Numerical simulation of local temperature distortions during ice nucleation of cells in suspension

Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The presence of cell membrane causes super-cooling of the intra-cellular region, which nucleates at much lower temperatures than the surrounding extra-c...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 51; no. 23; pp. 5655 - 5661
Main Authors Kandra, D., Devireddy, R.V.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The presence of cell membrane causes super-cooling of the intra-cellular region, which nucleates at much lower temperatures than the surrounding extra-cellular space and is accompanied by the exothermic release of the latent heat. This is a dynamic process and causes thermal distortions in and around the cell where nucleation occurs. In the present study, an attempt has been made to numerically determine the magnitude of thermal distortion (Δ T) and the time (d t) it takes for this distortion to damp out to the local temperature. A two-dimensional computational model is presented in which the maximum thermal distortions (with an assumed cell diameter of 50 μm, nucleating at −5 °C while being cooled at 5 °C/min; denoted as Scenario 1) and the lowest-possible thermal distortions (with an assumed cell diameter of 5 μm, nucleating at −20 °C while being cooled at 100 °C/min; denoted as Scenario 2) are determined. Extensive computations have been performed assuming either the presence of a single, dual, or four cells in suspension. It is expected that these representative results would serve the purpose of estimating an effective sampling rate of microscale thermocouples currently being fabricated and of other biomedical devices used to measure intracellular ice formation.
AbstractList Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The presence of cell membrane causes super-cooling of the intra-cellular region, which nucleates at much lower temperatures than the surrounding extra-cellular space and is accompanied by the exothermic release of the latent heat. This is a dynamic process and causes thermal distortions in and around the cell where nucleation occurs. In the present study, an attempt has been made to numerically determine the magnitude of thermal distortion (Δ T) and the time (d t) it takes for this distortion to damp out to the local temperature. A two-dimensional computational model is presented in which the maximum thermal distortions (with an assumed cell diameter of 50 μm, nucleating at −5 °C while being cooled at 5 °C/min; denoted as Scenario 1) and the lowest-possible thermal distortions (with an assumed cell diameter of 5 μm, nucleating at −20 °C while being cooled at 100 °C/min; denoted as Scenario 2) are determined. Extensive computations have been performed assuming either the presence of a single, dual, or four cells in suspension. It is expected that these representative results would serve the purpose of estimating an effective sampling rate of microscale thermocouples currently being fabricated and of other biomedical devices used to measure intracellular ice formation.
Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The presence of cell membrane causes super-cooling of the intra-cellular region, which nucleates at much lower temperatures than the surrounding extra-cellular space and is accompanied by the exothermic release of the latent heat. This is a dynamic process and causes thermal distortions in and around the cell where nucleation occurs. In the present study, an attempt has been made to numerically determine the magnitude of thermal distortion (DeltaT) and the time (dt) it takes for this distortion to damp out to the local temperature. A two-dimensional computational model is presented in which the maximum thermal distortions (with an assumed cell diameter of 50 mum, nucleating at -5 deg C while being cooled at 5 deg C/min; denoted as Scenario 1) and the lowest-possible thermal distortions (with an assumed cell diameter of 5 mum, nucleating at -20 deg C while being cooled at 100 deg C/min; denoted as Scenario 2) are determined. Extensive computations have been performed assuming either the presence of a single, dual, or four cells in suspension. It is expected that these representative results would serve the purpose of estimating an effective sampling rate of microscale thermocouples currently being fabricated and of other biomedical devices used to measure intracellular ice formation.
Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The presence of cell membrane causes super-cooling of the intra-cellular region, which nucleates at much lower temperatures than the surrounding extra-cellular space and is accompanied by the exothermic release of the latent heat. This is a dynamic process and causes thermal distortions in and around the cell where nucleation occurs. In the present study, an attempt has been made to numerically determine the magnitude of thermal distortion (ΔT) and the time (dt) it takes for this distortion to damp out to the local temperature. A two-dimensional computational model is presented in which the maximum thermal distortions (with an assumed cell diameter of 50 μm, nucleating at -5 °C while being cooled at 5 °C/min; denoted as Scenario 1) and the lowest-possible thermal distortions (with an assumed cell diameter of 5 μm, nucleating at -20 °C while being cooled at 100 °C/min; denoted as Scenario 2) are determined. Extensive computations have been performed assuming either the presence of a single, dual, or four cells in suspension. It is expected that these representative results would serve the purpose of estimating an effective sampling rate of microscale thermocouples currently being fabricated and of other biomedical devices used to measure intracellular ice formation.
Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The presence of cell membrane causes super-cooling of the intra-cellular region, which nucleates at much lower temperatures than the surrounding extra-cellular space and is accompanied by the exothermic release of the latent heat. This is a dynamic process and causes thermal distortions in and around the cell where nucleation occurs. In the present study, an attempt has been made to numerically determine the magnitude of thermal distortion (Δ T ) and the time ( dt ) it takes for this distortion to damp out to the local temperature. A two-dimensional computational model is presented in which the maximum thermal distortions (with an assumed cell diameter of 50 μm, nucleating at −5 °C while being cooled at 5 °C/min; denoted as Scenario 1) and the lowest-possible thermal distortions (with an assumed cell diameter of 5 μm, nucleating at −20 °C while being cooled at 100 °C/min; denoted as Scenario 2) are determined. Extensive computations have been performed assuming either the presence of a single, dual, or four cells in suspension. It is expected that these representative results would serve the purpose of estimating an effective sampling rate of microscale thermocouples currently being fabricated and of other biomedical devices used to measure intracellular ice formation.
Author Devireddy, R.V.
Kandra, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Kandra
  fullname: Kandra, D.
– sequence: 2
  givenname: R.V.
  surname: Devireddy
  fullname: Devireddy, R.V.
  email: devireddy@me.lsu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21811343$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFr4ByQr0k2I6dxBcEqvirCi5wthx70nqV2IsnrsS3x9GWFQgJcbI87zfPnnkX5CzEAIRcMdowyrqX-8bv78Csi0Fckwk4QWo4pUNDRUN594js2NCrmrNBnZEdpayvVcvoOblA3G9XKron5LzojLWi3ZHxc14geWvmCv2SZ7P6GKo4VXPcaissB0hmzQkq53GNadOxcjn5cFt5C1XIdoZTm4V5xsqHCjMeIGApPyWPJzMjPHs4L8m3d2-_Xn-ob768_3j95qa2UvC1VmqgxtneSaAOFO-ooZIPk-VlQNeCGyfF5UgtqK4dO84EqNFICZNQI7dje0leHX0PeVzAWQhlRbM-JL-Y9ENH4_WfSvB3-jbe65aJnnJZDF48GKT4PQOuevG4DWQCxIy6lUIK2qkCXv0TZEMrpeSM9wV9fURtiogJptN_GNVbpnqv_85Ub5lqKnTJtFg8_32uk8GvEAvw6QhA2e69L-1oPQQLziewq3bR__9rPwGTx8Uj
CitedBy_id crossref_primary_10_1098_rsta_2009_0248
crossref_primary_10_1186_1472_6750_12_49
crossref_primary_10_1080_10407782_2011_636720
Cites_doi 10.1557/PROC-845-AA5.25
10.1002/aic.690381004
10.1002/mrd.20041
10.1021/ie50510a031
10.1016/0090-4295(82)90042-5
10.1007/BF01655817
10.1115/1.2834304
10.1002/aic.690450321
10.1006/cryo.1999.2161
10.1002/(SICI)1097-0142(19970301)79:5<963::AID-CNCR13>3.0.CO;2-0
10.1093/humupd/2.3.193
10.1115/1.2911357
10.2174/1874070700701010001
10.1063/1.345670
10.1063/1.1747055
10.1056/NEJM196304042681401
10.1098/rspb.1988.0053
10.1115/IMECE2006-15247
10.1115/1.1445134
10.1115/1.1865193
10.1006/cryo.1993.1049
10.1115/1.2911885
10.1115/1.2796091
10.1016/0011-2240(88)90022-3
10.1115/IMECE2004-60920
10.1115/1.2834745
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
DBID NPM
AAYXX
CITATION
7X8
7TB
8FD
FR3
H8D
KR7
L7M
5PM
DOI 10.1016/j.ijheatmasstransfer.2008.04.026
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 5661
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2008_04_026
21811343
S0017931008002743
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R03 EB005985-02
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AFJKZ
AKRWK
NPM
AAYXX
CITATION
7X8
7TB
8FD
FR3
H8D
KR7
L7M
5PM
ID FETCH-LOGICAL-c542t-9980adc7d5e0de9260a0528fc2200d3edbf925b0ce963b6214e9ba55ef49b2cb3
IEDL.DBID AIKHN
ISSN 0017-9310
IngestDate Tue Sep 17 21:04:19 EDT 2024
Sat Aug 17 04:14:14 EDT 2024
Thu Aug 15 22:44:34 EDT 2024
Thu Sep 26 15:17:15 EDT 2024
Sat Sep 28 07:49:06 EDT 2024
Fri Feb 23 02:31:07 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Latent heat
Ice nucleation
Fourier heat conduction
Apparent heat capacity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-9980adc7d5e0de9260a0528fc2200d3edbf925b0ce963b6214e9ba55ef49b2cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://europepmc.org/articles/pmc3147025?pdf=render
PMID 21811343
PQID 1835552127
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3147025
proquest_miscellaneous_35454069
proquest_miscellaneous_1835552127
crossref_primary_10_1016_j_ijheatmasstransfer_2008_04_026
pubmed_primary_21811343
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2008_04_026
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle International journal of heat and mass transfer
PublicationTitleAlternate Int J Heat Mass Transf
PublicationYear 2008
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rabin, Shitzer (bib13) 1998; 120
Adson (bib3) 1987; 11
Hayes, Diller, Chang, Lee (bib10) 1988; 25
Prabhakar, Murphy, Devireddy (bib32) 2007; 1
Wong, Chinn, Chinn, Chinn, Tom, Tom (bib4) 1997; 79
Carslaw, Jaeger (bib27) 1959
Cooper (bib1) 1963; 268
Bernard, Fuller (bib5) 1996; 2
Hayes, Diller (bib9) 1983; 105
Day, Nicoll-Griffith, Silva (bib6) 1999; 38
Bonney, Fallon, Gerber, Hawtrey, Loening, Narayana, Platz, Rose, Sall, Schmidt, Culp (bib2) 1982; 19
Devireddy, Smith, Bischof (bib20) 1999; 45
Keanini, Rubinsky (bib11) 1992; 114
Patankar (bib26) 1980
Bischof, Christov, Rubinsky (bib17) 1993; 30
Ozisik (bib24) 1994
Turnbull, Fisher (bib33) 1949; 17
Incropera, DeWitt (bib28) 1996
Alexiades, Solomon (bib23) 1993
Toner, Tompkins, Cravalho, Yarmush (bib36) 1992; 38
Devireddy, Smith, Bischof (bib22) 2002; 124
A. Cygan, A. Kardak, D. Patterson, E.J. Podlaha-Murphy, R.V. Devireddy, M.C. Murphy, Modeling and fabrication of a microthermocouple array, American Society of Mechanical Engineers, International Mechanical Engineering Congress and Exposition, Winter Annual Meeting, CD-ROM Publication, ASME, New York, NY, 2006.
Rubinsky, Pegg (bib21) 1988; 234
Zhang, Sandison, Murthy, Xu (bib14) 2005; 127
Love (bib15) 1966
Turnbull, Vonegut (bib34) 1951; 44
A. Cygan, A. Prabhakar, E.J. Podlaha-Murphy, M.C. Murphy, R.V. Devireddy, Fabrication of micro scale arrays of thermoelectric sensors and actuators for cryobiological applications, American Society of Mechanical Engineers, International Mechanical Engineering Congress and Exposition, CD-ROM Publication, Anaheim, CA, 2004.
A. Prabhakar, E.J. Podlaha-Murphy, M.C. Murphy, R.V. Devireddy, Electrodeposition characteristics of bismuth–telluride films, Nanoscale Materials Science in Biology and Medicine, in: C.T. Laurencin, E.A. Botchwey (Eds.), Material Research Society Symposium, 845, Paper number AA5.25, Warrendale, PA, 2004.
R.V. Devireddy, Quantification of freezing processes in biological systems, Ph. D. Thesis, University of Minnesota, Minneapolis, MN, 1999.
Bischof, Rubinsky (bib12) 1993; 115
Devireddy, Fahrig, Godke, Leibo (bib7) 2004; 67
Pazhayannur, Bischof (bib18) 1997; 119
Lunardini (bib8) 1981
Rubinsky, Lee, Bastacky, Hayes (bib16) 1987
Devireddy, Bischof (bib19) 1998; 120
Toner (bib37) 1993
Toner, Cravalho, Karel (bib35) 1990; 67
2906129 - Proc R Soc Lond B Biol Sci. 1988 Aug 23;234(1276):343-58
9079413 - Hum Reprod Update. 1996 May-Jun;2(3):193-207
3630196 - World J Surg. 1987 Aug;11(4):511-20
3349813 - Cryobiology. 1988 Feb;25(1):67-82
10412432 - J Biomech Eng. 1998 Oct;120(5):559-69
14022909 - N Engl J Med. 1963 Apr 4;268:743-9
9285340 - J Biomech Eng. 1997 Aug;119(3):269-77
15971706 - J Biomech Eng. 2005 Apr;127(2):279-94
7058583 - Urology. 1982 Jan;19(1):37-42
9675678 - J Biomech Eng. 1998 Feb;120(1):32-7
10191038 - Cryobiology. 1999 Mar;38(2):154-9
14991736 - Mol Reprod Dev. 2004 Apr;67(4):446-57
8252916 - Cryobiology. 1993 Oct;30(5):482-92
9041159 - Cancer. 1997 Mar 1;79(5):963-74
Pazhayannur (10.1016/j.ijheatmasstransfer.2008.04.026_bib18) 1997; 119
10.1016/j.ijheatmasstransfer.2008.04.026_bib31
Toner (10.1016/j.ijheatmasstransfer.2008.04.026_bib36) 1992; 38
10.1016/j.ijheatmasstransfer.2008.04.026_bib30
Bischof (10.1016/j.ijheatmasstransfer.2008.04.026_bib17) 1993; 30
Carslaw (10.1016/j.ijheatmasstransfer.2008.04.026_bib27) 1959
Hayes (10.1016/j.ijheatmasstransfer.2008.04.026_bib9) 1983; 105
Incropera (10.1016/j.ijheatmasstransfer.2008.04.026_bib28) 1996
Zhang (10.1016/j.ijheatmasstransfer.2008.04.026_bib14) 2005; 127
Rubinsky (10.1016/j.ijheatmasstransfer.2008.04.026_bib16) 1987
Adson (10.1016/j.ijheatmasstransfer.2008.04.026_bib3) 1987; 11
Turnbull (10.1016/j.ijheatmasstransfer.2008.04.026_bib33) 1949; 17
Rabin (10.1016/j.ijheatmasstransfer.2008.04.026_bib13) 1998; 120
Love (10.1016/j.ijheatmasstransfer.2008.04.026_bib15) 1966
Day (10.1016/j.ijheatmasstransfer.2008.04.026_bib6) 1999; 38
Bonney (10.1016/j.ijheatmasstransfer.2008.04.026_bib2) 1982; 19
Rubinsky (10.1016/j.ijheatmasstransfer.2008.04.026_bib21) 1988; 234
Cooper (10.1016/j.ijheatmasstransfer.2008.04.026_bib1) 1963; 268
Keanini (10.1016/j.ijheatmasstransfer.2008.04.026_bib11) 1992; 114
Bischof (10.1016/j.ijheatmasstransfer.2008.04.026_bib12) 1993; 115
Alexiades (10.1016/j.ijheatmasstransfer.2008.04.026_bib23) 1993
Devireddy (10.1016/j.ijheatmasstransfer.2008.04.026_bib20) 1999; 45
Toner (10.1016/j.ijheatmasstransfer.2008.04.026_bib35) 1990; 67
Devireddy (10.1016/j.ijheatmasstransfer.2008.04.026_bib19) 1998; 120
Wong (10.1016/j.ijheatmasstransfer.2008.04.026_bib4) 1997; 79
Ozisik (10.1016/j.ijheatmasstransfer.2008.04.026_bib24) 1994
Hayes (10.1016/j.ijheatmasstransfer.2008.04.026_bib10) 1988; 25
Patankar (10.1016/j.ijheatmasstransfer.2008.04.026_bib26) 1980
10.1016/j.ijheatmasstransfer.2008.04.026_bib29
Prabhakar (10.1016/j.ijheatmasstransfer.2008.04.026_bib32) 2007; 1
Lunardini (10.1016/j.ijheatmasstransfer.2008.04.026_bib8) 1981
Devireddy (10.1016/j.ijheatmasstransfer.2008.04.026_bib22) 2002; 124
Bernard (10.1016/j.ijheatmasstransfer.2008.04.026_bib5) 1996; 2
10.1016/j.ijheatmasstransfer.2008.04.026_bib25
Toner (10.1016/j.ijheatmasstransfer.2008.04.026_bib37) 1993
Devireddy (10.1016/j.ijheatmasstransfer.2008.04.026_bib7) 2004; 67
Turnbull (10.1016/j.ijheatmasstransfer.2008.04.026_bib34) 1951; 44
References_xml – volume: 119
  start-page: 269
  year: 1997
  end-page: 277
  ident: bib18
  article-title: Measurement and simulation of water transport during freezing in mammalian liver tissue
  publication-title: ASME J. Biomech. Eng.
  contributor:
    fullname: Bischof
– volume: 127
  start-page: 279
  year: 2005
  end-page: 294
  ident: bib14
  article-title: Numerical simulation for heat transfer in prostate cancer cryosurgery
  publication-title: ASME J. Biomech. Eng.
  contributor:
    fullname: Xu
– volume: 268
  start-page: 743
  year: 1963
  end-page: 749
  ident: bib1
  article-title: Cryogenic surgery a new method of destruction or extirpation of benign or malignant tissues
  publication-title: New Engl. J. Med.
  contributor:
    fullname: Cooper
– volume: 2
  start-page: 193
  year: 1996
  end-page: 207
  ident: bib5
  article-title: Cryopreservation of human oocytes: a review of current problems and perspectives
  publication-title: Human Reproduct. Update
  contributor:
    fullname: Fuller
– volume: 19
  start-page: 37
  year: 1982
  end-page: 43
  ident: bib2
  article-title: Cryosurgery in prostatic cancer: Survival
  publication-title: Urology
  contributor:
    fullname: Culp
– year: 1981
  ident: bib8
  publication-title: Finite difference methods for freezing and thawing
  contributor:
    fullname: Lunardini
– year: 1959
  ident: bib27
  article-title: Conduction of Heat in Solids
  contributor:
    fullname: Jaeger
– volume: 25
  start-page: 67
  year: 1988
  end-page: 82
  ident: bib10
  article-title: Prediction of local cooling rates and cell survival during the freezing of a cylindrical specimen
  publication-title: Cryobiology
  contributor:
    fullname: Lee
– year: 1996
  ident: bib28
  article-title: Introduction to Heat Transfer
  contributor:
    fullname: DeWitt
– year: 1993
  ident: bib37
  article-title: Nucleation of ice crystals in biological cells
  publication-title: Advances in Low Temperature Biology
  contributor:
    fullname: Toner
– year: 1994
  ident: bib24
  article-title: Finite Difference Methods in Heat Transfer
  contributor:
    fullname: Ozisik
– volume: 234
  start-page: 343
  year: 1988
  end-page: 358
  ident: bib21
  article-title: A mathematical model for the freezing process in biological tissue
  publication-title: Proc. Roy Soc. Lond. B
  contributor:
    fullname: Pegg
– volume: 120
  start-page: 559
  year: 1998
  end-page: 569
  ident: bib19
  article-title: Measurement of water transport during freezing in mammalian liver tissue-Part II: The use of differential scanning calorimetry
  publication-title: ASME J. Biomech. Eng.
  contributor:
    fullname: Bischof
– start-page: 370
  year: 1987
  end-page: 381
  ident: bib16
  article-title: The mechanism of freezing process in biological tissue
  publication-title: Cryo-letters
  contributor:
    fullname: Hayes
– year: 1980
  ident: bib26
  article-title: Numerical Heat Transfer and Fluid Flow
  contributor:
    fullname: Patankar
– volume: 79
  start-page: 963
  year: 1997
  end-page: 974
  ident: bib4
  article-title: Cryosurgery as a treatment for prostate carcinoma
  publication-title: Cancer
  contributor:
    fullname: Tom
– volume: 114
  start-page: 796
  year: 1992
  end-page: 801
  ident: bib11
  article-title: Optimization of multiprobe cryosurgery
  publication-title: ASME J. Heat Transf.
  contributor:
    fullname: Rubinsky
– volume: 67
  start-page: 446
  year: 2004
  end-page: 457
  ident: bib7
  article-title: Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates
  publication-title: Mole. Reproduct. Develop.
  contributor:
    fullname: Leibo
– volume: 115
  start-page: 1029
  year: 1993
  end-page: 1035
  ident: bib12
  article-title: Microscale heat and mass transfer of vascular and intracellular freezing in the liver
  publication-title: ASME J. Heat Transf.
  contributor:
    fullname: Rubinsky
– volume: 38
  start-page: 1512
  year: 1992
  end-page: 1522
  ident: bib36
  article-title: Transport phenomena during freezing of isolated hepatocytes
  publication-title: Am. Inst. Chem. Eng. J.
  contributor:
    fullname: Yarmush
– volume: 44
  start-page: 1292
  year: 1951
  end-page: 1298
  ident: bib34
  article-title: Nucleation catalysis
  publication-title: Indust. Eng. Chem. Res.
  contributor:
    fullname: Vonegut
– year: 1966
  ident: bib15
  article-title: The freezing of animal tissue
  publication-title: Cryobiology
  contributor:
    fullname: Love
– volume: 11
  start-page: 511
  year: 1987
  end-page: 520
  ident: bib3
  article-title: Resection of liver metastases: When is it worth while?
  publication-title: World J. Surg.
  contributor:
    fullname: Adson
– volume: 17
  start-page: 71
  year: 1949
  end-page: 73
  ident: bib33
  article-title: Rate of nucleation in condensed systems
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Fisher
– volume: 38
  start-page: 154
  year: 1999
  end-page: 159
  ident: bib6
  article-title: Cryopreservation of rat and human liver slices by rapid freezing
  publication-title: Cryobiology
  contributor:
    fullname: Silva
– year: 1993
  ident: bib23
  article-title: Mathematical Modeling of Melting and Freezing Processes
  contributor:
    fullname: Solomon
– volume: 30
  start-page: 482
  year: 1993
  end-page: 492
  ident: bib17
  article-title: A morphological study of cooling rate response in normal and neoplastic human liver tissue: Cryosurgical implications
  publication-title: Cryobiology
  contributor:
    fullname: Rubinsky
– volume: 120
  start-page: 32
  year: 1998
  end-page: 37
  ident: bib13
  article-title: Numerical solution of the multidimensional freezing problem during cryosurgery
  publication-title: ASME J. Biomech. Eng.
  contributor:
    fullname: Shitzer
– volume: 67
  start-page: 1582
  year: 1990
  end-page: 1593
  ident: bib35
  article-title: Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Karel
– volume: 45
  start-page: 639
  year: 1999
  end-page: 654
  ident: bib20
  article-title: Mass transfer during freezing in rat prostate tumor tissue
  publication-title: Am. Inst. Chem. Eng. J.
  contributor:
    fullname: Bischof
– volume: 105
  start-page: 431
  year: 1983
  end-page: 435
  ident: bib9
  article-title: Implementation of phase change in numerical models of heat transfer
  publication-title: Int. J. Energy Res.
  contributor:
    fullname: Diller
– volume: 1
  start-page: 1
  year: 2007
  end-page: 8
  ident: bib32
  article-title: Modeling of bio-thermo-electric micro-cooler
  publication-title: Open Biotechnol. J.
  contributor:
    fullname: Devireddy
– volume: 124
  start-page: 365
  year: 2002
  end-page: 374
  ident: bib22
  article-title: Effect of microscale mass transport and phase change on numerical prediction of freezing in biological tissues
  publication-title: ASME J. Heat Transf.
  contributor:
    fullname: Bischof
– ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib31
  doi: 10.1557/PROC-845-AA5.25
– volume: 38
  start-page: 1512
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib36
  article-title: Transport phenomena during freezing of isolated hepatocytes
  publication-title: Am. Inst. Chem. Eng. J.
  doi: 10.1002/aic.690381004
  contributor:
    fullname: Toner
– volume: 67
  start-page: 446
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib7
  article-title: Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates
  publication-title: Mole. Reproduct. Develop.
  doi: 10.1002/mrd.20041
  contributor:
    fullname: Devireddy
– year: 1959
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib27
  contributor:
    fullname: Carslaw
– volume: 44
  start-page: 1292
  year: 1951
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib34
  article-title: Nucleation catalysis
  publication-title: Indust. Eng. Chem. Res.
  doi: 10.1021/ie50510a031
  contributor:
    fullname: Turnbull
– volume: 19
  start-page: 37
  year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib2
  article-title: Cryosurgery in prostatic cancer: Survival
  publication-title: Urology
  doi: 10.1016/0090-4295(82)90042-5
  contributor:
    fullname: Bonney
– volume: 11
  start-page: 511
  year: 1987
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib3
  article-title: Resection of liver metastases: When is it worth while?
  publication-title: World J. Surg.
  doi: 10.1007/BF01655817
  contributor:
    fullname: Adson
– volume: 120
  start-page: 32
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib13
  article-title: Numerical solution of the multidimensional freezing problem during cryosurgery
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2834304
  contributor:
    fullname: Rabin
– volume: 45
  start-page: 639
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib20
  article-title: Mass transfer during freezing in rat prostate tumor tissue
  publication-title: Am. Inst. Chem. Eng. J.
  doi: 10.1002/aic.690450321
  contributor:
    fullname: Devireddy
– year: 1980
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib26
  contributor:
    fullname: Patankar
– volume: 38
  start-page: 154
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib6
  article-title: Cryopreservation of rat and human liver slices by rapid freezing
  publication-title: Cryobiology
  doi: 10.1006/cryo.1999.2161
  contributor:
    fullname: Day
– volume: 79
  start-page: 963
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib4
  article-title: Cryosurgery as a treatment for prostate carcinoma
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19970301)79:5<963::AID-CNCR13>3.0.CO;2-0
  contributor:
    fullname: Wong
– volume: 2
  start-page: 193
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib5
  article-title: Cryopreservation of human oocytes: a review of current problems and perspectives
  publication-title: Human Reproduct. Update
  doi: 10.1093/humupd/2.3.193
  contributor:
    fullname: Bernard
– ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib25
– volume: 115
  start-page: 1029
  year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib12
  article-title: Microscale heat and mass transfer of vascular and intracellular freezing in the liver
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.2911357
  contributor:
    fullname: Bischof
– year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib23
  contributor:
    fullname: Alexiades
– volume: 1
  start-page: 1
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib32
  article-title: Modeling of bio-thermo-electric micro-cooler
  publication-title: Open Biotechnol. J.
  doi: 10.2174/1874070700701010001
  contributor:
    fullname: Prabhakar
– volume: 67
  start-page: 1582
  year: 1990
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib35
  article-title: Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.345670
  contributor:
    fullname: Toner
– volume: 17
  start-page: 71
  year: 1949
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib33
  article-title: Rate of nucleation in condensed systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1747055
  contributor:
    fullname: Turnbull
– volume: 268
  start-page: 743
  year: 1963
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib1
  article-title: Cryogenic surgery a new method of destruction or extirpation of benign or malignant tissues
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJM196304042681401
  contributor:
    fullname: Cooper
– volume: 234
  start-page: 343
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib21
  article-title: A mathematical model for the freezing process in biological tissue
  publication-title: Proc. Roy Soc. Lond. B
  doi: 10.1098/rspb.1988.0053
  contributor:
    fullname: Rubinsky
– year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib37
  article-title: Nucleation of ice crystals in biological cells
  contributor:
    fullname: Toner
– ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib30
  doi: 10.1115/IMECE2006-15247
– year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib8
  contributor:
    fullname: Lunardini
– volume: 124
  start-page: 365
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib22
  article-title: Effect of microscale mass transport and phase change on numerical prediction of freezing in biological tissues
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.1445134
  contributor:
    fullname: Devireddy
– year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib28
  contributor:
    fullname: Incropera
– volume: 127
  start-page: 279
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib14
  article-title: Numerical simulation for heat transfer in prostate cancer cryosurgery
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.1865193
  contributor:
    fullname: Zhang
– volume: 30
  start-page: 482
  year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib17
  article-title: A morphological study of cooling rate response in normal and neoplastic human liver tissue: Cryosurgical implications
  publication-title: Cryobiology
  doi: 10.1006/cryo.1993.1049
  contributor:
    fullname: Bischof
– year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib24
  contributor:
    fullname: Ozisik
– year: 1966
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib15
  article-title: The freezing of animal tissue
  contributor:
    fullname: Love
– volume: 114
  start-page: 796
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib11
  article-title: Optimization of multiprobe cryosurgery
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.2911885
  contributor:
    fullname: Keanini
– volume: 119
  start-page: 269
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib18
  article-title: Measurement and simulation of water transport during freezing in mammalian liver tissue
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2796091
  contributor:
    fullname: Pazhayannur
– volume: 105
  start-page: 431
  year: 1983
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib9
  article-title: Implementation of phase change in numerical models of heat transfer
  publication-title: Int. J. Energy Res.
  contributor:
    fullname: Hayes
– volume: 25
  start-page: 67
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib10
  article-title: Prediction of local cooling rates and cell survival during the freezing of a cylindrical specimen
  publication-title: Cryobiology
  doi: 10.1016/0011-2240(88)90022-3
  contributor:
    fullname: Hayes
– ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib29
  doi: 10.1115/IMECE2004-60920
– volume: 120
  start-page: 559
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib19
  article-title: Measurement of water transport during freezing in mammalian liver tissue-Part II: The use of differential scanning calorimetry
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2834745
  contributor:
    fullname: Devireddy
– start-page: 370
  year: 1987
  ident: 10.1016/j.ijheatmasstransfer.2008.04.026_bib16
  article-title: The mechanism of freezing process in biological tissue
  publication-title: Cryo-letters
  contributor:
    fullname: Rubinsky
SSID ssj0017046
Score 1.9605217
Snippet Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5655
SubjectTerms Apparent heat capacity
Fourier heat conduction
Ice nucleation
Latent heat
Title Numerical simulation of local temperature distortions during ice nucleation of cells in suspension
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.04.026
https://www.ncbi.nlm.nih.gov/pubmed/21811343
https://search.proquest.com/docview/1835552127
https://search.proquest.com/docview/35454069
https://pubmed.ncbi.nlm.nih.gov/PMC3147025
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61W4G4IJ5tCrSuxIFL2sSx8zhWK6qFlfZQUbW3KI5tkVWbXTW7V357ZxxnYSkckDhFSmxLnvE8HH_zGeAjRkiLRpaHWhUiFAnqouKKh5WOCpULUyjjUL6zdHIlvt7Imx0YD7UwBKv0vr_36c5b-zdnXppny6ahGl9aXHGf82Ag3IU9DEdCjGDv_Mt0MtscJmRRX69DDpk6PIVPP2FezZyc3h1mqiuXKZp7D7AUp45x4c_R6nE2-juo8pcodfECnvv0kp33M3gJO6Z9BU8czLPuXoOarfsTmlvWNXf-5i62sMyFNEY8VZ5kmWnHH-JWJetrGRn6FNYS__GmG_3271jTsm7dLQkKv2jfwNXF52_jSehvWQhrKfgqxP1WVOk609JE2hS4v6kiyXNbc5SDToxWtuBSRbVBW1Upj0mBlZTGikLxWiVvYdQuWnMALLPaJqLO4yqVwhiVywwHtymPtLW6VgEUgzTLZU-mUQ4os3n5WBP-jkxRoiYCGA_iL7cWSIm-_x9GORk0V6IdkZSq1izWXYmuTUoqZM4COP5Lm0QSX2FaBLDf63ozC0qU4kQkAWRbq2DTgFi8t7-0zXfH5p3EIsPE8_C_zO8dPHOAFlcs-R5Gq_u1-YBZ00odwe7pj_jI2wY9p5fX0wdtgiFM
link.rule.ids 230,315,786,790,891,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT9wwFH6CQQUuqBsQluJKPfSSkjh2liMagYZC5wQSNyuObREEmRGZ-f88O86UAXqoxDWJLfntjr_3GeAHZkiDTpaHShYsZAnqoqSShqWKCpkzXUjtUL7jdHTNft_wmxUY9r0wFlbpY38X01209k-OvTSPp3Vte3ytccVdzYOJcBXWGM9iNoC1k_OL0XhxmJBFXb-ODch2wDr8_Avzqu9s0HvASnXmKkX96AGW7JdjXHg7W72uRl-CKp9lqbOPsOXLS3LSreATrOjmM3xwMM-q_QJyPO9OaO5JWz_4m7vIxBCX0ojlqfIky0Q5_hBnlaTrZSQYU0hj-Y8Xw-xv_5bUDWnn7dRC4SfNV7g-O70ajkJ_y0JYcUZnIe63olJVmeI6UrrA_U0ZcZqbiqIcVKKVNAXlMqo0-qpMaWwVWHKuDSskrWSyDYNm0uhdIJlRJmFVHpcpZ1rLnGc4uUlppIxRlQyg6KUpph2ZhuhRZnfitSb8HZlMoCYCGPbiF0sGIjD2_8cs33vNCfQjK6Wy0ZN5KzC0cW4bmbMAjv7xTcItX2FaBLDT6XqxClsoxQlLAsiWrGDxgWXxXn7T1LeOzTuJWYaF5967rO8INkZXfy7F5fn4Yh82HbjFNU4ewGD2ONeHWEHN5DfvIU9UzyGb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+local+temperature+distortions+during+ice+nucleation+of+cells+in+suspension&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Kandra%2C+D.&rft.au=Devireddy%2C+R.V.&rft.date=2008-11-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=51&rft.issue=23&rft.spage=5655&rft.epage=5661&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2008.04.026&rft.externalDocID=S0017931008002743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon