Influenza A surface glycosylation and vaccine design
We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 2; pp. 280 - 285 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8⁺ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains. |
---|---|
AbstractList | Influenza A virus (IAV) is a major threat to global public health, and so understanding the biology of IAV is essential to develop antiflu vaccines and therapeutics. Here, we show the links between viral surface glycosylation and IAV function. The glycosylation of HA modulates virus infectivity, and host immune response; the glycosylation of NA affects its structure, activity, specificity, and thermostability to regulate virus release and virulence. In addition, using live attenuated IAV without the stalk and catalytic domains of NA as vaccine can strongly induce IAV-specific CD8
+
T-cell responses to various virus strains. Therefore, our findings have clarified the role of glycosylation in IAV and provided a new direction for the development of universal flu vaccines.
We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8
+
T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains. We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8 T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains. We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8⁺ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains. We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8+ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8+ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains. We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8+ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains. |
Author | Lin, Chih-Wei Chen, Jhih-Bin Chuang, Hong-Yang Shivatare, Vidya S. Tsai, Tsung-I Liu, Chiu-Ping Lee, Chang-Chun David Wong, Chi-Huey Wu, Chung-Yi Chen, Bo-Rui Tsai, Ming-Hung Lo, Pei-Wen |
Author_xml | – sequence: 1 givenname: Chung-Yi surname: Wu fullname: Wu, Chung-Yi organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 2 givenname: Chih-Wei surname: Lin fullname: Lin, Chih-Wei organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 3 givenname: Tsung-I surname: Tsai fullname: Tsai, Tsung-I organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 4 givenname: Chang-Chun David surname: Lee fullname: Lee, Chang-Chun David organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 5 givenname: Hong-Yang surname: Chuang fullname: Chuang, Hong-Yang organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 6 givenname: Jhih-Bin surname: Chen fullname: Chen, Jhih-Bin organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 7 givenname: Ming-Hung surname: Tsai fullname: Tsai, Ming-Hung organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 8 givenname: Bo-Rui surname: Chen fullname: Chen, Bo-Rui organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 9 givenname: Pei-Wen surname: Lo fullname: Lo, Pei-Wen organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 10 givenname: Chiu-Ping surname: Liu fullname: Liu, Chiu-Ping organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 11 givenname: Vidya S. surname: Shivatare fullname: Shivatare, Vidya S. organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 12 givenname: Chi-Huey surname: Wong fullname: Wong, Chi-Huey organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28028222$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1r3DAUxEVJaTYf555aDL304uRJfvrwpRBC0gYCveQuZFneavFKW8kObP_6artJ0wQCPenwfjOMZo7IQYjBEfKewhkF2ZxvgslnVFBJJVKKb8iCQktrgS0ckAUAk7VChofkKOcVALRcwTtyyBQwxRhbELwJwzi78MtUF1We02Csq5bj1sa8Hc3kY6hM6Kt7Y60Prupd9stwQt4OZszu9OE9JnfXV3eX3-rb719vLi9ua8uRTXVrGzHQDpgYlGQ9Wuwotg5454TsQJkeuTESOsuVMTgA8LaFXri2H0yHzTH5srfdzN3a9daFKZlRb5Jfm7TV0Xj9_BL8D72M95ozBAlNMfj8YJDiz9nlSa99tm4cTXBxzpqWWLsaGvEfKG8kslJzQT-9QFdxTqEUsaOUAEAqC_Xx3_B_Uz9WXwC-B2yKOSc3aOunP42Xv_hRU9C7ifVuYv00cdGdv9A9Wr-u-LBXrPIU01MSgVJJ4M1vqFuxqA |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c02524 crossref_primary_10_1080_22221751_2019_1665971 crossref_primary_10_1038_s42003_020_01486_z crossref_primary_10_1073_pnas_1819197116 crossref_primary_10_1073_pnas_2008203117 crossref_primary_10_1039_D0AN00770F crossref_primary_10_1126_science_aan8806 crossref_primary_10_1093_glycob_cwy021 crossref_primary_10_1128_jvi_01030_23 crossref_primary_10_1128_JVI_00333_19 crossref_primary_10_3390_ijms18071554 crossref_primary_10_1038_s41589_024_01813_z crossref_primary_10_1038_s41541_021_00417_1 crossref_primary_10_1186_s12985_020_01335_9 crossref_primary_10_1038_s41598_019_48499_1 crossref_primary_10_3390_microorganisms10020361 crossref_primary_10_3390_pathogens11121521 crossref_primary_10_1073_pnas_2314392120 crossref_primary_10_1002_pmic_201800202 crossref_primary_10_1007_s10719_023_10142_7 crossref_primary_10_1371_journal_ppat_1012599 crossref_primary_10_1128_jvi_00416_22 crossref_primary_10_1021_acs_joc_0c01834 crossref_primary_10_1016_j_compbiomed_2024_108316 crossref_primary_10_1038_s41467_020_16567_0 crossref_primary_10_1016_j_celrep_2020_108016 crossref_primary_10_1016_j_aca_2019_03_005 crossref_primary_10_1002_bkcs_11172 crossref_primary_10_1038_s41587_022_01381_4 crossref_primary_10_1039_D4SM00066H crossref_primary_10_1088_1478_3975_aac473 crossref_primary_10_1002_1873_3468_13177 crossref_primary_10_1021_acsomega_3c04669 crossref_primary_10_1002_anie_202418146 crossref_primary_10_1080_14789450_2020_1769479 crossref_primary_10_15406_jmen_2020_08_00290 crossref_primary_10_1016_j_coviro_2017_11_002 crossref_primary_10_3390_v13060973 crossref_primary_10_1073_pnas_2119995119 crossref_primary_10_1021_acs_chemrev_1c01032 crossref_primary_10_1080_14760584_2024_2343689 crossref_primary_10_1016_j_trac_2022_116738 crossref_primary_10_1093_cid_ciz411 crossref_primary_10_3389_fchem_2020_00622 crossref_primary_10_1186_s12864_018_4461_z crossref_primary_10_1016_j_jbiotec_2020_04_005 crossref_primary_10_1016_j_vaccine_2019_03_009 crossref_primary_10_1038_s41592_021_01209_0 crossref_primary_10_1038_s41598_021_91607_3 crossref_primary_10_1002_ange_202418146 crossref_primary_10_1016_j_vaccine_2019_11_072 crossref_primary_10_1021_acs_biochem_9b00613 crossref_primary_10_1128_JVI_02042_20 crossref_primary_10_1128_mBio_00307_19 crossref_primary_10_1371_journal_ppat_1012499 crossref_primary_10_1038_s41467_019_09608_w crossref_primary_10_3389_fcimb_2020_575613 crossref_primary_10_7124_FEEO_v26_1238 crossref_primary_10_3389_fimmu_2019_00440 crossref_primary_10_1103_PhysRevX_15_011016 crossref_primary_10_1016_j_carres_2023_108894 crossref_primary_10_2478_jvetres_2021_0006 crossref_primary_10_3389_fimmu_2018_02485 crossref_primary_10_1007_s11262_022_01904_w crossref_primary_10_3390_v16060883 crossref_primary_10_1039_D4LC00916A |
Cites_doi | 10.1371/journal.pone.0135487 10.1126/scitranslmed.3000799 10.1128/JVI.01581-09 10.1371/journal.ppat.1003657 10.1111/j.1750-2659.2011.00304.x 10.1126/science.1178258 10.1128/JVI.01987-08 10.1126/science.1119392 10.1371/journal.pone.0049224 10.1016/j.jcv.2015.04.010 10.1093/infdis/jiv195 10.1021/ja104657b 10.1074/jbc.M114.622308 10.1074/jbc.M113.468884 10.1128/JVI.02439-15 10.1093/cid/ciq015 10.1016/S0022-1759(98)00204-X 10.1038/nrmicro2613 10.1016/j.micinf.2014.11.003 10.1128/JVI.74.14.6316-6323.2000 10.1128/mBio.01996-15 10.1128/JVI.00450-09 10.1128/JVI.03456-14 10.1038/nm.3350 10.1073/pnas.100133697 10.1016/j.bbrc.2008.12.139 10.4049/jimmunol.1501637 10.1016/j.coviro.2014.06.004 10.1016/j.jmb.2013.12.023 10.1128/JVI.02401-10 10.1371/journal.pone.0030898 10.1586/14760584.2016.1115352 10.1128/JVI.02188-10 10.1073/pnas.1323954111 10.1146/annurev-med-120611-145115 10.1038/nm.3958 10.1266/ggs.86.287 10.1126/science.aac7263 10.1128/JVI.76.2.582-590.2002 10.1073/pnas.0909696106 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jan 10, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jan 10, 2017 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1617174114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Influenza surface glycosylation and vaccine design |
EISSN | 1091-6490 |
EndPage | 285 |
ExternalDocumentID | PMC5240703 4302039621 28028222 10_1073_pnas_1617174114 26478705 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Academia Sinica grantid: N/A |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c542t-9c36f1b026f872d4c4b149e05be67b08ad45aa70bc58aa4f005990d6e9dfab43 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:28:03 EDT 2025 Fri Jul 11 01:55:34 EDT 2025 Fri Jul 11 07:05:18 EDT 2025 Mon Jun 30 08:22:20 EDT 2025 Wed Feb 19 02:42:08 EST 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Jul 01 03:19:27 EDT 2025 Fri May 30 11:46:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | glycosylation vaccine design influenza A virus |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-9c36f1b026f872d4c4b149e05be67b08ad45aa70bc58aa4f005990d6e9dfab43 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: C.-Y.W. and C.-H.W. designed research; C.-Y.W., C.-W.L., T.-I.T., C.-C.D.L., H.-Y.C., J.-B.C., M.-H.T., B.-R.C., P.-W.L., and C.-P.L. performed research; C.-Y.W. and C.-H.W. analyzed data; and C.-Y.W., V.S.S., and C.-H.W. wrote the paper. Reviewers: N.L.B.P., Indiana University; and M.v.I., Griffith University. Contributed by Chi-Huey Wong, November 16, 2016 (sent for review July 12, 2016; reviewed by Nicola L. B. Pohl and Mark von Itzstein) |
OpenAccessLink | https://www.pnas.org/content/pnas/114/2/280.full.pdf |
PMID | 28028222 |
PQID | 1858600417 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240703 proquest_miscellaneous_1872822236 proquest_miscellaneous_1853742174 proquest_journals_1858600417 pubmed_primary_28028222 crossref_citationtrail_10_1073_pnas_1617174114 crossref_primary_10_1073_pnas_1617174114 jstor_primary_26478705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-10 |
PublicationDateYYYYMMDD | 2017-01-10 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 Liu P (e_1_3_3_11_2) 2015; 10 e_1_3_3_33_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 24469815 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2476-81 21507966 - J Virol. 2011 Jul;85(13):6618-28 19822741 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18137-42 25586179 - J Biol Chem. 2015 Mar 6;290(10):6516-21 23133677 - PLoS One. 2012;7(11):e49224 22362027 - Genes Genet Syst. 2011;86(5):287-94 25061947 - Curr Opin Virol. 2014 Aug;7:128-33 10037236 - J Immunol Methods. 1999 Feb 1;223(1):77-92 26537686 - J Virol. 2015 Nov 04;90(2):1009-22 19900932 - Science. 2009 Oct 30;326(5953):734-6 24130481 - PLoS Pathog. 2013;9(10):e1003657 23645684 - J Biol Chem. 2013 Jun 21;288(25):18283-9 24380762 - J Mol Biol. 2014 Mar 20;426(6):1308-21 20882975 - J Am Chem Soc. 2010 Oct 27;132(42):14849-56 21747392 - Nat Rev Microbiol. 2011 Jul 11;9(8):590-603 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13 10864641 - J Virol. 2000 Jul;74(14):6316-23 22303469 - PLoS One. 2012;7(1):e30898 25673707 - J Virol. 2015 Apr;89(8):4612-23 26641724 - Expert Rev Vaccines. 2016;15(2):215-25 22085243 - Influenza Other Respir Viruses. 2012 Jul;6(4):245-56 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21 21148512 - Clin Infect Dis. 2011 Jan 1;52(1):1-7 19889765 - J Virol. 2010 Jan;84(2):940-52 26864033 - J Immunol. 2016 Mar 15;196(6):2637-45 25479556 - Microbes Infect. 2015 Feb;17(2):135-41 26267136 - PLoS One. 2015 Aug 12;10(8):e0135487 26413780 - Nat Med. 2015 Oct;21(10):1216-22 19133226 - Biochem Biophys Res Commun. 2009 Feb 13;379(3):749-53 26071329 - J Clin Virol. 2015 Jul;68:16-23 26303961 - Science. 2015 Sep 18;349(6254):1301-6 24056771 - Nat Med. 2013 Oct;19(10 ):1305-12 11752149 - J Virol. 2002 Jan;76(2):582-90 25858957 - J Infect Dis. 2015 Oct 15;212(8):1191-9 23327522 - Annu Rev Med. 2013;64:189-202 16210530 - Science. 2005 Oct 7;310(5745):77-80 19225004 - J Virol. 2009 May;83(9):4704-8 26787832 - MBio. 2016 Jan 19;7(1):e01996-15 21209114 - J Virol. 2011 Mar;85(6):2480-91 19321619 - J Virol. 2009 Jun;83(11):5947-50 |
References_xml | – volume: 10 start-page: e0135487 year: 2015 ident: e_1_3_3_11_2 article-title: The mechanism by which 146-N-glycan affects the active site of neuraminidase publication-title: PLoS One doi: 10.1371/journal.pone.0135487 – ident: e_1_3_3_8_2 doi: 10.1126/scitranslmed.3000799 – ident: e_1_3_3_19_2 doi: 10.1128/JVI.01581-09 – ident: e_1_3_3_2_2 doi: 10.1371/journal.ppat.1003657 – ident: e_1_3_3_20_2 doi: 10.1111/j.1750-2659.2011.00304.x – ident: e_1_3_3_38_2 doi: 10.1126/science.1178258 – ident: e_1_3_3_23_2 doi: 10.1128/JVI.01987-08 – ident: e_1_3_3_12_2 doi: 10.1126/science.1119392 – ident: e_1_3_3_21_2 doi: 10.1371/journal.pone.0049224 – ident: e_1_3_3_22_2 doi: 10.1016/j.jcv.2015.04.010 – ident: e_1_3_3_15_2 doi: 10.1093/infdis/jiv195 – ident: e_1_3_3_6_2 doi: 10.1021/ja104657b – ident: e_1_3_3_36_2 doi: 10.1074/jbc.M114.622308 – ident: e_1_3_3_4_2 doi: 10.1074/jbc.M113.468884 – ident: e_1_3_3_29_2 doi: 10.1128/JVI.02439-15 – ident: e_1_3_3_31_2 doi: 10.1093/cid/ciq015 – ident: e_1_3_3_40_2 doi: 10.1016/S0022-1759(98)00204-X – ident: e_1_3_3_1_2 doi: 10.1038/nrmicro2613 – ident: e_1_3_3_28_2 doi: 10.1016/j.micinf.2014.11.003 – ident: e_1_3_3_7_2 doi: 10.1128/JVI.74.14.6316-6323.2000 – ident: e_1_3_3_27_2 doi: 10.1128/mBio.01996-15 – ident: e_1_3_3_16_2 doi: 10.1128/JVI.00450-09 – ident: e_1_3_3_13_2 doi: 10.1128/JVI.03456-14 – ident: e_1_3_3_32_2 doi: 10.1038/nm.3350 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.100133697 – ident: e_1_3_3_37_2 doi: 10.1016/j.bbrc.2008.12.139 – ident: e_1_3_3_26_2 doi: 10.4049/jimmunol.1501637 – ident: e_1_3_3_3_2 doi: 10.1016/j.coviro.2014.06.004 – ident: e_1_3_3_25_2 doi: 10.1016/j.jmb.2013.12.023 – ident: e_1_3_3_5_2 doi: 10.1128/JVI.02401-10 – ident: e_1_3_3_39_2 doi: 10.1371/journal.pone.0030898 – ident: e_1_3_3_30_2 doi: 10.1586/14760584.2016.1115352 – ident: e_1_3_3_24_2 doi: 10.1128/JVI.02188-10 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.1323954111 – ident: e_1_3_3_33_2 doi: 10.1146/annurev-med-120611-145115 – ident: e_1_3_3_14_2 doi: 10.1038/nm.3958 – ident: e_1_3_3_18_2 doi: 10.1266/ggs.86.287 – ident: e_1_3_3_34_2 doi: 10.1126/science.aac7263 – ident: e_1_3_3_17_2 doi: 10.1128/JVI.76.2.582-590.2002 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.0909696106 – reference: 26787832 - MBio. 2016 Jan 19;7(1):e01996-15 – reference: 22362027 - Genes Genet Syst. 2011;86(5):287-94 – reference: 24380762 - J Mol Biol. 2014 Mar 20;426(6):1308-21 – reference: 22085243 - Influenza Other Respir Viruses. 2012 Jul;6(4):245-56 – reference: 25673707 - J Virol. 2015 Apr;89(8):4612-23 – reference: 26537686 - J Virol. 2015 Nov 04;90(2):1009-22 – reference: 20882975 - J Am Chem Soc. 2010 Oct 27;132(42):14849-56 – reference: 24130481 - PLoS Pathog. 2013;9(10):e1003657 – reference: 19133226 - Biochem Biophys Res Commun. 2009 Feb 13;379(3):749-53 – reference: 24469815 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2476-81 – reference: 26071329 - J Clin Virol. 2015 Jul;68:16-23 – reference: 26864033 - J Immunol. 2016 Mar 15;196(6):2637-45 – reference: 19822741 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18137-42 – reference: 10864641 - J Virol. 2000 Jul;74(14):6316-23 – reference: 21209114 - J Virol. 2011 Mar;85(6):2480-91 – reference: 19321619 - J Virol. 2009 Jun;83(11):5947-50 – reference: 11752149 - J Virol. 2002 Jan;76(2):582-90 – reference: 16210530 - Science. 2005 Oct 7;310(5745):77-80 – reference: 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13 – reference: 26267136 - PLoS One. 2015 Aug 12;10(8):e0135487 – reference: 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21 – reference: 25479556 - Microbes Infect. 2015 Feb;17(2):135-41 – reference: 10037236 - J Immunol Methods. 1999 Feb 1;223(1):77-92 – reference: 25586179 - J Biol Chem. 2015 Mar 6;290(10):6516-21 – reference: 25061947 - Curr Opin Virol. 2014 Aug;7:128-33 – reference: 22303469 - PLoS One. 2012;7(1):e30898 – reference: 21148512 - Clin Infect Dis. 2011 Jan 1;52(1):1-7 – reference: 19889765 - J Virol. 2010 Jan;84(2):940-52 – reference: 21507966 - J Virol. 2011 Jul;85(13):6618-28 – reference: 19225004 - J Virol. 2009 May;83(9):4704-8 – reference: 26413780 - Nat Med. 2015 Oct;21(10):1216-22 – reference: 26641724 - Expert Rev Vaccines. 2016;15(2):215-25 – reference: 25858957 - J Infect Dis. 2015 Oct 15;212(8):1191-9 – reference: 23133677 - PLoS One. 2012;7(11):e49224 – reference: 23645684 - J Biol Chem. 2013 Jun 21;288(25):18283-9 – reference: 24056771 - Nat Med. 2013 Oct;19(10 ):1305-12 – reference: 26303961 - Science. 2015 Sep 18;349(6254):1301-6 – reference: 19900932 - Science. 2009 Oct 30;326(5953):734-6 – reference: 21747392 - Nat Rev Microbiol. 2011 Jul 11;9(8):590-603 – reference: 23327522 - Annu Rev Med. 2013;64:189-202 |
SSID | ssj0009580 |
Score | 2.4620075 |
Snippet | We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival.... Influenza A virus (IAV) is a major threat to global public health, and so understanding the biology of IAV is essential to develop antiflu vaccines and... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 280 |
SubjectTerms | Biological Sciences Glycoproteins Glycosylation Immune response Influenza Influenza A virus Orthomyxoviridae Physical Sciences T cell receptors Vaccines Viruses |
Title | Influenza A surface glycosylation and vaccine design |
URI | https://www.jstor.org/stable/26478705 https://www.ncbi.nlm.nih.gov/pubmed/28028222 https://www.proquest.com/docview/1858600417 https://www.proquest.com/docview/1853742174 https://www.proquest.com/docview/1872822236 https://pubmed.ncbi.nlm.nih.gov/PMC5240703 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELaq8cILYsAgMFCQeBiqUtLEjpPHagIG0qo-BK08RY7jsEojnZYGafs9_FDuYsdJR0GwlyhKHDvxfT774u_uCHnjKxlJpOrQmEk48NKLC_wBH1Lp56ActB_36Tw6-UI_L9lyNPo5YC01m3wib3b6ldxFqnAN5Ipesv8hWVspXIBzkC8cQcJw_CcZf9IZRm4EDO-6uSoFDNJvF9dyXV9rilu7NfBDSNw9Hxc9WcOsRhd29qo7rsC8-zk4611NzPivx954Me8TF581er8e1IX3dWWZPSuzjb86986UvZzWOu91WmPxPnW25gG1Pg4eVjUg2Zt_EVMkrXqGlToI5b3zFYdKOICJkWrX6YnSeheWLV5EdeZQq5i1e6lBYDBUszr7k5mxA53057fJALQXZjCuRD1BKw5sL1PjABqX31tsQIXIpw36WdFyFRenxwzNXgwpey8AYwTzZHxcTgehnWPt6GQ-qwsgxcN3t9rGyNOmoa1lkGbC7rJxblN1B2uf9CF5YIwWd6YRuE9GqnpE9rs-d49M7PK3jwm1kHRnroGkuwVJFyDpGki6GpJPSPrhfXp84pnEHJ5kNNh4iQyjcpqD-V7GPCiopDkY2spnuYp47seioEwI7ueSxULQsg0C5BeRSopS5DQ8IHvVulLPiFtIBh2a5IXA6PpMJSJWSSgj9IAWKowcMum6KZMmaD3mTrnIWvIEDzPs4qzvYocc2QcudbyWPxc9aPvdlguwVe4zhxx2gsjMaIfnYhZHGJ2OO-S1vQ26GDfYRKXWTVsm5BSN_L-V4S0A8Nueatn2L2DA4RC-JXVbAGPBb9-pVudtTHgD0ed3fvIFud-P6EOyt7lq1EtYb2_yVy3cfwEs2tPQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influenza+A+surface+glycosylation+and+vaccine+design&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wu%2C+Chung-Yi&rft.au=Lin%2C+Chih-Wei&rft.au=Tsai%2C+Tsung-I&rft.au=Lee%2C+Chang-Chun+David&rft.date=2017-01-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=2&rft.spage=280&rft.epage=285&rft_id=info:doi/10.1073%2Fpnas.1617174114&rft_id=info%3Apmid%2F28028222&rft.externalDocID=PMC5240703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |