RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses
The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (Cavs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other com...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 41; pp. 11615 - 11620 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (Cavs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Cav2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses. |
---|---|
AbstractList | The tight spatial coupling of synaptic vesicles and voltage-gated Ca
channels (Ca
s) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca
channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2-deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Ca
2.1 clustering at AZs, which likely alters Ca
nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses. Highly regulated and precise positioning of Ca 2+ channels at the active zone (AZ) controls Ca 2+ nanodomains at release sites. Their exact localization affects vesicular release probability (P VR ) and is important for proper synaptic transmission during repetitive stimulation. We provide a detailed analysis of synaptic transmission combined with superresolution imaging of the AZ organization in mouse hippocampal synapses lacking Rab-interacting molecule-binding protein 2 (RIM-BP2). By dual- and triple-channel time-gated stimulated emission depletion (gSTED) microscopy, we directly show that RIM-BP2 fine-tunes voltage-gated Ca 2+ channel 2.1 (Ca V 2.1) localization at the AZ. We reveal that RIM-BP2 likely regulates the Ca 2+ nanodomain by positioning Ca V 2.1 channels close to synaptic vesicle release sites. Loss of RIM-BP2 reduces P VR and alters short-term plasticity. The tight spatial coupling of synaptic vesicles and voltage-gated Ca 2+ channels (Ca V s) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca 2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Ca V 2.1 clustering at AZs, which likely alters Ca 2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses. The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (Cavs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Cav2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses. Significance Highly regulated and precise positioning of Ca 2+ channels at the active zone (AZ) controls Ca 2+ nanodomains at release sites. Their exact localization affects vesicular release probability (P VR ) and is important for proper synaptic transmission during repetitive stimulation. We provide a detailed analysis of synaptic transmission combined with superresolution imaging of the AZ organization in mouse hippocampal synapses lacking Rab-interacting molecule-binding protein 2 (RIM-BP2). By dual- and triple-channel time-gated stimulated emission depletion (gSTED) microscopy, we directly show that RIM-BP2 fine-tunes voltage-gated Ca 2+ channel 2.1 (Ca V 2.1) localization at the AZ. We reveal that RIM-BP2 likely regulates the Ca 2+ nanodomain by positioning Ca V 2.1 channels close to synaptic vesicle release sites. Loss of RIM-BP2 reduces P VR and alters short-term plasticity. The tight spatial coupling of synaptic vesicles and voltage-gated Ca 2+ channels (Ca V s) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca 2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Ca V 2.1 clustering at AZs, which likely alters Ca 2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses. |
Author | Rosenmund, Christian Pangalos, Maria Rost, Benjamin R. Trimbuch, Thorsten Rosenmund, Tanja Brockmann, Marisa M. Vardar, Gülçin Maglione, Marta Grauel, M. Katharina Walter, Alexander M. Schmitz, Dietmar Reddy-Alla, Suneel Willmes, Claudia G. Eickholt, Britta J. Sigrist, Stephan J. Stumpf, Alexander Haucke, Volker |
Author_xml | – sequence: 1 givenname: M. Katharina surname: Grauel fullname: Grauel, M. Katharina organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 2 givenname: Marta surname: Maglione fullname: Maglione, Marta organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 3 givenname: Suneel surname: Reddy-Alla fullname: Reddy-Alla, Suneel organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 4 givenname: Claudia G. surname: Willmes fullname: Willmes, Claudia G. organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 5 givenname: Marisa M. surname: Brockmann fullname: Brockmann, Marisa M. organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 6 givenname: Thorsten surname: Trimbuch fullname: Trimbuch, Thorsten organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 7 givenname: Tanja surname: Rosenmund fullname: Rosenmund, Tanja organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 8 givenname: Maria surname: Pangalos fullname: Pangalos, Maria organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 9 givenname: Gülçin surname: Vardar fullname: Vardar, Gülçin organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 10 givenname: Alexander surname: Stumpf fullname: Stumpf, Alexander organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 11 givenname: Alexander M. surname: Walter fullname: Walter, Alexander M. organization: Molecular and Theoretical Neuroscience, Leibniz-Institut für Molekulare Pharmakologie, 10117 Berlin, Germany – sequence: 12 givenname: Benjamin R. surname: Rost fullname: Rost, Benjamin R. organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 13 givenname: Britta J. surname: Eickholt fullname: Eickholt, Britta J. organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 14 givenname: Volker surname: Haucke fullname: Haucke, Volker organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 15 givenname: Dietmar surname: Schmitz fullname: Schmitz, Dietmar organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 16 givenname: Stephan J. surname: Sigrist fullname: Sigrist, Stephan J. organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany – sequence: 17 givenname: Christian surname: Rosenmund fullname: Rosenmund, Christian organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27671655$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1r3DAQxUVJaTZpzz21CHrpxYm-bV8KIfQjkBAo7dlI2vGuFllyJbuwOeRvr8ymSdtTTxr0fvPQaN4JOgoxAEKvKTmjpObnY9D5jCoimVSU8mdoRUlLKyVacoRWhLC6agQTx-gk5x0hpJUNeYGOWa1qqqRcofuvVzeVcWHtwgaPKU7gAmY4wWb2eoJcKg86w6IZbZx30x6bPe5dgGqaw9JmtbduHrDd6hDAYx_LjbvTk4sB6wkPcyo03rpxLMowao_zPugxQ36JnvfaZ3j1cJ6i758-frv8Ul3ffr66vLiurBRsqjSpTaPWmgvghjHgCkxjTVv3olatbm1jW7BWWCpA0r4xkpYaelBG9mtB-Cn6cPAdZzPA2kKYkvbdmNyg076L2nV_K8Ftu0382UmiGs4Wg_cPBin-mCFP3eCyBe91gDjnjja85oIwRf8HlYKWdbUFffcPuotzCuUnFoq1UracF-r8QNkUc07QP76bkm6JQbfEoHuKQel4--e4j_zvvRfgzQHY5SmmJ12JmpUh-C8INb0g |
CitedBy_id | crossref_primary_10_1016_j_tins_2019_03_001 crossref_primary_10_3389_fncel_2017_00334 crossref_primary_10_3389_fnins_2023_1123561 crossref_primary_10_1172_JCI140625 crossref_primary_10_3389_fncel_2017_00374 crossref_primary_10_1083_jcb_201902059 crossref_primary_10_3389_fnins_2020_578409 crossref_primary_10_3389_fnmol_2021_651935 crossref_primary_10_1016_j_conb_2018_12_011 crossref_primary_10_1152_physrev_00030_2017 crossref_primary_10_1016_j_brainresbull_2021_02_012 crossref_primary_10_1523_JNEUROSCI_0076_21_2021 crossref_primary_10_1016_j_biopsych_2023_07_021 crossref_primary_10_1007_s40142_020_00182_y crossref_primary_10_7554_eLife_43243 crossref_primary_10_1080_19336950_2017_1356954 crossref_primary_10_3389_fnsyn_2022_1023256 crossref_primary_10_1038_s41467_021_21004_x crossref_primary_10_1098_rsob_170258 crossref_primary_10_1073_pnas_2220856120 crossref_primary_10_1007_s12035_019_01785_5 crossref_primary_10_1016_j_envpol_2019_04_005 crossref_primary_10_1523_JNEUROSCI_0506_19_2019 crossref_primary_10_3389_fncel_2022_1037721 crossref_primary_10_15252_embj_201798637 crossref_primary_10_1186_s13041_019_0524_6 crossref_primary_10_3389_fnana_2018_00081 crossref_primary_10_1016_j_celrep_2020_107960 crossref_primary_10_1111_febs_15759 crossref_primary_10_1021_acs_chemrev_0c01174 crossref_primary_10_3390_genes11091006 crossref_primary_10_1007_s12035_016_0205_8 crossref_primary_10_1016_j_conb_2022_102540 crossref_primary_10_1038_s41467_021_23116_w crossref_primary_10_7554_eLife_90799 crossref_primary_10_1016_j_heares_2019_107879 crossref_primary_10_1038_s41593_020_00716_1 crossref_primary_10_1016_j_neuron_2017_08_016 crossref_primary_10_1073_pnas_1719012115 crossref_primary_10_1016_j_neuron_2019_08_014 crossref_primary_10_3390_biomedicines12020304 crossref_primary_10_2139_ssrn_3748741 crossref_primary_10_1016_j_neures_2017_12_006 crossref_primary_10_1098_rsob_210334 crossref_primary_10_3389_fnmol_2018_00494 crossref_primary_10_1016_j_celrep_2019_11_060 crossref_primary_10_3389_fnmol_2022_674243 crossref_primary_10_1002_1873_3468_13188 crossref_primary_10_7554_eLife_69498 crossref_primary_10_1155_2023_6755569 crossref_primary_10_7554_eLife_90799_3 crossref_primary_10_1007_s12035_017_0661_9 crossref_primary_10_1016_j_celrep_2022_111882 crossref_primary_10_1073_pnas_1702991114 crossref_primary_10_1016_j_celrep_2017_02_064 crossref_primary_10_1523_JNEUROSCI_0511_18_2018 crossref_primary_10_7554_eLife_78182 crossref_primary_10_1098_rsob_210173 crossref_primary_10_1016_j_conb_2018_05_004 crossref_primary_10_1007_s00424_019_02338_4 crossref_primary_10_1126_sciadv_ado0077 crossref_primary_10_1038_s41598_017_15695_w crossref_primary_10_1242_jcs_225557 crossref_primary_10_1016_j_neuron_2022_01_026 crossref_primary_10_1038_s41583_018_0111_3 |
Cites_doi | 10.1038/415327a 10.1016/j.neuron.2016.03.034 10.1016/j.cell.2010.12.029 10.1523/JNEUROSCI.17-15-05858.1997 10.1016/S0006-3495(97)78062-7 10.1038/415321a 10.1016/j.neuron.2014.02.012 10.1038/nsmb.1791 10.1016/j.neuron.2015.08.027 10.1016/j.neuron.2015.01.024 10.1038/nrn3125 10.1038/nn.3137 10.1038/nature12354 10.1016/j.neuron.2011.01.005 10.1016/j.neuron.2010.11.021 10.1523/JNEUROSCI.0965-12.2012 10.1126/science.1212991 10.1038/ncomms3392 10.1074/jbc.M909008199 10.1038/nature13846 10.1038/ncomms4650 10.1523/JNEUROSCI.3553-05.2006 10.1074/jbc.M212287200 10.1371/journal.pbio.0040207 10.1523/JNEUROSCI.0187-13.2013 10.1371/journal.pgen.1000536 10.1073/pnas.1211971109 10.1016/j.celrep.2014.04.051 10.1523/JNEUROSCI.0981-12.2012 10.1016/j.neuron.2007.10.016 10.1016/S0896-6273(02)00667-0 10.1073/pnas.122623799 10.1523/JNEUROSCI.1444-14.2014 10.1126/science.7901909 10.1186/2040-2392-2-1 10.1523/JNEUROSCI.4908-06.2007 10.1038/nature09146 10.1016/S0896-6273(00)80146-4 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Oct 11, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Oct 11, 2016 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1605256113 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Calcium & Calcified Tissue Abstracts Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | RIM-BP2 sets release probability at mouse synapses |
EISSN | 1091-6490 |
EndPage | 11620 |
ExternalDocumentID | 4230045051 10_1073_pnas_1605256113 27671655 26472026 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: Exc257 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: SFB958 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: Emmy Noether Program – fundername: Studienstiftung des Deutschen Volkes (Studienstiftung) grantid: Promotionsstipendium |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c542t-a07b86da34e3b22e36eb8cb97f4769a9c8c9ecc4c14e51f8b514c1efe6b5fd403 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:16:31 EDT 2024 Sat Aug 17 04:12:38 EDT 2024 Sat Aug 17 03:11:12 EDT 2024 Thu Oct 10 19:34:06 EDT 2024 Fri Aug 23 01:52:25 EDT 2024 Wed Oct 16 00:59:59 EDT 2024 Thu Nov 14 15:17:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | calcium channel coupling RIM-BP2 active zone structure release probability short-term plasticity |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-a07b86da34e3b22e36eb8cb97f4769a9c8c9ecc4c14e51f8b514c1efe6b5fd403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved August 15, 2016 (received for review March 31, 2016) 1M.K.G., M.M., and S.R.-A. contributed equally to this work. Author contributions: M.K.G., M.M., S.R.-A., B.J.E., V.H., D.S., S.J.S., and C.R. designed research; M.K.G., M.M., S.R.-A., C.G.W., M.M.B., T.T., T.R., M.P., G.V., A.S., and B.R.R. performed research; A.M.W. contributed new reagents/analytic tools; M.K.G., M.M., S.R.-A., C.G.W., M.M.B., T.T., T.R., M.P., and B.R.R. analyzed data; A.M.W. provided data discussion; and M.K.G., M.M., S.R.-A., V.H., D.S., S.J.S., and C.R. wrote the paper. |
ORCID | 0000-0001-9052-9271 |
OpenAccessLink | https://www.pnas.org/content/pnas/113/41/11615.full.pdf |
PMID | 27671655 |
PQID | 1832955933 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5068320 proquest_miscellaneous_1837340261 proquest_miscellaneous_1835416119 proquest_journals_1832955933 crossref_primary_10_1073_pnas_1605256113 pubmed_primary_27671655 jstor_primary_26472026 |
PublicationCentury | 2000 |
PublicationDate | 2016-10-11 |
PublicationDateYYYYMMDD | 2016-10-11 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | 16436611 - J Neurosci. 2006 Jan 25;26(4):1239-46 7901909 - Science. 1993 Oct 29;262(5134):754-7 9221783 - J Neurosci. 1997 Aug 1;17(15):5858-67 22908295 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14657-62 25164673 - J Neurosci. 2014 Aug 27;34(35):11781-91 21144999 - Neuron. 2010 Dec 9;68(5):843-56 17964254 - Neuron. 2007 Oct 25;56(2):399-413 24882013 - Cell Rep. 2014 Jun 12;7(5):1417-25 20531469 - Nature. 2010 Jul 15;466(7304):368-72 22174254 - Science. 2011 Dec 16;334(6062):1565-9 17267576 - J Neurosci. 2007 Jan 31;27(5):1200-10 22683683 - Nat Neurosci. 2012 Jun 10;15(7):988-97 22183436 - Nat Rev Neurosci. 2011 Dec 20;13(1):7-21 25296249 - Nature. 2014 Nov 13;515(7526):228-33 10748113 - J Biol Chem. 2000 Jun 30;275(26):20033-44 16774451 - PLoS Biol. 2006 Jul;4(7):e207 8663996 - Neuron. 1996 Jun;16(6):1197-207 23175813 - J Neurosci. 2012 Nov 21;32(47):16574-85 27133464 - Neuron. 2016 May 18;90(4):795-809 19557195 - PLoS Genet. 2009 Jun;5(6):e1000536 12070347 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9037-42 23868258 - Nature. 2013 Jul 18;499(7458):295-300 11797009 - Nature. 2002 Jan 17;415(6869):321-6 23175814 - J Neurosci. 2012 Nov 21;32(47):16586-96 26402606 - Neuron. 2015 Sep 23;87(6):1234-47 23999086 - Nat Commun. 2013;4:2392 9199786 - Biophys J. 1997 Jul;73(1):220-9 24698275 - Neuron. 2014 Apr 2;82(1):181-94 11797010 - Nature. 2002 Jan 17;415(6869):327-30 24133272 - J Neurosci. 2013 Oct 16;33(42):16698-714 21262469 - Neuron. 2011 Jan 27;69(2):317-31 24722188 - Nat Commun. 2014 Apr 11;5:3650 20400951 - Nat Struct Mol Biol. 2010 May;17(5):568-75 21241895 - Cell. 2011 Jan 21;144(2):282-95 11988172 - Neuron. 2002 Apr 25;34(3):411-23 12473661 - J Biol Chem. 2003 Feb 21;278(8):6291-300 21247446 - Mol Autism. 2011 Jan 19;2(1):1 25704950 - Neuron. 2015 Mar 4;85(5):1056-69 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_29_2 doi: 10.1038/415327a – ident: e_1_3_3_33_2 doi: 10.1016/j.neuron.2016.03.034 – ident: e_1_3_3_2_2 doi: 10.1016/j.cell.2010.12.029 – ident: e_1_3_3_25_2 doi: 10.1523/JNEUROSCI.17-15-05858.1997 – ident: e_1_3_3_37_2 doi: 10.1016/S0006-3495(97)78062-7 – ident: e_1_3_3_28_2 doi: 10.1038/415321a – ident: e_1_3_3_5_2 doi: 10.1016/j.neuron.2014.02.012 – ident: e_1_3_3_38_2 doi: 10.1038/nsmb.1791 – ident: e_1_3_3_8_2 doi: 10.1016/j.neuron.2015.08.027 – ident: e_1_3_3_7_2 doi: 10.1016/j.neuron.2015.01.024 – ident: e_1_3_3_16_2 doi: 10.1038/nrn3125 – ident: e_1_3_3_26_2 doi: 10.1038/nn.3137 – ident: e_1_3_3_35_2 doi: 10.1038/nature12354 – ident: e_1_3_3_1_2 doi: 10.1016/j.neuron.2011.01.005 – ident: e_1_3_3_24_2 doi: 10.1016/j.neuron.2010.11.021 – ident: e_1_3_3_27_2 doi: 10.1523/JNEUROSCI.0965-12.2012 – ident: e_1_3_3_6_2 doi: 10.1126/science.1212991 – ident: e_1_3_3_30_2 doi: 10.1038/ncomms3392 – ident: e_1_3_3_3_2 doi: 10.1074/jbc.M909008199 – ident: e_1_3_3_36_2 doi: 10.1038/nature13846 – ident: e_1_3_3_21_2 doi: 10.1038/ncomms4650 – ident: e_1_3_3_23_2 doi: 10.1523/JNEUROSCI.3553-05.2006 – ident: e_1_3_3_9_2 doi: 10.1074/jbc.M212287200 – ident: e_1_3_3_22_2 doi: 10.1371/journal.pbio.0040207 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.0187-13.2013 – ident: e_1_3_3_18_2 doi: 10.1371/journal.pgen.1000536 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.1211971109 – ident: e_1_3_3_10_2 doi: 10.1016/j.celrep.2014.04.051 – ident: e_1_3_3_31_2 doi: 10.1523/JNEUROSCI.0981-12.2012 – ident: e_1_3_3_32_2 doi: 10.1016/j.neuron.2007.10.016 – ident: e_1_3_3_4_2 doi: 10.1016/S0896-6273(02)00667-0 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.122623799 – ident: e_1_3_3_34_2 doi: 10.1523/JNEUROSCI.1444-14.2014 – ident: e_1_3_3_12_2 doi: 10.1126/science.7901909 – ident: e_1_3_3_20_2 doi: 10.1186/2040-2392-2-1 – ident: e_1_3_3_15_2 doi: 10.1523/JNEUROSCI.4908-06.2007 – ident: e_1_3_3_19_2 doi: 10.1038/nature09146 – ident: e_1_3_3_11_2 doi: 10.1016/S0896-6273(00)80146-4 |
SSID | ssj0009580 |
Score | 2.5294662 |
Snippet | The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (Cavs) ensures efficient action potential-triggered neurotransmitter release... The tight spatial coupling of synaptic vesicles and voltage-gated Ca channels (Ca s) ensures efficient action potential-triggered neurotransmitter release from... Significance Highly regulated and precise positioning of Ca 2+ channels at the active zone (AZ) controls Ca 2+ nanodomains at release sites. Their exact... The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release... Highly regulated and precise positioning of Ca 2+ channels at the active zone (AZ) controls Ca 2+ nanodomains at release sites. Their exact localization... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 11615 |
SubjectTerms | Action Potentials Animals Biological Sciences Calcium Calcium - metabolism Calcium Channels - metabolism Cells, Cultured Electrophysiological Phenomena Female Gene Deletion Gene Expression Gene Targeting Genetic Loci Genotype & phenotype Hippocampus - metabolism Male Mice Mice, Knockout Molecules Neurons Neurons - metabolism Neurotransmitters Phenotype Protein Transport Proteins Synapses - metabolism Synaptic Transmission - genetics Synaptic Vesicles - metabolism |
Title | RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses |
URI | https://www.jstor.org/stable/26472026 https://www.ncbi.nlm.nih.gov/pubmed/27671655 https://www.proquest.com/docview/1832955933 https://search.proquest.com/docview/1835416119 https://search.proquest.com/docview/1837340261 https://pubmed.ncbi.nlm.nih.gov/PMC5068320 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWAUy9VKaVNS5GReqCHsHHij_hYoSIo2qqqisQtso0jIu2aiGQPe-lv74yTLFBVHHr2WIoyM34z9swbQj6VUhQ-VzpVTtmUa3zf5Yyl2gOaGa0KHuma5t_l-RX_di2ut4iYemFi0b6zzUlYLE9CcxtrK9ulm011YrMf81ORSTDEbLZNtsFApxR9w7RbDn0nORy_POcTn48qZm0wHV6nCMB5xnCETq4kJAzY5_cIlYbCxH-FnH9XTj6CorNX5OUYQ9Ivw7fuki0fXpPd0Us7ejxSSX_eI79_Xswx90WAopGSoQk0p_fDAHqQxZEpgGO4ZgfG7jW1a1pD7Jn2K7wzoaBE16yWFFuEg1_QiH5j9yY1PV3ifb2nt03bwgqcLgvarYNpO9-9IVdnX3-dnqfjxIXUCZ73qcmULeWNKbgvbJ77QnpbOqtVzZXURrvSadA5d4x7werSQrjlmK-9tKK-4VmxT3bCXfDvCBV1pm1WC29wwjo3lkldMyaNFjVEMSYhx9Mfr9qBWKOKD-KqqFBP1YOeErIfNbKRy5HzHpLHhBxMKqpG14N9YBpIq1fAvqPNMjgNvoSY4O9WUUZgZsf0szJgqZiiJuTtoPWHDxjNJiHqiT1sBJC0--kK2HIk7x5t9_1_7_xAXkDQJhE_GTsgO_39yn-EwKi3h5ASXFweRnf4Axu7Dwo |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFUaA0UMBIHMoh3TjxR3xEFdUWuhVCrdRbZLuOGmnXjZrdw1747cw4ybZFiANnj6UoM-M3Y8-8IeRTKUXhc6VT5ZRNucb3Xc5Yqj2gmdGq4JGuaXYmpxf826W43CJi7IWJRfvONodhvjgMzXWsrWwXbjLWiU1-zI5EJsEQs8kj8hj8NeNjkr7h2i37zpMcDmCe85HRRxWTNpgOL1QEID1jOEQnVxJSBuz0u4dLfWni34LOP2sn74HR8XPybIgi6Zf-a3fIlg8vyM7gpx09GMikP78kv36ezDD7RYiikZShCTSnt_0IepDFoSmAZLhme87uNbVrWkP0mS5XeGtCQY2uWS0oNgkHP6cR_4b-TWqWdIE39p5eN20LK3C-zGm3DqbtfPeKXBx_PT-apsPMhdQJni9TkylbyitTcF_YPPeF9LZ0VquaK6mNdqXToHXuGPeC1aWFgMsxX3tpRX3Fs2KXbIeb4PcIFXWmbVYLb3DGOjeWSV0zJo0WNcQxJiEH4x-v2p5ao4pP4qqoUE_VnZ4Sshs1spHLkfUe0seE7I8qqgbng31gHEisV8C-j5tlcBt8CzHB36yijMDcjul_yoCtYpKakNe91u8-YDCbhKgH9rARQNruhytgzZG-e7DeN_-98wN5Mj2fnVanJ2ff35KnEMJJRFPG9sn28nbl30GYtLTvo1P8BhqIEWc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgLokAhtICROJRDmjjxR3xEhVULbFUhKvUW2V5bjbTrRt3sYS_89o6dZLtFiANnj6UoM-M3Y8-8QehjxVlpCyFTYYROqQzvu5SQVFpAMyVFSSNd0_SMn1zQb5fscmvUVyzaN7o58vPFkW-uYm1luzDZWCeWnU-PWc7BEPOsnbnsIXoEPpvzMVHf8O1WffdJAYcwLejI6iPKrPVqGS5VGKA9IWGQTiE4pA2h228Lm_ryxL8Fnn_WT24B0uQZejpEkvhz_8W76IH1z9Hu4KtLfDgQSn96gX7_PJ2GDDjAFI7EDI3HBb7px9CDbBicAmgW1nTP273Geo0dRKBptwo3JxhUaZrVAodGYW_nOGLg0MOJVYcX4dbe4qumbWEFzpg5Xq69apd2-RJdTL7-Oj5Jh7kLqWG06FKVC13xmSqpLXVR2JJbXRkthaOCSyVNZSRonhpCLSOu0hB0GWKd5Zq5Gc3LPbTjr719jTBzudS5Y1aFOetUacKlI4QryRzEMipBh-Mfr9ueXqOOz-KirIOe6js9JWgvamQjVwTme0ghE3QwqqgeHBD2gYEEcr0S9n3YLIPrhPcQ5e31KsqwkN8R-U8ZsNeQqCboVa_1uw8YzCZB4p49bAQCdff9FbDoSOE9WPCb_975Hj0-_zKpf5yefd9HTyCK4wFQCTlAO93Nyr6FSKnT76JP3AL74BJ6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIM-binding+protein+2+regulates+release+probability+by+fine-tuning+calcium+channel+localization+at+murine+hippocampal+synapses&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Grauel%2C+M+Katharina&rft.au=Maglione%2C+Marta&rft.au=Reddy-Alla%2C+Suneel&rft.au=Willmes%2C+Claudia+G&rft.date=2016-10-11&rft.eissn=1091-6490&rft.volume=113&rft.issue=41&rft.spage=11615&rft_id=info:doi/10.1073%2Fpnas.1605256113&rft_id=info%3Apmid%2F27671655&rft.externalDocID=27671655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |