Dealumination mechanisms of zeolites and extra-framework aluminum confinement

[Display omitted] •Mechanisms for zeolite dealumination are unraveled by DFT calculations.•Water molecules adsorb on Al, in anti to Brønsted acid sites, before Al–O breaking.•Various orientations for Al–O breaking can take place at high water loadings.•BEP relationships exist but degrade as hydrolyz...

Full description

Saved in:
Bibliographic Details
Published inJournal of catalysis Vol. 339; pp. 242 - 255
Main Authors Silaghi, Marius-Christian, Chizallet, Céline, Sauer, Joachim, Raybaud, Pascal
Format Journal Article
LanguageEnglish
Published San Diego Elsevier Inc 01.07.2016
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9517
1090-2694
DOI10.1016/j.jcat.2016.04.021

Cover

Loading…
Abstract [Display omitted] •Mechanisms for zeolite dealumination are unraveled by DFT calculations.•Water molecules adsorb on Al, in anti to Brønsted acid sites, before Al–O breaking.•Various orientations for Al–O breaking can take place at high water loadings.•BEP relationships exist but degrade as hydrolyzed Al–O bonds are more numerous.•Both free energy barriers and EFAL confinement are driving forces for the regioselectivity. Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale mechanisms involved. Considering four relevant zeolitic frameworks (MOR, FAU, MFI, CHA), we determine the formation mechanisms of extra-framework Al species (EFAL) Al(OH)3H2O during dealumination, by using periodic density functional theory (DFT) calculations including dispersion corrections and free energy estimation. We identify a rather universal mechanism based on water adsorption on the Al atom in anti-position to the Brønsted acid site allowing successive Al–O bond hydrolyses until dislodgement of the framework Al to a non-framework position. The determination of Brønsted–Evans–Polanyi (BEP) relationships for the entire dealumination pathway was possible, despite degradation of the correlation with increasing number of hydrolyzed Al–O bonds. Moreover, we quantify the confinement effect acting on EFAL species within the zeolites cavities and show that this effect is also a thermodynamic driving force for the Al extraction.
AbstractList Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale mechanisms involved. Considering four relevant zeolitic frameworks (MOR, FAU, MFI, CHA), we determine the formation mechanisms of extra-framework Al species (EFAL) Al(OH)3H2O during dealumination, by using periodic density functional theory (DFT) calculations including dispersion corrections and free energy estimation. We identify a rather universal mechanism based on water adsorption on the Al atom in anti-position to the Brønsted acid site allowing successive Al–O bond hydrolyses until dislodgement of the framework Al to a non-framework position. The determination of Brønsted–Evans–Polanyi (BEP) relationships for the entire dealumination pathway was possible, despite degradation of the correlation with increasing number of hydrolyzed Al–O bonds. Moreover, we quantify the confinement effect acting on EFAL species within the zeolites cavities and show that this effect is also a thermodynamic driving force for the Al extraction.
[Display omitted] •Mechanisms for zeolite dealumination are unraveled by DFT calculations.•Water molecules adsorb on Al, in anti to Brønsted acid sites, before Al–O breaking.•Various orientations for Al–O breaking can take place at high water loadings.•BEP relationships exist but degrade as hydrolyzed Al–O bonds are more numerous.•Both free energy barriers and EFAL confinement are driving forces for the regioselectivity. Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale mechanisms involved. Considering four relevant zeolitic frameworks (MOR, FAU, MFI, CHA), we determine the formation mechanisms of extra-framework Al species (EFAL) Al(OH)3H2O during dealumination, by using periodic density functional theory (DFT) calculations including dispersion corrections and free energy estimation. We identify a rather universal mechanism based on water adsorption on the Al atom in anti-position to the Brønsted acid site allowing successive Al–O bond hydrolyses until dislodgement of the framework Al to a non-framework position. The determination of Brønsted–Evans–Polanyi (BEP) relationships for the entire dealumination pathway was possible, despite degradation of the correlation with increasing number of hydrolyzed Al–O bonds. Moreover, we quantify the confinement effect acting on EFAL species within the zeolites cavities and show that this effect is also a thermodynamic driving force for the Al extraction.
Display Omitted * Mechanisms for zeolite dealumination are unraveled by DFT calculations. * Water molecules adsorb on Al, in anti to Brønsted acid sites, before Al-O breaking. * Various orientations for Al-O breaking can take place at high water loadings. * BEP relationships exist but degrade as hydrolyzed Al-O bonds are more numerous. * Both free energy barriers and EFAL confinement are driving forces for the regioselectivity. Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale mechanisms involved. Considering four relevant zeolitic frameworks (MOR, FAU, MFI, CHA), we determine the formation mechanisms of extra-framework Al species (EFAL) Al(OH)3H2O during dealumination, by using periodic density functional theory (DFT) calculations including dispersion corrections and free energy estimation. We identify a rather universal mechanism based on water adsorption on the Al atom in anti-position to the Brønsted acid site allowing successive Al-O bond hydrolyses until dislodgement of the framework Al to a non-framework position. The determination of Brønsted-Evans-Polanyi (BEP) relationships for the entire dealumination pathway was possible, despite degradation of the correlation with increasing number of hydrolyzed Al-O bonds. Moreover, we quantify the confinement effect acting on EFAL species within the zeolites cavities and show that this effect is also a thermodynamic driving force for the Al extraction.
Author Raybaud, Pascal
Chizallet, Céline
Silaghi, Marius-Christian
Sauer, Joachim
Author_xml – sequence: 1
  givenname: Marius-Christian
  surname: Silaghi
  fullname: Silaghi, Marius-Christian
  email: marius-christian.silaghi@posteo.de
  organization: IFP Energies nouvelles, Direction Catalyse et Séparation, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France
– sequence: 2
  givenname: Céline
  surname: Chizallet
  fullname: Chizallet, Céline
  email: celine.chizallet@ifpen.fr
  organization: IFP Energies nouvelles, Direction Catalyse et Séparation, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France
– sequence: 3
  givenname: Joachim
  surname: Sauer
  fullname: Sauer, Joachim
  email: js@chemie.hu-berlin.de
  organization: Institute of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
– sequence: 4
  givenname: Pascal
  surname: Raybaud
  fullname: Raybaud, Pascal
  email: pascal.raybaud@ifpen.fr
  organization: IFP Energies nouvelles, Direction Catalyse et Séparation, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France
BackLink https://hal.science/hal-01372662$$DView record in HAL
BookMark eNp9kU1rHSEUhqWk0Ju0f6CrgW7axUz9Gr0D2YQ0bQK3dNOuxatH4mRGE3XSj18fbyZ0kUVEUI7PI_qeY3QUYgCE3hPcEUzE57EbjS4drfsO8w5T8gptCB5wS8XAj9AG11I79ES-Qcc5jxgT0vfbDfr-BfS0zD7o4mNoZjDXOvg85ya65h_EyRfIjQ62gT8l6dYlPcPvmG6aVVvmxsTgfIAZQnmLXjs9ZXj3tJ6gX18vfp5ftrsf367Oz3at6Tktrd7uGXPMSq3NYBnjkljQdWKxB0l4PcC8t0SKOjhYI2zvBmqZc_0em56doE_rvdd6UrfJzzr9VVF7dXm2U4caJkxSIeg9qezHlb1N8W6BXNTss4Fp0gHikhUljGwHKqSo6Idn6BiXFOpPFJED51QyiitFV8qkmHMC9_8FBKtDN9SoDt1Qh24ozFWNvkrbZ5Lx5THzmqqfXlZPVxVqovceksrGQzBgfQJTlI3-Jf0BNIunsg
CitedBy_id crossref_primary_10_1002_ange_202116990
crossref_primary_10_1039_C9RA07721A
crossref_primary_10_1002_anie_202414724
crossref_primary_10_1002_anie_202114388
crossref_primary_10_1016_j_micromeso_2019_109950
crossref_primary_10_1016_j_mcat_2021_111686
crossref_primary_10_1039_D0CY00989J
crossref_primary_10_1021_jacs_8b11228
crossref_primary_10_1002_cssc_202300903
crossref_primary_10_1016_j_jcat_2024_115482
crossref_primary_10_1021_jacs_4c13212
crossref_primary_10_1007_s12274_024_6894_9
crossref_primary_10_1016_j_checat_2024_101130
crossref_primary_10_1016_j_chphi_2023_100207
crossref_primary_10_1016_j_conbuildmat_2018_12_043
crossref_primary_10_1016_j_micromeso_2021_111640
crossref_primary_10_1038_s41467_024_48609_2
crossref_primary_10_1016_j_micromeso_2024_113306
crossref_primary_10_1002_ange_202001364
crossref_primary_10_1002_ange_202210658
crossref_primary_10_1007_s11696_023_03183_7
crossref_primary_10_1039_D4CP02851A
crossref_primary_10_1021_acs_jpcc_1c02932
crossref_primary_10_1016_j_coche_2019_04_002
crossref_primary_10_1021_acs_iecr_1c04184
crossref_primary_10_1021_acscatal_2c01233
crossref_primary_10_1002_ange_202117698
crossref_primary_10_1016_j_jcat_2020_08_008
crossref_primary_10_2139_ssrn_4151358
crossref_primary_10_3390_ma16062308
crossref_primary_10_1039_C9CP05141D
crossref_primary_10_1039_D0CS01459A
crossref_primary_10_1016_j_powtec_2019_07_008
crossref_primary_10_1039_D1CY00749A
crossref_primary_10_1016_j_jcat_2020_12_008
crossref_primary_10_1016_j_cjche_2021_05_041
crossref_primary_10_1021_acs_jpcc_8b05277
crossref_primary_10_1021_acscatal_3c05517
crossref_primary_10_1039_D1CY01724A
crossref_primary_10_1038_s41467_019_10981_9
crossref_primary_10_1016_j_seta_2024_104168
crossref_primary_10_1002_ange_202306183
crossref_primary_10_1021_acs_jpcc_0c06470
crossref_primary_10_3390_molecules27123938
crossref_primary_10_1016_j_cej_2022_139049
crossref_primary_10_1021_acscatal_2c02152
crossref_primary_10_1016_j_fuel_2024_130938
crossref_primary_10_1016_j_apcata_2024_120023
crossref_primary_10_1021_acssuschemeng_4c00211
crossref_primary_10_1016_j_jcat_2016_12_007
crossref_primary_10_1088_1757_899X_515_1_012075
crossref_primary_10_1002_ange_202414724
crossref_primary_10_1021_acscatal_7b03020
crossref_primary_10_1021_acscatal_4c03036
crossref_primary_10_1039_D2CP03603G
crossref_primary_10_1002_anie_202116990
crossref_primary_10_1016_j_micromeso_2017_11_053
crossref_primary_10_1007_s10971_021_05644_5
crossref_primary_10_1016_j_micromeso_2024_113007
crossref_primary_10_1016_j_fuproc_2019_106318
crossref_primary_10_1021_acs_jpcc_9b09693
crossref_primary_10_1002_adma_202003264
crossref_primary_10_1016_j_isci_2025_112102
crossref_primary_10_1021_jacs_3c12437
crossref_primary_10_1002_anie_202306183
crossref_primary_10_1021_acscatal_2c05493
crossref_primary_10_1021_acs_jpcc_1c04270
crossref_primary_10_1038_s41929_022_00906_z
crossref_primary_10_1016_j_cattod_2019_03_038
crossref_primary_10_1016_j_cattod_2019_07_007
crossref_primary_10_1021_acs_chemmater_8b04433
crossref_primary_10_1016_j_jcat_2017_03_010
crossref_primary_10_1021_acs_jpcc_1c06847
crossref_primary_10_1039_D2CY00672C
crossref_primary_10_1007_s40242_018_8151_9
crossref_primary_10_3390_ma17040854
crossref_primary_10_1016_j_jece_2022_108604
crossref_primary_10_1021_acscatal_7b01696
crossref_primary_10_1007_s10934_025_01765_2
crossref_primary_10_1021_acscatal_9b00307
crossref_primary_10_1039_C9CY00624A
crossref_primary_10_1039_D2CP05218K
crossref_primary_10_3390_nano10071269
crossref_primary_10_3390_pr12102071
crossref_primary_10_1002_anie_202117698
crossref_primary_10_1021_jacs_1c02361
crossref_primary_10_1039_D2QI00750A
crossref_primary_10_1021_acs_inorgchem_9b02914
crossref_primary_10_1039_D1SC01179K
crossref_primary_10_1016_j_cej_2020_124529
crossref_primary_10_1016_j_fuel_2021_122360
crossref_primary_10_1039_C9CP03146D
crossref_primary_10_1016_j_micromeso_2019_06_015
crossref_primary_10_1007_s13369_023_08067_2
crossref_primary_10_1016_j_jcat_2024_115796
crossref_primary_10_1002_cmtd_202400076
crossref_primary_10_1039_D3CS00404J
crossref_primary_10_1016_j_apcata_2018_05_035
crossref_primary_10_1021_acs_jpcc_6b09794
crossref_primary_10_1021_acs_jpcc_7b06093
crossref_primary_10_1007_s13369_020_05312_w
crossref_primary_10_1016_j_jece_2021_105206
crossref_primary_10_1021_acs_jpcc_8b00995
crossref_primary_10_1016_j_seppur_2023_124148
crossref_primary_10_1021_acscatal_3c00714
crossref_primary_10_1016_j_seppur_2024_129559
crossref_primary_10_1021_acs_energyfuels_3c01494
crossref_primary_10_1016_j_mtchem_2024_101974
crossref_primary_10_1007_s10853_024_09738_7
crossref_primary_10_1007_s43153_022_00280_0
crossref_primary_10_1021_jacs_2c05332
crossref_primary_10_1016_j_chemosphere_2020_128479
crossref_primary_10_1002_ange_202114388
crossref_primary_10_1016_j_trechm_2021_03_004
crossref_primary_10_1021_acs_iecr_9b04549
crossref_primary_10_1016_j_mtcomm_2021_102028
crossref_primary_10_1039_C9TA11465C
crossref_primary_10_1016_j_micromeso_2019_01_039
crossref_primary_10_1038_s41467_019_12752_y
crossref_primary_10_1016_j_apcata_2017_06_008
crossref_primary_10_1021_acscatal_0c01136
crossref_primary_10_1126_sciadv_abo3093
crossref_primary_10_1016_j_apsusc_2021_151105
crossref_primary_10_1016_j_micromeso_2022_111736
crossref_primary_10_1016_j_jcat_2021_09_029
crossref_primary_10_1002_cctc_201700426
crossref_primary_10_1021_jacs_0c00590
crossref_primary_10_3390_molecules22101784
crossref_primary_10_1016_j_jaap_2020_104928
crossref_primary_10_1016_j_matchemphys_2024_130199
crossref_primary_10_1002_chem_201902945
crossref_primary_10_1007_s11244_021_01489_y
crossref_primary_10_1021_acs_chemrev_2c00896
crossref_primary_10_1021_acs_iecr_1c02599
crossref_primary_10_1021_acs_iecr_8b00632
crossref_primary_10_1021_jacs_1c07590
crossref_primary_10_1039_D3RA01810E
crossref_primary_10_3390_ijms242115898
crossref_primary_10_1039_D4CY00373J
crossref_primary_10_1016_j_jcat_2023_115211
crossref_primary_10_1021_acscatal_1c01138
crossref_primary_10_1016_j_apcatb_2020_119467
crossref_primary_10_1016_j_heliyon_2024_e25303
crossref_primary_10_1080_01614940_2021_1948301
crossref_primary_10_1016_j_apsusc_2021_150421
crossref_primary_10_1080_02603594_2024_2309878
crossref_primary_10_1016_j_apcata_2024_119581
crossref_primary_10_1002_cctc_202201302
crossref_primary_10_1039_D1RA06395B
crossref_primary_10_1016_j_micromeso_2022_111981
crossref_primary_10_1021_acscatal_3c05168
crossref_primary_10_1021_acs_jpcc_1c01989
crossref_primary_10_1021_jacs_4c10604
crossref_primary_10_1016_j_apcata_2018_10_035
crossref_primary_10_1016_j_fuel_2021_121807
crossref_primary_10_1021_acs_jpcc_1c04077
crossref_primary_10_1016_j_micromeso_2021_110928
crossref_primary_10_1016_j_colsurfa_2022_130251
crossref_primary_10_1021_acs_jpcc_4c02371
crossref_primary_10_1021_jacs_4c08408
crossref_primary_10_20517_cs_2023_55
crossref_primary_10_1021_acs_chemmater_0c03411
crossref_primary_10_1021_acscatal_9b05103
crossref_primary_10_1021_acs_chemmater_1c02799
crossref_primary_10_1021_acs_iecr_9b03036
crossref_primary_10_1021_acscatal_2c05291
crossref_primary_10_9767_bcrec_16_1_9476_9_21
crossref_primary_10_1021_acs_jpcc_9b11956
crossref_primary_10_1002_anie_202001364
crossref_primary_10_1002_anie_202210658
crossref_primary_10_1016_j_cep_2024_109821
crossref_primary_10_5004_dwt_2021_26937
crossref_primary_10_1002_cctc_202001344
Cites_doi 10.1039/C4CP02991G
10.1021/ja982082l
10.1023/A:1009019829376
10.1021/jp510845z
10.1081/CR-120023908
10.1016/j.molcata.2008.08.003
10.1039/tf9383400011
10.1021/j100183a009
10.1063/1.1323224
10.1002/jcc.20495
10.1063/1.2065267
10.1039/B608262A
10.1002/qua.560260519
10.1016/0022-3093(95)00355-X
10.1021/ja002689d
10.1002/chem.201101361
10.1021/cs501474u
10.1016/j.micromeso.2009.09.003
10.1021/jp2123828
10.1126/science.1204452
10.1002/anie.200503006
10.1021/jp9042232
10.1103/PhysRevLett.77.3865
10.1016/0254-0584(87)90048-4
10.1016/0009-2614(80)80396-4
10.1021/cr068042e
10.1021/acscatal.5b01496
10.1021/ja037063c
10.1039/b819435c
10.1021/jp022331z
10.1021/ja072767y
10.1063/1.4750979
10.1038/309589a0
10.1021/acscatal.5b00723
10.1039/c1cp21731c
10.1007/s11244-009-9271-8
10.1021/jp048056t
10.1021/ja907696h
10.1016/j.cplett.2004.02.056
10.1002/anie.200460644
10.1002/ange.201004360
10.1016/j.micromeso.2005.07.005
10.1002/anie.200353049
10.1002/anie.201006031
10.1016/0927-0256(96)00008-0
10.1021/jp511082v
10.1103/PhysRevB.49.14251
10.1063/1.3382344
10.1016/j.micromeso.2013.11.034
10.1016/S1387-1811(99)00167-5
10.1039/a909617e
10.1016/S1387-1811(99)00240-1
10.1023/A:1019188105794
10.1021/cr60019a001
10.1021/cr8002642
10.1021/ja200741r
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.66.052301
10.1063/1.2104507
10.1021/jp961987n
10.1016/j.micromeso.2014.02.040
10.1038/nchem.1403
10.1021/cr00031a014
10.1016/0021-9517(88)90297-7
10.1021/jp510844v
10.1007/s10562-014-1438-7
10.1002/anie.201410016
10.1080/10420159508227183
10.1002/anie.201104462
10.1039/C2CS35196J
10.1021/j100317a042
10.1021/jp4028468
10.1021/ja052592x
10.1021/jp304081k
10.1006/jcat.2002.3631
10.1021/cr00035a006
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.jcat.2016.04.021
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 255
ExternalDocumentID oai_HAL_hal_01372662v1
4081073801
10_1016_j_jcat_2016_04_021
S002195171630032X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c542t-a8b33f3d7aac9d33471deadea06be714d7a045d1766664edc6d5f92d3ff5b0c53
IEDL.DBID .~1
ISSN 0021-9517
IngestDate Fri May 09 12:13:29 EDT 2025
Thu Jul 10 17:37:07 EDT 2025
Mon Jul 14 10:42:36 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Tue Jul 01 03:14:02 EDT 2025
Fri Feb 23 02:27:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Extra-framework aluminum
Dealumination
Pentahedral aluminum
ZSM-5
Faujasite
SSZ-13
Mordenite
Density functional theory
Zeolite
DFT
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-a8b33f3d7aac9d33471deadea06be714d7a045d1766664edc6d5f92d3ff5b0c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4506-5062
0000-0001-5140-8397
OpenAccessLink https://hal.science/hal-01372662
PQID 1794427320
PQPubID 32080
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01372662v1
proquest_miscellaneous_2131892676
proquest_journals_1794427320
crossref_primary_10_1016_j_jcat_2016_04_021
crossref_citationtrail_10_1016_j_jcat_2016_04_021
elsevier_sciencedirect_doi_10_1016_j_jcat_2016_04_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
PublicationTitle Journal of catalysis
PublicationYear 2016
Publisher Elsevier Inc
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier
References Senderov, Halasz, Olson (b0125) 2014; 186
Göltl, Grüneis, Bucko, Hafner (b0320) 2012; 137
Ricchiardi, de Man, Sauer (b0220) 2000; 2
Milina, Mitchell, Crivelli, Cooke, Pérez-Ramírez (b0080) 2014
First, Gounaris, Wei, Floudas (b0405) 2011; 13
Busca (b0035) 2007; 107
de Jong, Zečević, Friedrich, de Jongh, Bulut, van Donk, Kenmogne, Finiels, Hulea, Fajula (b0025) 2010; 122
P. Fleurat-Lessard, P. Dayal, Code freely available at
Li, Zheng, Su, Zhang, Chen, Yang, Ye, Deng (b0165) 2007; 129
Fjermestad, Svelle, Swang (b0255) 2015; 119
Ruiz, McAdon, Garcés (b0205) 1997; 101
Brønsted (b0380) 1928; 5
Derouane, Andre, Lucas (b0090) 1988; 110
van Bokhoven, Koningsberger, Kunkeler, van Bekkum, Kentgens (b0195) 2000; 122
Benco, Demuth, Hafner, Hutschka, Toulhoat (b0145) 2002; 209
Bordiga, Ugliengo, Damin, Lamberti, Spoto, Zecchina, Spanò, Buzzoni, Dalloro, Rivetti (b0110) 2001; 15
Christensen, Johannsen, Schmidt, Christensen (b0050) 2003; 125
Nielsen, Brogaard, Falsig, Beato, Swang, Svelle (b0260) 2015; 5
Haag, Lago, Weisz (b0005) 1984; 309
Perdew, Burke, Ernzerhof (b0290) 1996; 77
Olson, Haag, Borghard (b0370) 2000; 35–36
Malicki, Mali, Quoineaud, Bourges, Simon, Thibault-Starzyk, Fernandez (b0175) 2010; 129
Vermeiren, Gilson (b0030) 2009; 52
Kresse, Furthmüller (b0280) 1996; 6
Smit, Maesen (b0095) 2008; 108
Dědeček, Sklenak, Li, Gao, Brus, Zhu, Tatsumi (b0115) 2009; 113
Kresse, Joubert (b0285) 1999; 59
E, Ren, Vanden-Eijnden (b0325) 2002; 66
Silaghi, Chizallet, Raybaud (b0105) 2014; 191
Heyden, Bell, Keil (b0345) 2005; 123
Czjzek, Jobic, Fitch, Vogt (b0375) 1992; 96
Evans, Polanyi (b0385) 1938; 34
Hartmann (b0065) 2004; 43
Canduela-Rodriguez, Sabbe, Reyniers, Joly, Marin (b0365) 2014; 16
Na, Jo, Kim, Cho, Jung, Seo, Messinger, Chmelka, Ryoo (b0060) 2011; 333
Becke, Johnson (b0300) 2005; 123
Corma (b0020) 1995; 95
Karwacki, de Winter, Aramburo, Lebbink, Post, Drury, Weckhuysen (b0160) 2011; 50
van Donk, Janssen, Bitter, de Jong (b0100) 2003; 45
Fjermestad, Svelle, Swang (b0235) 2013; 117
Agostini, Lamberti, Palin, Milanesio, Danilina, Xu, Janousch, van Bokhoven (b0140) 2010; 132
Van Geem, Scholle, Van der Velden, Veeman (b0185) 1988; 92
Grimme (b0240) 2006; 27
Henkelman, Jonsson (b0335) 2000; 113
Milina, Mitchell, Cooke, Crivelli, Perez-Ramirez (b0075) 2015; 54
Benco, Bucko, Hafner, Toulhoat (b0215) 2004; 108
Lisboa, Sánchez, Ruette (b0170) 2008; 294
Chen, Houthoofd, Grobet (b0155) 2005; 86
Roth, Shvets, Shamzhy, Chlubna, Kubu, Nachtigall, Cejka (b0070) 2011; 133
Beyerlein, Choi-Feng, Hall, Huggins, Ray (b0190) 1997; 4
Wouters, Chen, Grobet (b0135) 1998; 120
To, Sokol, French, Catlow, Sherwood, van Dam (b0225) 2006; 45
Silaghi, Chizallet, Petracovschi, Kerber, Sauer, Raybaud (b0245) 2015; 5
Van der Mynsbrugge, Hemelsoet, Vandichel, Waroquier, Van Speybroeck (b0315) 2012; 116
De Moor, Reyniers, Marin (b0350) 2009; 11
Sauer, Ugliengo, Garrone, Saunders (b0395) 1994; 94
Halasz, Senderov, Olson, Liang (b0130) 2015; 119
Grimme, Antony, Ehrlich, Krieg (b0295) 2010; 132
Mitchell, Michels, Kunze, Pérez-Ramírez (b0040) 2012; 4
Larmier, Chizallet, Cadran, Maury, Abboud, Lamic-Humblot, Marceau, Lauron-Pernot (b0360) 2015; 5
Bhering, Ramirez-Solis, Mota (b0150) 2003; 107
Pulay (b0340) 1980; 73
Valtchev, Majano, Mintova, Perez-Ramirez (b0045) 2013; 42
Fjermestad, Svelle, Swang (b0250) 2015; 119
Nguyen, De Moor, Reyniers, Marin (b0355) 2012; 116
Tuma, Sauer (b0305) 2006; 8
Moliner, Martinez, Corma (b0085) 2015
Aramburo, Karwacki, Cubillas, Asahina, de Winter, Drury, Buurmans, Stavitski, Mores, Daturi, Bazin, Dumas, Thibault-Starzyk, Post, Anderson, Terasaki, Weckhuysen (b0200) 2011; 17
Sauer, Zahradník (b0400) 1984; 26
Tuma, Sauer (b0310) 2004; 387
Groen, Bach, Ziese, Paulaime-van Donk, de Jong, Moulijn, Perez-Ramirez (b0055) 2005; 127
Kresse, Hafner (b0270) 1994; 49
Malola, Svelle, Bleken, Swang (b0230) 2012; 51
Boronat, Corma (b0010) 2015; 145
C. Marcilly, Acido-basic Catalysis, Technip Eds., Paris, 2005.
Mota, Bhering, Rosenbach (b0210) 2004; 43
M.-C. Silaghi, PhD Thesis, IFP Energies Nouvelles, 2014.
Catlow, Baram, Parker, Purton, Wright (b0120) 1995; 134
(accessed 10th January 2012).
Barthomeuf (b0390) 1987; 17
Müller, Harvey, Prins (b0180) 2000; 34
Kresse (b0275) 1995; 192–193
Wouters (10.1016/j.jcat.2016.04.021_b0135) 1998; 120
Groen (10.1016/j.jcat.2016.04.021_b0055) 2005; 127
Na (10.1016/j.jcat.2016.04.021_b0060) 2011; 333
Grimme (10.1016/j.jcat.2016.04.021_b0295) 2010; 132
Halasz (10.1016/j.jcat.2016.04.021_b0130) 2015; 119
Kresse (10.1016/j.jcat.2016.04.021_b0280) 1996; 6
Bhering (10.1016/j.jcat.2016.04.021_b0150) 2003; 107
Fjermestad (10.1016/j.jcat.2016.04.021_b0250) 2015; 119
Barthomeuf (10.1016/j.jcat.2016.04.021_b0390) 1987; 17
Nguyen (10.1016/j.jcat.2016.04.021_b0355) 2012; 116
Hartmann (10.1016/j.jcat.2016.04.021_b0065) 2004; 43
Czjzek (10.1016/j.jcat.2016.04.021_b0375) 1992; 96
First (10.1016/j.jcat.2016.04.021_b0405) 2011; 13
Malicki (10.1016/j.jcat.2016.04.021_b0175) 2010; 129
Corma (10.1016/j.jcat.2016.04.021_b0020) 1995; 95
Müller (10.1016/j.jcat.2016.04.021_b0180) 2000; 34
Christensen (10.1016/j.jcat.2016.04.021_b0050) 2003; 125
Derouane (10.1016/j.jcat.2016.04.021_b0090) 1988; 110
E (10.1016/j.jcat.2016.04.021_b0325) 2002; 66
van Bokhoven (10.1016/j.jcat.2016.04.021_b0195) 2000; 122
Evans (10.1016/j.jcat.2016.04.021_b0385) 1938; 34
Silaghi (10.1016/j.jcat.2016.04.021_b0245) 2015; 5
Tuma (10.1016/j.jcat.2016.04.021_b0310) 2004; 387
Van der Mynsbrugge (10.1016/j.jcat.2016.04.021_b0315) 2012; 116
Olson (10.1016/j.jcat.2016.04.021_b0370) 2000; 35–36
Sauer (10.1016/j.jcat.2016.04.021_b0395) 1994; 94
de Jong (10.1016/j.jcat.2016.04.021_b0025) 2010; 122
Valtchev (10.1016/j.jcat.2016.04.021_b0045) 2013; 42
Milina (10.1016/j.jcat.2016.04.021_b0075) 2015; 54
Grimme (10.1016/j.jcat.2016.04.021_b0240) 2006; 27
Kresse (10.1016/j.jcat.2016.04.021_b0285) 1999; 59
Perdew (10.1016/j.jcat.2016.04.021_b0290) 1996; 77
Heyden (10.1016/j.jcat.2016.04.021_b0345) 2005; 123
Sauer (10.1016/j.jcat.2016.04.021_b0400) 1984; 26
Benco (10.1016/j.jcat.2016.04.021_b0215) 2004; 108
Tuma (10.1016/j.jcat.2016.04.021_b0305) 2006; 8
Nielsen (10.1016/j.jcat.2016.04.021_b0260) 2015; 5
Bordiga (10.1016/j.jcat.2016.04.021_b0110) 2001; 15
Fjermestad (10.1016/j.jcat.2016.04.021_b0255) 2015; 119
Haag (10.1016/j.jcat.2016.04.021_b0005) 1984; 309
Boronat (10.1016/j.jcat.2016.04.021_b0010) 2015; 145
Mota (10.1016/j.jcat.2016.04.021_b0210) 2004; 43
Henkelman (10.1016/j.jcat.2016.04.021_b0335) 2000; 113
van Donk (10.1016/j.jcat.2016.04.021_b0100) 2003; 45
Ricchiardi (10.1016/j.jcat.2016.04.021_b0220) 2000; 2
De Moor (10.1016/j.jcat.2016.04.021_b0350) 2009; 11
Catlow (10.1016/j.jcat.2016.04.021_b0120) 1995; 134
10.1016/j.jcat.2016.04.021_b0265
Moliner (10.1016/j.jcat.2016.04.021_b0085) 2015
Silaghi (10.1016/j.jcat.2016.04.021_b0105) 2014; 191
Malola (10.1016/j.jcat.2016.04.021_b0230) 2012; 51
Kresse (10.1016/j.jcat.2016.04.021_b0275) 1995; 192–193
Benco (10.1016/j.jcat.2016.04.021_b0145) 2002; 209
Smit (10.1016/j.jcat.2016.04.021_b0095) 2008; 108
Milina (10.1016/j.jcat.2016.04.021_b0080) 2014
Van Geem (10.1016/j.jcat.2016.04.021_b0185) 1988; 92
Becke (10.1016/j.jcat.2016.04.021_b0300) 2005; 123
Vermeiren (10.1016/j.jcat.2016.04.021_b0030) 2009; 52
Agostini (10.1016/j.jcat.2016.04.021_b0140) 2010; 132
Li (10.1016/j.jcat.2016.04.021_b0165) 2007; 129
10.1016/j.jcat.2016.04.021_b0330
Brønsted (10.1016/j.jcat.2016.04.021_b0380) 1928; 5
Fjermestad (10.1016/j.jcat.2016.04.021_b0235) 2013; 117
Pulay (10.1016/j.jcat.2016.04.021_b0340) 1980; 73
To (10.1016/j.jcat.2016.04.021_b0225) 2006; 45
Beyerlein (10.1016/j.jcat.2016.04.021_b0190) 1997; 4
10.1016/j.jcat.2016.04.021_b0015
Chen (10.1016/j.jcat.2016.04.021_b0155) 2005; 86
Senderov (10.1016/j.jcat.2016.04.021_b0125) 2014; 186
Mitchell (10.1016/j.jcat.2016.04.021_b0040) 2012; 4
Karwacki (10.1016/j.jcat.2016.04.021_b0160) 2011; 50
Aramburo (10.1016/j.jcat.2016.04.021_b0200) 2011; 17
Göltl (10.1016/j.jcat.2016.04.021_b0320) 2012; 137
Larmier (10.1016/j.jcat.2016.04.021_b0360) 2015; 5
Lisboa (10.1016/j.jcat.2016.04.021_b0170) 2008; 294
Busca (10.1016/j.jcat.2016.04.021_b0035) 2007; 107
Kresse (10.1016/j.jcat.2016.04.021_b0270) 1994; 49
Dědeček (10.1016/j.jcat.2016.04.021_b0115) 2009; 113
Ruiz (10.1016/j.jcat.2016.04.021_b0205) 1997; 101
Canduela-Rodriguez (10.1016/j.jcat.2016.04.021_b0365) 2014; 16
Roth (10.1016/j.jcat.2016.04.021_b0070) 2011; 133
References_xml – volume: 5
  start-page: 7131
  year: 2015
  end-page: 7139
  ident: b0260
  publication-title: ACS Catal.
– volume: 116
  start-page: 18236
  year: 2012
  end-page: 18249
  ident: b0355
  publication-title: J. Phys. Chem. C
– volume: 17
  start-page: 49
  year: 1987
  end-page: 71
  ident: b0390
  publication-title: Mater. Chem. Phys.
– volume: 108
  start-page: 13656
  year: 2004
  end-page: 13666
  ident: b0215
  publication-title: J. Phys. Chem. B
– volume: 186
  start-page: 94
  year: 2014
  end-page: 100
  ident: b0125
  publication-title: Micropor. Mesopor. Mater.
– volume: 129
  start-page: 11161
  year: 2007
  end-page: 11171
  ident: b0165
  publication-title: J. Am. Chem. Soc.
– volume: 123
  start-page: 224101
  year: 2005
  ident: b0345
  publication-title: J. Chem. Phys.
– volume: 113
  start-page: 14454
  year: 2009
  end-page: 14466
  ident: b0115
  publication-title: J. Phys. Chem. C
– volume: 34
  start-page: 11
  year: 1938
  end-page: 24
  ident: b0385
  publication-title: Trans. Faraday Soc.
– volume: 387
  start-page: 388
  year: 2004
  end-page: 394
  ident: b0310
  publication-title: Chem. Phys. Lett.
– volume: 107
  start-page: 5366
  year: 2007
  end-page: 5410
  ident: b0035
  publication-title: Chem. Rev.
– volume: 73
  start-page: 393
  year: 1980
  end-page: 398
  ident: b0340
  publication-title: Chem. Phys. Lett.
– volume: 116
  start-page: 5499
  year: 2012
  end-page: 5508
  ident: b0315
  publication-title: J. Phys. Chem. C
– reference: > (accessed 10th January 2012).
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0290
  publication-title: Phys. Rev. Lett.
– volume: 42
  start-page: 263
  year: 2013
  end-page: 290
  ident: b0045
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 114111
  year: 2012
  ident: b0320
  publication-title: J. Chem. Phys.
– volume: 35–36
  start-page: 435
  year: 2000
  end-page: 446
  ident: b0370
  publication-title: Micropor. Mesopor. Mater.
– volume: 5
  start-page: 4423
  year: 2015
  end-page: 4437
  ident: b0360
  publication-title: ACS Catal.
– volume: 132
  start-page: 154104
  year: 2010
  ident: b0295
  publication-title: J. Chem. Phys.
– volume: 96
  start-page: 1535
  year: 1992
  end-page: 1540
  ident: b0375
  publication-title: J. Phys. Chem.
– volume: 50
  start-page: 1294
  year: 2011
  end-page: 1298
  ident: b0160
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 43
  year: 2001
  end-page: 52
  ident: b0110
  publication-title: Top. Catal.
– volume: 4
  start-page: 27
  year: 1997
  end-page: 42
  ident: b0190
  publication-title: Top. Catal.
– volume: 145
  start-page: 162
  year: 2015
  end-page: 172
  ident: b0010
  publication-title: Catal. Lett.
– volume: 43
  start-page: 5880
  year: 2004
  end-page: 5882
  ident: b0065
  publication-title: Angew. Chem. Int. Ed.
– volume: 122
  start-page: 12842
  year: 2000
  end-page: 12847
  ident: b0195
  publication-title: J. Am. Chem. Soc.
– volume: 191
  start-page: 82
  year: 2014
  end-page: 96
  ident: b0105
  publication-title: Micropor. Mesopor. Mater.
– volume: 26
  start-page: 793
  year: 1984
  end-page: 822
  ident: b0400
  publication-title: Int. J. Quantum Chem.
– volume: 110
  start-page: 58
  year: 1988
  end-page: 73
  ident: b0090
  publication-title: J. Catal.
– volume: 209
  start-page: 480
  year: 2002
  end-page: 488
  ident: b0145
  publication-title: J. Catal.
– volume: 119
  start-page: 2073
  year: 2015
  end-page: 2085
  ident: b0250
  publication-title: J. Phys. Chem. C
– volume: 333
  start-page: 328
  year: 2011
  end-page: 332
  ident: b0060
  publication-title: Science
– volume: 119
  start-page: 8619
  year: 2015
  end-page: 8625
  ident: b0130
  publication-title: J. Phys. Chem. C
– volume: 122
  start-page: 10272
  year: 2010
  end-page: 10276
  ident: b0025
  publication-title: Ang. Chem., Int. Ed.
– volume: 117
  start-page: 13442
  year: 2013
  end-page: 13451
  ident: b0235
  publication-title: J. Phys. Chem. C
– year: 2014
  ident: b0080
  publication-title: Nat. Commun.
– volume: 94
  start-page: 2095
  year: 1994
  ident: b0395
  publication-title: Chem. Rev.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0285
  publication-title: Phys. Rev. B
– volume: 45
  start-page: 297
  year: 2003
  end-page: 319
  ident: b0100
  publication-title: Catal. Rev.
– volume: 101
  start-page: 1733
  year: 1997
  end-page: 1744
  ident: b0205
  publication-title: J. Phys. Chem. B
– volume: 86
  start-page: 31
  year: 2005
  end-page: 37
  ident: b0155
  publication-title: Micropor. Mesopor. Mater.
– volume: 129
  start-page: 100
  year: 2010
  end-page: 105
  ident: b0175
  publication-title: Micropor. Mesopor. Mater.
– volume: 2
  start-page: 2195
  year: 2000
  end-page: 2204
  ident: b0220
  publication-title: Phys. Chem. Chem. Phys.
– volume: 34
  start-page: 135
  year: 2000
  end-page: 147
  ident: b0180
  publication-title: Micropor. Mesopor. Mater.
– volume: 127
  start-page: 10792
  year: 2005
  end-page: 10793
  ident: b0055
  publication-title: J. Am. Chem. Soc.
– year: 2015
  ident: b0085
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 92
  start-page: 1585
  year: 1988
  end-page: 1589
  ident: b0185
  publication-title: J. Phys. Chem.
– reference: P. Fleurat-Lessard, P. Dayal, Code freely available at: <
– volume: 132
  start-page: 667
  year: 2010
  end-page: 678
  ident: b0140
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 11
  year: 2015
  end-page: 15
  ident: b0245
  publication-title: ACS Catal.
– volume: 119
  start-page: 2086
  year: 2015
  end-page: 2095
  ident: b0255
  publication-title: J. Phys. Chem. C
– volume: 113
  start-page: 9978
  year: 2000
  end-page: 9985
  ident: b0335
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 231
  year: 1928
  end-page: 338
  ident: b0380
  publication-title: Chem. Rev.
– volume: 52
  start-page: 1131
  year: 2009
  end-page: 1161
  ident: b0030
  publication-title: Topics Catal.
– volume: 134
  start-page: 57
  year: 1995
  end-page: 64
  ident: b0120
  publication-title: Radiat. Eff. Defects Solids
– volume: 120
  start-page: 11419
  year: 1998
  end-page: 11425
  ident: b0135
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 1633
  year: 2006
  end-page: 1638
  ident: b0225
  publication-title: Angew. Chem. Int. Ed.
– volume: 192–193
  start-page: 222
  year: 1995
  end-page: 229
  ident: b0275
  publication-title: J. Non-Cryst. Solids
– reference: M.-C. Silaghi, PhD Thesis, IFP Energies Nouvelles, 2014.
– volume: 51
  start-page: 652
  year: 2012
  end-page: 655
  ident: b0230
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 3955
  year: 2006
  end-page: 3965
  ident: b0305
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 2939
  year: 2009
  end-page: 2958
  ident: b0350
  publication-title: Phys. Chem. Chem. Phys.
– volume: 309
  start-page: 589
  year: 1984
  end-page: 591
  ident: b0005
  publication-title: Nature
– reference: C. Marcilly, Acido-basic Catalysis, Technip Eds., Paris, 2005.
– volume: 107
  start-page: 4342
  year: 2003
  end-page: 4347
  ident: b0150
  publication-title: J. Phys. Chem. B
– volume: 294
  start-page: 93
  year: 2008
  end-page: 101
  ident: b0170
  publication-title: J. Mol. Catal. A
– volume: 13
  start-page: 17339
  year: 2011
  end-page: 17358
  ident: b0405
  publication-title: Phys. Chem. Chem. Phys.
– volume: 17
  start-page: 13773
  year: 2011
  end-page: 13781
  ident: b0200
  publication-title: Chem. Eur. J.
– volume: 123
  start-page: 154101
  year: 2005
  ident: b0300
  publication-title: J. Chem. Phys.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: b0240
  publication-title: J. Comput. Chem.
– volume: 125
  start-page: 13370
  year: 2003
  end-page: 13371
  ident: b0050
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 1591
  year: 2015
  end-page: 1594
  ident: b0075
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 66
  start-page: 052301
  year: 2002
  ident: b0325
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b0280
  publication-title: Comput. Mater. Sci.
– volume: 49
  start-page: 14251
  year: 1994
  end-page: 14269
  ident: b0270
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 23754
  year: 2014
  end-page: 23768
  ident: b0365
  publication-title: Phys. Chem. Chem. Phys.
– volume: 43
  start-page: 3050
  year: 2004
  end-page: 3053
  ident: b0210
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 6130
  year: 2011
  end-page: 6133
  ident: b0070
  publication-title: J. Am. Chem. Soc.
– volume: 95
  start-page: 559
  year: 1995
  end-page: 614
  ident: b0020
  publication-title: Chem. Rev.
– volume: 4
  start-page: 825
  year: 2012
  end-page: 831
  ident: b0040
  publication-title: Nat. Chem.
– volume: 108
  start-page: 4125
  year: 2008
  end-page: 4184
  ident: b0095
  publication-title: Chem. Rev.
– volume: 16
  start-page: 23754
  year: 2014
  ident: 10.1016/j.jcat.2016.04.021_b0365
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02991G
– volume: 120
  start-page: 11419
  year: 1998
  ident: 10.1016/j.jcat.2016.04.021_b0135
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja982082l
– volume: 15
  start-page: 43
  year: 2001
  ident: 10.1016/j.jcat.2016.04.021_b0110
  publication-title: Top. Catal.
  doi: 10.1023/A:1009019829376
– volume: 119
  start-page: 2086
  year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0255
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510845z
– ident: 10.1016/j.jcat.2016.04.021_b0015
– volume: 45
  start-page: 297
  year: 2003
  ident: 10.1016/j.jcat.2016.04.021_b0100
  publication-title: Catal. Rev.
  doi: 10.1081/CR-120023908
– volume: 294
  start-page: 93
  year: 2008
  ident: 10.1016/j.jcat.2016.04.021_b0170
  publication-title: J. Mol. Catal. A
  doi: 10.1016/j.molcata.2008.08.003
– volume: 34
  start-page: 11
  year: 1938
  ident: 10.1016/j.jcat.2016.04.021_b0385
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9383400011
– volume: 96
  start-page: 1535
  year: 1992
  ident: 10.1016/j.jcat.2016.04.021_b0375
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100183a009
– volume: 113
  start-page: 9978
  year: 2000
  ident: 10.1016/j.jcat.2016.04.021_b0335
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.jcat.2016.04.021_b0240
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 123
  start-page: 154101
  year: 2005
  ident: 10.1016/j.jcat.2016.04.021_b0300
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2065267
– volume: 8
  start-page: 3955
  year: 2006
  ident: 10.1016/j.jcat.2016.04.021_b0305
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B608262A
– volume: 26
  start-page: 793
  year: 1984
  ident: 10.1016/j.jcat.2016.04.021_b0400
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560260519
– volume: 192–193
  start-page: 222
  year: 1995
  ident: 10.1016/j.jcat.2016.04.021_b0275
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00355-X
– volume: 122
  start-page: 12842
  year: 2000
  ident: 10.1016/j.jcat.2016.04.021_b0195
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002689d
– volume: 17
  start-page: 13773
  year: 2011
  ident: 10.1016/j.jcat.2016.04.021_b0200
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201101361
– volume: 5
  start-page: 11
  year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0245
  publication-title: ACS Catal.
  doi: 10.1021/cs501474u
– volume: 129
  start-page: 100
  year: 2010
  ident: 10.1016/j.jcat.2016.04.021_b0175
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2009.09.003
– volume: 116
  start-page: 5499
  year: 2012
  ident: 10.1016/j.jcat.2016.04.021_b0315
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2123828
– year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0085
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 333
  start-page: 328
  year: 2011
  ident: 10.1016/j.jcat.2016.04.021_b0060
  publication-title: Science
  doi: 10.1126/science.1204452
– volume: 45
  start-page: 1633
  year: 2006
  ident: 10.1016/j.jcat.2016.04.021_b0225
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503006
– ident: 10.1016/j.jcat.2016.04.021_b0265
– volume: 113
  start-page: 14454
  year: 2009
  ident: 10.1016/j.jcat.2016.04.021_b0115
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9042232
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jcat.2016.04.021_b0290
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 17
  start-page: 49
  year: 1987
  ident: 10.1016/j.jcat.2016.04.021_b0390
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/0254-0584(87)90048-4
– volume: 73
  start-page: 393
  year: 1980
  ident: 10.1016/j.jcat.2016.04.021_b0340
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(80)80396-4
– volume: 107
  start-page: 5366
  year: 2007
  ident: 10.1016/j.jcat.2016.04.021_b0035
  publication-title: Chem. Rev.
  doi: 10.1021/cr068042e
– volume: 5
  start-page: 7131
  year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0260
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01496
– volume: 125
  start-page: 13370
  year: 2003
  ident: 10.1016/j.jcat.2016.04.021_b0050
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037063c
– volume: 11
  start-page: 2939
  year: 2009
  ident: 10.1016/j.jcat.2016.04.021_b0350
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b819435c
– volume: 107
  start-page: 4342
  year: 2003
  ident: 10.1016/j.jcat.2016.04.021_b0150
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022331z
– volume: 129
  start-page: 11161
  year: 2007
  ident: 10.1016/j.jcat.2016.04.021_b0165
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072767y
– volume: 137
  start-page: 114111
  year: 2012
  ident: 10.1016/j.jcat.2016.04.021_b0320
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4750979
– volume: 309
  start-page: 589
  year: 1984
  ident: 10.1016/j.jcat.2016.04.021_b0005
  publication-title: Nature
  doi: 10.1038/309589a0
– volume: 5
  start-page: 4423
  year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0360
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00723
– volume: 13
  start-page: 17339
  year: 2011
  ident: 10.1016/j.jcat.2016.04.021_b0405
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21731c
– volume: 52
  start-page: 1131
  year: 2009
  ident: 10.1016/j.jcat.2016.04.021_b0030
  publication-title: Topics Catal.
  doi: 10.1007/s11244-009-9271-8
– volume: 108
  start-page: 13656
  year: 2004
  ident: 10.1016/j.jcat.2016.04.021_b0215
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp048056t
– volume: 132
  start-page: 667
  year: 2010
  ident: 10.1016/j.jcat.2016.04.021_b0140
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907696h
– volume: 387
  start-page: 388
  year: 2004
  ident: 10.1016/j.jcat.2016.04.021_b0310
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.02.056
– volume: 43
  start-page: 5880
  year: 2004
  ident: 10.1016/j.jcat.2016.04.021_b0065
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200460644
– volume: 122
  start-page: 10272
  year: 2010
  ident: 10.1016/j.jcat.2016.04.021_b0025
  publication-title: Ang. Chem., Int. Ed.
  doi: 10.1002/ange.201004360
– volume: 86
  start-page: 31
  year: 2005
  ident: 10.1016/j.jcat.2016.04.021_b0155
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2005.07.005
– volume: 43
  start-page: 3050
  year: 2004
  ident: 10.1016/j.jcat.2016.04.021_b0210
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200353049
– ident: 10.1016/j.jcat.2016.04.021_b0330
– volume: 50
  start-page: 1294
  year: 2011
  ident: 10.1016/j.jcat.2016.04.021_b0160
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006031
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.jcat.2016.04.021_b0280
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 119
  start-page: 8619
  year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0130
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp511082v
– volume: 49
  start-page: 14251
  year: 1994
  ident: 10.1016/j.jcat.2016.04.021_b0270
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 132
  start-page: 154104
  year: 2010
  ident: 10.1016/j.jcat.2016.04.021_b0295
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 186
  start-page: 94
  year: 2014
  ident: 10.1016/j.jcat.2016.04.021_b0125
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2013.11.034
– volume: 34
  start-page: 135
  year: 2000
  ident: 10.1016/j.jcat.2016.04.021_b0180
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/S1387-1811(99)00167-5
– volume: 2
  start-page: 2195
  year: 2000
  ident: 10.1016/j.jcat.2016.04.021_b0220
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a909617e
– volume: 35–36
  start-page: 435
  year: 2000
  ident: 10.1016/j.jcat.2016.04.021_b0370
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/S1387-1811(99)00240-1
– volume: 4
  start-page: 27
  year: 1997
  ident: 10.1016/j.jcat.2016.04.021_b0190
  publication-title: Top. Catal.
  doi: 10.1023/A:1019188105794
– volume: 5
  start-page: 231
  year: 1928
  ident: 10.1016/j.jcat.2016.04.021_b0380
  publication-title: Chem. Rev.
  doi: 10.1021/cr60019a001
– volume: 108
  start-page: 4125
  year: 2008
  ident: 10.1016/j.jcat.2016.04.021_b0095
  publication-title: Chem. Rev.
  doi: 10.1021/cr8002642
– volume: 133
  start-page: 6130
  year: 2011
  ident: 10.1016/j.jcat.2016.04.021_b0070
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200741r
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.jcat.2016.04.021_b0285
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 66
  start-page: 052301
  year: 2002
  ident: 10.1016/j.jcat.2016.04.021_b0325
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.052301
– volume: 123
  start-page: 224101
  year: 2005
  ident: 10.1016/j.jcat.2016.04.021_b0345
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2104507
– volume: 101
  start-page: 1733
  year: 1997
  ident: 10.1016/j.jcat.2016.04.021_b0205
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp961987n
– volume: 191
  start-page: 82
  year: 2014
  ident: 10.1016/j.jcat.2016.04.021_b0105
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2014.02.040
– volume: 4
  start-page: 825
  year: 2012
  ident: 10.1016/j.jcat.2016.04.021_b0040
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1403
– year: 2014
  ident: 10.1016/j.jcat.2016.04.021_b0080
  publication-title: Nat. Commun.
– volume: 94
  start-page: 2095
  year: 1994
  ident: 10.1016/j.jcat.2016.04.021_b0395
  publication-title: Chem. Rev.
  doi: 10.1021/cr00031a014
– volume: 110
  start-page: 58
  year: 1988
  ident: 10.1016/j.jcat.2016.04.021_b0090
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(88)90297-7
– volume: 119
  start-page: 2073
  year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0250
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510844v
– volume: 145
  start-page: 162
  year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0010
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-014-1438-7
– volume: 54
  start-page: 1591
  year: 2015
  ident: 10.1016/j.jcat.2016.04.021_b0075
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201410016
– volume: 134
  start-page: 57
  year: 1995
  ident: 10.1016/j.jcat.2016.04.021_b0120
  publication-title: Radiat. Eff. Defects Solids
  doi: 10.1080/10420159508227183
– volume: 51
  start-page: 652
  year: 2012
  ident: 10.1016/j.jcat.2016.04.021_b0230
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201104462
– volume: 42
  start-page: 263
  year: 2013
  ident: 10.1016/j.jcat.2016.04.021_b0045
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35196J
– volume: 92
  start-page: 1585
  year: 1988
  ident: 10.1016/j.jcat.2016.04.021_b0185
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100317a042
– volume: 117
  start-page: 13442
  year: 2013
  ident: 10.1016/j.jcat.2016.04.021_b0235
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4028468
– volume: 127
  start-page: 10792
  year: 2005
  ident: 10.1016/j.jcat.2016.04.021_b0055
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052592x
– volume: 116
  start-page: 18236
  year: 2012
  ident: 10.1016/j.jcat.2016.04.021_b0355
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp304081k
– volume: 209
  start-page: 480
  year: 2002
  ident: 10.1016/j.jcat.2016.04.021_b0145
  publication-title: J. Catal.
  doi: 10.1006/jcat.2002.3631
– volume: 95
  start-page: 559
  year: 1995
  ident: 10.1016/j.jcat.2016.04.021_b0020
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a006
SSID ssj0011558
Score 2.5687592
Snippet [Display omitted] •Mechanisms for zeolite dealumination are unraveled by DFT calculations.•Water molecules adsorb on Al, in anti to Brønsted acid sites, before...
Display Omitted * Mechanisms for zeolite dealumination are unraveled by DFT calculations. * Water molecules adsorb on Al, in anti to Brønsted acid sites,...
Dealumination of zeolites is a major issue in material science and catalysis for decades, with tremendous lack of knowledge about the molecular scale...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms adsorption
aluminum
aluminum hydroxide
Bronsted acids
Catalysis
Catalysts
catalytic activity
chemical bonding
Chemical bonds
Chemical Sciences
Dealumination
Density functional theory
Extra-framework aluminum
Faujasite
Gibbs free energy
hydrolysis
materials science
Mordenite
Pentahedral aluminum
SSZ-13
Zeolite
zeolites
ZSM-5
Title Dealumination mechanisms of zeolites and extra-framework aluminum confinement
URI https://dx.doi.org/10.1016/j.jcat.2016.04.021
https://www.proquest.com/docview/1794427320
https://www.proquest.com/docview/2131892676
https://hal.science/hal-01372662
Volume 339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BPQCHqoUiQtNoW_VWGex9OTlGaVGAwqmRclutvbsiiDgIJxw48NuZie0IkJoDN3sf9mpm95vx-ptZgJ9BJF5lPES0xxbJPM3wynaj1Ok8Di6kQVK88-WVHo7k-ViNN2DQxMIQrbLG_grTl2hdl5zU0jy5m0woxhdXm6J0LwKnJh9TBLtMidZ3_LSieaDDoyo0JioCtq4DZyqO1w3t7qEJ1Mt0pzz5n3HavCaW5BuwXlqg00_wsXYdWb8a3WfY8MUebA-aE9v2YPdFcsF9uPyNPuCCmC4kezb1FOM7KaclmwX26In35ktmC8cQn-9tFBqaFqu6LaYMv5UDPpA2EL_A6PTPv8Ewqg9PiHIl-Tyy3UyIIFxqbd5zQqARckSOtrHOfJpIrEBvzlF-SK2ld7l2KvS4EyGoLM6VOICtYlb4Q2BB5jJ0gwxxRoeTJFa6WPe6Fn2P2AmuWpA0UjN5nVmcDri4NQ2F7MaQpA1J2sTSoKRb8GvV567Kq7G2tWqUYV7NDoPAv7bfD9Tc6gWUSnvY_2uojFItonPCH7BRu1GsqRdwaQinJLp2PG7B91U16pP-p9jCzxal4QkCYo_rVB-9c3xfYYfuKvpvG7bm9wv_DZ2cedZZzuIOfOifXQyvngFQPPut
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7ausPggGCAKIzNIG4oWuJfaY9V2ZSxtqdN6s1yYlt0WtNpaTnw1_Ne41SAxA67RXacWM_2916c730G-BJE5lXJQ0J7bIms8hKv7CDJna7S4EIeJOU7T2e6uJHf52q-B-MuF4ZolRH7W0zfonUsOYvWPLtfLCjHF1ebIrkXgVOTz_fhgNSpZA8ORpdXxWz3MwFdZgvIxEbABjF3pqV53dIGH3pBvVU85dn__NP-DyJK_oPXWyd08RJexOiRjdoOvoI9Xx_B4bg7tO0Inv-hL_gapt8wDNwQ2YXMz5ae0nwXzbJhq8B-eaK--YbZ2jGE6AebhI6pxdpmmyXDz-WAD6Q9xDdwc3F-PS6SeH5CUinJ14kdlEIE4XJrq6ETAv2QI360TXXp80xiBQZ0jiQitZbeVdqpMOROhKDKtFLiLfTqVe3fAQuykmEQZEhLOp8ks9KlejiwGH6kTnDVh6yzmqmiuDidcXFnOhbZrSFLG7K0SaVBS_fh667NfSut8ejdqhsM89cEMYj9j7b7jCO3ewGpaRejiaEyUlvE-IT_xJuOu4E1cQ03hqBKYnTH0z582lXjeNIvFVv71aYxPENMHHKd6_dP7N8pHBbX04mZXM6uPsAzqmnZwMfQWz9s_EeMedblSZzTvwHvff5e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dealumination+mechanisms+of+zeolites+and+extra-framework+aluminum+confinement&rft.jtitle=Journal+of+catalysis&rft.au=Silaghi%2C+Marius-Christian&rft.au=Chizallet%2C+C%C3%A9line&rft.au=Sauer%2C+Joachim&rft.au=Raybaud%2C+Pascal&rft.date=2016-07-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=339&rft.spage=242&rft_id=info:doi/10.1016%2Fj.jcat.2016.04.021&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4081073801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon