RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses

The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (Cavs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other com...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 41; pp. 11615 - 11620
Main Authors Grauel, M. Katharina, Maglione, Marta, Reddy-Alla, Suneel, Willmes, Claudia G., Brockmann, Marisa M., Trimbuch, Thorsten, Rosenmund, Tanja, Pangalos, Maria, Vardar, Gülçin, Stumpf, Alexander, Walter, Alexander M., Rost, Benjamin R., Eickholt, Britta J., Haucke, Volker, Schmitz, Dietmar, Sigrist, Stephan J., Rosenmund, Christian
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (Cavs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Cav2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.
AbstractList The tight spatial coupling of synaptic vesicles and voltage-gated Ca channels (Ca s) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2-deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Ca 2.1 clustering at AZs, which likely alters Ca nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.
Highly regulated and precise positioning of Ca 2+ channels at the active zone (AZ) controls Ca 2+ nanodomains at release sites. Their exact localization affects vesicular release probability (P VR ) and is important for proper synaptic transmission during repetitive stimulation. We provide a detailed analysis of synaptic transmission combined with superresolution imaging of the AZ organization in mouse hippocampal synapses lacking Rab-interacting molecule-binding protein 2 (RIM-BP2). By dual- and triple-channel time-gated stimulated emission depletion (gSTED) microscopy, we directly show that RIM-BP2 fine-tunes voltage-gated Ca 2+ channel 2.1 (Ca V 2.1) localization at the AZ. We reveal that RIM-BP2 likely regulates the Ca 2+ nanodomain by positioning Ca V 2.1 channels close to synaptic vesicle release sites. Loss of RIM-BP2 reduces P VR and alters short-term plasticity. The tight spatial coupling of synaptic vesicles and voltage-gated Ca 2+ channels (Ca V s) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca 2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Ca V 2.1 clustering at AZs, which likely alters Ca 2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.
The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (Cavs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Cav2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.
Significance Highly regulated and precise positioning of Ca 2+ channels at the active zone (AZ) controls Ca 2+ nanodomains at release sites. Their exact localization affects vesicular release probability (P VR ) and is important for proper synaptic transmission during repetitive stimulation. We provide a detailed analysis of synaptic transmission combined with superresolution imaging of the AZ organization in mouse hippocampal synapses lacking Rab-interacting molecule-binding protein 2 (RIM-BP2). By dual- and triple-channel time-gated stimulated emission depletion (gSTED) microscopy, we directly show that RIM-BP2 fine-tunes voltage-gated Ca 2+ channel 2.1 (Ca V 2.1) localization at the AZ. We reveal that RIM-BP2 likely regulates the Ca 2+ nanodomain by positioning Ca V 2.1 channels close to synaptic vesicle release sites. Loss of RIM-BP2 reduces P VR and alters short-term plasticity. The tight spatial coupling of synaptic vesicles and voltage-gated Ca 2+ channels (Ca V s) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca 2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2–deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in Ca V 2.1 clustering at AZs, which likely alters Ca 2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.
Author Rosenmund, Christian
Pangalos, Maria
Rost, Benjamin R.
Trimbuch, Thorsten
Rosenmund, Tanja
Brockmann, Marisa M.
Vardar, Gülçin
Maglione, Marta
Grauel, M. Katharina
Walter, Alexander M.
Schmitz, Dietmar
Reddy-Alla, Suneel
Willmes, Claudia G.
Eickholt, Britta J.
Sigrist, Stephan J.
Stumpf, Alexander
Haucke, Volker
Author_xml – sequence: 1
  givenname: M. Katharina
  surname: Grauel
  fullname: Grauel, M. Katharina
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 2
  givenname: Marta
  surname: Maglione
  fullname: Maglione, Marta
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 3
  givenname: Suneel
  surname: Reddy-Alla
  fullname: Reddy-Alla, Suneel
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 4
  givenname: Claudia G.
  surname: Willmes
  fullname: Willmes, Claudia G.
  organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 5
  givenname: Marisa M.
  surname: Brockmann
  fullname: Brockmann, Marisa M.
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 6
  givenname: Thorsten
  surname: Trimbuch
  fullname: Trimbuch, Thorsten
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 7
  givenname: Tanja
  surname: Rosenmund
  fullname: Rosenmund, Tanja
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 8
  givenname: Maria
  surname: Pangalos
  fullname: Pangalos, Maria
  organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 9
  givenname: Gülçin
  surname: Vardar
  fullname: Vardar, Gülçin
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 10
  givenname: Alexander
  surname: Stumpf
  fullname: Stumpf, Alexander
  organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 11
  givenname: Alexander M.
  surname: Walter
  fullname: Walter, Alexander M.
  organization: Molecular and Theoretical Neuroscience, Leibniz-Institut für Molekulare Pharmakologie, 10117 Berlin, Germany
– sequence: 12
  givenname: Benjamin R.
  surname: Rost
  fullname: Rost, Benjamin R.
  organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 13
  givenname: Britta J.
  surname: Eickholt
  fullname: Eickholt, Britta J.
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 14
  givenname: Volker
  surname: Haucke
  fullname: Haucke, Volker
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 15
  givenname: Dietmar
  surname: Schmitz
  fullname: Schmitz, Dietmar
  organization: Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 16
  givenname: Stephan J.
  surname: Sigrist
  fullname: Sigrist, Stephan J.
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
– sequence: 17
  givenname: Christian
  surname: Rosenmund
  fullname: Rosenmund, Christian
  organization: NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27671655$$D View this record in MEDLINE/PubMed
BookMark eNqNks1r3DAQxUVJaTZpzz21CHrpxYm-bV8KIfQjkBAo7dlI2vGuFllyJbuwOeRvr8ymSdtTTxr0fvPQaN4JOgoxAEKvKTmjpObnY9D5jCoimVSU8mdoRUlLKyVacoRWhLC6agQTx-gk5x0hpJUNeYGOWa1qqqRcofuvVzeVcWHtwgaPKU7gAmY4wWb2eoJcKg86w6IZbZx30x6bPe5dgGqaw9JmtbduHrDd6hDAYx_LjbvTk4sB6wkPcyo03rpxLMowao_zPugxQ36JnvfaZ3j1cJ6i758-frv8Ul3ffr66vLiurBRsqjSpTaPWmgvghjHgCkxjTVv3olatbm1jW7BWWCpA0r4xkpYaelBG9mtB-Cn6cPAdZzPA2kKYkvbdmNyg076L2nV_K8Ftu0382UmiGs4Wg_cPBin-mCFP3eCyBe91gDjnjja85oIwRf8HlYKWdbUFffcPuotzCuUnFoq1UracF-r8QNkUc07QP76bkm6JQbfEoHuKQel4--e4j_zvvRfgzQHY5SmmJ12JmpUh-C8INb0g
CitedBy_id crossref_primary_10_1016_j_tins_2019_03_001
crossref_primary_10_3389_fncel_2017_00334
crossref_primary_10_3389_fnins_2023_1123561
crossref_primary_10_1172_JCI140625
crossref_primary_10_3389_fncel_2017_00374
crossref_primary_10_1083_jcb_201902059
crossref_primary_10_3389_fnins_2020_578409
crossref_primary_10_3389_fnmol_2021_651935
crossref_primary_10_1016_j_conb_2018_12_011
crossref_primary_10_1152_physrev_00030_2017
crossref_primary_10_1016_j_brainresbull_2021_02_012
crossref_primary_10_1523_JNEUROSCI_0076_21_2021
crossref_primary_10_1016_j_biopsych_2023_07_021
crossref_primary_10_1007_s40142_020_00182_y
crossref_primary_10_7554_eLife_43243
crossref_primary_10_1080_19336950_2017_1356954
crossref_primary_10_3389_fnsyn_2022_1023256
crossref_primary_10_1038_s41467_021_21004_x
crossref_primary_10_1098_rsob_170258
crossref_primary_10_1073_pnas_2220856120
crossref_primary_10_1007_s12035_019_01785_5
crossref_primary_10_1016_j_envpol_2019_04_005
crossref_primary_10_1523_JNEUROSCI_0506_19_2019
crossref_primary_10_3389_fncel_2022_1037721
crossref_primary_10_15252_embj_201798637
crossref_primary_10_1186_s13041_019_0524_6
crossref_primary_10_3389_fnana_2018_00081
crossref_primary_10_1016_j_celrep_2020_107960
crossref_primary_10_1111_febs_15759
crossref_primary_10_1021_acs_chemrev_0c01174
crossref_primary_10_3390_genes11091006
crossref_primary_10_1007_s12035_016_0205_8
crossref_primary_10_1016_j_conb_2022_102540
crossref_primary_10_1038_s41467_021_23116_w
crossref_primary_10_7554_eLife_90799
crossref_primary_10_1016_j_heares_2019_107879
crossref_primary_10_1038_s41593_020_00716_1
crossref_primary_10_1016_j_neuron_2017_08_016
crossref_primary_10_1073_pnas_1719012115
crossref_primary_10_1016_j_neuron_2019_08_014
crossref_primary_10_3390_biomedicines12020304
crossref_primary_10_2139_ssrn_3748741
crossref_primary_10_1016_j_neures_2017_12_006
crossref_primary_10_1098_rsob_210334
crossref_primary_10_3389_fnmol_2018_00494
crossref_primary_10_1016_j_celrep_2019_11_060
crossref_primary_10_3389_fnmol_2022_674243
crossref_primary_10_1002_1873_3468_13188
crossref_primary_10_7554_eLife_69498
crossref_primary_10_1155_2023_6755569
crossref_primary_10_7554_eLife_90799_3
crossref_primary_10_1007_s12035_017_0661_9
crossref_primary_10_1016_j_celrep_2022_111882
crossref_primary_10_1073_pnas_1702991114
crossref_primary_10_1016_j_celrep_2017_02_064
crossref_primary_10_1523_JNEUROSCI_0511_18_2018
crossref_primary_10_7554_eLife_78182
crossref_primary_10_1098_rsob_210173
crossref_primary_10_1016_j_conb_2018_05_004
crossref_primary_10_1007_s00424_019_02338_4
crossref_primary_10_1126_sciadv_ado0077
crossref_primary_10_1038_s41598_017_15695_w
crossref_primary_10_1242_jcs_225557
crossref_primary_10_1016_j_neuron_2022_01_026
crossref_primary_10_1038_s41583_018_0111_3
Cites_doi 10.1038/415327a
10.1016/j.neuron.2016.03.034
10.1016/j.cell.2010.12.029
10.1523/JNEUROSCI.17-15-05858.1997
10.1016/S0006-3495(97)78062-7
10.1038/415321a
10.1016/j.neuron.2014.02.012
10.1038/nsmb.1791
10.1016/j.neuron.2015.08.027
10.1016/j.neuron.2015.01.024
10.1038/nrn3125
10.1038/nn.3137
10.1038/nature12354
10.1016/j.neuron.2011.01.005
10.1016/j.neuron.2010.11.021
10.1523/JNEUROSCI.0965-12.2012
10.1126/science.1212991
10.1038/ncomms3392
10.1074/jbc.M909008199
10.1038/nature13846
10.1038/ncomms4650
10.1523/JNEUROSCI.3553-05.2006
10.1074/jbc.M212287200
10.1371/journal.pbio.0040207
10.1523/JNEUROSCI.0187-13.2013
10.1371/journal.pgen.1000536
10.1073/pnas.1211971109
10.1016/j.celrep.2014.04.051
10.1523/JNEUROSCI.0981-12.2012
10.1016/j.neuron.2007.10.016
10.1016/S0896-6273(02)00667-0
10.1073/pnas.122623799
10.1523/JNEUROSCI.1444-14.2014
10.1126/science.7901909
10.1186/2040-2392-2-1
10.1523/JNEUROSCI.4908-06.2007
10.1038/nature09146
10.1016/S0896-6273(00)80146-4
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 11, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 11, 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1605256113
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
Calcium & Calcified Tissue Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate RIM-BP2 sets release probability at mouse synapses
EISSN 1091-6490
EndPage 11620
ExternalDocumentID 4230045051
10_1073_pnas_1605256113
27671655
26472026
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: Exc257
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: SFB958
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: Emmy Noether Program
– fundername: Studienstiftung des Deutschen Volkes (Studienstiftung)
  grantid: Promotionsstipendium
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c542t-a07b86da34e3b22e36eb8cb97f4769a9c8c9ecc4c14e51f8b514c1efe6b5fd403
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:16:31 EDT 2024
Sat Aug 17 04:12:38 EDT 2024
Sat Aug 17 03:11:12 EDT 2024
Thu Oct 10 19:34:06 EDT 2024
Fri Aug 23 01:52:25 EDT 2024
Wed Oct 16 00:59:59 EDT 2024
Thu Nov 14 15:17:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords calcium channel coupling
RIM-BP2
active zone structure
release probability
short-term plasticity
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-a07b86da34e3b22e36eb8cb97f4769a9c8c9ecc4c14e51f8b514c1efe6b5fd403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved August 15, 2016 (received for review March 31, 2016)
1M.K.G., M.M., and S.R.-A. contributed equally to this work.
Author contributions: M.K.G., M.M., S.R.-A., B.J.E., V.H., D.S., S.J.S., and C.R. designed research; M.K.G., M.M., S.R.-A., C.G.W., M.M.B., T.T., T.R., M.P., G.V., A.S., and B.R.R. performed research; A.M.W. contributed new reagents/analytic tools; M.K.G., M.M., S.R.-A., C.G.W., M.M.B., T.T., T.R., M.P., and B.R.R. analyzed data; A.M.W. provided data discussion; and M.K.G., M.M., S.R.-A., V.H., D.S., S.J.S., and C.R. wrote the paper.
ORCID 0000-0001-9052-9271
OpenAccessLink https://www.pnas.org/content/pnas/113/41/11615.full.pdf
PMID 27671655
PQID 1832955933
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5068320
proquest_miscellaneous_1837340261
proquest_miscellaneous_1835416119
proquest_journals_1832955933
crossref_primary_10_1073_pnas_1605256113
pubmed_primary_27671655
jstor_primary_26472026
PublicationCentury 2000
PublicationDate 2016-10-11
PublicationDateYYYYMMDD 2016-10-11
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 16436611 - J Neurosci. 2006 Jan 25;26(4):1239-46
7901909 - Science. 1993 Oct 29;262(5134):754-7
9221783 - J Neurosci. 1997 Aug 1;17(15):5858-67
22908295 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14657-62
25164673 - J Neurosci. 2014 Aug 27;34(35):11781-91
21144999 - Neuron. 2010 Dec 9;68(5):843-56
17964254 - Neuron. 2007 Oct 25;56(2):399-413
24882013 - Cell Rep. 2014 Jun 12;7(5):1417-25
20531469 - Nature. 2010 Jul 15;466(7304):368-72
22174254 - Science. 2011 Dec 16;334(6062):1565-9
17267576 - J Neurosci. 2007 Jan 31;27(5):1200-10
22683683 - Nat Neurosci. 2012 Jun 10;15(7):988-97
22183436 - Nat Rev Neurosci. 2011 Dec 20;13(1):7-21
25296249 - Nature. 2014 Nov 13;515(7526):228-33
10748113 - J Biol Chem. 2000 Jun 30;275(26):20033-44
16774451 - PLoS Biol. 2006 Jul;4(7):e207
8663996 - Neuron. 1996 Jun;16(6):1197-207
23175813 - J Neurosci. 2012 Nov 21;32(47):16574-85
27133464 - Neuron. 2016 May 18;90(4):795-809
19557195 - PLoS Genet. 2009 Jun;5(6):e1000536
12070347 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9037-42
23868258 - Nature. 2013 Jul 18;499(7458):295-300
11797009 - Nature. 2002 Jan 17;415(6869):321-6
23175814 - J Neurosci. 2012 Nov 21;32(47):16586-96
26402606 - Neuron. 2015 Sep 23;87(6):1234-47
23999086 - Nat Commun. 2013;4:2392
9199786 - Biophys J. 1997 Jul;73(1):220-9
24698275 - Neuron. 2014 Apr 2;82(1):181-94
11797010 - Nature. 2002 Jan 17;415(6869):327-30
24133272 - J Neurosci. 2013 Oct 16;33(42):16698-714
21262469 - Neuron. 2011 Jan 27;69(2):317-31
24722188 - Nat Commun. 2014 Apr 11;5:3650
20400951 - Nat Struct Mol Biol. 2010 May;17(5):568-75
21241895 - Cell. 2011 Jan 21;144(2):282-95
11988172 - Neuron. 2002 Apr 25;34(3):411-23
12473661 - J Biol Chem. 2003 Feb 21;278(8):6291-300
21247446 - Mol Autism. 2011 Jan 19;2(1):1
25704950 - Neuron. 2015 Mar 4;85(5):1056-69
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_29_2
  doi: 10.1038/415327a
– ident: e_1_3_3_33_2
  doi: 10.1016/j.neuron.2016.03.034
– ident: e_1_3_3_2_2
  doi: 10.1016/j.cell.2010.12.029
– ident: e_1_3_3_25_2
  doi: 10.1523/JNEUROSCI.17-15-05858.1997
– ident: e_1_3_3_37_2
  doi: 10.1016/S0006-3495(97)78062-7
– ident: e_1_3_3_28_2
  doi: 10.1038/415321a
– ident: e_1_3_3_5_2
  doi: 10.1016/j.neuron.2014.02.012
– ident: e_1_3_3_38_2
  doi: 10.1038/nsmb.1791
– ident: e_1_3_3_8_2
  doi: 10.1016/j.neuron.2015.08.027
– ident: e_1_3_3_7_2
  doi: 10.1016/j.neuron.2015.01.024
– ident: e_1_3_3_16_2
  doi: 10.1038/nrn3125
– ident: e_1_3_3_26_2
  doi: 10.1038/nn.3137
– ident: e_1_3_3_35_2
  doi: 10.1038/nature12354
– ident: e_1_3_3_1_2
  doi: 10.1016/j.neuron.2011.01.005
– ident: e_1_3_3_24_2
  doi: 10.1016/j.neuron.2010.11.021
– ident: e_1_3_3_27_2
  doi: 10.1523/JNEUROSCI.0965-12.2012
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1212991
– ident: e_1_3_3_30_2
  doi: 10.1038/ncomms3392
– ident: e_1_3_3_3_2
  doi: 10.1074/jbc.M909008199
– ident: e_1_3_3_36_2
  doi: 10.1038/nature13846
– ident: e_1_3_3_21_2
  doi: 10.1038/ncomms4650
– ident: e_1_3_3_23_2
  doi: 10.1523/JNEUROSCI.3553-05.2006
– ident: e_1_3_3_9_2
  doi: 10.1074/jbc.M212287200
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.pbio.0040207
– ident: e_1_3_3_14_2
  doi: 10.1523/JNEUROSCI.0187-13.2013
– ident: e_1_3_3_18_2
  doi: 10.1371/journal.pgen.1000536
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.1211971109
– ident: e_1_3_3_10_2
  doi: 10.1016/j.celrep.2014.04.051
– ident: e_1_3_3_31_2
  doi: 10.1523/JNEUROSCI.0981-12.2012
– ident: e_1_3_3_32_2
  doi: 10.1016/j.neuron.2007.10.016
– ident: e_1_3_3_4_2
  doi: 10.1016/S0896-6273(02)00667-0
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.122623799
– ident: e_1_3_3_34_2
  doi: 10.1523/JNEUROSCI.1444-14.2014
– ident: e_1_3_3_12_2
  doi: 10.1126/science.7901909
– ident: e_1_3_3_20_2
  doi: 10.1186/2040-2392-2-1
– ident: e_1_3_3_15_2
  doi: 10.1523/JNEUROSCI.4908-06.2007
– ident: e_1_3_3_19_2
  doi: 10.1038/nature09146
– ident: e_1_3_3_11_2
  doi: 10.1016/S0896-6273(00)80146-4
SSID ssj0009580
Score 2.5294662
Snippet The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (Cavs) ensures efficient action potential-triggered neurotransmitter release...
The tight spatial coupling of synaptic vesicles and voltage-gated Ca channels (Ca s) ensures efficient action potential-triggered neurotransmitter release from...
Significance Highly regulated and precise positioning of Ca 2+ channels at the active zone (AZ) controls Ca 2+ nanodomains at release sites. Their exact...
The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release...
Highly regulated and precise positioning of Ca 2+ channels at the active zone (AZ) controls Ca 2+ nanodomains at release sites. Their exact localization...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11615
SubjectTerms Action Potentials
Animals
Biological Sciences
Calcium
Calcium - metabolism
Calcium Channels - metabolism
Cells, Cultured
Electrophysiological Phenomena
Female
Gene Deletion
Gene Expression
Gene Targeting
Genetic Loci
Genotype & phenotype
Hippocampus - metabolism
Male
Mice
Mice, Knockout
Molecules
Neurons
Neurons - metabolism
Neurotransmitters
Phenotype
Protein Transport
Proteins
Synapses - metabolism
Synaptic Transmission - genetics
Synaptic Vesicles - metabolism
Title RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses
URI https://www.jstor.org/stable/26472026
https://www.ncbi.nlm.nih.gov/pubmed/27671655
https://www.proquest.com/docview/1832955933
https://search.proquest.com/docview/1835416119
https://search.proquest.com/docview/1837340261
https://pubmed.ncbi.nlm.nih.gov/PMC5068320
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWAUy9VKaVNS5GReqCHsHHij_hYoSIo2qqqisQtso0jIu2aiGQPe-lv74yTLFBVHHr2WIoyM34z9swbQj6VUhQ-VzpVTtmUa3zf5Yyl2gOaGa0KHuma5t_l-RX_di2ut4iYemFi0b6zzUlYLE9CcxtrK9ulm011YrMf81ORSTDEbLZNtsFApxR9w7RbDn0nORy_POcTn48qZm0wHV6nCMB5xnCETq4kJAzY5_cIlYbCxH-FnH9XTj6CorNX5OUYQ9Ivw7fuki0fXpPd0Us7ejxSSX_eI79_Xswx90WAopGSoQk0p_fDAHqQxZEpgGO4ZgfG7jW1a1pD7Jn2K7wzoaBE16yWFFuEg1_QiH5j9yY1PV3ifb2nt03bwgqcLgvarYNpO9-9IVdnX3-dnqfjxIXUCZ73qcmULeWNKbgvbJ77QnpbOqtVzZXURrvSadA5d4x7werSQrjlmK-9tKK-4VmxT3bCXfDvCBV1pm1WC29wwjo3lkldMyaNFjVEMSYhx9Mfr9qBWKOKD-KqqFBP1YOeErIfNbKRy5HzHpLHhBxMKqpG14N9YBpIq1fAvqPNMjgNvoSY4O9WUUZgZsf0szJgqZiiJuTtoPWHDxjNJiHqiT1sBJC0--kK2HIk7x5t9_1_7_xAXkDQJhE_GTsgO_39yn-EwKi3h5ASXFweRnf4Axu7Dwo
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFUaA0UMBIHMoh3TjxR3xEFdUWuhVCrdRbZLuOGmnXjZrdw1747cw4ybZFiANnj6UoM-M3Y8-8IeRTKUXhc6VT5ZRNucb3Xc5Yqj2gmdGq4JGuaXYmpxf826W43CJi7IWJRfvONodhvjgMzXWsrWwXbjLWiU1-zI5EJsEQs8kj8hj8NeNjkr7h2i37zpMcDmCe85HRRxWTNpgOL1QEID1jOEQnVxJSBuz0u4dLfWni34LOP2sn74HR8XPybIgi6Zf-a3fIlg8vyM7gpx09GMikP78kv36ezDD7RYiikZShCTSnt_0IepDFoSmAZLhme87uNbVrWkP0mS5XeGtCQY2uWS0oNgkHP6cR_4b-TWqWdIE39p5eN20LK3C-zGm3DqbtfPeKXBx_PT-apsPMhdQJni9TkylbyitTcF_YPPeF9LZ0VquaK6mNdqXToHXuGPeC1aWFgMsxX3tpRX3Fs2KXbIeb4PcIFXWmbVYLb3DGOjeWSV0zJo0WNcQxJiEH4x-v2p5ao4pP4qqoUE_VnZ4Sshs1spHLkfUe0seE7I8qqgbng31gHEisV8C-j5tlcBt8CzHB36yijMDcjul_yoCtYpKakNe91u8-YDCbhKgH9rARQNruhytgzZG-e7DeN_-98wN5Mj2fnVanJ2ff35KnEMJJRFPG9sn28nbl30GYtLTvo1P8BhqIEWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgLokAhtICROJRDmjjxR3xEhVULbFUhKvUW2V5bjbTrRt3sYS_89o6dZLtFiANnj6UoM-M3Y8-8QehjxVlpCyFTYYROqQzvu5SQVFpAMyVFSSNd0_SMn1zQb5fscmvUVyzaN7o58vPFkW-uYm1luzDZWCeWnU-PWc7BEPOsnbnsIXoEPpvzMVHf8O1WffdJAYcwLejI6iPKrPVqGS5VGKA9IWGQTiE4pA2h228Lm_ryxL8Fnn_WT24B0uQZejpEkvhz_8W76IH1z9Hu4KtLfDgQSn96gX7_PJ2GDDjAFI7EDI3HBb7px9CDbBicAmgW1nTP273Geo0dRKBptwo3JxhUaZrVAodGYW_nOGLg0MOJVYcX4dbe4qumbWEFzpg5Xq69apd2-RJdTL7-Oj5Jh7kLqWG06FKVC13xmSqpLXVR2JJbXRkthaOCSyVNZSRonhpCLSOu0hB0GWKd5Zq5Gc3LPbTjr719jTBzudS5Y1aFOetUacKlI4QryRzEMipBh-Mfr9ueXqOOz-KirIOe6js9JWgvamQjVwTme0ghE3QwqqgeHBD2gYEEcr0S9n3YLIPrhPcQ5e31KsqwkN8R-U8ZsNeQqCboVa_1uw8YzCZB4p49bAQCdff9FbDoSOE9WPCb_975Hj0-_zKpf5yefd9HTyCK4wFQCTlAO93Nyr6FSKnT76JP3AL74BJ6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIM-binding+protein+2+regulates+release+probability+by+fine-tuning+calcium+channel+localization+at+murine+hippocampal+synapses&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Grauel%2C+M+Katharina&rft.au=Maglione%2C+Marta&rft.au=Reddy-Alla%2C+Suneel&rft.au=Willmes%2C+Claudia+G&rft.date=2016-10-11&rft.eissn=1091-6490&rft.volume=113&rft.issue=41&rft.spage=11615&rft_id=info:doi/10.1073%2Fpnas.1605256113&rft_id=info%3Apmid%2F27671655&rft.externalDocID=27671655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon