Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes
Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether dis...
Saved in:
Published in | Molecular plant-microbe interactions Vol. 28; no. 9; pp. 1049 - 1058 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Phytopathological Society
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses. |
---|---|
AbstractList | Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses. Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses.Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses. |
Author | Carvalhais, Lilia C. Dennis, Paul G. Schenk, Peer M. Vivanco, Jorge M. Badri, Dayakar V. Kidd, Brendan N. |
Author_xml | – sequence: 1 givenname: Lilia C. surname: Carvalhais fullname: Carvalhais, Lilia C. organization: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and – sequence: 2 givenname: Paul G. surname: Dennis fullname: Dennis, Paul G. organization: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and – sequence: 3 givenname: Dayakar V. surname: Badri fullname: Badri, Dayakar V. organization: Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, U.S.A – sequence: 4 givenname: Brendan N. surname: Kidd fullname: Kidd, Brendan N. organization: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and – sequence: 5 givenname: Jorge M. surname: Vivanco fullname: Vivanco, Jorge M. organization: Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, U.S.A – sequence: 6 givenname: Peer M. surname: Schenk fullname: Schenk, Peer M. organization: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26035128$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFH8AGZcmiBtuxE3tZVQUGZlQ0wNq6fmTqkthDnJGAX4_TaVkgVXR1pavvHJ37OEFHMUWP0EtK3lCi-Nv15_USE4qpwITQBm-eoAVVvMZtS5ojtCBScUyYZMfoJOebwqhGiGfomDWkFpTJBfq0CvF7iNvqI-QhxWCrcxtc9SVsI_Slf1ZtUpqqy597B5PPZxVEV22uw--Ud9d-9NU62DGZkAafn6OnHfTZv7irp-jbu8uvFx_w6ur98uJ8ha3gbMJAVe1a2SrOayM5OOeYoAI6KUQHQBwnoqmVYoZZIzvTdA6kn_MqboSk9SlaHnxdghu9G8MA4y-dIOjbRhq3GsYp2N5rA0La4m8kqzlTrXScKyMYdTUFzmXxen3w2o3px97nSQ8hW9_3EH3aZ83IvFnCSub_obRthJJt07JHoOV-ZVw1D_PqDt2bwbu_49yfqADtASh7znn0nbZhgimkOI0Qek2Jnp9Bz8-gCdVU6Dmy3hQl_Ud5b_6w5g9UnLPu |
CitedBy_id | crossref_primary_10_1007_s11104_021_04917_w crossref_primary_10_1016_j_scitotenv_2024_175766 crossref_primary_10_3390_su15010625 crossref_primary_10_1093_femsec_fiaa067 crossref_primary_10_1002_glr2_12081 crossref_primary_10_1146_annurev_genet_120215_034952 crossref_primary_10_1007_s11104_023_06247_5 crossref_primary_10_1371_journal_pone_0139127 crossref_primary_10_3389_fpls_2024_1464710 crossref_primary_10_3389_fpls_2017_00999 crossref_primary_10_1128_msphere_00821_24 crossref_primary_10_1016_j_ibiod_2019_104808 crossref_primary_10_1186_s12284_016_0111_8 crossref_primary_10_1111_ppl_13679 crossref_primary_10_15252_embj_2018100972 crossref_primary_10_1007_s10725_023_00986_2 crossref_primary_10_1146_annurev_micro_090817_062524 crossref_primary_10_1111_nph_17746 crossref_primary_10_3389_fpls_2019_01741 crossref_primary_10_1080_17429145_2022_2086307 crossref_primary_10_3389_fmicb_2021_713349 crossref_primary_10_1007_s12298_021_00927_1 crossref_primary_10_1038_s41522_021_00241_4 crossref_primary_10_3389_fpls_2016_01088 crossref_primary_10_3389_fpls_2021_602486 crossref_primary_10_3389_fmicb_2020_00034 crossref_primary_10_1002_jobm_202000405 crossref_primary_10_3389_fmicb_2022_853077 crossref_primary_10_1186_s40793_023_00466_0 crossref_primary_10_3389_fpls_2019_00273 crossref_primary_10_1016_j_tplants_2019_02_010 crossref_primary_10_3389_fmicb_2021_772420 crossref_primary_10_1093_jxb_erw355 crossref_primary_10_1111_1751_7915_14296 crossref_primary_10_1016_j_envpol_2024_124149 crossref_primary_10_1016_j_micres_2024_127860 crossref_primary_10_3389_fpls_2017_01617 crossref_primary_10_1002_ajb2_1743 crossref_primary_10_1038_s41396_020_00785_x crossref_primary_10_3389_fpls_2024_1377453 crossref_primary_10_3390_plants11212816 crossref_primary_10_1016_j_tplants_2020_03_014 crossref_primary_10_1007_s11274_020_02966_4 crossref_primary_10_3389_fpls_2017_00132 crossref_primary_10_1111_pce_13632 crossref_primary_10_3389_fpls_2021_621276 crossref_primary_10_1016_j_cub_2019_09_015 crossref_primary_10_17221_65_2021_PSE crossref_primary_10_1146_annurev_phyto_082718_095959 crossref_primary_10_1080_15592324_2016_1187357 crossref_primary_10_1038_s41396_020_00759_z crossref_primary_10_1071_SR20247 crossref_primary_10_3389_fmicb_2022_809940 crossref_primary_10_1016_j_plantsci_2019_05_016 crossref_primary_10_1111_tpj_15135 crossref_primary_10_1111_1758_2229_12934 crossref_primary_10_1016_j_rhisph_2018_10_002 crossref_primary_10_1111_nph_19060 crossref_primary_10_3390_microorganisms9040675 crossref_primary_10_1080_17429145_2019_1640294 crossref_primary_10_1093_femsec_fiw119 crossref_primary_10_1016_j_soilbio_2022_108599 crossref_primary_10_3389_fpls_2023_1196171 crossref_primary_10_3390_microorganisms11020392 crossref_primary_10_1016_j_molp_2023_08_004 crossref_primary_10_1038_s41396_018_0093_1 crossref_primary_10_1093_femsec_fiaa052 crossref_primary_10_1128_spectrum_00208_23 crossref_primary_10_1128_mbio_00343_22 crossref_primary_10_3389_fmicb_2023_1304205 crossref_primary_10_1007_s11104_024_06981_4 crossref_primary_10_3390_microorganisms9122456 crossref_primary_10_3390_plants10122789 crossref_primary_10_1186_s12870_024_05415_8 crossref_primary_10_1111_nph_18886 crossref_primary_10_1016_j_tplants_2022_08_012 crossref_primary_10_1016_j_catena_2024_107817 crossref_primary_10_3389_fmicb_2025_1550749 crossref_primary_10_1016_j_stress_2024_100661 crossref_primary_10_1080_01904167_2021_1952221 crossref_primary_10_1038_s41598_023_30915_2 crossref_primary_10_1111_pce_13966 crossref_primary_10_1080_15476286_2021_2024024 crossref_primary_10_1007_s00374_019_01406_2 crossref_primary_10_1093_plcell_koac163 crossref_primary_10_1111_pce_13214 crossref_primary_10_1007_s00344_023_11030_y crossref_primary_10_1007_s11104_023_06114_3 crossref_primary_10_1016_j_micres_2023_127344 crossref_primary_10_3389_fmicb_2018_03241 crossref_primary_10_3390_ijms23094860 crossref_primary_10_1016_j_envexpbot_2023_105397 crossref_primary_10_1007_s00284_020_02015_1 crossref_primary_10_1038_srep26175 crossref_primary_10_1007_s11274_017_2364_9 crossref_primary_10_1007_s12355_022_01157_9 crossref_primary_10_1371_journal_pone_0259171 crossref_primary_10_1093_jxb_erac375 crossref_primary_10_1038_s41598_017_10613_6 crossref_primary_10_1093_femsec_fiad019 crossref_primary_10_1093_jxb_eraa111 crossref_primary_10_1016_j_tig_2020_09_010 crossref_primary_10_1016_j_scitotenv_2024_173147 crossref_primary_10_1111_een_12966 crossref_primary_10_3390_microorganisms11122967 crossref_primary_10_1016_j_watres_2019_115031 crossref_primary_10_1007_s42729_023_01526_7 crossref_primary_10_1093_jxb_erac491 crossref_primary_10_1016_j_agee_2021_107651 crossref_primary_10_1186_s40793_024_00618_w crossref_primary_10_1038_s41467_023_37164_x crossref_primary_10_1146_annurev_phyto_021622_100127 crossref_primary_10_1371_journal_pone_0204195 crossref_primary_10_1111_nph_17549 crossref_primary_10_1007_s00374_016_1136_2 crossref_primary_10_1016_j_envexpbot_2024_106057 crossref_primary_10_1128_aem_02422_21 crossref_primary_10_1016_j_tplants_2019_06_008 crossref_primary_10_1007_s00299_018_2255_z crossref_primary_10_1111_1758_2229_12760 crossref_primary_10_7717_peerj_11340 crossref_primary_10_1016_j_apsoil_2021_104080 crossref_primary_10_1128_spectrum_03611_22 crossref_primary_10_3389_fmicb_2023_1233469 crossref_primary_10_1007_s13205_025_04243_3 crossref_primary_10_1073_pnas_2111521118 crossref_primary_10_1073_pnas_1722335115 crossref_primary_10_1016_j_cell_2018_02_024 crossref_primary_10_1371_journal_pone_0248030 crossref_primary_10_1007_s12275_024_00114_3 crossref_primary_10_1021_acs_jafc_4c09178 crossref_primary_10_3389_fmolb_2021_686110 crossref_primary_10_3390_microorganisms10030660 crossref_primary_10_1094_PBIOMES_12_16_0019_RVW crossref_primary_10_1094_PBIOMES_1_2 crossref_primary_10_3390_plants11010133 crossref_primary_10_1016_j_mib_2019_10_003 crossref_primary_10_1016_j_pbi_2022_102227 crossref_primary_10_3389_fpls_2019_00862 crossref_primary_10_15302_J_FASE_2020346 crossref_primary_10_1038_s42003_021_02037_w crossref_primary_10_1016_j_apsoil_2017_10_004 crossref_primary_10_15252_embr_202357455 crossref_primary_10_3389_fmicb_2023_1171104 crossref_primary_10_3390_microorganisms11122984 crossref_primary_10_1007_s11104_022_05508_z crossref_primary_10_1111_nph_14253 crossref_primary_10_1094_PDIS_08_18_1387_RE crossref_primary_10_1016_j_jenvman_2025_124746 crossref_primary_10_1093_femsre_fux005 crossref_primary_10_1016_j_cell_2023_08_035 crossref_primary_10_1016_j_envint_2023_107986 crossref_primary_10_1111_ppa_13641 crossref_primary_10_1016_j_jhazmat_2021_125728 crossref_primary_10_1016_j_soilbio_2021_108518 crossref_primary_10_1094_MPMI_05_19_0142_R crossref_primary_10_3389_fmicb_2022_842372 crossref_primary_10_1128_msystems_01124_23 crossref_primary_10_1016_j_mib_2017_03_009 crossref_primary_10_1038_s41396_019_0375_2 crossref_primary_10_1128_AEM_01053_20 crossref_primary_10_1128_spectrum_01226_22 crossref_primary_10_1016_j_freeradbiomed_2016_02_028 crossref_primary_10_1128_aem_00971_22 crossref_primary_10_1128_AEM_01237_21 crossref_primary_10_1007_s11103_016_0433_3 crossref_primary_10_1094_PBIOMES_02_20_0020_R crossref_primary_10_1016_j_aoas_2020_09_003 crossref_primary_10_3389_fmars_2024_1359610 crossref_primary_10_1016_j_plantsci_2017_11_012 crossref_primary_10_1093_jxb_erw135 crossref_primary_10_1039_d0pp00199f crossref_primary_10_1016_j_envpol_2019_113709 crossref_primary_10_1007_s00572_019_00914_1 crossref_primary_10_1021_acs_jafc_0c00073 crossref_primary_10_1007_s00203_022_03380_0 crossref_primary_10_1007_s10658_023_02734_8 crossref_primary_10_3389_fpls_2023_1276472 crossref_primary_10_1094_PBIOMES_05_19_0026_R crossref_primary_10_1094_PBIOMES_4_1 crossref_primary_10_1094_PBIOMES_4_4 crossref_primary_10_1016_j_scitotenv_2022_157132 crossref_primary_10_3390_plants11091164 crossref_primary_10_1016_j_apsoil_2020_103781 crossref_primary_10_1016_j_pedobi_2018_08_001 crossref_primary_10_3389_fmicb_2023_1194606 crossref_primary_10_1186_s12284_023_00636_1 |
Cites_doi | 10.1007/BF00007922 10.1093/mp/sss128 10.1073/pnas.0802332105 10.1074/jbc.M112.433300 10.1094/MPMI.1999.12.8.720 10.1016/j.tibs.2005.03.009 10.1105/tpc.108.064303 10.1094/MPMI-21-12-1643 10.1016/j.jplph.2012.10.016 10.1139/cjb-2012-0217 10.1002/jpln.201000360 10.1038/nmeth.1990 10.1111/j.1654-1103.2003.tb02228.x 10.1371/journal.pone.0068555 10.1105/tpc.022319 10.1128/AEM.00569-13 10.1002/jpln.201000085 10.1016/S0168-6496(03)00155-7 10.1016/S0176-1617(88)80120-2 10.1073/pnas.94.10.5473 10.1146/annurev-phyto-073009-114450 10.1093/jac/dks005 10.1038/nature06006 10.1038/163688a0 10.1099/ijs.0.013664-0 10.1016/j.phytochem.2009.06.009 10.1104/pp.107.109587 10.1104/pp.112.202697 10.1111/j.1462-2920.2007.01416.x 10.1007/s11738-013-1483-7 10.1016/j.biortech.2012.11.098 10.1111/j.1365-313X.2007.03387.x 10.1007/BF01240669 10.1071/PP9920233 10.1139/m85-106 10.1055/s-2001-12905 10.1038/ismej.2013.47 10.1111/j.1574-6941.2010.00860.x 10.1111/j.1365-3040.2009.01926.x 10.1146/annurev.arplant.57.032905.105159 10.1186/1471-2229-12-163 10.1111/j.1469-8137.2008.02578.x 10.1105/tpc.104.026690 10.1105/tpc.109.069658 10.1093/mp/ssr002 10.1111/j.1399-3054.1962.tb08052.x 10.1007/BF02925621 10.1104/pp.108.127613 10.1007/s004250050411 10.1093/bioinformatics/btr381 10.1105/tpc.10.12.2103 10.1104/pp.010843 10.1007/s003740050365 10.1186/1756-0500-5-158 10.1016/j.micres.2004.10.003 10.1105/tpc.109.066910 10.1105/tpc.104.025833 10.1016/0092-8674(94)90221-6 10.1038/nmeth.f.303 10.1105/tpc.6.5.751 10.1016/j.tplants.2010.12.001 10.1094/MPMI-06-11-0179 10.1101/gad.297704 10.1146/annurev.arplant.48.1.355 10.1105/tpc.109.065730 10.1128/AEM.03006-05 10.1006/pmpp.1996.0003 10.1094/MPMI-20-7-0759 10.1038/nature05960 10.1023/A:1004356007312 10.1007/s11306-010-0218-7 10.1073/pnas.95.25.15107 10.1105/tpc.8.8.1225 10.1105/tpc.106.048017 10.1105/tpc.112.098277 10.1371/journal.pone.0056457 10.1099/00221287-115-1-167 10.1016/S0021-9258(17)36752-2 10.1104/pp.107.113829 10.1016/j.apsoil.2014.06.011 10.1038/nature09430 10.1111/pce.12002 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T7 8FD C1K FR3 P64 7S9 L.6 DOA |
DOI | 10.1094/MPMI-01-15-0016-R |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1943-7706 |
EndPage | 1058 |
ExternalDocumentID | oai_doaj_org_article_ba58cdd2b82342978d449b521d31a448 26035128 10_1094_MPMI_01_15_0016_R |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29M 2WC 53G 7X2 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAYJJ AAYXX ABDNZ ABRJW ABUWG ACGFO ACPRK ACYGS ADBBV AENEX AEUYN AFKRA AFRAH ALIPV ALMA_UNASSIGNED_HOLDINGS ATCPS BAWUL BBNVY BENPR BES BHPHI BPHCQ BVXVI C1A CCPQU CITATION CS3 D1J DIK DU5 E3Z EBS EJD F5P FRP FYUFA GROUPED_DOAJ HCIFZ HMCUK HYO LK8 M0K M1P M7P MVM OK1 P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPS S0X TR2 UKHRP ~KM CGR CUY CVF ECM EIF NPM YCJ 7X8 7T7 8FD C1K FR3 P64 7S9 L.6 |
ID | FETCH-LOGICAL-c542t-a193d7879443b84addd2515af855faa0d40563992b2cb8fb6fda8e351294b5813 |
IEDL.DBID | DOA |
ISSN | 0894-0282 |
IngestDate | Wed Aug 27 01:21:54 EDT 2025 Fri Jul 11 10:31:04 EDT 2025 Thu Jul 10 23:53:05 EDT 2025 Fri Jul 11 16:22:29 EDT 2025 Thu Apr 03 07:07:56 EDT 2025 Tue Jul 01 00:38:49 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-a193d7879443b84addd2515af855faa0d40563992b2cb8fb6fda8e351294b5813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/ba58cdd2b82342978d449b521d31a448 |
PMID | 26035128 |
PQID | 1710985591 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ba58cdd2b82342978d449b521d31a448 proquest_miscellaneous_2000160219 proquest_miscellaneous_1765987672 proquest_miscellaneous_1710985591 pubmed_primary_26035128 crossref_citationtrail_10_1094_MPMI_01_15_0016_R crossref_primary_10_1094_MPMI_01_15_0016_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-00 2015-Sep 20150901 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular plant-microbe interactions |
PublicationTitleAlternate | Mol Plant Microbe Interact |
PublicationYear | 2015 |
Publisher | The American Phytopathological Society |
Publisher_xml | – name: The American Phytopathological Society |
References | b10 b54 b53 b12 b56 b11 b55 b14 b58 b13 b57 b16 b15 b18 b17 b19 b1 b2 b3 b4 b5 b7 b9 b61 b60 b63 b62 b21 b65 b20 b64 b23 b67 b22 b66 b25 b69 b24 b68 b27 b26 b29 b28 b70 b72 b71 b74 b73 b32 b76 b75 b34 b77 b36 b35 b79 b38 b37 b39 Gaworzewska E. T. (b30) 1982; 128 Gransee A. (b31) 2000; 163 b81 b80 b82 b85 b41 b84 b40 b87 b43 b86 b42 b89 b45 b44 b88 b47 b46 b49 b48 Hanlon D. W. (b33) 1994; 269 b50 b52 b51 |
References_xml | – ident: b65 doi: 10.1007/BF00007922 – ident: b39 doi: 10.1093/mp/sss128 – ident: b38 doi: 10.1073/pnas.0802332105 – ident: b4 doi: 10.1074/jbc.M112.433300 – ident: b43 doi: 10.1094/MPMI.1999.12.8.720 – ident: b46 doi: 10.1016/j.tibs.2005.03.009 – ident: b71 doi: 10.1105/tpc.108.064303 – ident: b41 doi: 10.1094/MPMI-21-12-1643 – ident: b53 doi: 10.1016/j.jplph.2012.10.016 – ident: b70 doi: 10.1139/cjb-2012-0217 – ident: b77 doi: 10.1002/jpln.201000360 – ident: b10 doi: 10.1038/nmeth.1990 – ident: b25 doi: 10.1111/j.1654-1103.2003.tb02228.x – ident: b15 doi: 10.1371/journal.pone.0068555 – ident: b44 doi: 10.1105/tpc.022319 – ident: b21 doi: 10.1128/AEM.00569-13 – ident: b85 doi: 10.1002/jpln.201000085 – ident: b68 doi: 10.1016/S0168-6496(03)00155-7 – ident: b11 doi: 10.1016/S0176-1617(88)80120-2 – ident: b48 doi: 10.1073/pnas.94.10.5473 – ident: b88 doi: 10.1146/annurev-phyto-073009-114450 – ident: b35 doi: 10.1093/jac/dks005 – ident: b18 doi: 10.1038/nature06006 – ident: b67 doi: 10.1038/163688a0 – ident: b45 doi: 10.1099/ijs.0.013664-0 – ident: b75 doi: 10.1016/j.phytochem.2009.06.009 – ident: b89 doi: 10.1104/pp.107.109587 – ident: b17 doi: 10.1104/pp.112.202697 – ident: b37 doi: 10.1111/j.1462-2920.2007.01416.x – ident: b61 doi: 10.1007/s11738-013-1483-7 – ident: b20 doi: 10.1016/j.biortech.2012.11.098 – ident: b29 doi: 10.1111/j.1365-313X.2007.03387.x – ident: b13 doi: 10.1007/BF01240669 – ident: b32 doi: 10.1071/PP9920233 – ident: b63 doi: 10.1139/m85-106 – ident: b3 doi: 10.1055/s-2001-12905 – ident: b23 doi: 10.1038/ismej.2013.47 – ident: b22 doi: 10.1111/j.1574-6941.2010.00860.x – ident: b5 doi: 10.1111/j.1365-3040.2009.01926.x – volume: 128 start-page: 1179 year: 1982 ident: b30 publication-title: J. Gen. Microbiol. – volume: 163 start-page: 381 year: 2000 ident: b31 publication-title: Soil Sci. – ident: b84 doi: 10.1146/annurev.arplant.57.032905.105159 – ident: b16 doi: 10.1186/1471-2229-12-163 – ident: b58 doi: 10.1111/j.1469-8137.2008.02578.x – ident: b69 doi: 10.1105/tpc.104.026690 – ident: b49 doi: 10.1105/tpc.109.069658 – ident: b54 doi: 10.1093/mp/ssr002 – ident: b51 doi: 10.1111/j.1399-3054.1962.tb08052.x – ident: b82 doi: 10.1007/BF02925621 – ident: b60 doi: 10.1104/pp.108.127613 – ident: b50 doi: 10.1007/s004250050411 – ident: b27 doi: 10.1093/bioinformatics/btr381 – ident: b56 doi: 10.1105/tpc.10.12.2103 – ident: b34 doi: 10.1104/pp.010843 – ident: b66 doi: 10.1007/s003740050365 – ident: b72 doi: 10.1186/1756-0500-5-158 – ident: b55 doi: 10.1016/j.micres.2004.10.003 – ident: b40 doi: 10.1105/tpc.109.066910 – ident: b2 doi: 10.1105/tpc.104.025833 – ident: b42 doi: 10.1016/0092-8674(94)90221-6 – ident: b12 doi: 10.1038/nmeth.f.303 – ident: b28 doi: 10.1105/tpc.6.5.751 – ident: b7 doi: 10.1016/j.tplants.2010.12.001 – ident: b80 doi: 10.1094/MPMI-06-11-0179 – ident: b9 doi: 10.1101/gad.297704 – ident: b19 doi: 10.1146/annurev.arplant.48.1.355 – ident: b79 doi: 10.1105/tpc.109.065730 – ident: b24 doi: 10.1128/AEM.03006-05 – ident: b81 doi: 10.1006/pmpp.1996.0003 – ident: b1 doi: 10.1094/MPMI-20-7-0759 – ident: b73 doi: 10.1038/nature05960 – ident: b36 doi: 10.1023/A:1004356007312 – ident: b62 doi: 10.1007/s11306-010-0218-7 – ident: b74 doi: 10.1073/pnas.95.25.15107 – ident: b57 doi: 10.1105/tpc.8.8.1225 – ident: b26 doi: 10.1105/tpc.106.048017 – ident: b87 doi: 10.1105/tpc.112.098277 – ident: b14 doi: 10.1371/journal.pone.0056457 – ident: b52 doi: 10.1099/00221287-115-1-167 – volume: 269 start-page: 14038 year: 1994 ident: b33 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)36752-2 – ident: b76 doi: 10.1104/pp.107.113829 – ident: b86 doi: 10.1016/j.apsoil.2014.06.011 – ident: b64 doi: 10.1038/nature09430 – ident: b47 doi: 10.1111/pce.12002 |
SSID | ssj0019655 |
Score | 2.5599806 |
Snippet | Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 1049 |
SubjectTerms | Arabidopsis Arabidopsis - physiology Arabidopsis thaliana Archaea asparagine Bacillus bacteria bacterial communities Clostridiales community structure Cyclopentanes - metabolism Enterobacteriaceae exudation genotype jasmonic acid Lysinibacillus metabolites Microbial Consortia microbiome mutants nutrient solutions ornithine Oxylipins - metabolism plant development Plant Exudates - physiology plant hormones Plant Roots - metabolism Plant Roots - microbiology rhizosphere root exudates Signal Transduction - physiology Soil Microbiology Streptomyces tryptophan |
Title | Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26035128 https://www.proquest.com/docview/1710985591 https://www.proquest.com/docview/1765987672 https://www.proquest.com/docview/2000160219 https://doaj.org/article/ba58cdd2b82342978d449b521d31a448 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCHoQXV_rY4ngSSz2kbTJcRXF14qsCt5CHu2yoF2xu6D_3pmmu-hBvXjopUwhmUxmvmGm3xByENpEcGZkkDmmA1Y4HcjEWAByGfjJiHHp8N_h3m168ciunvjTl1Ff2BPm6YG94o6N5sI6FxsRJ-A7M-EYkwaCjksiDbkFel-IedNkqqkfyLSedxoKJL6FrGJaz5TsuHfXu8QcOuIB4p2g_y0i1cT9P6PNOuqcr5DlBi7Srl_mKpnLyxZZ6g7eGsqMvEUW_DjJjzVyfeMHIdArXb0g5S3t2qGj98MBou1ycET7o9GYnr1PMM2vjqguHe1j012F5AI57Q09LdNLXq2Tx_Ozh9OLoBmWEFjO4nGgAYk5uH2SscQIBm7LAXThuhCcF1qHDpAZopHYxNaIwqRwLCJPMN4zw0WUbJD5clTmW4SG0kBWJuAxlhUi0THTWOUu4L5yKWybhFOFKdswieNAi2flK9pMoY5VGKmIY89cqvptcjj75NXTaPwmfIKnMBNEBuz6BdiFauxC_WUXbbI_PUMFNwbLILrMR5NKRdh-ClqR0W8yKew0S7P4Z5m4xsuAkWSbbHojmS0ZskRUrdj-j63skEWAadx3tu2S-fHbJN8DKDQ2HbD6y-tObfufBewAaQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+Jasmonic+Acid+Signaling%2C+Root+Exudates%2C+and+Rhizosphere+Microbiomes&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Carvalhais%2C+Lilia+C&rft.au=Dennis%2C+Paul+G&rft.au=Badri%2C+Dayakar+V&rft.au=Kidd%2C+Brendan+N&rft.date=2015-09-01&rft.issn=0894-0282&rft.volume=28&rft.issue=9&rft.spage=1049&rft_id=info:doi/10.1094%2FMPMI-01-15-0016-R&rft_id=info%3Apmid%2F26035128&rft.externalDocID=26035128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon |