Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes

Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether dis...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 28; no. 9; pp. 1049 - 1058
Main Authors Carvalhais, Lilia C., Dennis, Paul G., Badri, Dayakar V., Kidd, Brendan N., Vivanco, Jorge M., Schenk, Peer M.
Format Journal Article
LanguageEnglish
Published United States The American Phytopathological Society 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses.
AbstractList Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses.
Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses.Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses.
Author Carvalhais, Lilia C.
Dennis, Paul G.
Schenk, Peer M.
Vivanco, Jorge M.
Badri, Dayakar V.
Kidd, Brendan N.
Author_xml – sequence: 1
  givenname: Lilia C.
  surname: Carvalhais
  fullname: Carvalhais, Lilia C.
  organization: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and
– sequence: 2
  givenname: Paul G.
  surname: Dennis
  fullname: Dennis, Paul G.
  organization: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and
– sequence: 3
  givenname: Dayakar V.
  surname: Badri
  fullname: Badri, Dayakar V.
  organization: Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, U.S.A
– sequence: 4
  givenname: Brendan N.
  surname: Kidd
  fullname: Kidd, Brendan N.
  organization: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and
– sequence: 5
  givenname: Jorge M.
  surname: Vivanco
  fullname: Vivanco, Jorge M.
  organization: Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, U.S.A
– sequence: 6
  givenname: Peer M.
  surname: Schenk
  fullname: Schenk, Peer M.
  organization: School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; and
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26035128$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFH8AGZcmiBtuxE3tZVQUGZlQ0wNq6fmTqkthDnJGAX4_TaVkgVXR1pavvHJ37OEFHMUWP0EtK3lCi-Nv15_USE4qpwITQBm-eoAVVvMZtS5ojtCBScUyYZMfoJOebwqhGiGfomDWkFpTJBfq0CvF7iNvqI-QhxWCrcxtc9SVsI_Slf1ZtUpqqy597B5PPZxVEV22uw--Ud9d-9NU62DGZkAafn6OnHfTZv7irp-jbu8uvFx_w6ur98uJ8ha3gbMJAVe1a2SrOayM5OOeYoAI6KUQHQBwnoqmVYoZZIzvTdA6kn_MqboSk9SlaHnxdghu9G8MA4y-dIOjbRhq3GsYp2N5rA0La4m8kqzlTrXScKyMYdTUFzmXxen3w2o3px97nSQ8hW9_3EH3aZ83IvFnCSub_obRthJJt07JHoOV-ZVw1D_PqDt2bwbu_49yfqADtASh7znn0nbZhgimkOI0Qek2Jnp9Bz8-gCdVU6Dmy3hQl_Ud5b_6w5g9UnLPu
CitedBy_id crossref_primary_10_1007_s11104_021_04917_w
crossref_primary_10_1016_j_scitotenv_2024_175766
crossref_primary_10_3390_su15010625
crossref_primary_10_1093_femsec_fiaa067
crossref_primary_10_1002_glr2_12081
crossref_primary_10_1146_annurev_genet_120215_034952
crossref_primary_10_1007_s11104_023_06247_5
crossref_primary_10_1371_journal_pone_0139127
crossref_primary_10_3389_fpls_2024_1464710
crossref_primary_10_3389_fpls_2017_00999
crossref_primary_10_1128_msphere_00821_24
crossref_primary_10_1016_j_ibiod_2019_104808
crossref_primary_10_1186_s12284_016_0111_8
crossref_primary_10_1111_ppl_13679
crossref_primary_10_15252_embj_2018100972
crossref_primary_10_1007_s10725_023_00986_2
crossref_primary_10_1146_annurev_micro_090817_062524
crossref_primary_10_1111_nph_17746
crossref_primary_10_3389_fpls_2019_01741
crossref_primary_10_1080_17429145_2022_2086307
crossref_primary_10_3389_fmicb_2021_713349
crossref_primary_10_1007_s12298_021_00927_1
crossref_primary_10_1038_s41522_021_00241_4
crossref_primary_10_3389_fpls_2016_01088
crossref_primary_10_3389_fpls_2021_602486
crossref_primary_10_3389_fmicb_2020_00034
crossref_primary_10_1002_jobm_202000405
crossref_primary_10_3389_fmicb_2022_853077
crossref_primary_10_1186_s40793_023_00466_0
crossref_primary_10_3389_fpls_2019_00273
crossref_primary_10_1016_j_tplants_2019_02_010
crossref_primary_10_3389_fmicb_2021_772420
crossref_primary_10_1093_jxb_erw355
crossref_primary_10_1111_1751_7915_14296
crossref_primary_10_1016_j_envpol_2024_124149
crossref_primary_10_1016_j_micres_2024_127860
crossref_primary_10_3389_fpls_2017_01617
crossref_primary_10_1002_ajb2_1743
crossref_primary_10_1038_s41396_020_00785_x
crossref_primary_10_3389_fpls_2024_1377453
crossref_primary_10_3390_plants11212816
crossref_primary_10_1016_j_tplants_2020_03_014
crossref_primary_10_1007_s11274_020_02966_4
crossref_primary_10_3389_fpls_2017_00132
crossref_primary_10_1111_pce_13632
crossref_primary_10_3389_fpls_2021_621276
crossref_primary_10_1016_j_cub_2019_09_015
crossref_primary_10_17221_65_2021_PSE
crossref_primary_10_1146_annurev_phyto_082718_095959
crossref_primary_10_1080_15592324_2016_1187357
crossref_primary_10_1038_s41396_020_00759_z
crossref_primary_10_1071_SR20247
crossref_primary_10_3389_fmicb_2022_809940
crossref_primary_10_1016_j_plantsci_2019_05_016
crossref_primary_10_1111_tpj_15135
crossref_primary_10_1111_1758_2229_12934
crossref_primary_10_1016_j_rhisph_2018_10_002
crossref_primary_10_1111_nph_19060
crossref_primary_10_3390_microorganisms9040675
crossref_primary_10_1080_17429145_2019_1640294
crossref_primary_10_1093_femsec_fiw119
crossref_primary_10_1016_j_soilbio_2022_108599
crossref_primary_10_3389_fpls_2023_1196171
crossref_primary_10_3390_microorganisms11020392
crossref_primary_10_1016_j_molp_2023_08_004
crossref_primary_10_1038_s41396_018_0093_1
crossref_primary_10_1093_femsec_fiaa052
crossref_primary_10_1128_spectrum_00208_23
crossref_primary_10_1128_mbio_00343_22
crossref_primary_10_3389_fmicb_2023_1304205
crossref_primary_10_1007_s11104_024_06981_4
crossref_primary_10_3390_microorganisms9122456
crossref_primary_10_3390_plants10122789
crossref_primary_10_1186_s12870_024_05415_8
crossref_primary_10_1111_nph_18886
crossref_primary_10_1016_j_tplants_2022_08_012
crossref_primary_10_1016_j_catena_2024_107817
crossref_primary_10_3389_fmicb_2025_1550749
crossref_primary_10_1016_j_stress_2024_100661
crossref_primary_10_1080_01904167_2021_1952221
crossref_primary_10_1038_s41598_023_30915_2
crossref_primary_10_1111_pce_13966
crossref_primary_10_1080_15476286_2021_2024024
crossref_primary_10_1007_s00374_019_01406_2
crossref_primary_10_1093_plcell_koac163
crossref_primary_10_1111_pce_13214
crossref_primary_10_1007_s00344_023_11030_y
crossref_primary_10_1007_s11104_023_06114_3
crossref_primary_10_1016_j_micres_2023_127344
crossref_primary_10_3389_fmicb_2018_03241
crossref_primary_10_3390_ijms23094860
crossref_primary_10_1016_j_envexpbot_2023_105397
crossref_primary_10_1007_s00284_020_02015_1
crossref_primary_10_1038_srep26175
crossref_primary_10_1007_s11274_017_2364_9
crossref_primary_10_1007_s12355_022_01157_9
crossref_primary_10_1371_journal_pone_0259171
crossref_primary_10_1093_jxb_erac375
crossref_primary_10_1038_s41598_017_10613_6
crossref_primary_10_1093_femsec_fiad019
crossref_primary_10_1093_jxb_eraa111
crossref_primary_10_1016_j_tig_2020_09_010
crossref_primary_10_1016_j_scitotenv_2024_173147
crossref_primary_10_1111_een_12966
crossref_primary_10_3390_microorganisms11122967
crossref_primary_10_1016_j_watres_2019_115031
crossref_primary_10_1007_s42729_023_01526_7
crossref_primary_10_1093_jxb_erac491
crossref_primary_10_1016_j_agee_2021_107651
crossref_primary_10_1186_s40793_024_00618_w
crossref_primary_10_1038_s41467_023_37164_x
crossref_primary_10_1146_annurev_phyto_021622_100127
crossref_primary_10_1371_journal_pone_0204195
crossref_primary_10_1111_nph_17549
crossref_primary_10_1007_s00374_016_1136_2
crossref_primary_10_1016_j_envexpbot_2024_106057
crossref_primary_10_1128_aem_02422_21
crossref_primary_10_1016_j_tplants_2019_06_008
crossref_primary_10_1007_s00299_018_2255_z
crossref_primary_10_1111_1758_2229_12760
crossref_primary_10_7717_peerj_11340
crossref_primary_10_1016_j_apsoil_2021_104080
crossref_primary_10_1128_spectrum_03611_22
crossref_primary_10_3389_fmicb_2023_1233469
crossref_primary_10_1007_s13205_025_04243_3
crossref_primary_10_1073_pnas_2111521118
crossref_primary_10_1073_pnas_1722335115
crossref_primary_10_1016_j_cell_2018_02_024
crossref_primary_10_1371_journal_pone_0248030
crossref_primary_10_1007_s12275_024_00114_3
crossref_primary_10_1021_acs_jafc_4c09178
crossref_primary_10_3389_fmolb_2021_686110
crossref_primary_10_3390_microorganisms10030660
crossref_primary_10_1094_PBIOMES_12_16_0019_RVW
crossref_primary_10_1094_PBIOMES_1_2
crossref_primary_10_3390_plants11010133
crossref_primary_10_1016_j_mib_2019_10_003
crossref_primary_10_1016_j_pbi_2022_102227
crossref_primary_10_3389_fpls_2019_00862
crossref_primary_10_15302_J_FASE_2020346
crossref_primary_10_1038_s42003_021_02037_w
crossref_primary_10_1016_j_apsoil_2017_10_004
crossref_primary_10_15252_embr_202357455
crossref_primary_10_3389_fmicb_2023_1171104
crossref_primary_10_3390_microorganisms11122984
crossref_primary_10_1007_s11104_022_05508_z
crossref_primary_10_1111_nph_14253
crossref_primary_10_1094_PDIS_08_18_1387_RE
crossref_primary_10_1016_j_jenvman_2025_124746
crossref_primary_10_1093_femsre_fux005
crossref_primary_10_1016_j_cell_2023_08_035
crossref_primary_10_1016_j_envint_2023_107986
crossref_primary_10_1111_ppa_13641
crossref_primary_10_1016_j_jhazmat_2021_125728
crossref_primary_10_1016_j_soilbio_2021_108518
crossref_primary_10_1094_MPMI_05_19_0142_R
crossref_primary_10_3389_fmicb_2022_842372
crossref_primary_10_1128_msystems_01124_23
crossref_primary_10_1016_j_mib_2017_03_009
crossref_primary_10_1038_s41396_019_0375_2
crossref_primary_10_1128_AEM_01053_20
crossref_primary_10_1128_spectrum_01226_22
crossref_primary_10_1016_j_freeradbiomed_2016_02_028
crossref_primary_10_1128_aem_00971_22
crossref_primary_10_1128_AEM_01237_21
crossref_primary_10_1007_s11103_016_0433_3
crossref_primary_10_1094_PBIOMES_02_20_0020_R
crossref_primary_10_1016_j_aoas_2020_09_003
crossref_primary_10_3389_fmars_2024_1359610
crossref_primary_10_1016_j_plantsci_2017_11_012
crossref_primary_10_1093_jxb_erw135
crossref_primary_10_1039_d0pp00199f
crossref_primary_10_1016_j_envpol_2019_113709
crossref_primary_10_1007_s00572_019_00914_1
crossref_primary_10_1021_acs_jafc_0c00073
crossref_primary_10_1007_s00203_022_03380_0
crossref_primary_10_1007_s10658_023_02734_8
crossref_primary_10_3389_fpls_2023_1276472
crossref_primary_10_1094_PBIOMES_05_19_0026_R
crossref_primary_10_1094_PBIOMES_4_1
crossref_primary_10_1094_PBIOMES_4_4
crossref_primary_10_1016_j_scitotenv_2022_157132
crossref_primary_10_3390_plants11091164
crossref_primary_10_1016_j_apsoil_2020_103781
crossref_primary_10_1016_j_pedobi_2018_08_001
crossref_primary_10_3389_fmicb_2023_1194606
crossref_primary_10_1186_s12284_023_00636_1
Cites_doi 10.1007/BF00007922
10.1093/mp/sss128
10.1073/pnas.0802332105
10.1074/jbc.M112.433300
10.1094/MPMI.1999.12.8.720
10.1016/j.tibs.2005.03.009
10.1105/tpc.108.064303
10.1094/MPMI-21-12-1643
10.1016/j.jplph.2012.10.016
10.1139/cjb-2012-0217
10.1002/jpln.201000360
10.1038/nmeth.1990
10.1111/j.1654-1103.2003.tb02228.x
10.1371/journal.pone.0068555
10.1105/tpc.022319
10.1128/AEM.00569-13
10.1002/jpln.201000085
10.1016/S0168-6496(03)00155-7
10.1016/S0176-1617(88)80120-2
10.1073/pnas.94.10.5473
10.1146/annurev-phyto-073009-114450
10.1093/jac/dks005
10.1038/nature06006
10.1038/163688a0
10.1099/ijs.0.013664-0
10.1016/j.phytochem.2009.06.009
10.1104/pp.107.109587
10.1104/pp.112.202697
10.1111/j.1462-2920.2007.01416.x
10.1007/s11738-013-1483-7
10.1016/j.biortech.2012.11.098
10.1111/j.1365-313X.2007.03387.x
10.1007/BF01240669
10.1071/PP9920233
10.1139/m85-106
10.1055/s-2001-12905
10.1038/ismej.2013.47
10.1111/j.1574-6941.2010.00860.x
10.1111/j.1365-3040.2009.01926.x
10.1146/annurev.arplant.57.032905.105159
10.1186/1471-2229-12-163
10.1111/j.1469-8137.2008.02578.x
10.1105/tpc.104.026690
10.1105/tpc.109.069658
10.1093/mp/ssr002
10.1111/j.1399-3054.1962.tb08052.x
10.1007/BF02925621
10.1104/pp.108.127613
10.1007/s004250050411
10.1093/bioinformatics/btr381
10.1105/tpc.10.12.2103
10.1104/pp.010843
10.1007/s003740050365
10.1186/1756-0500-5-158
10.1016/j.micres.2004.10.003
10.1105/tpc.109.066910
10.1105/tpc.104.025833
10.1016/0092-8674(94)90221-6
10.1038/nmeth.f.303
10.1105/tpc.6.5.751
10.1016/j.tplants.2010.12.001
10.1094/MPMI-06-11-0179
10.1101/gad.297704
10.1146/annurev.arplant.48.1.355
10.1105/tpc.109.065730
10.1128/AEM.03006-05
10.1006/pmpp.1996.0003
10.1094/MPMI-20-7-0759
10.1038/nature05960
10.1023/A:1004356007312
10.1007/s11306-010-0218-7
10.1073/pnas.95.25.15107
10.1105/tpc.8.8.1225
10.1105/tpc.106.048017
10.1105/tpc.112.098277
10.1371/journal.pone.0056457
10.1099/00221287-115-1-167
10.1016/S0021-9258(17)36752-2
10.1104/pp.107.113829
10.1016/j.apsoil.2014.06.011
10.1038/nature09430
10.1111/pce.12002
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T7
8FD
C1K
FR3
P64
7S9
L.6
DOA
DOI 10.1094/MPMI-01-15-0016-R
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Engineering Research Database
MEDLINE
MEDLINE - Academic
CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 1058
ExternalDocumentID oai_doaj_org_article_ba58cdd2b82342978d449b521d31a448
26035128
10_1094_MPMI_01_15_0016_R
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29M
2WC
53G
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
AAYXX
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M1P
M7P
MVM
OK1
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
YCJ
7X8
7T7
8FD
C1K
FR3
P64
7S9
L.6
ID FETCH-LOGICAL-c542t-a193d7879443b84addd2515af855faa0d40563992b2cb8fb6fda8e351294b5813
IEDL.DBID DOA
ISSN 0894-0282
IngestDate Wed Aug 27 01:21:54 EDT 2025
Fri Jul 11 10:31:04 EDT 2025
Thu Jul 10 23:53:05 EDT 2025
Fri Jul 11 16:22:29 EDT 2025
Thu Apr 03 07:07:56 EDT 2025
Tue Jul 01 00:38:49 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-a193d7879443b84addd2515af855faa0d40563992b2cb8fb6fda8e351294b5813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/ba58cdd2b82342978d449b521d31a448
PMID 26035128
PQID 1710985591
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ba58cdd2b82342978d449b521d31a448
proquest_miscellaneous_2000160219
proquest_miscellaneous_1765987672
proquest_miscellaneous_1710985591
pubmed_primary_26035128
crossref_citationtrail_10_1094_MPMI_01_15_0016_R
crossref_primary_10_1094_MPMI_01_15_0016_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-00
2015-Sep
20150901
2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2015
Publisher The American Phytopathological Society
Publisher_xml – name: The American Phytopathological Society
References b10
b54
b53
b12
b56
b11
b55
b14
b58
b13
b57
b16
b15
b18
b17
b19
b1
b2
b3
b4
b5
b7
b9
b61
b60
b63
b62
b21
b65
b20
b64
b23
b67
b22
b66
b25
b69
b24
b68
b27
b26
b29
b28
b70
b72
b71
b74
b73
b32
b76
b75
b34
b77
b36
b35
b79
b38
b37
b39
Gaworzewska E. T. (b30) 1982; 128
Gransee A. (b31) 2000; 163
b81
b80
b82
b85
b41
b84
b40
b87
b43
b86
b42
b89
b45
b44
b88
b47
b46
b49
b48
Hanlon D. W. (b33) 1994; 269
b50
b52
b51
References_xml – ident: b65
  doi: 10.1007/BF00007922
– ident: b39
  doi: 10.1093/mp/sss128
– ident: b38
  doi: 10.1073/pnas.0802332105
– ident: b4
  doi: 10.1074/jbc.M112.433300
– ident: b43
  doi: 10.1094/MPMI.1999.12.8.720
– ident: b46
  doi: 10.1016/j.tibs.2005.03.009
– ident: b71
  doi: 10.1105/tpc.108.064303
– ident: b41
  doi: 10.1094/MPMI-21-12-1643
– ident: b53
  doi: 10.1016/j.jplph.2012.10.016
– ident: b70
  doi: 10.1139/cjb-2012-0217
– ident: b77
  doi: 10.1002/jpln.201000360
– ident: b10
  doi: 10.1038/nmeth.1990
– ident: b25
  doi: 10.1111/j.1654-1103.2003.tb02228.x
– ident: b15
  doi: 10.1371/journal.pone.0068555
– ident: b44
  doi: 10.1105/tpc.022319
– ident: b21
  doi: 10.1128/AEM.00569-13
– ident: b85
  doi: 10.1002/jpln.201000085
– ident: b68
  doi: 10.1016/S0168-6496(03)00155-7
– ident: b11
  doi: 10.1016/S0176-1617(88)80120-2
– ident: b48
  doi: 10.1073/pnas.94.10.5473
– ident: b88
  doi: 10.1146/annurev-phyto-073009-114450
– ident: b35
  doi: 10.1093/jac/dks005
– ident: b18
  doi: 10.1038/nature06006
– ident: b67
  doi: 10.1038/163688a0
– ident: b45
  doi: 10.1099/ijs.0.013664-0
– ident: b75
  doi: 10.1016/j.phytochem.2009.06.009
– ident: b89
  doi: 10.1104/pp.107.109587
– ident: b17
  doi: 10.1104/pp.112.202697
– ident: b37
  doi: 10.1111/j.1462-2920.2007.01416.x
– ident: b61
  doi: 10.1007/s11738-013-1483-7
– ident: b20
  doi: 10.1016/j.biortech.2012.11.098
– ident: b29
  doi: 10.1111/j.1365-313X.2007.03387.x
– ident: b13
  doi: 10.1007/BF01240669
– ident: b32
  doi: 10.1071/PP9920233
– ident: b63
  doi: 10.1139/m85-106
– ident: b3
  doi: 10.1055/s-2001-12905
– ident: b23
  doi: 10.1038/ismej.2013.47
– ident: b22
  doi: 10.1111/j.1574-6941.2010.00860.x
– ident: b5
  doi: 10.1111/j.1365-3040.2009.01926.x
– volume: 128
  start-page: 1179
  year: 1982
  ident: b30
  publication-title: J. Gen. Microbiol.
– volume: 163
  start-page: 381
  year: 2000
  ident: b31
  publication-title: Soil Sci.
– ident: b84
  doi: 10.1146/annurev.arplant.57.032905.105159
– ident: b16
  doi: 10.1186/1471-2229-12-163
– ident: b58
  doi: 10.1111/j.1469-8137.2008.02578.x
– ident: b69
  doi: 10.1105/tpc.104.026690
– ident: b49
  doi: 10.1105/tpc.109.069658
– ident: b54
  doi: 10.1093/mp/ssr002
– ident: b51
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– ident: b82
  doi: 10.1007/BF02925621
– ident: b60
  doi: 10.1104/pp.108.127613
– ident: b50
  doi: 10.1007/s004250050411
– ident: b27
  doi: 10.1093/bioinformatics/btr381
– ident: b56
  doi: 10.1105/tpc.10.12.2103
– ident: b34
  doi: 10.1104/pp.010843
– ident: b66
  doi: 10.1007/s003740050365
– ident: b72
  doi: 10.1186/1756-0500-5-158
– ident: b55
  doi: 10.1016/j.micres.2004.10.003
– ident: b40
  doi: 10.1105/tpc.109.066910
– ident: b2
  doi: 10.1105/tpc.104.025833
– ident: b42
  doi: 10.1016/0092-8674(94)90221-6
– ident: b12
  doi: 10.1038/nmeth.f.303
– ident: b28
  doi: 10.1105/tpc.6.5.751
– ident: b7
  doi: 10.1016/j.tplants.2010.12.001
– ident: b80
  doi: 10.1094/MPMI-06-11-0179
– ident: b9
  doi: 10.1101/gad.297704
– ident: b19
  doi: 10.1146/annurev.arplant.48.1.355
– ident: b79
  doi: 10.1105/tpc.109.065730
– ident: b24
  doi: 10.1128/AEM.03006-05
– ident: b81
  doi: 10.1006/pmpp.1996.0003
– ident: b1
  doi: 10.1094/MPMI-20-7-0759
– ident: b73
  doi: 10.1038/nature05960
– ident: b36
  doi: 10.1023/A:1004356007312
– ident: b62
  doi: 10.1007/s11306-010-0218-7
– ident: b74
  doi: 10.1073/pnas.95.25.15107
– ident: b57
  doi: 10.1105/tpc.8.8.1225
– ident: b26
  doi: 10.1105/tpc.106.048017
– ident: b87
  doi: 10.1105/tpc.112.098277
– ident: b14
  doi: 10.1371/journal.pone.0056457
– ident: b52
  doi: 10.1099/00221287-115-1-167
– volume: 269
  start-page: 14038
  year: 1994
  ident: b33
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)36752-2
– ident: b76
  doi: 10.1104/pp.107.113829
– ident: b86
  doi: 10.1016/j.apsoil.2014.06.011
– ident: b64
  doi: 10.1038/nature09430
– ident: b47
  doi: 10.1111/pce.12002
SSID ssj0019655
Score 2.5599806
Snippet Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 1049
SubjectTerms Arabidopsis
Arabidopsis - physiology
Arabidopsis thaliana
Archaea
asparagine
Bacillus
bacteria
bacterial communities
Clostridiales
community structure
Cyclopentanes - metabolism
Enterobacteriaceae
exudation
genotype
jasmonic acid
Lysinibacillus
metabolites
Microbial Consortia
microbiome
mutants
nutrient solutions
ornithine
Oxylipins - metabolism
plant development
Plant Exudates - physiology
plant hormones
Plant Roots - metabolism
Plant Roots - microbiology
rhizosphere
root exudates
Signal Transduction - physiology
Soil Microbiology
Streptomyces
tryptophan
Title Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes
URI https://www.ncbi.nlm.nih.gov/pubmed/26035128
https://www.proquest.com/docview/1710985591
https://www.proquest.com/docview/1765987672
https://www.proquest.com/docview/2000160219
https://doaj.org/article/ba58cdd2b82342978d449b521d31a448
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCHoQXV_rY4ngSSz2kbTJcRXF14qsCt5CHu2yoF2xu6D_3pmmu-hBvXjopUwhmUxmvmGm3xByENpEcGZkkDmmA1Y4HcjEWAByGfjJiHHp8N_h3m168ciunvjTl1Ff2BPm6YG94o6N5sI6FxsRJ-A7M-EYkwaCjksiDbkFel-IedNkqqkfyLSedxoKJL6FrGJaz5TsuHfXu8QcOuIB4p2g_y0i1cT9P6PNOuqcr5DlBi7Srl_mKpnLyxZZ6g7eGsqMvEUW_DjJjzVyfeMHIdArXb0g5S3t2qGj98MBou1ycET7o9GYnr1PMM2vjqguHe1j012F5AI57Q09LdNLXq2Tx_Ozh9OLoBmWEFjO4nGgAYk5uH2SscQIBm7LAXThuhCcF1qHDpAZopHYxNaIwqRwLCJPMN4zw0WUbJD5clTmW4SG0kBWJuAxlhUi0THTWOUu4L5yKWybhFOFKdswieNAi2flK9pMoY5VGKmIY89cqvptcjj75NXTaPwmfIKnMBNEBuz6BdiFauxC_WUXbbI_PUMFNwbLILrMR5NKRdh-ClqR0W8yKew0S7P4Z5m4xsuAkWSbbHojmS0ZskRUrdj-j63skEWAadx3tu2S-fHbJN8DKDQ2HbD6y-tObfufBewAaQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+Jasmonic+Acid+Signaling%2C+Root+Exudates%2C+and+Rhizosphere+Microbiomes&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Carvalhais%2C+Lilia+C&rft.au=Dennis%2C+Paul+G&rft.au=Badri%2C+Dayakar+V&rft.au=Kidd%2C+Brendan+N&rft.date=2015-09-01&rft.issn=0894-0282&rft.volume=28&rft.issue=9&rft.spage=1049&rft_id=info:doi/10.1094%2FMPMI-01-15-0016-R&rft_id=info%3Apmid%2F26035128&rft.externalDocID=26035128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon