risk assessment Indoor dust |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-b82cfbdb25ddf6d3219b308b15aa3bd06fbeb277e99d513b07d3d923e03fb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0870-8551 |
PMID | 26585356 |
PQID | 1785242155 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1825418558 proquest_miscellaneous_1808047026 proquest_miscellaneous_1785242155 pubmed_primary_26585356 crossref_citationtrail_10_1016_j_chemosphere_2015_10_087 crossref_primary_10_1016_j_chemosphere_2015_10_087 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2015_10_087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2016 2016-05-00 2016-May 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cao, Xu, Covaci, Wu, Yu, Wang, Deng, Huang (bib6) 2014; 65 Kim, Choi, Jung, Lee, Min, Yoon (bib19) 2013; 47 Su, Crump, Letcher, Kennedy (bib33) 2014; 48 Brandsma, de Boer, Leonards, Cofino, Covaci, Leonards (bib4) 2013; 43 Rudel, Camann, Spengler, Korn, Brody (bib31) 2003; 37 Halden (bib16) 2010; 31 IARC (International Agency for Research on Cancer) (bib17) 1990; vol. 48 Guo, Kannan (bib15) 2011; 45 European Flame Retardants Association (CEFIC) (bib8) 2011 Philippat, Bennett, Krakowiak, Rose, Hwang, Hertz-Picciotto (bib26) 2015; 14 Wang, Wu, Huang, Kang, Cheung, Wong (bib41) 2013; 261 Meeker, Stapleton (bib23) 2010; 118 Rostami, Juhasz (bib29) 2011; 41 Wang, Huang, Wu, Kang, Wang, Cheung, Wong (bib40) 2013; 77 Marklund, Andersson, Haglund (bib22) 2003; 53 Ou (bib25) 2011; 30 Clausen, Lindeberg, Bille, Nilsson, Hansen, Svensmark, Bøwadt (bib10) 2003; 986 Gevao, Al-Ghadban, Bahloul, Uddin, Zafar (bib14) 2013; 23 Stapleton, Klosterhaus, Eagle, Fuh, Meeker, Blum, Webster (bib32) 2009; 43 Takigami, Suzuki, Hirai, Ishikawa, Sunami, Sakai (bib35) 2009; 35 Sun, Wu, Gan (bib34) 2015; 49 Cao, Xu, Covaci, Wu, Wang, Yu, Wang, Huang, Deng, Wang (bib7) 2014; 48 Yu, Pang, Li, Li, Zhang, Yu, Feng, Wu, Sheng, Fu (bib42) 2012; 42 Ballesteros-Gómez, Van den Eede, Covaci (bib2) 2015; 49 Cequier, Ionas, Covaci, Marcé, Becher, Thomsen (bib9) 2014; 48 Van de Wiele, Verstraete, Siciliano (bib37) 2004; 33 Fang, Stapleton (bib12) 2014; 48 Abdallah, Covaci (bib1) 2014; 48 Mercier, Glorennec, Thomas, Le Bot (bib24) 2011; 45 Ehlers, Luthy (bib11) 2003; 37 Brandsma, de Boer, van Velzen, Leonards (bib5) 2014; 116 García, Rodríguez, Cela (bib13) 2007; 1152 Ruby, Fehling, Paustenbach, Landenberger, Holsapple (bib30) 2002; 36 Kubwabo, Rasmussen, Fan, Kosarac, Wu, Zidek, Kuchta (bib20) 2013; 23 Becker, Seiwert, Angerer, Heger, Koch, Nagorka, Roßkamp, Schlüter, Seifert, Ullrich (bib3) 2004; 207 Van der Veen, de Boer (bib39) 2012; 88 Kang, Man, Cheung, Wong (bib18) 2012; 46 Pu, Lee, Galinsky, Carlson (bib27) 2006; 217 Yu, Yang, Wang, Huang, Zhang, Zhang, Fu (bib43) 2013; 93 Rodriguez, Basta, Casteel, Pace (bib28) 1999; 33 Tilston, Gibson, Collins (bib36) 2011; 45 Lewis, Fortune, Willis, Camann, Antley (bib21) 1999; 107 Van den Eede, Dirtu, Neels, Covaci (bib38) 2011; 37 Marklund (10.1016/j.chemosphere.2015.10.087_bib22) 2003; 53 Ou (10.1016/j.chemosphere.2015.10.087_bib25) 2011; 30 Kim (10.1016/j.chemosphere.2015.10.087_bib19) 2013; 47 European Flame Retardants Association (CEFIC) (10.1016/j.chemosphere.2015.10.087_bib8) 2011 Becker (10.1016/j.chemosphere.2015.10.087_bib3) 2004; 207 Brandsma (10.1016/j.chemosphere.2015.10.087_bib4) 2013; 43 Abdallah (10.1016/j.chemosphere.2015.10.087_bib1) 2014; 48 Yu (10.1016/j.chemosphere.2015.10.087_bib43) 2013; 93 Cao (10.1016/j.chemosphere.2015.10.087_bib7) 2014; 48 Gevao (10.1016/j.chemosphere.2015.10.087_bib14) 2013; 23 Fang (10.1016/j.chemosphere.2015.10.087_bib12) 2014; 48 Tilston (10.1016/j.chemosphere.2015.10.087_bib36) 2011; 45 Kang (10.1016/j.chemosphere.2015.10.087_bib18) 2012; 46 Van den Eede (10.1016/j.chemosphere.2015.10.087_bib38) 2011; 37 Rodriguez (10.1016/j.chemosphere.2015.10.087_bib28) 1999; 33 Ruby (10.1016/j.chemosphere.2015.10.087_bib30) 2002; 36 Lewis (10.1016/j.chemosphere.2015.10.087_bib21) 1999; 107 Cequier (10.1016/j.chemosphere.2015.10.087_bib9) 2014; 48 Takigami (10.1016/j.chemosphere.2015.10.087_bib35) 2009; 35 Yu (10.1016/j.chemosphere.2015.10.087_bib42) 2012; 42 Halden (10.1016/j.chemosphere.2015.10.087_bib16) 2010; 31 Stapleton (10.1016/j.chemosphere.2015.10.087_bib32) 2009; 43 Wang (10.1016/j.chemosphere.2015.10.087_bib41) 2013; 261 Van de Wiele (10.1016/j.chemosphere.2015.10.087_bib37) 2004; 33 Kubwabo (10.1016/j.chemosphere.2015.10.087_bib20) 2013; 23 Van der Veen (10.1016/j.chemosphere.2015.10.087_bib39) 2012; 88 Wang (10.1016/j.chemosphere.2015.10.087_bib40) 2013; 77 Rostami (10.1016/j.chemosphere.2015.10.087_bib29) 2011; 41 Mercier (10.1016/j.chemosphere.2015.10.087_bib24) 2011; 45 Clausen (10.1016/j.chemosphere.2015.10.087_bib10) 2003; 986 Philippat (10.1016/j.chemosphere.2015.10.087_bib26) 2015; 14 Rudel (10.1016/j.chemosphere.2015.10.087_bib31) 2003; 37 IARC (International Agency for Research on Cancer) (10.1016/j.chemosphere.2015.10.087_bib17) 1990; vol. 48 Pu (10.1016/j.chemosphere.2015.10.087_bib27) 2006; 217 Su (10.1016/j.chemosphere.2015.10.087_bib33) 2014; 48 Brandsma (10.1016/j.chemosphere.2015.10.087_bib5) 2014; 116 Ehlers (10.1016/j.chemosphere.2015.10.087_bib11) 2003; 37 Cao (10.1016/j.chemosphere.2015.10.087_bib6) 2014; 65 Meeker (10.1016/j.chemosphere.2015.10.087_bib23) 2010; 118 Sun (10.1016/j.chemosphere.2015.10.087_bib34) 2015; 49 García (10.1016/j.chemosphere.2015.10.087_bib13) 2007; 1152 Guo (10.1016/j.chemosphere.2015.10.087_bib15) 2011; 45 Ballesteros-Gómez (10.1016/j.chemosphere.2015.10.087_bib2) 2015; 49 |
References_xml | – volume: 46 start-page: 8422 year: 2012 end-page: 8430 ident: bib18 article-title: Risk assessment of human exposure to bioaccessible phthalate esters via indoor dust around the Pearl River Delta publication-title: Environ. Sci. Technol. – volume: 217 start-page: 14 year: 2006 end-page: 21 ident: bib27 article-title: Bioavailability of 2, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB118) and 2, 2′, 5, 5′-tetrachlorobiphenyl (PCB52) from soils using a rat model and a physiologically based extraction test publication-title: Toxicology – volume: 48 start-page: 13511 year: 2014 end-page: 13519 ident: bib33 article-title: Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes publication-title: Environ. Sci. Technol. – volume: 43 start-page: 7490 year: 2009 end-page: 7495 ident: bib32 article-title: Detection of organophosphate flame retardants in furniture foam and US house dust publication-title: Environ. Sci. Technol. – volume: 77 start-page: 525 year: 2013 end-page: 533 ident: bib40 article-title: Risk assessment of bioaccessible organochlorine pesticides exposure via indoor and outdoor dust publication-title: Atmos. Environ. – volume: 45 start-page: 3788 year: 2011 end-page: 3794 ident: bib15 article-title: Comparative assessment of human exposure to phthalate esters from house dust in China and the United States publication-title: Environ. Sci. Technol. – volume: 107 start-page: 721 year: 1999 end-page: 726 ident: bib21 article-title: Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size publication-title: Environ. Health Perspect. – year: 2011 ident: bib8 article-title: What Are FRs? Flame Retardant Market Statistics – volume: 23 start-page: 126 year: 2013 end-page: 133 ident: bib14 article-title: Phthalates in indoor dust in Kuwait: implications for non-dietary human exposure publication-title: Indoor Air – volume: 35 start-page: 688 year: 2009 end-page: 693 ident: bib35 article-title: Flame retardants in indoor dust and air of a hotel in Japan publication-title: Environ. Int. – volume: 41 start-page: 623 year: 2011 end-page: 656 ident: bib29 article-title: Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 53 start-page: 1137 year: 2003 end-page: 1146 ident: bib22 article-title: Screening of organophosphorus compounds and their distribution in various indoor environments publication-title: Chemosphere – volume: 33 start-page: 1343 year: 2004 end-page: 1353 ident: bib37 article-title: Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract publication-title: J. Environ. Qual. – volume: 207 start-page: 409 year: 2004 end-page: 417 ident: bib3 article-title: DEHP metabolites in urine of children and DEHP in house dust publication-title: Int. J. Hyg. Environ. Heal – volume: 118 start-page: 318 year: 2010 end-page: 323 ident: bib23 article-title: House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters publication-title: Environ. Health Persp – volume: 49 start-page: 8471 year: 2015 end-page: 8478 ident: bib34 article-title: Uptake and metabolism of phthalate esters by edible plants publication-title: Environ. Sci. Technol. – volume: 48 start-page: 8839 year: 2014 end-page: 8846 ident: bib7 article-title: Distribution patterns of brominated, chlorinated and phosphorous flame retardants with particle size in indoor and outdoor dust and implications for human exposure publication-title: Environ. Sci. Technol. – volume: vol. 48 start-page: 109 year: 1990 end-page: 120 ident: bib17 article-title: Monographs on the Evaluation of Carcinogenic Risks to Humans publication-title: Some Flame Retardantsand Textile Chemicals, and Exposures in the Textile Manufacturing Industry – volume: 36 start-page: 4905 year: 2002 end-page: 4911 ident: bib30 article-title: Oral bioaccessibility of dioxins/furans at low concentrations (50–350 ppt toxicity equivalent) in soil publication-title: Environ. Sci. Technol. – volume: 37 start-page: 295A year: 2003 end-page: 302A ident: bib11 article-title: Contaminant bioavailability in soil and sediment publication-title: Environ. Sci. Technol. – volume: 43 start-page: 217 year: 2013 end-page: 228 ident: bib4 article-title: Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study publication-title: TrAC Trends Anal. Chem. – volume: 1152 start-page: 280 year: 2007 end-page: 286 ident: bib13 article-title: Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples publication-title: J. Chromatogr. A – volume: 14 start-page: 56 year: 2015 ident: bib26 article-title: Phthalate concentrations in house dust in relation to autism spectrum disorder and developmental delay in the Childhood Autism Risks from Genetics and the Environment (CHARGE) study publication-title: Environ. Health – volume: 31 start-page: 179 year: 2010 end-page: 194 ident: bib16 article-title: Plastics and health risks publication-title: Annu. Rev. Publ. Health – volume: 93 start-page: 2603 year: 2013 end-page: 2611 ident: bib43 article-title: Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters publication-title: Chemosphere – volume: 49 start-page: 3897 year: 2015 end-page: 3904 ident: bib2 article-title: In vitro human metabolism of the flame retardant resorcinol bis(diphenylphosphate) (RDP) publication-title: Environ. Sci. Technol. – volume: 37 start-page: 4543 year: 2003 end-page: 4553 ident: bib31 article-title: Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust publication-title: Environ. Sci. Technol. – volume: 33 start-page: 642 year: 1999 end-page: 649 ident: bib28 article-title: An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media publication-title: Environ. Sci. Technol. – volume: 48 start-page: 4782 year: 2014 ident: bib1 article-title: Organophosphate flame retardants in indoor dust from egypt: implications for human exposure publication-title: Environ. Sci. Technol. – volume: 48 start-page: 6827 year: 2014 end-page: 6835 ident: bib9 article-title: Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway publication-title: Environ. Sci. Technol. – volume: 45 start-page: 6716 year: 2011 end-page: 6727 ident: bib24 article-title: Organic contamination of settled house dust, a review for exposure assessment purposes publication-title: Environ. Sci. Technol. – volume: 30 start-page: 210 year: 2011 end-page: 215 ident: bib25 article-title: Developments of organic phosphorus flame retardant industry in China publication-title: Chem. Ind. Eng. Prog – volume: 48 start-page: 13323 year: 2014 end-page: 13330 ident: bib12 article-title: Evaluating the bioaccessibility of flame retardants in house dust using an in vitro Tenax bead-assisted sorptive physiologically based method publication-title: Environ. Sci. Technol. – volume: 37 start-page: 454 year: 2011 end-page: 461 ident: bib38 article-title: Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust publication-title: Environ. Int. – volume: 261 start-page: 753 year: 2013 end-page: 762 ident: bib41 article-title: Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure publication-title: J. Hazard. Mater. – volume: 986 start-page: 179 year: 2003 end-page: 190 ident: bib10 article-title: Simultaneous extraction of di (2-ethylhexyl) phthalate and nonionic surfactants from house dust: concentrations in floor dust from 15 Danish schools publication-title: J. Chromatogr. A – volume: 65 start-page: 100 year: 2014 end-page: 106 ident: bib6 article-title: Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust publication-title: Environ. Int. – volume: 23 start-page: 506 year: 2013 end-page: 514 ident: bib20 article-title: Analysis of selected phthalates in Canadian indoor dust collected using household vacuum and standardized sampling techniques publication-title: Indoor Air – volume: 45 start-page: 5301 year: 2011 end-page: 5308 ident: bib36 article-title: Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH publication-title: Environ. Sci. Technol. – volume: 116 start-page: 3 year: 2014 end-page: 9 ident: bib5 article-title: Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment publication-title: Chemosphere – volume: 88 start-page: 1119 year: 2012 end-page: 1153 ident: bib39 article-title: Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis publication-title: Chemosphere – volume: 42 start-page: 124 year: 2012 end-page: 131 ident: bib42 article-title: Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in-and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs publication-title: Environ. Int. – volume: 47 start-page: 12459 year: 2013 end-page: 12468 ident: bib19 article-title: Phthalate levels in nursery schools and related factors publication-title: Environ. Sci. Technol. – volume: 207 start-page: 409 year: 2004 ident: 10.1016/j.chemosphere.2015.10.087_bib3 article-title: DEHP metabolites in urine of children and DEHP in house dust publication-title: Int. J. Hyg. Environ. Heal doi: 10.1078/1438-4639-00309 – volume: 37 start-page: 4543 year: 2003 ident: 10.1016/j.chemosphere.2015.10.087_bib31 article-title: Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust publication-title: Environ. Sci. Technol. doi: 10.1021/es0264596 – volume: 23 start-page: 506 year: 2013 ident: 10.1016/j.chemosphere.2015.10.087_bib20 article-title: Analysis of selected phthalates in Canadian indoor dust collected using household vacuum and standardized sampling techniques publication-title: Indoor Air doi: 10.1111/ina.12048 – volume: 48 start-page: 13511 year: 2014 ident: 10.1016/j.chemosphere.2015.10.087_bib33 article-title: Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes publication-title: Environ. Sci. Technol. doi: 10.1021/es5039547 – volume: 33 start-page: 642 year: 1999 ident: 10.1016/j.chemosphere.2015.10.087_bib28 article-title: An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media publication-title: Environ. Sci. Technol. doi: 10.1021/es980631h – volume: 43 start-page: 7490 year: 2009 ident: 10.1016/j.chemosphere.2015.10.087_bib32 article-title: Detection of organophosphate flame retardants in furniture foam and US house dust publication-title: Environ. Sci. Technol. doi: 10.1021/es9014019 – volume: 45 start-page: 6716 year: 2011 ident: 10.1016/j.chemosphere.2015.10.087_bib24 article-title: Organic contamination of settled house dust, a review for exposure assessment purposes publication-title: Environ. Sci. Technol. doi: 10.1021/es200925h – volume: 43 start-page: 217 year: 2013 ident: 10.1016/j.chemosphere.2015.10.087_bib4 article-title: Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2012.12.004 – volume: 53 start-page: 1137 year: 2003 ident: 10.1016/j.chemosphere.2015.10.087_bib22 article-title: Screening of organophosphorus compounds and their distribution in various indoor environments publication-title: Chemosphere doi: 10.1016/S0045-6535(03)00666-0 – volume: 23 start-page: 126 year: 2013 ident: 10.1016/j.chemosphere.2015.10.087_bib14 article-title: Phthalates in indoor dust in Kuwait: implications for non-dietary human exposure publication-title: Indoor Air doi: 10.1111/ina.12001 – volume: 37 start-page: 295A year: 2003 ident: 10.1016/j.chemosphere.2015.10.087_bib11 article-title: Contaminant bioavailability in soil and sediment publication-title: Environ. Sci. Technol. doi: 10.1021/es032524f – volume: 42 start-page: 124 year: 2012 ident: 10.1016/j.chemosphere.2015.10.087_bib42 article-title: Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in-and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs publication-title: Environ. Int. doi: 10.1016/j.envint.2011.05.012 – volume: 65 start-page: 100 year: 2014 ident: 10.1016/j.chemosphere.2015.10.087_bib6 article-title: Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust publication-title: Environ. Int. doi: 10.1016/j.envint.2013.12.011 – volume: 77 start-page: 525 year: 2013 ident: 10.1016/j.chemosphere.2015.10.087_bib40 article-title: Risk assessment of bioaccessible organochlorine pesticides exposure via indoor and outdoor dust publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.04.071 – volume: 118 start-page: 318 year: 2010 ident: 10.1016/j.chemosphere.2015.10.087_bib23 article-title: House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters publication-title: Environ. Health Persp doi: 10.1289/ehp.0901332 – volume: 217 start-page: 14 year: 2006 ident: 10.1016/j.chemosphere.2015.10.087_bib27 article-title: Bioavailability of 2, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB118) and 2, 2′, 5, 5′-tetrachlorobiphenyl (PCB52) from soils using a rat model and a physiologically based extraction test publication-title: Toxicology doi: 10.1016/j.tox.2005.08.012 – volume: 49 start-page: 3897 year: 2015 ident: 10.1016/j.chemosphere.2015.10.087_bib2 article-title: In vitro human metabolism of the flame retardant resorcinol bis(diphenylphosphate) (RDP) publication-title: Environ. Sci. Technol. doi: 10.1021/es505857e – volume: 31 start-page: 179 year: 2010 ident: 10.1016/j.chemosphere.2015.10.087_bib16 article-title: Plastics and health risks publication-title: Annu. Rev. Publ. Health doi: 10.1146/annurev.publhealth.012809.103714 – volume: 46 start-page: 8422 year: 2012 ident: 10.1016/j.chemosphere.2015.10.087_bib18 article-title: Risk assessment of human exposure to bioaccessible phthalate esters via indoor dust around the Pearl River Delta publication-title: Environ. Sci. Technol. doi: 10.1021/es300379v – volume: 14 start-page: 56 year: 2015 ident: 10.1016/j.chemosphere.2015.10.087_bib26 article-title: Phthalate concentrations in house dust in relation to autism spectrum disorder and developmental delay in the Childhood Autism Risks from Genetics and the Environment (CHARGE) study publication-title: Environ. Health doi: 10.1186/s12940-015-0024-9 – volume: 48 start-page: 6827 year: 2014 ident: 10.1016/j.chemosphere.2015.10.087_bib9 article-title: Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway publication-title: Environ. Sci. Technol. doi: 10.1021/es500516u – volume: 48 start-page: 13323 year: 2014 ident: 10.1016/j.chemosphere.2015.10.087_bib12 article-title: Evaluating the bioaccessibility of flame retardants in house dust using an in vitro Tenax bead-assisted sorptive physiologically based method publication-title: Environ. Sci. Technol. doi: 10.1021/es503918m – volume: 45 start-page: 3788 year: 2011 ident: 10.1016/j.chemosphere.2015.10.087_bib15 article-title: Comparative assessment of human exposure to phthalate esters from house dust in China and the United States publication-title: Environ. Sci. Technol. doi: 10.1021/es2002106 – volume: 48 start-page: 8839 year: 2014 ident: 10.1016/j.chemosphere.2015.10.087_bib7 article-title: Distribution patterns of brominated, chlorinated and phosphorous flame retardants with particle size in indoor and outdoor dust and implications for human exposure publication-title: Environ. Sci. Technol. doi: 10.1021/es501224b – volume: 107 start-page: 721 year: 1999 ident: 10.1016/j.chemosphere.2015.10.087_bib21 article-title: Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size publication-title: Environ. Health Perspect. doi: 10.1289/ehp.99107721 – volume: vol. 48 start-page: 109 year: 1990 ident: 10.1016/j.chemosphere.2015.10.087_bib17 article-title: Monographs on the Evaluation of Carcinogenic Risks to Humans – volume: 33 start-page: 1343 year: 2004 ident: 10.1016/j.chemosphere.2015.10.087_bib37 article-title: Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract publication-title: J. Environ. Qual. doi: 10.2134/jeq2004.1343 – volume: 1152 start-page: 280 year: 2007 ident: 10.1016/j.chemosphere.2015.10.087_bib13 article-title: Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2006.11.046 – volume: 49 start-page: 8471 year: 2015 ident: 10.1016/j.chemosphere.2015.10.087_bib34 article-title: Uptake and metabolism of phthalate esters by edible plants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01233 – volume: 48 start-page: 4782 year: 2014 ident: 10.1016/j.chemosphere.2015.10.087_bib1 article-title: Organophosphate flame retardants in indoor dust from egypt: implications for human exposure publication-title: Environ. Sci. Technol. doi: 10.1021/es501078s – year: 2011 ident: 10.1016/j.chemosphere.2015.10.087_bib8 – volume: 93 start-page: 2603 year: 2013 ident: 10.1016/j.chemosphere.2015.10.087_bib43 article-title: Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.09.085 – volume: 35 start-page: 688 year: 2009 ident: 10.1016/j.chemosphere.2015.10.087_bib35 article-title: Flame retardants in indoor dust and air of a hotel in Japan publication-title: Environ. Int. doi: 10.1016/j.envint.2008.12.007 – volume: 45 start-page: 5301 year: 2011 ident: 10.1016/j.chemosphere.2015.10.087_bib36 article-title: Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH publication-title: Environ. Sci. Technol. doi: 10.1021/es2004705 – volume: 261 start-page: 753 year: 2013 ident: 10.1016/j.chemosphere.2015.10.087_bib41 article-title: Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.04.039 – volume: 116 start-page: 3 year: 2014 ident: 10.1016/j.chemosphere.2015.10.087_bib5 article-title: Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.02.036 – volume: 47 start-page: 12459 year: 2013 ident: 10.1016/j.chemosphere.2015.10.087_bib19 article-title: Phthalate levels in nursery schools and related factors publication-title: Environ. Sci. Technol. doi: 10.1021/es4025996 – volume: 37 start-page: 454 year: 2011 ident: 10.1016/j.chemosphere.2015.10.087_bib38 article-title: Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust publication-title: Environ. Int. doi: 10.1016/j.envint.2010.11.010 – volume: 88 start-page: 1119 year: 2012 ident: 10.1016/j.chemosphere.2015.10.087_bib39 article-title: Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.03.067 – volume: 986 start-page: 179 year: 2003 ident: 10.1016/j.chemosphere.2015.10.087_bib10 article-title: Simultaneous extraction of di (2-ethylhexyl) phthalate and nonionic surfactants from house dust: concentrations in floor dust from 15 Danish schools publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(02)02007-1 – volume: 41 start-page: 623 year: 2011 ident: 10.1016/j.chemosphere.2015.10.087_bib29 article-title: Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380903044178 – volume: 36 start-page: 4905 year: 2002 ident: 10.1016/j.chemosphere.2015.10.087_bib30 article-title: Oral bioaccessibility of dioxins/furans at low concentrations (50–350 ppt toxicity equivalent) in soil publication-title: Environ. Sci. Technol. doi: 10.1021/es020636l – volume: 30 start-page: 210 year: 2011 ident: 10.1016/j.chemosphere.2015.10.087_bib25 article-title: Developments of organic phosphorus flame retardant industry in China publication-title: Chem. Ind. Eng. Prog |
SSID | ssj0001659 |
Score | 2.5416954 |
Snippet | Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs).... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 528 |
SubjectTerms | Adult adults Air Pollution, Indoor - analysis Bioaccessibility Bioavailability Biological Availability dimethyl phthalate Dust Dust - analysis Environmental Exposure - analysis Environmental Pollutants - analysis Esters flame retardants Flame Retardants - analysis Houses Housing Humans Indoor Indoor dust Infant Infants Ingestion Organophosphorus Compounds - analysis Organophosphorus flame retardants phosphates Phthalate esters Phthalates Phthalic Acids - analysis Risk Assessment Universities Workplace |
Title | Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment |
URI | https://dx.doi.org/10.1016/j.chemosphere.2015.10.087 https://www.ncbi.nlm.nih.gov/pubmed/26585356 https://www.proquest.com/docview/1785242155 https://www.proquest.com/docview/1808047026 https://www.proquest.com/docview/1825418558 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSttcSps-sn0EBXp1YluSZYdc0iVh29Jc2kJuRmPJ7JbEXna9h1zyC_KjO-PHJoU2BAq-2JaMpBlrvkHfzAB8VJnBIrRh4DKMyUHxPsiQvFZJSC5VqIxCjnf-dpZMfqov5_p8A8ZDLAzTKvu9v9vT2926f3LQr-bBfDbjGF9GI5IMsmTHgXOCKmVYy_evb2keUaI7CKx0wK2fwN4tx4vW5bJecvw-Z8yM9D4TvZhd93cb9S8M2tqi0-fwrAeR4rgb5wvY8NU2PB0Ptdu24fFJm4z66iXctMGW9XzKA6gXq6UoSQe8YJrhwjEJRtjKifm0mdoLwp2izZywFLOKLlfXC8GlPQRHoYihmEojLpnGdzdG7lB8mtW2Lb7Y0W2v2s8ycV3YdfLPV_D99OTHeBL0FRiCQqu4CTCNixIdxtq5MnGStjeUYYqRtlaiC5MSyTM3xmeZ05HE0DjpCDL6UJao5GvYrOrK74AgWEcmsowNcn2TVGNRGJsSGiqzMraoRpAOK54XfXJyrpFxkQ8stF_5HWHlLCx-RcIaQbzuOu8ydDyk09Eg1vwPdcvJkjyk-96gCjlJls9YbOXr1TKPTKr5lF3re9pwLk9lyPu9rw157oSldDqCN52urWcXE2okTU7e_t8k3sEW3SUde_M9bDaLlf9ACKvB3fYX2oVHx5-_Ts5-A7vbK3Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIigXBIXC8nQlrmmT2M4DcYFVqwXaXihSb5YndrSL2mS1mz30wi_gRzOTx7ZIUFVCyim2o9gz9nwjfzMD8E7lKRahDQOXY0wOivdBjuS1SkJymUKVKuR45-OTZPJdfTnTZxswHmJhmFbZn_3dmd6e1v2b_X419-ezGcf4MhqRZJAlOw7qDtxVtH25jMHezyueR5ToDgMrHXD3-7B7RfKihbmolxzAzykzI73HTC-m1_3dSP0LhLbG6PARPOxRpPjY_ehj2PDVNmyNh-Jt23DvoM1GffkEfrXRlvV8yj9QL1ZLUZISeME8w4VjFoywlRPzaTO15wQ8RZs6YSlmFT2urheCa3sIDkMRQzWVRlwwj-96kNx78WlW27b6Yse3vWw_y8x1YdfZP5_Ct8OD0_Ek6EswBIVWcRNgFhclOoy1c2XiJJ1vKMMMI22tRBcmJZJrnqY-z52OJIapk44wow9liUruwGZVV_45CMJ1ZCPLOEUucJJpLIrUZgSHyryMLaoRZMOKm6LPTs5FMs7NQEP7Ya4Jy7CwuImENYJ4PXTepei4zaAPg1jNH_pmyJTcZvjuoAqGJMuXLLby9WppojTTfM2u9Q19OJmnSsn9vakPue4EpnQ2gmedrq1nFxNsJE1OXvzfJN7C1uT0-MgcfT75-hIeUEvSUTlfwWazWPnXBLcafNNup99JyC0E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organophosphorus+flame+retardants+and+phthalate+esters+in+indoor+dust+from+different+microenvironments%3A+Bioaccessibility+and+risk+assessment&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=He%2C+Ruiwen&rft.au=Li%2C+Yunzi&rft.au=Xiang%2C+Ping&rft.au=Li%2C+Chao&rft.date=2016-05-01&rft.issn=0045-6535&rft.volume=150&rft.spage=528&rft.epage=535&rft_id=info:doi/10.1016%2Fj.chemosphere.2015.10.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2015_10_087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |