Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators
Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Tw...
Saved in:
Published in | Molecular & cellular proteomics Vol. 11; no. 9; pp. 640 - 650 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2012
The American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications. |
---|---|
AbstractList | Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications. Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications. Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications.Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications. |
Author | Li, Yuan Rong, Mingqiang Zhang, Zhiye Yang, Shilong Liu, Zhonghua Xiao, Yao Liang, Songping Yu, Haining Lai, Ren King, Glenn F. |
Author_xml | – sequence: 1 givenname: Shilong surname: Yang fullname: Yang, Shilong organization: Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China – sequence: 2 givenname: Zhonghua surname: Liu fullname: Liu, Zhonghua organization: the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China – sequence: 3 givenname: Yao surname: Xiao fullname: Xiao, Yao organization: Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China – sequence: 4 givenname: Yuan surname: Li fullname: Li, Yuan organization: Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China – sequence: 5 givenname: Mingqiang surname: Rong fullname: Rong, Mingqiang organization: Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China – sequence: 6 givenname: Songping surname: Liang fullname: Liang, Songping organization: the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China – sequence: 7 givenname: Zhiye surname: Zhang fullname: Zhang, Zhiye organization: Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China – sequence: 8 givenname: Haining surname: Yu fullname: Yu, Haining organization: the College of Life Sciences School of Heibei Normal University, Shijiazhuang, Hebei, 050016 China – sequence: 9 givenname: Glenn F. surname: King fullname: King, Glenn F. email: glenn.king@imb.uq.edu.au organization: the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia – sequence: 10 givenname: Ren surname: Lai fullname: Lai, Ren email: rlai@mail.kiz.ac.cn organization: Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22595790$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcuOEzEQtNAi9gFnbmiOXJL1Y2yPL0goLA9pV-QAXC1Pu4eYnbGDPVnB3-MoSwRIwMltdVWpquucnMQUkZCnjC4Z1e3lBNvlDWN8SVnXSfGAnDEp5MK0XXtynLU6JeelfKGUU6blI3LKuTRSG3pGXq02OAVwY7PeRdg0awe36JsQm08Y01SaG3eLpVlhnMMWfR2vvgGOY_0364zezSmXx-Th4MaCT-7fC_Lx9dWH1dvF9fs371YvrxcgWz4vTMeBo5ICUBuvgKoWhaCUDTh41-u-R3Be0R5kjaMdVUJ2LRgmjROGD-KCvDjobnf9hB6qiexGu81hcvm7TS7Y3zcxbOzndGdFK-oVVBV4fi-Q09cdltlOoezjuIhpVyxTjCnRSsP_D6VCd53ulK7QZ7_aOvr5eeUKuDwAIKdSMg5HCKN236OtPdp9j_bQY2XIPxgQZjeHtM8Vxn_wzIGHtYa7gNkWCBgBfcgIs_Up_JX7A98ztRE |
CitedBy_id | crossref_primary_10_3389_fbioe_2021_811905 crossref_primary_10_3390_toxins8100286 crossref_primary_10_3390_toxins7030679 crossref_primary_10_3390_toxins7114832 crossref_primary_10_1016_j_jep_2012_10_048 crossref_primary_10_1038_s41598_023_36632_0 crossref_primary_10_1073_pnas_1714760115 crossref_primary_10_1016_j_intimp_2024_113130 crossref_primary_10_1007_s10530_016_1340_x crossref_primary_10_1016_j_drudis_2021_10_003 crossref_primary_10_1016_j_pestbp_2025_106322 crossref_primary_10_1093_gbe_evv133 crossref_primary_10_3390_toxins11020076 crossref_primary_10_1371_journal_pone_0063865 crossref_primary_10_1038_s41590_018_0063_9 crossref_primary_10_3390_toxins12090529 crossref_primary_10_1016_j_jtherbio_2020_102755 crossref_primary_10_1016_j_toxicon_2023_107231 crossref_primary_10_1016_j_toxicon_2018_11_433 crossref_primary_10_1016_j_toxicon_2020_02_016 crossref_primary_10_1073_pnas_1306285110 crossref_primary_10_1016_j_bbagen_2016_07_027 crossref_primary_10_1016_j_pharmthera_2018_03_007 crossref_primary_10_1080_17460441_2016_1235155 crossref_primary_10_1160_TH16_11_0829 crossref_primary_10_1007_s00204_016_1755_2 crossref_primary_10_1021_pr300881d crossref_primary_10_1016_j_soh_2023_100013 crossref_primary_10_1093_molbev_msz181 crossref_primary_10_1111_bph_13081 crossref_primary_10_3390_toxins13120858 crossref_primary_10_1016_j_toxicon_2019_06_021 crossref_primary_10_1016_j_toxicon_2018_04_011 crossref_primary_10_1371_journal_pbio_2004921 crossref_primary_10_1016_j_wneu_2018_01_116 crossref_primary_10_1007_s10989_013_9353_0 crossref_primary_10_1080_15569543_2022_2065510 crossref_primary_10_1016_S1875_5364_16_30071_1 crossref_primary_10_1093_molbev_msu162 crossref_primary_10_2478_s11756_014_0410_8 crossref_primary_10_1007_s00726_017_2425_2 crossref_primary_10_1038_s41597_019_0074_x crossref_primary_10_1016_j_aspen_2018_11_018 crossref_primary_10_1126_sciadv_abb5734 crossref_primary_10_1016_j_fitote_2016_03_004 crossref_primary_10_3390_toxins5020286 crossref_primary_10_1016_j_tree_2012_10_020 crossref_primary_10_3390_toxins7093671 crossref_primary_10_1016_j_toxicon_2014_05_022 crossref_primary_10_1098_rspb_2017_1364 crossref_primary_10_1016_j_jbc_2023_105066 crossref_primary_10_1002_psc_2588 crossref_primary_10_1002_prot_24818 crossref_primary_10_1186_s12862_017_0904_4 crossref_primary_10_1002_psc_2988 crossref_primary_10_1177_2049463713502005 crossref_primary_10_3390_toxins6123488 crossref_primary_10_1016_j_neuropharm_2017_09_025 crossref_primary_10_1016_j_toxicon_2019_08_001 crossref_primary_10_1016_j_jprot_2014_04_033 crossref_primary_10_3389_fphar_2020_00896 crossref_primary_10_1371_journal_pgen_1005596 crossref_primary_10_1016_j_toxicon_2018_09_008 crossref_primary_10_51847_HIrDcdPCGL crossref_primary_10_1016_j_toxicon_2023_107253 crossref_primary_10_1002_rcm_7116 crossref_primary_10_1016_j_toxicon_2018_07_030 crossref_primary_10_3390_toxins11120708 crossref_primary_10_3390_toxins12040230 crossref_primary_10_1111_brv_13120 crossref_primary_10_1016_j_toxicon_2014_11_220 crossref_primary_10_3390_molecules27144423 crossref_primary_10_3390_toxins11030153 crossref_primary_10_3390_ijms23137105 crossref_primary_10_1016_j_ijbiomac_2021_02_178 crossref_primary_10_1016_j_str_2015_05_003 crossref_primary_10_1038_ncomms9297 crossref_primary_10_1016_j_zool_2014_06_007 crossref_primary_10_3390_toxins11120695 crossref_primary_10_1016_j_jprot_2016_08_004 crossref_primary_10_1073_pnas_1424068112 crossref_primary_10_1016_j_jprot_2014_02_024 crossref_primary_10_1021_acs_jproteome_5b00305 crossref_primary_10_1016_j_toxicon_2013_10_017 crossref_primary_10_1016_j_jprot_2014_10_014 crossref_primary_10_34108_eujhs_825391 crossref_primary_10_1016_j_toxicon_2014_02_003 crossref_primary_10_1016_j_str_2018_10_022 crossref_primary_10_1007_s41048_018_0067_x crossref_primary_10_3390_su14084760 crossref_primary_10_1074_mcp_RA117_000431 crossref_primary_10_1590_1678_9199_jvatitd_2021_0036 crossref_primary_10_3390_toxins10030096 crossref_primary_10_1111_1749_4877_12871 |
Cites_doi | 10.1016/j.toxicon.2010.07.010 10.1016/j.toxicon.2009.07.040 10.1074/jbc.M105206200 10.1021/pr1000829 10.1007/s00018-008-8135-x 10.1002/jms.1242 10.1016/j.toxicon.2004.03.022 10.1016/S1532-0456(03)00108-X 10.1016/j.toxicon.2009.03.003 10.1074/jbc.M401387200 10.1016/S0041-0101(99)00089-6 10.1093/nar/gkq1058 10.1016/S0041-0101(01)00199-4 10.1016/j.toxicon.2011.01.004 10.1016/S0041-0101(03)00011-4 10.1016/j.zool.2009.04.001 10.1038/nature04328 10.1586/epr.09.45 10.1016/j.toxicon.2005.09.006 10.1016/j.jmb.2004.05.028 10.1016/S0300-9084(00)01166-4 10.1016/0041-0101(80)90085-9 10.1074/jbc.M708079200 10.1016/j.toxicon.2006.12.001 10.1074/jbc.M102199200 10.1016/0076-6879(93)18026-9 10.1016/j.toxicon.2009.03.001 10.1152/physrev.00020.2003 10.1016/j.peptides.2004.07.016 10.1016/j.toxicon.2006.01.018 10.1146/annurev.genom.9.081307.164356 10.1074/mcp.M600334-MCP200 10.1074/jbc.M109.013276 10.1016/j.toxicon.2009.02.035 10.1007/s00726-010-0516-4 10.1016/j.toxicon.2011.03.017 |
ContentType | Journal Article |
Copyright | 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012 |
Copyright_xml | – notice: 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SS 5PM |
DOI | 10.1074/mcp.M112.018853 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Entomology Abstracts (Full archive) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Entomology Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
DocumentTitleAlternate | Neurotoxin Variety of Centipede Venoms |
EISSN | 1535-9484 |
EndPage | 650 |
ExternalDocumentID | PMC3434766 22595790 10_1074_mcp_M112_018853 S1535947620325780 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0SF 123 18M 29M 2WC 34G 39C 4.4 53G 5VS 6I. AAEDW AAFTH AAFWJ AAXUO ABDNZ ACGFO ACIWK ACPRK ACYGS ADBBV AENEX AEXQZ AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE KQ8 OK1 P2P RHF RHI RNS ROL RPM TBC TR2 W8F WOQ ZA5 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM 7X8 7SS 5PM |
ID | FETCH-LOGICAL-c542t-982c2e653ce79d6c064e33001fefdab7bbecad60bc50187a063584c9159a392f3 |
ISSN | 1535-9476 1535-9484 |
IngestDate | Thu Aug 21 18:21:45 EDT 2025 Fri Jul 11 05:04:36 EDT 2025 Fri Jul 11 00:00:58 EDT 2025 Thu Jan 02 22:56:49 EST 2025 Tue Jul 01 03:35:05 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 Fri Feb 23 02:45:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-982c2e653ce79d6c064e33001fefdab7bbecad60bc50187a063584c9159a392f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These authors contributed equally to this work. |
OpenAccessLink | https://dx.doi.org/10.1074/mcp.M112.018853 |
PMID | 22595790 |
PQID | 1037887867 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3434766 proquest_miscellaneous_1611634592 proquest_miscellaneous_1037887867 pubmed_primary_22595790 crossref_primary_10_1074_mcp_M112_018853 crossref_citationtrail_10_1074_mcp_M112_018853 elsevier_sciencedirect_doi_10_1074_mcp_M112_018853 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular & cellular proteomics |
PublicationTitleAlternate | Mol Cell Proteomics |
PublicationYear | 2012 |
Publisher | Elsevier Inc The American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: The American Society for Biochemistry and Molecular Biology |
References | Lewis (bib37) 1981 Cardoso, Pacífico, Carvalho, Victória, Neves, Chávez-Olórtegui, Gomez, Kalapothakis (bib31) 2003; 41 González-Morales, Diego-García, Segovia, Gutiérrez Mdel, Possani (bib16) 2009; 54 Escoubas, Sollod, King (bib21) 2006; 47 Tedford, Fletcher, King (bib26) 2001; 276 Norton (bib3) 2009; 54 Undheim, King (bib17) 2011; 57 Rodríguez de la Vega, Possani (bib10) 2004; 43 Bendtsen, Nielsen, von Heijne, Brunak (bib28) 2004; 340 Terlau, Olivera (bib4) 2004; 84 Stankiewicz, Hamon, Benkhalifa, Kadziela, Hue, Lucas, Mebs, Pelhate (bib33) 1999; 37 dos Santos, Santos, Pinto, Dias, de Souza, dos Santos, Perales, Domont, Castro, Kalil, Palma (bib14) 2010; 9 Rates, Bemquerer, Richardson, Borges, Morales, De Lima, Pimenta (bib15) 2007; 49 Xiao, Tang, Yang, Wang, Hu, Xie, Zeng, Liang (bib25) 2004; 279 Vassilevski, Kozlov, Grishin (bib9) 2009; 74 Rodríguez de la Vega, Possani (bib11) 2005; 46 Fry, Roelants, Champagne, Scheib, Tyndall, King, Nevalainen, Norman, Lewis, Norton, Renjifo, de la Vega (bib1) 2009; 10 Zhang, Chen, Tang, Wang, Jiang, Xiong, Wang, Rong, Liu, Liang (bib29) 2010; 113 Herzig, Wood, Newell, Chaumeil, Kaas, Binford, Nicholson, Gorse, King (bib35) 2011; 39 Calvete, Juárez, Sanz (bib6) 2007; 42 You, Hong, Rong, Yu, Liang, Ma, Yang, Wu, Lin, Lai (bib13) 2009; 284 Sollod, Wilson, Zhaxybayeva, Gogarten, Drinkwater, King (bib18) 2005; 26 Frohman (bib24) 1993; 218 Mohamed, Zaid, El-Beih, Abd El-Aal (bib32) 1980; 18 Suput (bib20) 2009; 54 Li, Xu, Xu, Zhou, Zhang, Yu, Zhang, Zheng, Rees, Lai, Yang, Wu (bib23) 2007; 6 Fry, Vidal, Norman, Vonk, Scheib, Ramjan, Kuruppu, Fung, Hedges, Richardson, Hodgson, Ignjatovic, Summerhayes, Kochva (bib2) 2006; 439 Fuller, Thompson, Zhang, Freeman, Schay, Szakács, Bakos, Sarkadi, McMaster, French, Pohl, Kubanek, McCarty (bib12) 2007; 282 Koh, Kini (bib5) 2011; 59 Rash, Hodgson (bib8) 2002; 40 Vetter, Davis, Rash, Anangi, Mobli, Alewood, Lewis, King (bib38) 2011; 40 Gutierrez, Abarca, Possani (bib34) 2003; 135 Kini, Doley (bib19) 2010; 56 Peng, Kong, Zhai, Wu, Jia, Liu, Yu (bib22) 2010; 55 Escoubas, King (bib36) 2009; 6 Chen, Deng, He, Meng, Jiang, Liao, Rong, Liang (bib30) 2008; 65 Escoubas, Diochot, Corzo (bib7) 2000; 82 Wang, Connor, Wilson, Wilson, Nicholson, Smith, Shaw, Mackay, Alewood, Christie, King (bib27) 2001; 276 Frohman (10.1074/mcp.M112.018853_bib24) 1993; 218 Cardoso (10.1074/mcp.M112.018853_bib31) 2003; 41 Herzig (10.1074/mcp.M112.018853_bib35) 2011; 39 Xiao (10.1074/mcp.M112.018853_bib25) 2004; 279 Escoubas (10.1074/mcp.M112.018853_bib21) 2006; 47 González-Morales (10.1074/mcp.M112.018853_bib16) 2009; 54 Kini (10.1074/mcp.M112.018853_bib19) 2010; 56 Escoubas (10.1074/mcp.M112.018853_bib36) 2009; 6 Wang (10.1074/mcp.M112.018853_bib27) 2001; 276 Mohamed (10.1074/mcp.M112.018853_bib32) 1980; 18 Suput (10.1074/mcp.M112.018853_bib20) 2009; 54 Koh (10.1074/mcp.M112.018853_bib5) 2011; 59 Sollod (10.1074/mcp.M112.018853_bib18) 2005; 26 Fry (10.1074/mcp.M112.018853_bib2) 2006; 439 Rates (10.1074/mcp.M112.018853_bib15) 2007; 49 Vassilevski (10.1074/mcp.M112.018853_bib9) 2009; 74 Fry (10.1074/mcp.M112.018853_bib1) 2009; 10 Zhang (10.1074/mcp.M112.018853_bib29) 2010; 113 Calvete (10.1074/mcp.M112.018853_bib6) 2007; 42 Escoubas (10.1074/mcp.M112.018853_bib7) 2000; 82 Chen (10.1074/mcp.M112.018853_bib30) 2008; 65 Tedford (10.1074/mcp.M112.018853_bib26) 2001; 276 Vetter (10.1074/mcp.M112.018853_bib38) 2011; 40 Rash (10.1074/mcp.M112.018853_bib8) 2002; 40 Norton (10.1074/mcp.M112.018853_bib3) 2009; 54 dos Santos (10.1074/mcp.M112.018853_bib14) 2010; 9 Undheim (10.1074/mcp.M112.018853_bib17) 2011; 57 Peng (10.1074/mcp.M112.018853_bib22) 2010; 55 Rodríguez de la Vega (10.1074/mcp.M112.018853_bib11) 2005; 46 Terlau (10.1074/mcp.M112.018853_bib4) 2004; 84 Fuller (10.1074/mcp.M112.018853_bib12) 2007; 282 Stankiewicz (10.1074/mcp.M112.018853_bib33) 1999; 37 You (10.1074/mcp.M112.018853_bib13) 2009; 284 Bendtsen (10.1074/mcp.M112.018853_bib28) 2004; 340 Gutierrez (10.1074/mcp.M112.018853_bib34) 2003; 135 Lewis (10.1074/mcp.M112.018853_bib37) 1981 Li (10.1074/mcp.M112.018853_bib23) 2007; 6 Rodríguez de la Vega (10.1074/mcp.M112.018853_bib10) 2004; 43 |
References_xml | – volume: 113 start-page: 10 year: 2010 end-page: 18 ident: bib29 article-title: Transcriptome analysis of the venom glands of the Chinese wolf spider publication-title: Zoology – volume: 59 start-page: 497 year: 2011 end-page: 506 ident: bib5 article-title: From snake venom to therapeutics: Cardiovascular examples publication-title: Toxicon – volume: 135 start-page: 205 year: 2003 end-page: 214 ident: bib34 article-title: A toxic fraction from publication-title: Comp. Biochem. Physiol. C. Toxicol. Pharmacol. – volume: 56 start-page: 855 year: 2010 end-page: 867 ident: bib19 article-title: Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets publication-title: Toxicon – volume: 9 start-page: 3867 year: 2010 end-page: 3877 ident: bib14 article-title: Profiling the proteome of the venom from the social wasp publication-title: J. Proteome Res. – volume: 18 start-page: 581 year: 1980 end-page: 589 ident: bib32 article-title: Effects of an extract from the centipede publication-title: Toxicon – volume: 42 start-page: 1405 year: 2007 end-page: 1414 ident: bib6 article-title: Snake venomics. Strategy and applications publication-title: J. Mass Spectrom. – volume: 37 start-page: 1431 year: 1999 end-page: 1445 ident: bib33 article-title: Effects of a centipede venom fraction on insect nervous system, a native publication-title: Toxicon – volume: 54 start-page: 1075 year: 2009 end-page: 1088 ident: bib3 article-title: Structures of sea anemone toxins publication-title: Toxicon – volume: 39 start-page: D653 year: 2011 end-page: D657 ident: bib35 article-title: ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures publication-title: Nucleic Acids Res. – volume: 279 start-page: 26220 year: 2004 end-page: 26226 ident: bib25 article-title: Jingzhaotoxin-III, a novel spider toxin inhibiting activation of voltage-gated sodium channel in rat cardiac myocytes publication-title: J. Biol. Chem. – volume: 46 start-page: 831 year: 2005 end-page: 844 ident: bib11 article-title: Overview of scorpion toxins specific for Na publication-title: Toxicon – volume: 54 start-page: 1190 year: 2009 end-page: 1200 ident: bib20 article-title: effects of cnidarian toxins and venoms publication-title: Toxicon – volume: 40 start-page: 225 year: 2002 end-page: 254 ident: bib8 article-title: Pharmacology and biochemistry of spider venoms publication-title: Toxicon – volume: 282 start-page: 37545 year: 2007 end-page: 37555 ident: bib12 article-title: State-dependent inhibition of cystic fibrosis transmembrane conductance regulator chloride channels by a novel peptide toxin publication-title: J. Biol. Chem. – volume: 10 start-page: 483 year: 2009 end-page: 511 ident: bib1 article-title: The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms publication-title: Annu. Rev. Genomics Hum. Genet. – volume: 284 start-page: 22079 year: 2009 end-page: 22086 ident: bib13 article-title: The first gene-encoded amphibian neurotoxin publication-title: J. Biol. Chem. – volume: 49 start-page: 810 year: 2007 end-page: 826 ident: bib15 article-title: Venomic analyses of publication-title: Toxicon – volume: 26 start-page: 131 year: 2005 end-page: 139 ident: bib18 article-title: Were arachnids the first to use combinatorial peptide libraries? publication-title: Peptides – volume: 439 start-page: 584 year: 2006 end-page: 588 ident: bib2 article-title: Early evolution of the venom system in lizards and snakes publication-title: Nature – volume: 84 start-page: 41 year: 2004 end-page: 68 ident: bib4 article-title: venoms: A rich source of novel ion channel-targeted peptides publication-title: Physiol. Rev. – volume: 47 start-page: 650 year: 2006 end-page: 663 ident: bib21 article-title: Venom landscapes: Mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach publication-title: Toxicon – year: 1981 ident: bib37 publication-title: The Biology of Centipedes – volume: 57 start-page: 512 year: 2011 end-page: 524 ident: bib17 article-title: On the venom system of centipedes (Chilopoda), a neglected group of venomous animals publication-title: Toxicon – volume: 40 start-page: 15 year: 2011 end-page: 28 ident: bib38 article-title: Venomics: A new paradigm for natural-products-based drug discovery publication-title: Amino Acids – volume: 218 start-page: 340 year: 1993 end-page: 356 ident: bib24 article-title: Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: Thermal RACE publication-title: Methods Enzymol. – volume: 276 start-page: 26568 year: 2001 end-page: 26576 ident: bib26 article-title: Functional significance of the beta hairpin in the insecticidal neurotoxin omega-atracotoxin-Hv1a publication-title: J. Biol. Chem. – volume: 6 start-page: 221 year: 2009 end-page: 224 ident: bib36 article-title: Venomics as a drug discovery platform publication-title: Expert Rev. Proteomics – volume: 82 start-page: 893 year: 2000 end-page: 907 ident: bib7 article-title: Structure and pharmacology of spider venom neurotoxins publication-title: Biochimie – volume: 6 start-page: 882 year: 2007 end-page: 894 ident: bib23 article-title: Anti-infection peptidomics of amphibian skin publication-title: Mol. Cell. Proteomics – volume: 54 start-page: 8 year: 2009 end-page: 15 ident: bib16 article-title: Venom from the centipede publication-title: Toxicon – volume: 55 start-page: 274 year: 2010 end-page: 279 ident: bib22 article-title: Two novel antimicrobial peptides from centipede venoms publication-title: Toxicon – volume: 41 start-page: 755 year: 2003 end-page: 763 ident: bib31 article-title: Molecular cloning and characterization of publication-title: Toxicon – volume: 43 start-page: 865 year: 2004 end-page: 875 ident: bib10 article-title: Current views on scorpion toxins specific for K publication-title: Toxicon – volume: 74 start-page: 1505 year: 2009 end-page: 1534 ident: bib9 article-title: Molecular diversity of spider venom publication-title: Biochemistry – volume: 65 start-page: 2431 year: 2008 end-page: 2444 ident: bib30 article-title: Molecular diversity and evolution of cystine knot toxins of the tarantula publication-title: Cell. Mol. Life Sci. – volume: 340 start-page: 783 year: 2004 end-page: 795 ident: bib28 article-title: Improved prediction of signal peptides: SignalP 3.0 publication-title: J. Mol. Biol. – volume: 276 start-page: 40306 year: 2001 end-page: 40312 ident: bib27 article-title: Discovery and structure of a potent and highly specific blocker of insect calcium channels publication-title: J. Biol. Chem. – volume: 56 start-page: 855 year: 2010 ident: 10.1074/mcp.M112.018853_bib19 article-title: Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets publication-title: Toxicon doi: 10.1016/j.toxicon.2010.07.010 – volume: 55 start-page: 274 year: 2010 ident: 10.1074/mcp.M112.018853_bib22 article-title: Two novel antimicrobial peptides from centipede venoms publication-title: Toxicon doi: 10.1016/j.toxicon.2009.07.040 – volume: 276 start-page: 40306 year: 2001 ident: 10.1074/mcp.M112.018853_bib27 article-title: Discovery and structure of a potent and highly specific blocker of insect calcium channels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105206200 – volume: 74 start-page: 1505 year: 2009 ident: 10.1074/mcp.M112.018853_bib9 article-title: Molecular diversity of spider venom publication-title: Biochemistry – volume: 9 start-page: 3867 year: 2010 ident: 10.1074/mcp.M112.018853_bib14 article-title: Profiling the proteome of the venom from the social wasp Polybia paulista: A clue to understand the envenoming mechanism publication-title: J. Proteome Res. doi: 10.1021/pr1000829 – volume: 65 start-page: 2431 year: 2008 ident: 10.1074/mcp.M112.018853_bib30 article-title: Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-8135-x – volume: 42 start-page: 1405 year: 2007 ident: 10.1074/mcp.M112.018853_bib6 article-title: Snake venomics. Strategy and applications publication-title: J. Mass Spectrom. doi: 10.1002/jms.1242 – volume: 43 start-page: 865 year: 2004 ident: 10.1074/mcp.M112.018853_bib10 article-title: Current views on scorpion toxins specific for K+-channels publication-title: Toxicon doi: 10.1016/j.toxicon.2004.03.022 – volume: 135 start-page: 205 year: 2003 ident: 10.1074/mcp.M112.018853_bib34 article-title: A toxic fraction from Scolopendra venom increases the basal release of neurotransmitters in the ventral ganglia of crustaceans publication-title: Comp. Biochem. Physiol. C. Toxicol. Pharmacol. doi: 10.1016/S1532-0456(03)00108-X – volume: 54 start-page: 8 year: 2009 ident: 10.1074/mcp.M112.018853_bib16 article-title: Venom from the centipede Scolopendra viridis Say: Purification, gene cloning and phylogenetic analysis of a phospholipase A2 publication-title: Toxicon doi: 10.1016/j.toxicon.2009.03.003 – volume: 279 start-page: 26220 year: 2004 ident: 10.1074/mcp.M112.018853_bib25 article-title: Jingzhaotoxin-III, a novel spider toxin inhibiting activation of voltage-gated sodium channel in rat cardiac myocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401387200 – volume: 37 start-page: 1431 year: 1999 ident: 10.1074/mcp.M112.018853_bib33 article-title: Effects of a centipede venom fraction on insect nervous system, a native Xenopus oocyte receptor and on an expressed Drosophila muscarinic receptor publication-title: Toxicon doi: 10.1016/S0041-0101(99)00089-6 – volume: 39 start-page: D653 year: 2011 ident: 10.1074/mcp.M112.018853_bib35 article-title: ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1058 – volume: 40 start-page: 225 year: 2002 ident: 10.1074/mcp.M112.018853_bib8 article-title: Pharmacology and biochemistry of spider venoms publication-title: Toxicon doi: 10.1016/S0041-0101(01)00199-4 – volume: 57 start-page: 512 year: 2011 ident: 10.1074/mcp.M112.018853_bib17 article-title: On the venom system of centipedes (Chilopoda), a neglected group of venomous animals publication-title: Toxicon doi: 10.1016/j.toxicon.2011.01.004 – volume: 41 start-page: 755 year: 2003 ident: 10.1074/mcp.M112.018853_bib31 article-title: Molecular cloning and characterization of Phoneutria nigriventer toxins active on calcium channels publication-title: Toxicon doi: 10.1016/S0041-0101(03)00011-4 – volume: 113 start-page: 10 year: 2010 ident: 10.1074/mcp.M112.018853_bib29 article-title: Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis publication-title: Zoology doi: 10.1016/j.zool.2009.04.001 – volume: 439 start-page: 584 year: 2006 ident: 10.1074/mcp.M112.018853_bib2 article-title: Early evolution of the venom system in lizards and snakes publication-title: Nature doi: 10.1038/nature04328 – year: 1981 ident: 10.1074/mcp.M112.018853_bib37 – volume: 6 start-page: 221 year: 2009 ident: 10.1074/mcp.M112.018853_bib36 article-title: Venomics as a drug discovery platform publication-title: Expert Rev. Proteomics doi: 10.1586/epr.09.45 – volume: 46 start-page: 831 year: 2005 ident: 10.1074/mcp.M112.018853_bib11 article-title: Overview of scorpion toxins specific for Na+ channels and related peptides: Biodiversity, structure-function relationships and evolution publication-title: Toxicon doi: 10.1016/j.toxicon.2005.09.006 – volume: 340 start-page: 783 year: 2004 ident: 10.1074/mcp.M112.018853_bib28 article-title: Improved prediction of signal peptides: SignalP 3.0 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.05.028 – volume: 82 start-page: 893 year: 2000 ident: 10.1074/mcp.M112.018853_bib7 article-title: Structure and pharmacology of spider venom neurotoxins publication-title: Biochimie doi: 10.1016/S0300-9084(00)01166-4 – volume: 18 start-page: 581 year: 1980 ident: 10.1074/mcp.M112.018853_bib32 article-title: Effects of an extract from the centipede Scolopendra moristans on intestine, uterus and heart contractions and on blood glucose and liver and muscle glycogen levels publication-title: Toxicon doi: 10.1016/0041-0101(80)90085-9 – volume: 282 start-page: 37545 year: 2007 ident: 10.1074/mcp.M112.018853_bib12 article-title: State-dependent inhibition of cystic fibrosis transmembrane conductance regulator chloride channels by a novel peptide toxin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M708079200 – volume: 49 start-page: 810 year: 2007 ident: 10.1074/mcp.M112.018853_bib15 article-title: Venomic analyses of Scolopendra viridicornis nigraScolopendra angulata (Centipede, Scolopendromorpha): Shedding light on venoms from a neglected group publication-title: Toxicon doi: 10.1016/j.toxicon.2006.12.001 – volume: 276 start-page: 26568 year: 2001 ident: 10.1074/mcp.M112.018853_bib26 article-title: Functional significance of the beta hairpin in the insecticidal neurotoxin omega-atracotoxin-Hv1a publication-title: J. Biol. Chem. doi: 10.1074/jbc.M102199200 – volume: 218 start-page: 340 year: 1993 ident: 10.1074/mcp.M112.018853_bib24 article-title: Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: Thermal RACE publication-title: Methods Enzymol. doi: 10.1016/0076-6879(93)18026-9 – volume: 54 start-page: 1190 year: 2009 ident: 10.1074/mcp.M112.018853_bib20 article-title: In vivo effects of cnidarian toxins and venoms publication-title: Toxicon doi: 10.1016/j.toxicon.2009.03.001 – volume: 84 start-page: 41 year: 2004 ident: 10.1074/mcp.M112.018853_bib4 article-title: Conus venoms: A rich source of novel ion channel-targeted peptides publication-title: Physiol. Rev. doi: 10.1152/physrev.00020.2003 – volume: 26 start-page: 131 year: 2005 ident: 10.1074/mcp.M112.018853_bib18 article-title: Were arachnids the first to use combinatorial peptide libraries? publication-title: Peptides doi: 10.1016/j.peptides.2004.07.016 – volume: 47 start-page: 650 year: 2006 ident: 10.1074/mcp.M112.018853_bib21 article-title: Venom landscapes: Mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach publication-title: Toxicon doi: 10.1016/j.toxicon.2006.01.018 – volume: 10 start-page: 483 year: 2009 ident: 10.1074/mcp.M112.018853_bib1 article-title: The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev.genom.9.081307.164356 – volume: 6 start-page: 882 year: 2007 ident: 10.1074/mcp.M112.018853_bib23 article-title: Anti-infection peptidomics of amphibian skin publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M600334-MCP200 – volume: 284 start-page: 22079 year: 2009 ident: 10.1074/mcp.M112.018853_bib13 article-title: The first gene-encoded amphibian neurotoxin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.013276 – volume: 54 start-page: 1075 year: 2009 ident: 10.1074/mcp.M112.018853_bib3 article-title: Structures of sea anemone toxins publication-title: Toxicon doi: 10.1016/j.toxicon.2009.02.035 – volume: 40 start-page: 15 year: 2011 ident: 10.1074/mcp.M112.018853_bib38 article-title: Venomics: A new paradigm for natural-products-based drug discovery publication-title: Amino Acids doi: 10.1007/s00726-010-0516-4 – volume: 59 start-page: 497 year: 2011 ident: 10.1074/mcp.M112.018853_bib5 article-title: From snake venom to therapeutics: Cardiovascular examples publication-title: Toxicon doi: 10.1016/j.toxicon.2011.03.017 |
SSID | ssj0020175 |
Score | 2.3877358 |
Snippet | Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 640 |
SubjectTerms | Amino Acid Sequence Animals Araneae Arthropod Venoms - analysis Arthropod Venoms - chemistry Arthropoda Arthropods - metabolism Gene Expression Profiling Molecular Sequence Data Neurotoxins - analysis Neurotoxins - chemistry Scolopendra Transcriptome |
Title | Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators |
URI | https://dx.doi.org/10.1074/mcp.M112.018853 https://www.ncbi.nlm.nih.gov/pubmed/22595790 https://www.proquest.com/docview/1037887867 https://www.proquest.com/docview/1611634592 https://pubmed.ncbi.nlm.nih.gov/PMC3434766 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96IvgieufH-kUEEeHoum3z0TweerIIKz7cyd5TSdKULed2F7cFz7_eSdJmP86V05fSzaah7fw688tkZoLQG6ELLRKdRYAGmKAwyiNFiYqycmQIGBQpiM1Gnnxh43PyeUqn6_h5l13SqKH-9ce8kv-RKrSBXG2W7D9INgwKDXAO8oUjSBiON5JxyPb_CtZpBmwQPklbS-n4m6kX89XxRF6alXPgVktTwOnpT-eorxsbelHY-fZqk51O-r1yHSBsV_fD1XKw2cuBf1_0Xma7EUJn-2xUT9W6xY4ZtM3aoPCnlXQO2Qu5WPd0DW2Hzc7tYOM3RO926DUljQTxm7cEVRpvQEZs6EXmazJ1Jpb5WrPXtDfQGXjlc70cTmLro42zzFcS3q6TvWO_QlShW0_nJIcBcjtA7ge4je4kMIdwUZ_jdSFGUEXUF9P1z9HXfeLk_c4d7KMs16cku5G1G1Tl7AG6380x8IkHzEN0y9SH6OikBnnPr_Bb7KJ-3XLKIbrrNyO9OkIfezRhhybs0YSrGns0YYcmvEYTDmjCAU2P0Pmn07MP46jbYyPSlCRNJLJEJ4bRVBsuCqaBoZo0Be5SmrKQiiv4xmXBRkrbyo9cAqMFyqoFsGAJ1LpMH6ODelGbpwgX0iheUpWpNCacgnYAdiQTIPyyBEvBB2jYv8ZcdwXo7T4o3_M9ghugd-GCpa-9sr9r0ssl76ijp4Q5YGv_Ra97CeagVO0rk7VZtKvcJs-C9c0Y_0sfFsOjESqSAXripR7uEoykXf4eDRDfwkPoYIu6b_9TVzNX3D0lKYCRPbv5sz9H99Yf6At00PxozUtgyo165RD_G55jvLY |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Punch+Packed+in+Venoms+Makes+Centipedes+Excellent+Predators&rft.jtitle=Molecular+%26+cellular+proteomics&rft.au=Yang%2C+Shilong&rft.au=Liu%2C+Zhonghua&rft.au=Xiao%2C+Yao&rft.au=Li%2C+Yuan&rft.date=2012-09-01&rft.issn=1535-9476&rft.volume=11&rft.issue=9&rft.spage=640&rft.epage=650&rft_id=info:doi/10.1074%2Fmcp.M112.018853&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_mcp_M112_018853 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9476&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9476&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9476&client=summon |