Influenza A surface glycosylation and vaccine design

We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 2; pp. 280 - 285
Main Authors Wu, Chung-Yi, Lin, Chih-Wei, Tsai, Tsung-I, Lee, Chang-Chun David, Chuang, Hong-Yang, Chen, Jhih-Bin, Tsai, Ming-Hung, Chen, Bo-Rui, Lo, Pei-Wen, Liu, Chiu-Ping, Shivatare, Vidya S., Wong, Chi-Huey
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8⁺ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.
AbstractList Influenza A virus (IAV) is a major threat to global public health, and so understanding the biology of IAV is essential to develop antiflu vaccines and therapeutics. Here, we show the links between viral surface glycosylation and IAV function. The glycosylation of HA modulates virus infectivity, and host immune response; the glycosylation of NA affects its structure, activity, specificity, and thermostability to regulate virus release and virulence. In addition, using live attenuated IAV without the stalk and catalytic domains of NA as vaccine can strongly induce IAV-specific CD8 + T-cell responses to various virus strains. Therefore, our findings have clarified the role of glycosylation in IAV and provided a new direction for the development of universal flu vaccines. We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8 + T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.
We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8 T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.
We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8⁺ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.
We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8+ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8+ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.
We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8+ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.
Author Lin, Chih-Wei
Chen, Jhih-Bin
Chuang, Hong-Yang
Shivatare, Vidya S.
Tsai, Tsung-I
Liu, Chiu-Ping
Lee, Chang-Chun David
Wong, Chi-Huey
Wu, Chung-Yi
Chen, Bo-Rui
Tsai, Ming-Hung
Lo, Pei-Wen
Author_xml – sequence: 1
  givenname: Chung-Yi
  surname: Wu
  fullname: Wu, Chung-Yi
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 2
  givenname: Chih-Wei
  surname: Lin
  fullname: Lin, Chih-Wei
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 3
  givenname: Tsung-I
  surname: Tsai
  fullname: Tsai, Tsung-I
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 4
  givenname: Chang-Chun David
  surname: Lee
  fullname: Lee, Chang-Chun David
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 5
  givenname: Hong-Yang
  surname: Chuang
  fullname: Chuang, Hong-Yang
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 6
  givenname: Jhih-Bin
  surname: Chen
  fullname: Chen, Jhih-Bin
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 7
  givenname: Ming-Hung
  surname: Tsai
  fullname: Tsai, Ming-Hung
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 8
  givenname: Bo-Rui
  surname: Chen
  fullname: Chen, Bo-Rui
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 9
  givenname: Pei-Wen
  surname: Lo
  fullname: Lo, Pei-Wen
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 10
  givenname: Chiu-Ping
  surname: Liu
  fullname: Liu, Chiu-Ping
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 11
  givenname: Vidya S.
  surname: Shivatare
  fullname: Shivatare, Vidya S.
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 12
  givenname: Chi-Huey
  surname: Wong
  fullname: Wong, Chi-Huey
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28028222$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1r3DAUxEVJaTYf555aDL304uRJfvrwpRBC0gYCveQuZFneavFKW8kObP_6artJ0wQCPenwfjOMZo7IQYjBEfKewhkF2ZxvgslnVFBJJVKKb8iCQktrgS0ckAUAk7VChofkKOcVALRcwTtyyBQwxRhbELwJwzi78MtUF1We02Csq5bj1sa8Hc3kY6hM6Kt7Y60Prupd9stwQt4OZszu9OE9JnfXV3eX3-rb719vLi9ua8uRTXVrGzHQDpgYlGQ9Wuwotg5454TsQJkeuTESOsuVMTgA8LaFXri2H0yHzTH5srfdzN3a9daFKZlRb5Jfm7TV0Xj9_BL8D72M95ozBAlNMfj8YJDiz9nlSa99tm4cTXBxzpqWWLsaGvEfKG8kslJzQT-9QFdxTqEUsaOUAEAqC_Xx3_B_Uz9WXwC-B2yKOSc3aOunP42Xv_hRU9C7ifVuYv00cdGdv9A9Wr-u-LBXrPIU01MSgVJJ4M1vqFuxqA
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c02524
crossref_primary_10_1080_22221751_2019_1665971
crossref_primary_10_1038_s42003_020_01486_z
crossref_primary_10_1073_pnas_1819197116
crossref_primary_10_1073_pnas_2008203117
crossref_primary_10_1039_D0AN00770F
crossref_primary_10_1126_science_aan8806
crossref_primary_10_1093_glycob_cwy021
crossref_primary_10_1128_jvi_01030_23
crossref_primary_10_1128_JVI_00333_19
crossref_primary_10_3390_ijms18071554
crossref_primary_10_1038_s41589_024_01813_z
crossref_primary_10_1038_s41541_021_00417_1
crossref_primary_10_1186_s12985_020_01335_9
crossref_primary_10_1038_s41598_019_48499_1
crossref_primary_10_3390_microorganisms10020361
crossref_primary_10_3390_pathogens11121521
crossref_primary_10_1073_pnas_2314392120
crossref_primary_10_1002_pmic_201800202
crossref_primary_10_1007_s10719_023_10142_7
crossref_primary_10_1371_journal_ppat_1012599
crossref_primary_10_1128_jvi_00416_22
crossref_primary_10_1021_acs_joc_0c01834
crossref_primary_10_1016_j_compbiomed_2024_108316
crossref_primary_10_1038_s41467_020_16567_0
crossref_primary_10_1016_j_celrep_2020_108016
crossref_primary_10_1016_j_aca_2019_03_005
crossref_primary_10_1002_bkcs_11172
crossref_primary_10_1038_s41587_022_01381_4
crossref_primary_10_1039_D4SM00066H
crossref_primary_10_1088_1478_3975_aac473
crossref_primary_10_1002_1873_3468_13177
crossref_primary_10_1021_acsomega_3c04669
crossref_primary_10_1002_anie_202418146
crossref_primary_10_1080_14789450_2020_1769479
crossref_primary_10_15406_jmen_2020_08_00290
crossref_primary_10_1016_j_coviro_2017_11_002
crossref_primary_10_3390_v13060973
crossref_primary_10_1073_pnas_2119995119
crossref_primary_10_1021_acs_chemrev_1c01032
crossref_primary_10_1080_14760584_2024_2343689
crossref_primary_10_1016_j_trac_2022_116738
crossref_primary_10_1093_cid_ciz411
crossref_primary_10_3389_fchem_2020_00622
crossref_primary_10_1186_s12864_018_4461_z
crossref_primary_10_1016_j_jbiotec_2020_04_005
crossref_primary_10_1016_j_vaccine_2019_03_009
crossref_primary_10_1038_s41592_021_01209_0
crossref_primary_10_1038_s41598_021_91607_3
crossref_primary_10_1002_ange_202418146
crossref_primary_10_1016_j_vaccine_2019_11_072
crossref_primary_10_1021_acs_biochem_9b00613
crossref_primary_10_1128_JVI_02042_20
crossref_primary_10_1128_mBio_00307_19
crossref_primary_10_1371_journal_ppat_1012499
crossref_primary_10_1038_s41467_019_09608_w
crossref_primary_10_3389_fcimb_2020_575613
crossref_primary_10_7124_FEEO_v26_1238
crossref_primary_10_3389_fimmu_2019_00440
crossref_primary_10_1103_PhysRevX_15_011016
crossref_primary_10_1016_j_carres_2023_108894
crossref_primary_10_2478_jvetres_2021_0006
crossref_primary_10_3389_fimmu_2018_02485
crossref_primary_10_1007_s11262_022_01904_w
crossref_primary_10_3390_v16060883
crossref_primary_10_1039_D4LC00916A
Cites_doi 10.1371/journal.pone.0135487
10.1126/scitranslmed.3000799
10.1128/JVI.01581-09
10.1371/journal.ppat.1003657
10.1111/j.1750-2659.2011.00304.x
10.1126/science.1178258
10.1128/JVI.01987-08
10.1126/science.1119392
10.1371/journal.pone.0049224
10.1016/j.jcv.2015.04.010
10.1093/infdis/jiv195
10.1021/ja104657b
10.1074/jbc.M114.622308
10.1074/jbc.M113.468884
10.1128/JVI.02439-15
10.1093/cid/ciq015
10.1016/S0022-1759(98)00204-X
10.1038/nrmicro2613
10.1016/j.micinf.2014.11.003
10.1128/JVI.74.14.6316-6323.2000
10.1128/mBio.01996-15
10.1128/JVI.00450-09
10.1128/JVI.03456-14
10.1038/nm.3350
10.1073/pnas.100133697
10.1016/j.bbrc.2008.12.139
10.4049/jimmunol.1501637
10.1016/j.coviro.2014.06.004
10.1016/j.jmb.2013.12.023
10.1128/JVI.02401-10
10.1371/journal.pone.0030898
10.1586/14760584.2016.1115352
10.1128/JVI.02188-10
10.1073/pnas.1323954111
10.1146/annurev-med-120611-145115
10.1038/nm.3958
10.1266/ggs.86.287
10.1126/science.aac7263
10.1128/JVI.76.2.582-590.2002
10.1073/pnas.0909696106
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jan 10, 2017
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jan 10, 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1617174114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed


MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Influenza surface glycosylation and vaccine design
EISSN 1091-6490
EndPage 285
ExternalDocumentID PMC5240703
4302039621
28028222
10_1073_pnas_1617174114
26478705
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Academia Sinica
  grantid: N/A
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c542t-9c36f1b026f872d4c4b149e05be67b08ad45aa70bc58aa4f005990d6e9dfab43
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:28:03 EDT 2025
Fri Jul 11 01:55:34 EDT 2025
Fri Jul 11 07:05:18 EDT 2025
Mon Jun 30 08:22:20 EDT 2025
Wed Feb 19 02:42:08 EST 2025
Thu Apr 24 22:57:06 EDT 2025
Tue Jul 01 03:19:27 EDT 2025
Fri May 30 11:46:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords glycosylation
vaccine design
influenza A virus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-9c36f1b026f872d4c4b149e05be67b08ad45aa70bc58aa4f005990d6e9dfab43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: C.-Y.W. and C.-H.W. designed research; C.-Y.W., C.-W.L., T.-I.T., C.-C.D.L., H.-Y.C., J.-B.C., M.-H.T., B.-R.C., P.-W.L., and C.-P.L. performed research; C.-Y.W. and C.-H.W. analyzed data; and C.-Y.W., V.S.S., and C.-H.W. wrote the paper.
Reviewers: N.L.B.P., Indiana University; and M.v.I., Griffith University.
Contributed by Chi-Huey Wong, November 16, 2016 (sent for review July 12, 2016; reviewed by Nicola L. B. Pohl and Mark von Itzstein)
OpenAccessLink https://www.pnas.org/content/pnas/114/2/280.full.pdf
PMID 28028222
PQID 1858600417
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240703
proquest_miscellaneous_1872822236
proquest_miscellaneous_1853742174
proquest_journals_1858600417
pubmed_primary_28028222
crossref_citationtrail_10_1073_pnas_1617174114
crossref_primary_10_1073_pnas_1617174114
jstor_primary_26478705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-10
PublicationDateYYYYMMDD 2017-01-10
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
Liu P (e_1_3_3_11_2) 2015; 10
e_1_3_3_33_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
24469815 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2476-81
21507966 - J Virol. 2011 Jul;85(13):6618-28
19822741 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18137-42
25586179 - J Biol Chem. 2015 Mar 6;290(10):6516-21
23133677 - PLoS One. 2012;7(11):e49224
22362027 - Genes Genet Syst. 2011;86(5):287-94
25061947 - Curr Opin Virol. 2014 Aug;7:128-33
10037236 - J Immunol Methods. 1999 Feb 1;223(1):77-92
26537686 - J Virol. 2015 Nov 04;90(2):1009-22
19900932 - Science. 2009 Oct 30;326(5953):734-6
24130481 - PLoS Pathog. 2013;9(10):e1003657
23645684 - J Biol Chem. 2013 Jun 21;288(25):18283-9
24380762 - J Mol Biol. 2014 Mar 20;426(6):1308-21
20882975 - J Am Chem Soc. 2010 Oct 27;132(42):14849-56
21747392 - Nat Rev Microbiol. 2011 Jul 11;9(8):590-603
10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13
10864641 - J Virol. 2000 Jul;74(14):6316-23
22303469 - PLoS One. 2012;7(1):e30898
25673707 - J Virol. 2015 Apr;89(8):4612-23
26641724 - Expert Rev Vaccines. 2016;15(2):215-25
22085243 - Influenza Other Respir Viruses. 2012 Jul;6(4):245-56
20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21
21148512 - Clin Infect Dis. 2011 Jan 1;52(1):1-7
19889765 - J Virol. 2010 Jan;84(2):940-52
26864033 - J Immunol. 2016 Mar 15;196(6):2637-45
25479556 - Microbes Infect. 2015 Feb;17(2):135-41
26267136 - PLoS One. 2015 Aug 12;10(8):e0135487
26413780 - Nat Med. 2015 Oct;21(10):1216-22
19133226 - Biochem Biophys Res Commun. 2009 Feb 13;379(3):749-53
26071329 - J Clin Virol. 2015 Jul;68:16-23
26303961 - Science. 2015 Sep 18;349(6254):1301-6
24056771 - Nat Med. 2013 Oct;19(10 ):1305-12
11752149 - J Virol. 2002 Jan;76(2):582-90
25858957 - J Infect Dis. 2015 Oct 15;212(8):1191-9
23327522 - Annu Rev Med. 2013;64:189-202
16210530 - Science. 2005 Oct 7;310(5745):77-80
19225004 - J Virol. 2009 May;83(9):4704-8
26787832 - MBio. 2016 Jan 19;7(1):e01996-15
21209114 - J Virol. 2011 Mar;85(6):2480-91
19321619 - J Virol. 2009 Jun;83(11):5947-50
References_xml – volume: 10
  start-page: e0135487
  year: 2015
  ident: e_1_3_3_11_2
  article-title: The mechanism by which 146-N-glycan affects the active site of neuraminidase
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135487
– ident: e_1_3_3_8_2
  doi: 10.1126/scitranslmed.3000799
– ident: e_1_3_3_19_2
  doi: 10.1128/JVI.01581-09
– ident: e_1_3_3_2_2
  doi: 10.1371/journal.ppat.1003657
– ident: e_1_3_3_20_2
  doi: 10.1111/j.1750-2659.2011.00304.x
– ident: e_1_3_3_38_2
  doi: 10.1126/science.1178258
– ident: e_1_3_3_23_2
  doi: 10.1128/JVI.01987-08
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1119392
– ident: e_1_3_3_21_2
  doi: 10.1371/journal.pone.0049224
– ident: e_1_3_3_22_2
  doi: 10.1016/j.jcv.2015.04.010
– ident: e_1_3_3_15_2
  doi: 10.1093/infdis/jiv195
– ident: e_1_3_3_6_2
  doi: 10.1021/ja104657b
– ident: e_1_3_3_36_2
  doi: 10.1074/jbc.M114.622308
– ident: e_1_3_3_4_2
  doi: 10.1074/jbc.M113.468884
– ident: e_1_3_3_29_2
  doi: 10.1128/JVI.02439-15
– ident: e_1_3_3_31_2
  doi: 10.1093/cid/ciq015
– ident: e_1_3_3_40_2
  doi: 10.1016/S0022-1759(98)00204-X
– ident: e_1_3_3_1_2
  doi: 10.1038/nrmicro2613
– ident: e_1_3_3_28_2
  doi: 10.1016/j.micinf.2014.11.003
– ident: e_1_3_3_7_2
  doi: 10.1128/JVI.74.14.6316-6323.2000
– ident: e_1_3_3_27_2
  doi: 10.1128/mBio.01996-15
– ident: e_1_3_3_16_2
  doi: 10.1128/JVI.00450-09
– ident: e_1_3_3_13_2
  doi: 10.1128/JVI.03456-14
– ident: e_1_3_3_32_2
  doi: 10.1038/nm.3350
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.100133697
– ident: e_1_3_3_37_2
  doi: 10.1016/j.bbrc.2008.12.139
– ident: e_1_3_3_26_2
  doi: 10.4049/jimmunol.1501637
– ident: e_1_3_3_3_2
  doi: 10.1016/j.coviro.2014.06.004
– ident: e_1_3_3_25_2
  doi: 10.1016/j.jmb.2013.12.023
– ident: e_1_3_3_5_2
  doi: 10.1128/JVI.02401-10
– ident: e_1_3_3_39_2
  doi: 10.1371/journal.pone.0030898
– ident: e_1_3_3_30_2
  doi: 10.1586/14760584.2016.1115352
– ident: e_1_3_3_24_2
  doi: 10.1128/JVI.02188-10
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.1323954111
– ident: e_1_3_3_33_2
  doi: 10.1146/annurev-med-120611-145115
– ident: e_1_3_3_14_2
  doi: 10.1038/nm.3958
– ident: e_1_3_3_18_2
  doi: 10.1266/ggs.86.287
– ident: e_1_3_3_34_2
  doi: 10.1126/science.aac7263
– ident: e_1_3_3_17_2
  doi: 10.1128/JVI.76.2.582-590.2002
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.0909696106
– reference: 26787832 - MBio. 2016 Jan 19;7(1):e01996-15
– reference: 22362027 - Genes Genet Syst. 2011;86(5):287-94
– reference: 24380762 - J Mol Biol. 2014 Mar 20;426(6):1308-21
– reference: 22085243 - Influenza Other Respir Viruses. 2012 Jul;6(4):245-56
– reference: 25673707 - J Virol. 2015 Apr;89(8):4612-23
– reference: 26537686 - J Virol. 2015 Nov 04;90(2):1009-22
– reference: 20882975 - J Am Chem Soc. 2010 Oct 27;132(42):14849-56
– reference: 24130481 - PLoS Pathog. 2013;9(10):e1003657
– reference: 19133226 - Biochem Biophys Res Commun. 2009 Feb 13;379(3):749-53
– reference: 24469815 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2476-81
– reference: 26071329 - J Clin Virol. 2015 Jul;68:16-23
– reference: 26864033 - J Immunol. 2016 Mar 15;196(6):2637-45
– reference: 19822741 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18137-42
– reference: 10864641 - J Virol. 2000 Jul;74(14):6316-23
– reference: 21209114 - J Virol. 2011 Mar;85(6):2480-91
– reference: 19321619 - J Virol. 2009 Jun;83(11):5947-50
– reference: 11752149 - J Virol. 2002 Jan;76(2):582-90
– reference: 16210530 - Science. 2005 Oct 7;310(5745):77-80
– reference: 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13
– reference: 26267136 - PLoS One. 2015 Aug 12;10(8):e0135487
– reference: 20375007 - Sci Transl Med. 2010 Mar 24;2(24):24ra21
– reference: 25479556 - Microbes Infect. 2015 Feb;17(2):135-41
– reference: 10037236 - J Immunol Methods. 1999 Feb 1;223(1):77-92
– reference: 25586179 - J Biol Chem. 2015 Mar 6;290(10):6516-21
– reference: 25061947 - Curr Opin Virol. 2014 Aug;7:128-33
– reference: 22303469 - PLoS One. 2012;7(1):e30898
– reference: 21148512 - Clin Infect Dis. 2011 Jan 1;52(1):1-7
– reference: 19889765 - J Virol. 2010 Jan;84(2):940-52
– reference: 21507966 - J Virol. 2011 Jul;85(13):6618-28
– reference: 19225004 - J Virol. 2009 May;83(9):4704-8
– reference: 26413780 - Nat Med. 2015 Oct;21(10):1216-22
– reference: 26641724 - Expert Rev Vaccines. 2016;15(2):215-25
– reference: 25858957 - J Infect Dis. 2015 Oct 15;212(8):1191-9
– reference: 23133677 - PLoS One. 2012;7(11):e49224
– reference: 23645684 - J Biol Chem. 2013 Jun 21;288(25):18283-9
– reference: 24056771 - Nat Med. 2013 Oct;19(10 ):1305-12
– reference: 26303961 - Science. 2015 Sep 18;349(6254):1301-6
– reference: 19900932 - Science. 2009 Oct 30;326(5953):734-6
– reference: 21747392 - Nat Rev Microbiol. 2011 Jul 11;9(8):590-603
– reference: 23327522 - Annu Rev Med. 2013;64:189-202
SSID ssj0009580
Score 2.4620075
Snippet We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival....
Influenza A virus (IAV) is a major threat to global public health, and so understanding the biology of IAV is essential to develop antiflu vaccines and...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 280
SubjectTerms Biological Sciences
Glycoproteins
Glycosylation
Immune response
Influenza
Influenza A virus
Orthomyxoviridae
Physical Sciences
T cell receptors
Vaccines
Viruses
Title Influenza A surface glycosylation and vaccine design
URI https://www.jstor.org/stable/26478705
https://www.ncbi.nlm.nih.gov/pubmed/28028222
https://www.proquest.com/docview/1858600417
https://www.proquest.com/docview/1853742174
https://www.proquest.com/docview/1872822236
https://pubmed.ncbi.nlm.nih.gov/PMC5240703
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELaq8cILYsAgMFCQeBiqUtLEjpPHagIG0qo-BK08RY7jsEojnZYGafs9_FDuYsdJR0GwlyhKHDvxfT774u_uCHnjKxlJpOrQmEk48NKLC_wBH1Lp56ActB_36Tw6-UI_L9lyNPo5YC01m3wib3b6ldxFqnAN5Ipesv8hWVspXIBzkC8cQcJw_CcZf9IZRm4EDO-6uSoFDNJvF9dyXV9rilu7NfBDSNw9Hxc9WcOsRhd29qo7rsC8-zk4611NzPivx954Me8TF581er8e1IX3dWWZPSuzjb86986UvZzWOu91WmPxPnW25gG1Pg4eVjUg2Zt_EVMkrXqGlToI5b3zFYdKOICJkWrX6YnSeheWLV5EdeZQq5i1e6lBYDBUszr7k5mxA53057fJALQXZjCuRD1BKw5sL1PjABqX31tsQIXIpw36WdFyFRenxwzNXgwpey8AYwTzZHxcTgehnWPt6GQ-qwsgxcN3t9rGyNOmoa1lkGbC7rJxblN1B2uf9CF5YIwWd6YRuE9GqnpE9rs-d49M7PK3jwm1kHRnroGkuwVJFyDpGki6GpJPSPrhfXp84pnEHJ5kNNh4iQyjcpqD-V7GPCiopDkY2spnuYp47seioEwI7ueSxULQsg0C5BeRSopS5DQ8IHvVulLPiFtIBh2a5IXA6PpMJSJWSSgj9IAWKowcMum6KZMmaD3mTrnIWvIEDzPs4qzvYocc2QcudbyWPxc9aPvdlguwVe4zhxx2gsjMaIfnYhZHGJ2OO-S1vQ26GDfYRKXWTVsm5BSN_L-V4S0A8Nueatn2L2DA4RC-JXVbAGPBb9-pVudtTHgD0ed3fvIFud-P6EOyt7lq1EtYb2_yVy3cfwEs2tPQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influenza+A+surface+glycosylation+and+vaccine+design&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wu%2C+Chung-Yi&rft.au=Lin%2C+Chih-Wei&rft.au=Tsai%2C+Tsung-I&rft.au=Lee%2C+Chang-Chun+David&rft.date=2017-01-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=2&rft.spage=280&rft.epage=285&rft_id=info:doi/10.1073%2Fpnas.1617174114&rft_id=info%3Apmid%2F28028222&rft.externalDocID=PMC5240703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon