Dealumination mechanisms of zeolites and extra-framework aluminum confinement
[Display omitted] •Mechanisms for zeolite dealumination are unraveled by DFT calculations.•Water molecules adsorb on Al, in anti to Brønsted acid sites, before Al–O breaking.•Various orientations for Al–O breaking can take place at high water loadings.•BEP relationships exist but degrade as hydrolyz...
Saved in:
Published in | Journal of catalysis Vol. 339; pp. 242 - 255 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
San Diego
Elsevier Inc
01.07.2016
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9517 1090-2694 |
DOI | 10.1016/j.jcat.2016.04.021 |
Cover
Loading…
Abstract | [Display omitted]
•Mechanisms for zeolite dealumination are unraveled by DFT calculations.•Water molecules adsorb on Al, in anti to Brønsted acid sites, before Al–O breaking.•Various orientations for Al–O breaking can take place at high water loadings.•BEP relationships exist but degrade as hydrolyzed Al–O bonds are more numerous.•Both free energy barriers and EFAL confinement are driving forces for the regioselectivity.
Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale mechanisms involved. Considering four relevant zeolitic frameworks (MOR, FAU, MFI, CHA), we determine the formation mechanisms of extra-framework Al species (EFAL) Al(OH)3H2O during dealumination, by using periodic density functional theory (DFT) calculations including dispersion corrections and free energy estimation. We identify a rather universal mechanism based on water adsorption on the Al atom in anti-position to the Brønsted acid site allowing successive Al–O bond hydrolyses until dislodgement of the framework Al to a non-framework position. The determination of Brønsted–Evans–Polanyi (BEP) relationships for the entire dealumination pathway was possible, despite degradation of the correlation with increasing number of hydrolyzed Al–O bonds. Moreover, we quantify the confinement effect acting on EFAL species within the zeolites cavities and show that this effect is also a thermodynamic driving force for the Al extraction. |
---|---|
AbstractList | Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale mechanisms involved. Considering four relevant zeolitic frameworks (MOR, FAU, MFI, CHA), we determine the formation mechanisms of extra-framework Al species (EFAL) Al(OH)3H2O during dealumination, by using periodic density functional theory (DFT) calculations including dispersion corrections and free energy estimation. We identify a rather universal mechanism based on water adsorption on the Al atom in anti-position to the Brønsted acid site allowing successive Al–O bond hydrolyses until dislodgement of the framework Al to a non-framework position. The determination of Brønsted–Evans–Polanyi (BEP) relationships for the entire dealumination pathway was possible, despite degradation of the correlation with increasing number of hydrolyzed Al–O bonds. Moreover, we quantify the confinement effect acting on EFAL species within the zeolites cavities and show that this effect is also a thermodynamic driving force for the Al extraction. [Display omitted] •Mechanisms for zeolite dealumination are unraveled by DFT calculations.•Water molecules adsorb on Al, in anti to Brønsted acid sites, before Al–O breaking.•Various orientations for Al–O breaking can take place at high water loadings.•BEP relationships exist but degrade as hydrolyzed Al–O bonds are more numerous.•Both free energy barriers and EFAL confinement are driving forces for the regioselectivity. Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale mechanisms involved. Considering four relevant zeolitic frameworks (MOR, FAU, MFI, CHA), we determine the formation mechanisms of extra-framework Al species (EFAL) Al(OH)3H2O during dealumination, by using periodic density functional theory (DFT) calculations including dispersion corrections and free energy estimation. We identify a rather universal mechanism based on water adsorption on the Al atom in anti-position to the Brønsted acid site allowing successive Al–O bond hydrolyses until dislodgement of the framework Al to a non-framework position. The determination of Brønsted–Evans–Polanyi (BEP) relationships for the entire dealumination pathway was possible, despite degradation of the correlation with increasing number of hydrolyzed Al–O bonds. Moreover, we quantify the confinement effect acting on EFAL species within the zeolites cavities and show that this effect is also a thermodynamic driving force for the Al extraction. Display Omitted * Mechanisms for zeolite dealumination are unraveled by DFT calculations. * Water molecules adsorb on Al, in anti to Brønsted acid sites, before Al-O breaking. * Various orientations for Al-O breaking can take place at high water loadings. * BEP relationships exist but degrade as hydrolyzed Al-O bonds are more numerous. * Both free energy barriers and EFAL confinement are driving forces for the regioselectivity. Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale mechanisms involved. Considering four relevant zeolitic frameworks (MOR, FAU, MFI, CHA), we determine the formation mechanisms of extra-framework Al species (EFAL) Al(OH)3H2O during dealumination, by using periodic density functional theory (DFT) calculations including dispersion corrections and free energy estimation. We identify a rather universal mechanism based on water adsorption on the Al atom in anti-position to the Brønsted acid site allowing successive Al-O bond hydrolyses until dislodgement of the framework Al to a non-framework position. The determination of Brønsted-Evans-Polanyi (BEP) relationships for the entire dealumination pathway was possible, despite degradation of the correlation with increasing number of hydrolyzed Al-O bonds. Moreover, we quantify the confinement effect acting on EFAL species within the zeolites cavities and show that this effect is also a thermodynamic driving force for the Al extraction. |
Author | Raybaud, Pascal Chizallet, Céline Silaghi, Marius-Christian Sauer, Joachim |
Author_xml | – sequence: 1 givenname: Marius-Christian surname: Silaghi fullname: Silaghi, Marius-Christian email: marius-christian.silaghi@posteo.de organization: IFP Energies nouvelles, Direction Catalyse et Séparation, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France – sequence: 2 givenname: Céline surname: Chizallet fullname: Chizallet, Céline email: celine.chizallet@ifpen.fr organization: IFP Energies nouvelles, Direction Catalyse et Séparation, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France – sequence: 3 givenname: Joachim surname: Sauer fullname: Sauer, Joachim email: js@chemie.hu-berlin.de organization: Institute of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany – sequence: 4 givenname: Pascal surname: Raybaud fullname: Raybaud, Pascal email: pascal.raybaud@ifpen.fr organization: IFP Energies nouvelles, Direction Catalyse et Séparation, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France |
BackLink | https://hal.science/hal-01372662$$DView record in HAL |
BookMark | eNp9kU1rHSEUhqWk0Ju0f6CrgW7axUz9Gr0D2YQ0bQK3dNOuxatH4mRGE3XSj18fbyZ0kUVEUI7PI_qeY3QUYgCE3hPcEUzE57EbjS4drfsO8w5T8gptCB5wS8XAj9AG11I79ES-Qcc5jxgT0vfbDfr-BfS0zD7o4mNoZjDXOvg85ya65h_EyRfIjQ62gT8l6dYlPcPvmG6aVVvmxsTgfIAZQnmLXjs9ZXj3tJ6gX18vfp5ftrsf367Oz3at6Tktrd7uGXPMSq3NYBnjkljQdWKxB0l4PcC8t0SKOjhYI2zvBmqZc_0em56doE_rvdd6UrfJzzr9VVF7dXm2U4caJkxSIeg9qezHlb1N8W6BXNTss4Fp0gHikhUljGwHKqSo6Idn6BiXFOpPFJED51QyiitFV8qkmHMC9_8FBKtDN9SoDt1Qh24ozFWNvkrbZ5Lx5THzmqqfXlZPVxVqovceksrGQzBgfQJTlI3-Jf0BNIunsg |
CitedBy_id | crossref_primary_10_1002_ange_202116990 crossref_primary_10_1039_C9RA07721A crossref_primary_10_1002_anie_202414724 crossref_primary_10_1002_anie_202114388 crossref_primary_10_1016_j_micromeso_2019_109950 crossref_primary_10_1016_j_mcat_2021_111686 crossref_primary_10_1039_D0CY00989J crossref_primary_10_1021_jacs_8b11228 crossref_primary_10_1002_cssc_202300903 crossref_primary_10_1016_j_jcat_2024_115482 crossref_primary_10_1021_jacs_4c13212 crossref_primary_10_1007_s12274_024_6894_9 crossref_primary_10_1016_j_checat_2024_101130 crossref_primary_10_1016_j_chphi_2023_100207 crossref_primary_10_1016_j_conbuildmat_2018_12_043 crossref_primary_10_1016_j_micromeso_2021_111640 crossref_primary_10_1038_s41467_024_48609_2 crossref_primary_10_1016_j_micromeso_2024_113306 crossref_primary_10_1002_ange_202001364 crossref_primary_10_1002_ange_202210658 crossref_primary_10_1007_s11696_023_03183_7 crossref_primary_10_1039_D4CP02851A crossref_primary_10_1021_acs_jpcc_1c02932 crossref_primary_10_1016_j_coche_2019_04_002 crossref_primary_10_1021_acs_iecr_1c04184 crossref_primary_10_1021_acscatal_2c01233 crossref_primary_10_1002_ange_202117698 crossref_primary_10_1016_j_jcat_2020_08_008 crossref_primary_10_2139_ssrn_4151358 crossref_primary_10_3390_ma16062308 crossref_primary_10_1039_C9CP05141D crossref_primary_10_1039_D0CS01459A crossref_primary_10_1016_j_powtec_2019_07_008 crossref_primary_10_1039_D1CY00749A crossref_primary_10_1016_j_jcat_2020_12_008 crossref_primary_10_1016_j_cjche_2021_05_041 crossref_primary_10_1021_acs_jpcc_8b05277 crossref_primary_10_1021_acscatal_3c05517 crossref_primary_10_1039_D1CY01724A crossref_primary_10_1038_s41467_019_10981_9 crossref_primary_10_1016_j_seta_2024_104168 crossref_primary_10_1002_ange_202306183 crossref_primary_10_1021_acs_jpcc_0c06470 crossref_primary_10_3390_molecules27123938 crossref_primary_10_1016_j_cej_2022_139049 crossref_primary_10_1021_acscatal_2c02152 crossref_primary_10_1016_j_fuel_2024_130938 crossref_primary_10_1016_j_apcata_2024_120023 crossref_primary_10_1021_acssuschemeng_4c00211 crossref_primary_10_1016_j_jcat_2016_12_007 crossref_primary_10_1088_1757_899X_515_1_012075 crossref_primary_10_1002_ange_202414724 crossref_primary_10_1021_acscatal_7b03020 crossref_primary_10_1021_acscatal_4c03036 crossref_primary_10_1039_D2CP03603G crossref_primary_10_1002_anie_202116990 crossref_primary_10_1016_j_micromeso_2017_11_053 crossref_primary_10_1007_s10971_021_05644_5 crossref_primary_10_1016_j_micromeso_2024_113007 crossref_primary_10_1016_j_fuproc_2019_106318 crossref_primary_10_1021_acs_jpcc_9b09693 crossref_primary_10_1002_adma_202003264 crossref_primary_10_1016_j_isci_2025_112102 crossref_primary_10_1021_jacs_3c12437 crossref_primary_10_1002_anie_202306183 crossref_primary_10_1021_acscatal_2c05493 crossref_primary_10_1021_acs_jpcc_1c04270 crossref_primary_10_1038_s41929_022_00906_z crossref_primary_10_1016_j_cattod_2019_03_038 crossref_primary_10_1016_j_cattod_2019_07_007 crossref_primary_10_1021_acs_chemmater_8b04433 crossref_primary_10_1016_j_jcat_2017_03_010 crossref_primary_10_1021_acs_jpcc_1c06847 crossref_primary_10_1039_D2CY00672C crossref_primary_10_1007_s40242_018_8151_9 crossref_primary_10_3390_ma17040854 crossref_primary_10_1016_j_jece_2022_108604 crossref_primary_10_1021_acscatal_7b01696 crossref_primary_10_1007_s10934_025_01765_2 crossref_primary_10_1021_acscatal_9b00307 crossref_primary_10_1039_C9CY00624A crossref_primary_10_1039_D2CP05218K crossref_primary_10_3390_nano10071269 crossref_primary_10_3390_pr12102071 crossref_primary_10_1002_anie_202117698 crossref_primary_10_1021_jacs_1c02361 crossref_primary_10_1039_D2QI00750A crossref_primary_10_1021_acs_inorgchem_9b02914 crossref_primary_10_1039_D1SC01179K crossref_primary_10_1016_j_cej_2020_124529 crossref_primary_10_1016_j_fuel_2021_122360 crossref_primary_10_1039_C9CP03146D crossref_primary_10_1016_j_micromeso_2019_06_015 crossref_primary_10_1007_s13369_023_08067_2 crossref_primary_10_1016_j_jcat_2024_115796 crossref_primary_10_1002_cmtd_202400076 crossref_primary_10_1039_D3CS00404J crossref_primary_10_1016_j_apcata_2018_05_035 crossref_primary_10_1021_acs_jpcc_6b09794 crossref_primary_10_1021_acs_jpcc_7b06093 crossref_primary_10_1007_s13369_020_05312_w crossref_primary_10_1016_j_jece_2021_105206 crossref_primary_10_1021_acs_jpcc_8b00995 crossref_primary_10_1016_j_seppur_2023_124148 crossref_primary_10_1021_acscatal_3c00714 crossref_primary_10_1016_j_seppur_2024_129559 crossref_primary_10_1021_acs_energyfuels_3c01494 crossref_primary_10_1016_j_mtchem_2024_101974 crossref_primary_10_1007_s10853_024_09738_7 crossref_primary_10_1007_s43153_022_00280_0 crossref_primary_10_1021_jacs_2c05332 crossref_primary_10_1016_j_chemosphere_2020_128479 crossref_primary_10_1002_ange_202114388 crossref_primary_10_1016_j_trechm_2021_03_004 crossref_primary_10_1021_acs_iecr_9b04549 crossref_primary_10_1016_j_mtcomm_2021_102028 crossref_primary_10_1039_C9TA11465C crossref_primary_10_1016_j_micromeso_2019_01_039 crossref_primary_10_1038_s41467_019_12752_y crossref_primary_10_1016_j_apcata_2017_06_008 crossref_primary_10_1021_acscatal_0c01136 crossref_primary_10_1126_sciadv_abo3093 crossref_primary_10_1016_j_apsusc_2021_151105 crossref_primary_10_1016_j_micromeso_2022_111736 crossref_primary_10_1016_j_jcat_2021_09_029 crossref_primary_10_1002_cctc_201700426 crossref_primary_10_1021_jacs_0c00590 crossref_primary_10_3390_molecules22101784 crossref_primary_10_1016_j_jaap_2020_104928 crossref_primary_10_1016_j_matchemphys_2024_130199 crossref_primary_10_1002_chem_201902945 crossref_primary_10_1007_s11244_021_01489_y crossref_primary_10_1021_acs_chemrev_2c00896 crossref_primary_10_1021_acs_iecr_1c02599 crossref_primary_10_1021_acs_iecr_8b00632 crossref_primary_10_1021_jacs_1c07590 crossref_primary_10_1039_D3RA01810E crossref_primary_10_3390_ijms242115898 crossref_primary_10_1039_D4CY00373J crossref_primary_10_1016_j_jcat_2023_115211 crossref_primary_10_1021_acscatal_1c01138 crossref_primary_10_1016_j_apcatb_2020_119467 crossref_primary_10_1016_j_heliyon_2024_e25303 crossref_primary_10_1080_01614940_2021_1948301 crossref_primary_10_1016_j_apsusc_2021_150421 crossref_primary_10_1080_02603594_2024_2309878 crossref_primary_10_1016_j_apcata_2024_119581 crossref_primary_10_1002_cctc_202201302 crossref_primary_10_1039_D1RA06395B crossref_primary_10_1016_j_micromeso_2022_111981 crossref_primary_10_1021_acscatal_3c05168 crossref_primary_10_1021_acs_jpcc_1c01989 crossref_primary_10_1021_jacs_4c10604 crossref_primary_10_1016_j_apcata_2018_10_035 crossref_primary_10_1016_j_fuel_2021_121807 crossref_primary_10_1021_acs_jpcc_1c04077 crossref_primary_10_1016_j_micromeso_2021_110928 crossref_primary_10_1016_j_colsurfa_2022_130251 crossref_primary_10_1021_acs_jpcc_4c02371 crossref_primary_10_1021_jacs_4c08408 crossref_primary_10_20517_cs_2023_55 crossref_primary_10_1021_acs_chemmater_0c03411 crossref_primary_10_1021_acscatal_9b05103 crossref_primary_10_1021_acs_chemmater_1c02799 crossref_primary_10_1021_acs_iecr_9b03036 crossref_primary_10_1021_acscatal_2c05291 crossref_primary_10_9767_bcrec_16_1_9476_9_21 crossref_primary_10_1021_acs_jpcc_9b11956 crossref_primary_10_1002_anie_202001364 crossref_primary_10_1002_anie_202210658 crossref_primary_10_1016_j_cep_2024_109821 crossref_primary_10_5004_dwt_2021_26937 crossref_primary_10_1002_cctc_202001344 |
Cites_doi | 10.1039/C4CP02991G 10.1021/ja982082l 10.1023/A:1009019829376 10.1021/jp510845z 10.1081/CR-120023908 10.1016/j.molcata.2008.08.003 10.1039/tf9383400011 10.1021/j100183a009 10.1063/1.1323224 10.1002/jcc.20495 10.1063/1.2065267 10.1039/B608262A 10.1002/qua.560260519 10.1016/0022-3093(95)00355-X 10.1021/ja002689d 10.1002/chem.201101361 10.1021/cs501474u 10.1016/j.micromeso.2009.09.003 10.1021/jp2123828 10.1126/science.1204452 10.1002/anie.200503006 10.1021/jp9042232 10.1103/PhysRevLett.77.3865 10.1016/0254-0584(87)90048-4 10.1016/0009-2614(80)80396-4 10.1021/cr068042e 10.1021/acscatal.5b01496 10.1021/ja037063c 10.1039/b819435c 10.1021/jp022331z 10.1021/ja072767y 10.1063/1.4750979 10.1038/309589a0 10.1021/acscatal.5b00723 10.1039/c1cp21731c 10.1007/s11244-009-9271-8 10.1021/jp048056t 10.1021/ja907696h 10.1016/j.cplett.2004.02.056 10.1002/anie.200460644 10.1002/ange.201004360 10.1016/j.micromeso.2005.07.005 10.1002/anie.200353049 10.1002/anie.201006031 10.1016/0927-0256(96)00008-0 10.1021/jp511082v 10.1103/PhysRevB.49.14251 10.1063/1.3382344 10.1016/j.micromeso.2013.11.034 10.1016/S1387-1811(99)00167-5 10.1039/a909617e 10.1016/S1387-1811(99)00240-1 10.1023/A:1019188105794 10.1021/cr60019a001 10.1021/cr8002642 10.1021/ja200741r 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.66.052301 10.1063/1.2104507 10.1021/jp961987n 10.1016/j.micromeso.2014.02.040 10.1038/nchem.1403 10.1021/cr00031a014 10.1016/0021-9517(88)90297-7 10.1021/jp510844v 10.1007/s10562-014-1438-7 10.1002/anie.201410016 10.1080/10420159508227183 10.1002/anie.201104462 10.1039/C2CS35196J 10.1021/j100317a042 10.1021/jp4028468 10.1021/ja052592x 10.1021/jp304081k 10.1006/jcat.2002.3631 10.1021/cr00035a006 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.jcat.2016.04.021 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1090-2694 |
EndPage | 255 |
ExternalDocumentID | oai_HAL_hal_01372662v1 4081073801 10_1016_j_jcat_2016_04_021 S002195171630032X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c542t-a8b33f3d7aac9d33471deadea06be714d7a045d1766664edc6d5f92d3ff5b0c53 |
IEDL.DBID | .~1 |
ISSN | 0021-9517 |
IngestDate | Fri May 09 12:13:29 EDT 2025 Thu Jul 10 17:37:07 EDT 2025 Mon Jul 14 10:42:36 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Tue Jul 01 03:14:02 EDT 2025 Fri Feb 23 02:27:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extra-framework aluminum Dealumination Pentahedral aluminum ZSM-5 Faujasite SSZ-13 Mordenite Density functional theory Zeolite DFT |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-a8b33f3d7aac9d33471deadea06be714d7a045d1766664edc6d5f92d3ff5b0c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4506-5062 0000-0001-5140-8397 |
OpenAccessLink | https://hal.science/hal-01372662 |
PQID | 1794427320 |
PQPubID | 32080 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_01372662v1 proquest_miscellaneous_2131892676 proquest_journals_1794427320 crossref_primary_10_1016_j_jcat_2016_04_021 crossref_citationtrail_10_1016_j_jcat_2016_04_021 elsevier_sciencedirect_doi_10_1016_j_jcat_2016_04_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | San Diego |
PublicationPlace_xml | – name: San Diego |
PublicationTitle | Journal of catalysis |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
References | Senderov, Halasz, Olson (b0125) 2014; 186 Göltl, Grüneis, Bucko, Hafner (b0320) 2012; 137 Ricchiardi, de Man, Sauer (b0220) 2000; 2 Milina, Mitchell, Crivelli, Cooke, Pérez-Ramírez (b0080) 2014 First, Gounaris, Wei, Floudas (b0405) 2011; 13 Busca (b0035) 2007; 107 de Jong, Zečević, Friedrich, de Jongh, Bulut, van Donk, Kenmogne, Finiels, Hulea, Fajula (b0025) 2010; 122 P. Fleurat-Lessard, P. Dayal, Code freely available at Li, Zheng, Su, Zhang, Chen, Yang, Ye, Deng (b0165) 2007; 129 Fjermestad, Svelle, Swang (b0255) 2015; 119 Ruiz, McAdon, Garcés (b0205) 1997; 101 Brønsted (b0380) 1928; 5 Derouane, Andre, Lucas (b0090) 1988; 110 van Bokhoven, Koningsberger, Kunkeler, van Bekkum, Kentgens (b0195) 2000; 122 Benco, Demuth, Hafner, Hutschka, Toulhoat (b0145) 2002; 209 Bordiga, Ugliengo, Damin, Lamberti, Spoto, Zecchina, Spanò, Buzzoni, Dalloro, Rivetti (b0110) 2001; 15 Christensen, Johannsen, Schmidt, Christensen (b0050) 2003; 125 Nielsen, Brogaard, Falsig, Beato, Swang, Svelle (b0260) 2015; 5 Haag, Lago, Weisz (b0005) 1984; 309 Perdew, Burke, Ernzerhof (b0290) 1996; 77 Olson, Haag, Borghard (b0370) 2000; 35–36 Malicki, Mali, Quoineaud, Bourges, Simon, Thibault-Starzyk, Fernandez (b0175) 2010; 129 Vermeiren, Gilson (b0030) 2009; 52 Kresse, Furthmüller (b0280) 1996; 6 Smit, Maesen (b0095) 2008; 108 Dědeček, Sklenak, Li, Gao, Brus, Zhu, Tatsumi (b0115) 2009; 113 Kresse, Joubert (b0285) 1999; 59 E, Ren, Vanden-Eijnden (b0325) 2002; 66 Silaghi, Chizallet, Raybaud (b0105) 2014; 191 Heyden, Bell, Keil (b0345) 2005; 123 Czjzek, Jobic, Fitch, Vogt (b0375) 1992; 96 Evans, Polanyi (b0385) 1938; 34 Hartmann (b0065) 2004; 43 Canduela-Rodriguez, Sabbe, Reyniers, Joly, Marin (b0365) 2014; 16 Na, Jo, Kim, Cho, Jung, Seo, Messinger, Chmelka, Ryoo (b0060) 2011; 333 Becke, Johnson (b0300) 2005; 123 Corma (b0020) 1995; 95 Karwacki, de Winter, Aramburo, Lebbink, Post, Drury, Weckhuysen (b0160) 2011; 50 van Donk, Janssen, Bitter, de Jong (b0100) 2003; 45 Fjermestad, Svelle, Swang (b0235) 2013; 117 Agostini, Lamberti, Palin, Milanesio, Danilina, Xu, Janousch, van Bokhoven (b0140) 2010; 132 Van Geem, Scholle, Van der Velden, Veeman (b0185) 1988; 92 Grimme (b0240) 2006; 27 Henkelman, Jonsson (b0335) 2000; 113 Milina, Mitchell, Cooke, Crivelli, Perez-Ramirez (b0075) 2015; 54 Benco, Bucko, Hafner, Toulhoat (b0215) 2004; 108 Lisboa, Sánchez, Ruette (b0170) 2008; 294 Chen, Houthoofd, Grobet (b0155) 2005; 86 Roth, Shvets, Shamzhy, Chlubna, Kubu, Nachtigall, Cejka (b0070) 2011; 133 Beyerlein, Choi-Feng, Hall, Huggins, Ray (b0190) 1997; 4 Wouters, Chen, Grobet (b0135) 1998; 120 To, Sokol, French, Catlow, Sherwood, van Dam (b0225) 2006; 45 Silaghi, Chizallet, Petracovschi, Kerber, Sauer, Raybaud (b0245) 2015; 5 Van der Mynsbrugge, Hemelsoet, Vandichel, Waroquier, Van Speybroeck (b0315) 2012; 116 De Moor, Reyniers, Marin (b0350) 2009; 11 Sauer, Ugliengo, Garrone, Saunders (b0395) 1994; 94 Halasz, Senderov, Olson, Liang (b0130) 2015; 119 Grimme, Antony, Ehrlich, Krieg (b0295) 2010; 132 Mitchell, Michels, Kunze, Pérez-Ramírez (b0040) 2012; 4 Larmier, Chizallet, Cadran, Maury, Abboud, Lamic-Humblot, Marceau, Lauron-Pernot (b0360) 2015; 5 Bhering, Ramirez-Solis, Mota (b0150) 2003; 107 Pulay (b0340) 1980; 73 Valtchev, Majano, Mintova, Perez-Ramirez (b0045) 2013; 42 Fjermestad, Svelle, Swang (b0250) 2015; 119 Nguyen, De Moor, Reyniers, Marin (b0355) 2012; 116 Tuma, Sauer (b0305) 2006; 8 Moliner, Martinez, Corma (b0085) 2015 Aramburo, Karwacki, Cubillas, Asahina, de Winter, Drury, Buurmans, Stavitski, Mores, Daturi, Bazin, Dumas, Thibault-Starzyk, Post, Anderson, Terasaki, Weckhuysen (b0200) 2011; 17 Sauer, Zahradník (b0400) 1984; 26 Tuma, Sauer (b0310) 2004; 387 Groen, Bach, Ziese, Paulaime-van Donk, de Jong, Moulijn, Perez-Ramirez (b0055) 2005; 127 Kresse, Hafner (b0270) 1994; 49 Malola, Svelle, Bleken, Swang (b0230) 2012; 51 Boronat, Corma (b0010) 2015; 145 C. Marcilly, Acido-basic Catalysis, Technip Eds., Paris, 2005. Mota, Bhering, Rosenbach (b0210) 2004; 43 M.-C. Silaghi, PhD Thesis, IFP Energies Nouvelles, 2014. Catlow, Baram, Parker, Purton, Wright (b0120) 1995; 134 (accessed 10th January 2012). Barthomeuf (b0390) 1987; 17 Müller, Harvey, Prins (b0180) 2000; 34 Kresse (b0275) 1995; 192–193 Wouters (10.1016/j.jcat.2016.04.021_b0135) 1998; 120 Groen (10.1016/j.jcat.2016.04.021_b0055) 2005; 127 Na (10.1016/j.jcat.2016.04.021_b0060) 2011; 333 Grimme (10.1016/j.jcat.2016.04.021_b0295) 2010; 132 Halasz (10.1016/j.jcat.2016.04.021_b0130) 2015; 119 Kresse (10.1016/j.jcat.2016.04.021_b0280) 1996; 6 Bhering (10.1016/j.jcat.2016.04.021_b0150) 2003; 107 Fjermestad (10.1016/j.jcat.2016.04.021_b0250) 2015; 119 Barthomeuf (10.1016/j.jcat.2016.04.021_b0390) 1987; 17 Nguyen (10.1016/j.jcat.2016.04.021_b0355) 2012; 116 Hartmann (10.1016/j.jcat.2016.04.021_b0065) 2004; 43 Czjzek (10.1016/j.jcat.2016.04.021_b0375) 1992; 96 First (10.1016/j.jcat.2016.04.021_b0405) 2011; 13 Malicki (10.1016/j.jcat.2016.04.021_b0175) 2010; 129 Corma (10.1016/j.jcat.2016.04.021_b0020) 1995; 95 Müller (10.1016/j.jcat.2016.04.021_b0180) 2000; 34 Christensen (10.1016/j.jcat.2016.04.021_b0050) 2003; 125 Derouane (10.1016/j.jcat.2016.04.021_b0090) 1988; 110 E (10.1016/j.jcat.2016.04.021_b0325) 2002; 66 van Bokhoven (10.1016/j.jcat.2016.04.021_b0195) 2000; 122 Evans (10.1016/j.jcat.2016.04.021_b0385) 1938; 34 Silaghi (10.1016/j.jcat.2016.04.021_b0245) 2015; 5 Tuma (10.1016/j.jcat.2016.04.021_b0310) 2004; 387 Van der Mynsbrugge (10.1016/j.jcat.2016.04.021_b0315) 2012; 116 Olson (10.1016/j.jcat.2016.04.021_b0370) 2000; 35–36 Sauer (10.1016/j.jcat.2016.04.021_b0395) 1994; 94 de Jong (10.1016/j.jcat.2016.04.021_b0025) 2010; 122 Valtchev (10.1016/j.jcat.2016.04.021_b0045) 2013; 42 Milina (10.1016/j.jcat.2016.04.021_b0075) 2015; 54 Grimme (10.1016/j.jcat.2016.04.021_b0240) 2006; 27 Kresse (10.1016/j.jcat.2016.04.021_b0285) 1999; 59 Perdew (10.1016/j.jcat.2016.04.021_b0290) 1996; 77 Heyden (10.1016/j.jcat.2016.04.021_b0345) 2005; 123 Sauer (10.1016/j.jcat.2016.04.021_b0400) 1984; 26 Benco (10.1016/j.jcat.2016.04.021_b0215) 2004; 108 Tuma (10.1016/j.jcat.2016.04.021_b0305) 2006; 8 Nielsen (10.1016/j.jcat.2016.04.021_b0260) 2015; 5 Bordiga (10.1016/j.jcat.2016.04.021_b0110) 2001; 15 Fjermestad (10.1016/j.jcat.2016.04.021_b0255) 2015; 119 Haag (10.1016/j.jcat.2016.04.021_b0005) 1984; 309 Boronat (10.1016/j.jcat.2016.04.021_b0010) 2015; 145 Mota (10.1016/j.jcat.2016.04.021_b0210) 2004; 43 Henkelman (10.1016/j.jcat.2016.04.021_b0335) 2000; 113 van Donk (10.1016/j.jcat.2016.04.021_b0100) 2003; 45 Ricchiardi (10.1016/j.jcat.2016.04.021_b0220) 2000; 2 De Moor (10.1016/j.jcat.2016.04.021_b0350) 2009; 11 Catlow (10.1016/j.jcat.2016.04.021_b0120) 1995; 134 10.1016/j.jcat.2016.04.021_b0265 Moliner (10.1016/j.jcat.2016.04.021_b0085) 2015 Silaghi (10.1016/j.jcat.2016.04.021_b0105) 2014; 191 Malola (10.1016/j.jcat.2016.04.021_b0230) 2012; 51 Kresse (10.1016/j.jcat.2016.04.021_b0275) 1995; 192–193 Benco (10.1016/j.jcat.2016.04.021_b0145) 2002; 209 Smit (10.1016/j.jcat.2016.04.021_b0095) 2008; 108 Milina (10.1016/j.jcat.2016.04.021_b0080) 2014 Van Geem (10.1016/j.jcat.2016.04.021_b0185) 1988; 92 Becke (10.1016/j.jcat.2016.04.021_b0300) 2005; 123 Vermeiren (10.1016/j.jcat.2016.04.021_b0030) 2009; 52 Agostini (10.1016/j.jcat.2016.04.021_b0140) 2010; 132 Li (10.1016/j.jcat.2016.04.021_b0165) 2007; 129 10.1016/j.jcat.2016.04.021_b0330 Brønsted (10.1016/j.jcat.2016.04.021_b0380) 1928; 5 Fjermestad (10.1016/j.jcat.2016.04.021_b0235) 2013; 117 Pulay (10.1016/j.jcat.2016.04.021_b0340) 1980; 73 To (10.1016/j.jcat.2016.04.021_b0225) 2006; 45 Beyerlein (10.1016/j.jcat.2016.04.021_b0190) 1997; 4 10.1016/j.jcat.2016.04.021_b0015 Chen (10.1016/j.jcat.2016.04.021_b0155) 2005; 86 Senderov (10.1016/j.jcat.2016.04.021_b0125) 2014; 186 Mitchell (10.1016/j.jcat.2016.04.021_b0040) 2012; 4 Karwacki (10.1016/j.jcat.2016.04.021_b0160) 2011; 50 Aramburo (10.1016/j.jcat.2016.04.021_b0200) 2011; 17 Göltl (10.1016/j.jcat.2016.04.021_b0320) 2012; 137 Larmier (10.1016/j.jcat.2016.04.021_b0360) 2015; 5 Lisboa (10.1016/j.jcat.2016.04.021_b0170) 2008; 294 Busca (10.1016/j.jcat.2016.04.021_b0035) 2007; 107 Kresse (10.1016/j.jcat.2016.04.021_b0270) 1994; 49 Dědeček (10.1016/j.jcat.2016.04.021_b0115) 2009; 113 Ruiz (10.1016/j.jcat.2016.04.021_b0205) 1997; 101 Canduela-Rodriguez (10.1016/j.jcat.2016.04.021_b0365) 2014; 16 Roth (10.1016/j.jcat.2016.04.021_b0070) 2011; 133 |
References_xml | – volume: 5 start-page: 7131 year: 2015 end-page: 7139 ident: b0260 publication-title: ACS Catal. – volume: 116 start-page: 18236 year: 2012 end-page: 18249 ident: b0355 publication-title: J. Phys. Chem. C – volume: 17 start-page: 49 year: 1987 end-page: 71 ident: b0390 publication-title: Mater. Chem. Phys. – volume: 108 start-page: 13656 year: 2004 end-page: 13666 ident: b0215 publication-title: J. Phys. Chem. B – volume: 186 start-page: 94 year: 2014 end-page: 100 ident: b0125 publication-title: Micropor. Mesopor. Mater. – volume: 129 start-page: 11161 year: 2007 end-page: 11171 ident: b0165 publication-title: J. Am. Chem. Soc. – volume: 123 start-page: 224101 year: 2005 ident: b0345 publication-title: J. Chem. Phys. – volume: 113 start-page: 14454 year: 2009 end-page: 14466 ident: b0115 publication-title: J. Phys. Chem. C – volume: 34 start-page: 11 year: 1938 end-page: 24 ident: b0385 publication-title: Trans. Faraday Soc. – volume: 387 start-page: 388 year: 2004 end-page: 394 ident: b0310 publication-title: Chem. Phys. Lett. – volume: 107 start-page: 5366 year: 2007 end-page: 5410 ident: b0035 publication-title: Chem. Rev. – volume: 73 start-page: 393 year: 1980 end-page: 398 ident: b0340 publication-title: Chem. Phys. Lett. – volume: 116 start-page: 5499 year: 2012 end-page: 5508 ident: b0315 publication-title: J. Phys. Chem. C – reference: > (accessed 10th January 2012). – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0290 publication-title: Phys. Rev. Lett. – volume: 42 start-page: 263 year: 2013 end-page: 290 ident: b0045 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 114111 year: 2012 ident: b0320 publication-title: J. Chem. Phys. – volume: 35–36 start-page: 435 year: 2000 end-page: 446 ident: b0370 publication-title: Micropor. Mesopor. Mater. – volume: 5 start-page: 4423 year: 2015 end-page: 4437 ident: b0360 publication-title: ACS Catal. – volume: 132 start-page: 154104 year: 2010 ident: b0295 publication-title: J. Chem. Phys. – volume: 96 start-page: 1535 year: 1992 end-page: 1540 ident: b0375 publication-title: J. Phys. Chem. – volume: 50 start-page: 1294 year: 2011 end-page: 1298 ident: b0160 publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 43 year: 2001 end-page: 52 ident: b0110 publication-title: Top. Catal. – volume: 4 start-page: 27 year: 1997 end-page: 42 ident: b0190 publication-title: Top. Catal. – volume: 145 start-page: 162 year: 2015 end-page: 172 ident: b0010 publication-title: Catal. Lett. – volume: 43 start-page: 5880 year: 2004 end-page: 5882 ident: b0065 publication-title: Angew. Chem. Int. Ed. – volume: 122 start-page: 12842 year: 2000 end-page: 12847 ident: b0195 publication-title: J. Am. Chem. Soc. – volume: 191 start-page: 82 year: 2014 end-page: 96 ident: b0105 publication-title: Micropor. Mesopor. Mater. – volume: 26 start-page: 793 year: 1984 end-page: 822 ident: b0400 publication-title: Int. J. Quantum Chem. – volume: 110 start-page: 58 year: 1988 end-page: 73 ident: b0090 publication-title: J. Catal. – volume: 209 start-page: 480 year: 2002 end-page: 488 ident: b0145 publication-title: J. Catal. – volume: 119 start-page: 2073 year: 2015 end-page: 2085 ident: b0250 publication-title: J. Phys. Chem. C – volume: 333 start-page: 328 year: 2011 end-page: 332 ident: b0060 publication-title: Science – volume: 119 start-page: 8619 year: 2015 end-page: 8625 ident: b0130 publication-title: J. Phys. Chem. C – volume: 122 start-page: 10272 year: 2010 end-page: 10276 ident: b0025 publication-title: Ang. Chem., Int. Ed. – volume: 117 start-page: 13442 year: 2013 end-page: 13451 ident: b0235 publication-title: J. Phys. Chem. C – year: 2014 ident: b0080 publication-title: Nat. Commun. – volume: 94 start-page: 2095 year: 1994 ident: b0395 publication-title: Chem. Rev. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: b0285 publication-title: Phys. Rev. B – volume: 45 start-page: 297 year: 2003 end-page: 319 ident: b0100 publication-title: Catal. Rev. – volume: 101 start-page: 1733 year: 1997 end-page: 1744 ident: b0205 publication-title: J. Phys. Chem. B – volume: 86 start-page: 31 year: 2005 end-page: 37 ident: b0155 publication-title: Micropor. Mesopor. Mater. – volume: 129 start-page: 100 year: 2010 end-page: 105 ident: b0175 publication-title: Micropor. Mesopor. Mater. – volume: 2 start-page: 2195 year: 2000 end-page: 2204 ident: b0220 publication-title: Phys. Chem. Chem. Phys. – volume: 34 start-page: 135 year: 2000 end-page: 147 ident: b0180 publication-title: Micropor. Mesopor. Mater. – volume: 127 start-page: 10792 year: 2005 end-page: 10793 ident: b0055 publication-title: J. Am. Chem. Soc. – year: 2015 ident: b0085 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 92 start-page: 1585 year: 1988 end-page: 1589 ident: b0185 publication-title: J. Phys. Chem. – reference: P. Fleurat-Lessard, P. Dayal, Code freely available at: < – volume: 132 start-page: 667 year: 2010 end-page: 678 ident: b0140 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 11 year: 2015 end-page: 15 ident: b0245 publication-title: ACS Catal. – volume: 119 start-page: 2086 year: 2015 end-page: 2095 ident: b0255 publication-title: J. Phys. Chem. C – volume: 113 start-page: 9978 year: 2000 end-page: 9985 ident: b0335 publication-title: J. Chem. Phys. – volume: 5 start-page: 231 year: 1928 end-page: 338 ident: b0380 publication-title: Chem. Rev. – volume: 52 start-page: 1131 year: 2009 end-page: 1161 ident: b0030 publication-title: Topics Catal. – volume: 134 start-page: 57 year: 1995 end-page: 64 ident: b0120 publication-title: Radiat. Eff. Defects Solids – volume: 120 start-page: 11419 year: 1998 end-page: 11425 ident: b0135 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 1633 year: 2006 end-page: 1638 ident: b0225 publication-title: Angew. Chem. Int. Ed. – volume: 192–193 start-page: 222 year: 1995 end-page: 229 ident: b0275 publication-title: J. Non-Cryst. Solids – reference: M.-C. Silaghi, PhD Thesis, IFP Energies Nouvelles, 2014. – volume: 51 start-page: 652 year: 2012 end-page: 655 ident: b0230 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 3955 year: 2006 end-page: 3965 ident: b0305 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 2939 year: 2009 end-page: 2958 ident: b0350 publication-title: Phys. Chem. Chem. Phys. – volume: 309 start-page: 589 year: 1984 end-page: 591 ident: b0005 publication-title: Nature – reference: C. Marcilly, Acido-basic Catalysis, Technip Eds., Paris, 2005. – volume: 107 start-page: 4342 year: 2003 end-page: 4347 ident: b0150 publication-title: J. Phys. Chem. B – volume: 294 start-page: 93 year: 2008 end-page: 101 ident: b0170 publication-title: J. Mol. Catal. A – volume: 13 start-page: 17339 year: 2011 end-page: 17358 ident: b0405 publication-title: Phys. Chem. Chem. Phys. – volume: 17 start-page: 13773 year: 2011 end-page: 13781 ident: b0200 publication-title: Chem. Eur. J. – volume: 123 start-page: 154101 year: 2005 ident: b0300 publication-title: J. Chem. Phys. – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: b0240 publication-title: J. Comput. Chem. – volume: 125 start-page: 13370 year: 2003 end-page: 13371 ident: b0050 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 1591 year: 2015 end-page: 1594 ident: b0075 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 66 start-page: 052301 year: 2002 ident: b0325 publication-title: Phys. Rev. B – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: b0280 publication-title: Comput. Mater. Sci. – volume: 49 start-page: 14251 year: 1994 end-page: 14269 ident: b0270 publication-title: Phys. Rev. B – volume: 16 start-page: 23754 year: 2014 end-page: 23768 ident: b0365 publication-title: Phys. Chem. Chem. Phys. – volume: 43 start-page: 3050 year: 2004 end-page: 3053 ident: b0210 publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 6130 year: 2011 end-page: 6133 ident: b0070 publication-title: J. Am. Chem. Soc. – volume: 95 start-page: 559 year: 1995 end-page: 614 ident: b0020 publication-title: Chem. Rev. – volume: 4 start-page: 825 year: 2012 end-page: 831 ident: b0040 publication-title: Nat. Chem. – volume: 108 start-page: 4125 year: 2008 end-page: 4184 ident: b0095 publication-title: Chem. Rev. – volume: 16 start-page: 23754 year: 2014 ident: 10.1016/j.jcat.2016.04.021_b0365 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02991G – volume: 120 start-page: 11419 year: 1998 ident: 10.1016/j.jcat.2016.04.021_b0135 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja982082l – volume: 15 start-page: 43 year: 2001 ident: 10.1016/j.jcat.2016.04.021_b0110 publication-title: Top. Catal. doi: 10.1023/A:1009019829376 – volume: 119 start-page: 2086 year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0255 publication-title: J. Phys. Chem. C doi: 10.1021/jp510845z – ident: 10.1016/j.jcat.2016.04.021_b0015 – volume: 45 start-page: 297 year: 2003 ident: 10.1016/j.jcat.2016.04.021_b0100 publication-title: Catal. Rev. doi: 10.1081/CR-120023908 – volume: 294 start-page: 93 year: 2008 ident: 10.1016/j.jcat.2016.04.021_b0170 publication-title: J. Mol. Catal. A doi: 10.1016/j.molcata.2008.08.003 – volume: 34 start-page: 11 year: 1938 ident: 10.1016/j.jcat.2016.04.021_b0385 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9383400011 – volume: 96 start-page: 1535 year: 1992 ident: 10.1016/j.jcat.2016.04.021_b0375 publication-title: J. Phys. Chem. doi: 10.1021/j100183a009 – volume: 113 start-page: 9978 year: 2000 ident: 10.1016/j.jcat.2016.04.021_b0335 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.jcat.2016.04.021_b0240 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 123 start-page: 154101 year: 2005 ident: 10.1016/j.jcat.2016.04.021_b0300 publication-title: J. Chem. Phys. doi: 10.1063/1.2065267 – volume: 8 start-page: 3955 year: 2006 ident: 10.1016/j.jcat.2016.04.021_b0305 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B608262A – volume: 26 start-page: 793 year: 1984 ident: 10.1016/j.jcat.2016.04.021_b0400 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560260519 – volume: 192–193 start-page: 222 year: 1995 ident: 10.1016/j.jcat.2016.04.021_b0275 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00355-X – volume: 122 start-page: 12842 year: 2000 ident: 10.1016/j.jcat.2016.04.021_b0195 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002689d – volume: 17 start-page: 13773 year: 2011 ident: 10.1016/j.jcat.2016.04.021_b0200 publication-title: Chem. Eur. J. doi: 10.1002/chem.201101361 – volume: 5 start-page: 11 year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0245 publication-title: ACS Catal. doi: 10.1021/cs501474u – volume: 129 start-page: 100 year: 2010 ident: 10.1016/j.jcat.2016.04.021_b0175 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2009.09.003 – volume: 116 start-page: 5499 year: 2012 ident: 10.1016/j.jcat.2016.04.021_b0315 publication-title: J. Phys. Chem. C doi: 10.1021/jp2123828 – year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0085 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 333 start-page: 328 year: 2011 ident: 10.1016/j.jcat.2016.04.021_b0060 publication-title: Science doi: 10.1126/science.1204452 – volume: 45 start-page: 1633 year: 2006 ident: 10.1016/j.jcat.2016.04.021_b0225 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503006 – ident: 10.1016/j.jcat.2016.04.021_b0265 – volume: 113 start-page: 14454 year: 2009 ident: 10.1016/j.jcat.2016.04.021_b0115 publication-title: J. Phys. Chem. C doi: 10.1021/jp9042232 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jcat.2016.04.021_b0290 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 17 start-page: 49 year: 1987 ident: 10.1016/j.jcat.2016.04.021_b0390 publication-title: Mater. Chem. Phys. doi: 10.1016/0254-0584(87)90048-4 – volume: 73 start-page: 393 year: 1980 ident: 10.1016/j.jcat.2016.04.021_b0340 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(80)80396-4 – volume: 107 start-page: 5366 year: 2007 ident: 10.1016/j.jcat.2016.04.021_b0035 publication-title: Chem. Rev. doi: 10.1021/cr068042e – volume: 5 start-page: 7131 year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0260 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01496 – volume: 125 start-page: 13370 year: 2003 ident: 10.1016/j.jcat.2016.04.021_b0050 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037063c – volume: 11 start-page: 2939 year: 2009 ident: 10.1016/j.jcat.2016.04.021_b0350 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b819435c – volume: 107 start-page: 4342 year: 2003 ident: 10.1016/j.jcat.2016.04.021_b0150 publication-title: J. Phys. Chem. B doi: 10.1021/jp022331z – volume: 129 start-page: 11161 year: 2007 ident: 10.1016/j.jcat.2016.04.021_b0165 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072767y – volume: 137 start-page: 114111 year: 2012 ident: 10.1016/j.jcat.2016.04.021_b0320 publication-title: J. Chem. Phys. doi: 10.1063/1.4750979 – volume: 309 start-page: 589 year: 1984 ident: 10.1016/j.jcat.2016.04.021_b0005 publication-title: Nature doi: 10.1038/309589a0 – volume: 5 start-page: 4423 year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0360 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00723 – volume: 13 start-page: 17339 year: 2011 ident: 10.1016/j.jcat.2016.04.021_b0405 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21731c – volume: 52 start-page: 1131 year: 2009 ident: 10.1016/j.jcat.2016.04.021_b0030 publication-title: Topics Catal. doi: 10.1007/s11244-009-9271-8 – volume: 108 start-page: 13656 year: 2004 ident: 10.1016/j.jcat.2016.04.021_b0215 publication-title: J. Phys. Chem. B doi: 10.1021/jp048056t – volume: 132 start-page: 667 year: 2010 ident: 10.1016/j.jcat.2016.04.021_b0140 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907696h – volume: 387 start-page: 388 year: 2004 ident: 10.1016/j.jcat.2016.04.021_b0310 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.02.056 – volume: 43 start-page: 5880 year: 2004 ident: 10.1016/j.jcat.2016.04.021_b0065 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200460644 – volume: 122 start-page: 10272 year: 2010 ident: 10.1016/j.jcat.2016.04.021_b0025 publication-title: Ang. Chem., Int. Ed. doi: 10.1002/ange.201004360 – volume: 86 start-page: 31 year: 2005 ident: 10.1016/j.jcat.2016.04.021_b0155 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2005.07.005 – volume: 43 start-page: 3050 year: 2004 ident: 10.1016/j.jcat.2016.04.021_b0210 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200353049 – ident: 10.1016/j.jcat.2016.04.021_b0330 – volume: 50 start-page: 1294 year: 2011 ident: 10.1016/j.jcat.2016.04.021_b0160 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006031 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.jcat.2016.04.021_b0280 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 119 start-page: 8619 year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0130 publication-title: J. Phys. Chem. C doi: 10.1021/jp511082v – volume: 49 start-page: 14251 year: 1994 ident: 10.1016/j.jcat.2016.04.021_b0270 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 132 start-page: 154104 year: 2010 ident: 10.1016/j.jcat.2016.04.021_b0295 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 186 start-page: 94 year: 2014 ident: 10.1016/j.jcat.2016.04.021_b0125 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2013.11.034 – volume: 34 start-page: 135 year: 2000 ident: 10.1016/j.jcat.2016.04.021_b0180 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/S1387-1811(99)00167-5 – volume: 2 start-page: 2195 year: 2000 ident: 10.1016/j.jcat.2016.04.021_b0220 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a909617e – volume: 35–36 start-page: 435 year: 2000 ident: 10.1016/j.jcat.2016.04.021_b0370 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/S1387-1811(99)00240-1 – volume: 4 start-page: 27 year: 1997 ident: 10.1016/j.jcat.2016.04.021_b0190 publication-title: Top. Catal. doi: 10.1023/A:1019188105794 – volume: 5 start-page: 231 year: 1928 ident: 10.1016/j.jcat.2016.04.021_b0380 publication-title: Chem. Rev. doi: 10.1021/cr60019a001 – volume: 108 start-page: 4125 year: 2008 ident: 10.1016/j.jcat.2016.04.021_b0095 publication-title: Chem. Rev. doi: 10.1021/cr8002642 – volume: 133 start-page: 6130 year: 2011 ident: 10.1016/j.jcat.2016.04.021_b0070 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200741r – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.jcat.2016.04.021_b0285 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 66 start-page: 052301 year: 2002 ident: 10.1016/j.jcat.2016.04.021_b0325 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.052301 – volume: 123 start-page: 224101 year: 2005 ident: 10.1016/j.jcat.2016.04.021_b0345 publication-title: J. Chem. Phys. doi: 10.1063/1.2104507 – volume: 101 start-page: 1733 year: 1997 ident: 10.1016/j.jcat.2016.04.021_b0205 publication-title: J. Phys. Chem. B doi: 10.1021/jp961987n – volume: 191 start-page: 82 year: 2014 ident: 10.1016/j.jcat.2016.04.021_b0105 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2014.02.040 – volume: 4 start-page: 825 year: 2012 ident: 10.1016/j.jcat.2016.04.021_b0040 publication-title: Nat. Chem. doi: 10.1038/nchem.1403 – year: 2014 ident: 10.1016/j.jcat.2016.04.021_b0080 publication-title: Nat. Commun. – volume: 94 start-page: 2095 year: 1994 ident: 10.1016/j.jcat.2016.04.021_b0395 publication-title: Chem. Rev. doi: 10.1021/cr00031a014 – volume: 110 start-page: 58 year: 1988 ident: 10.1016/j.jcat.2016.04.021_b0090 publication-title: J. Catal. doi: 10.1016/0021-9517(88)90297-7 – volume: 119 start-page: 2073 year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0250 publication-title: J. Phys. Chem. C doi: 10.1021/jp510844v – volume: 145 start-page: 162 year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0010 publication-title: Catal. Lett. doi: 10.1007/s10562-014-1438-7 – volume: 54 start-page: 1591 year: 2015 ident: 10.1016/j.jcat.2016.04.021_b0075 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201410016 – volume: 134 start-page: 57 year: 1995 ident: 10.1016/j.jcat.2016.04.021_b0120 publication-title: Radiat. Eff. Defects Solids doi: 10.1080/10420159508227183 – volume: 51 start-page: 652 year: 2012 ident: 10.1016/j.jcat.2016.04.021_b0230 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201104462 – volume: 42 start-page: 263 year: 2013 ident: 10.1016/j.jcat.2016.04.021_b0045 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35196J – volume: 92 start-page: 1585 year: 1988 ident: 10.1016/j.jcat.2016.04.021_b0185 publication-title: J. Phys. Chem. doi: 10.1021/j100317a042 – volume: 117 start-page: 13442 year: 2013 ident: 10.1016/j.jcat.2016.04.021_b0235 publication-title: J. Phys. Chem. C doi: 10.1021/jp4028468 – volume: 127 start-page: 10792 year: 2005 ident: 10.1016/j.jcat.2016.04.021_b0055 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052592x – volume: 116 start-page: 18236 year: 2012 ident: 10.1016/j.jcat.2016.04.021_b0355 publication-title: J. Phys. Chem. C doi: 10.1021/jp304081k – volume: 209 start-page: 480 year: 2002 ident: 10.1016/j.jcat.2016.04.021_b0145 publication-title: J. Catal. doi: 10.1006/jcat.2002.3631 – volume: 95 start-page: 559 year: 1995 ident: 10.1016/j.jcat.2016.04.021_b0020 publication-title: Chem. Rev. doi: 10.1021/cr00035a006 |
SSID | ssj0011558 |
Score | 2.5687592 |
Snippet | [Display omitted]
•Mechanisms for zeolite dealumination are unraveled by DFT calculations.•Water molecules adsorb on Al, in anti to Brønsted acid sites, before... Display Omitted * Mechanisms for zeolite dealumination are unraveled by DFT calculations. * Water molecules adsorb on Al, in anti to Brønsted acid sites,... Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 242 |
SubjectTerms | adsorption aluminum aluminum hydroxide Bronsted acids Catalysis Catalysts catalytic activity chemical bonding Chemical bonds Chemical Sciences Dealumination Density functional theory Extra-framework aluminum Faujasite Gibbs free energy hydrolysis materials science Mordenite Pentahedral aluminum SSZ-13 Zeolite zeolites ZSM-5 |
Title | Dealumination mechanisms of zeolites and extra-framework aluminum confinement |
URI | https://dx.doi.org/10.1016/j.jcat.2016.04.021 https://www.proquest.com/docview/1794427320 https://www.proquest.com/docview/2131892676 https://hal.science/hal-01372662 |
Volume | 339 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BPQCHqoUiQtNoW_VWGex9OTlGaVGAwqmRclutvbsiiDgIJxw48NuZie0IkJoDN3sf9mpm95vx-ptZgJ9BJF5lPES0xxbJPM3wynaj1Ok8Di6kQVK88-WVHo7k-ViNN2DQxMIQrbLG_grTl2hdl5zU0jy5m0woxhdXm6J0LwKnJh9TBLtMidZ3_LSieaDDoyo0JioCtq4DZyqO1w3t7qEJ1Mt0pzz5n3HavCaW5BuwXlqg00_wsXYdWb8a3WfY8MUebA-aE9v2YPdFcsF9uPyNPuCCmC4kezb1FOM7KaclmwX26In35ktmC8cQn-9tFBqaFqu6LaYMv5UDPpA2EL_A6PTPv8Ewqg9PiHIl-Tyy3UyIIFxqbd5zQqARckSOtrHOfJpIrEBvzlF-SK2ld7l2KvS4EyGoLM6VOICtYlb4Q2BB5jJ0gwxxRoeTJFa6WPe6Fn2P2AmuWpA0UjN5nVmcDri4NQ2F7MaQpA1J2sTSoKRb8GvV567Kq7G2tWqUYV7NDoPAv7bfD9Tc6gWUSnvY_2uojFItonPCH7BRu1GsqRdwaQinJLp2PG7B91U16pP-p9jCzxal4QkCYo_rVB-9c3xfYYfuKvpvG7bm9wv_DZ2cedZZzuIOfOifXQyvngFQPPut |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7ausPggGCAKIzNIG4oWuJfaY9V2ZSxtqdN6s1yYlt0WtNpaTnw1_Ne41SAxA67RXacWM_2916c730G-BJE5lXJQ0J7bIms8hKv7CDJna7S4EIeJOU7T2e6uJHf52q-B-MuF4ZolRH7W0zfonUsOYvWPLtfLCjHF1ebIrkXgVOTz_fhgNSpZA8ORpdXxWz3MwFdZgvIxEbABjF3pqV53dIGH3pBvVU85dn__NP-DyJK_oPXWyd08RJexOiRjdoOvoI9Xx_B4bg7tO0Inv-hL_gapt8wDNwQ2YXMz5ae0nwXzbJhq8B-eaK--YbZ2jGE6AebhI6pxdpmmyXDz-WAD6Q9xDdwc3F-PS6SeH5CUinJ14kdlEIE4XJrq6ETAv2QI360TXXp80xiBQZ0jiQitZbeVdqpMOROhKDKtFLiLfTqVe3fAQuykmEQZEhLOp8ks9KlejiwGH6kTnDVh6yzmqmiuDidcXFnOhbZrSFLG7K0SaVBS_fh667NfSut8ejdqhsM89cEMYj9j7b7jCO3ewGpaRejiaEyUlvE-IT_xJuOu4E1cQ03hqBKYnTH0z582lXjeNIvFVv71aYxPENMHHKd6_dP7N8pHBbX04mZXM6uPsAzqmnZwMfQWz9s_EeMedblSZzTvwHvff5e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dealumination+mechanisms+of+zeolites+and+extra-framework+aluminum+confinement&rft.jtitle=Journal+of+catalysis&rft.au=Silaghi%2C+Marius-Christian&rft.au=Chizallet%2C+C%C3%A9line&rft.au=Sauer%2C+Joachim&rft.au=Raybaud%2C+Pascal&rft.date=2016-07-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=339&rft.spage=242&rft_id=info:doi/10.1016%2Fj.jcat.2016.04.021&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4081073801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |