Cytochromes P450 CYP94C1 and CYP94B3 Catalyze Two Successive Oxidation Steps of Plant Hormone Jasmonoyl-isoleucine for Catabolic Turnover

The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 287; no. 9; pp. 6296 - 6306
Main Authors Heitz, Thierry, Widemann, Emilie, Lugan, Raphaël, Miesch, Laurence, Ullmann, Pascaline, Désaubry, Laurent, Holder, Emilie, Grausem, Bernard, Kandel, Sylvie, Miesch, Michel, Werck-Reichhart, Danièle, Pinot, Franck
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.02.2012
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone. Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves. Cytochromes P450 CYP94C1 and CYP94B3 cooperate to catalyze the formation of 12OH-JA-Ile and 12COOH-JA-Ile. CYP94C1 and CYP94B3 define a major route for JA-Ile catabolism. Elucidation of CYP94-mediated JA-Ile oxidation opens new avenues for understanding jasmonate metabolism and signaling.
AbstractList The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.
The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.
Background: Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves. Results: Cytochromes P450 CYP94C1 and CYP94B3 cooperate to catalyze the formation of 12OH-JA-Ile and 12COOH-JA-Ile. Conclusion: CYP94C1 and CYP94B3 define a major route for JA-Ile catabolism. Significance: Elucidation of CYP94-mediated JA-Ile oxidation opens new avenues for understanding jasmonate metabolism and signaling. The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.
The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone. Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves. Cytochromes P450 CYP94C1 and CYP94B3 cooperate to catalyze the formation of 12OH-JA-Ile and 12COOH-JA-Ile. CYP94C1 and CYP94B3 define a major route for JA-Ile catabolism. Elucidation of CYP94-mediated JA-Ile oxidation opens new avenues for understanding jasmonate metabolism and signaling.
Author Heitz, Thierry
Holder, Emilie
Widemann, Emilie
Ullmann, Pascaline
Désaubry, Laurent
Miesch, Laurence
Miesch, Michel
Werck-Reichhart, Danièle
Grausem, Bernard
Lugan, Raphaël
Kandel, Sylvie
Pinot, Franck
Author_xml – sequence: 1
  givenname: Thierry
  surname: Heitz
  fullname: Heitz, Thierry
  email: thierry.heitz@ibmp-cnrs.unistra.fr
  organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
– sequence: 2
  givenname: Emilie
  surname: Widemann
  fullname: Widemann, Emilie
  organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
– sequence: 3
  givenname: Raphaël
  surname: Lugan
  fullname: Lugan, Raphaël
  organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
– sequence: 4
  givenname: Laurence
  surname: Miesch
  fullname: Miesch, Laurence
  organization: Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177, Université de Strasbourg, CNRS, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France
– sequence: 5
  givenname: Pascaline
  surname: Ullmann
  fullname: Ullmann, Pascaline
  organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
– sequence: 6
  givenname: Laurent
  surname: Désaubry
  fullname: Désaubry, Laurent
  organization: Laboratoire d'Innovation Thérapeutique, Unité Mixte de Recherche 7200, Université de Strasbourg, CNRS, 74 route du Rhin, 67401 Illkirch Cedex, France
– sequence: 7
  givenname: Emilie
  surname: Holder
  fullname: Holder, Emilie
  organization: Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177, Université de Strasbourg, CNRS, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France
– sequence: 8
  givenname: Bernard
  surname: Grausem
  fullname: Grausem, Bernard
  organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
– sequence: 9
  givenname: Sylvie
  surname: Kandel
  fullname: Kandel, Sylvie
  organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
– sequence: 10
  givenname: Michel
  surname: Miesch
  fullname: Miesch, Michel
  organization: Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177, Université de Strasbourg, CNRS, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France
– sequence: 11
  givenname: Danièle
  surname: Werck-Reichhart
  fullname: Werck-Reichhart, Danièle
  organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
– sequence: 12
  givenname: Franck
  surname: Pinot
  fullname: Pinot, Franck
  organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22215670$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00680337$$DView record in HAL
BookMark eNp1Uk1v1DAQtVAR3RbO3JBviEO2_ojzcUEqEXRBi7pSFwlOluNMWFfZeLGd0OUf8K_xNi2CSrVkjTV-781o5p2go972gNBLSuaU5OnZda3nnymlc04znqVP0IySgidc0K9HaEYIo0nJRHGMTry_JvGkJX2GjhljVGQ5maHf1T5YvXF2Cx6vUkFw9W1VphXFqm-m9zuOKxVUt_8FeP3T4qtBa_DejIAvb0yjgrE9vgqw89i2eNWpPuCFddvYKf6kfIx23yXG2w4GbWKyte5Wsbad0Xg9uN6O4J6jp63qPLy4i6foy4f362qRLC8vPlbny0SLlIWkaFSat6oWRNUMUiU4QKG5KkgOIuMlzXMqCsEyXjSs5CVrCY8Q0LrmRFDBT9HbSXc31FtoNPTBqU7unNkqt5dWGfn_T2828rsdJeckjzcKvJkENg9oi_OlPOQIyYpYNB9pxL6-K-bsjwF8kFvjNXRxSGAHL0vGS5FRwiLy1b9t_RW-X1UEiAmgnfXeQSu1CbfDj12aTlIiD5aQ0RLyYAk5WSLyzh7w7qUfZ5QTA-IaRgNOem2g19AYBzrIxppHuX8AQ5zLhw
CitedBy_id crossref_primary_10_1038_s42003_019_0354_1
crossref_primary_10_1007_s00425_012_1705_z
crossref_primary_10_1074_jbc_M113_499228
crossref_primary_10_3389_fpls_2022_822942
crossref_primary_10_1007_s00425_021_03720_2
crossref_primary_10_1093_bbb_zbad180
crossref_primary_10_3390_plants12163014
crossref_primary_10_1007_s10142_018_0615_y
crossref_primary_10_1111_jipb_12321
crossref_primary_10_1093_plphys_kiab412
crossref_primary_10_1016_j_molp_2024_02_004
crossref_primary_10_3389_fpls_2019_00390
crossref_primary_10_1093_pcp_pcz109
crossref_primary_10_1186_s12864_023_09619_4
crossref_primary_10_1007_s00344_015_9526_5
crossref_primary_10_1007_s12042_013_9119_z
crossref_primary_10_3390_antiox9050454
crossref_primary_10_1186_s12870_025_06248_9
crossref_primary_10_1111_jipb_12902
crossref_primary_10_3389_fpls_2018_01160
crossref_primary_10_1016_j_freeradbiomed_2023_01_007
crossref_primary_10_3390_plants10112257
crossref_primary_10_1016_j_molp_2017_07_010
crossref_primary_10_1098_rstb_2023_0363
crossref_primary_10_3389_fpls_2023_1221526
crossref_primary_10_1093_plphys_kiad017
crossref_primary_10_1515_biolog_2017_0003
crossref_primary_10_1016_j_molp_2023_12_020
crossref_primary_10_1371_journal_pone_0260665
crossref_primary_10_1007_s10886_014_0448_7
crossref_primary_10_1093_jxb_erv521
crossref_primary_10_1042_bse0580083
crossref_primary_10_1093_jxb_eraa565
crossref_primary_10_3390_jof9121155
crossref_primary_10_1007_s11103_021_01217_w
crossref_primary_10_1007_s13205_018_1090_9
crossref_primary_10_1007_s00709_016_0941_7
crossref_primary_10_1248_bpb_35_824
crossref_primary_10_3390_ijms221810073
crossref_primary_10_3390_membranes12060606
crossref_primary_10_1007_s12374_022_09363_4
crossref_primary_10_1016_S2095_3119_14_60980_1
crossref_primary_10_1186_s12864_023_09588_8
crossref_primary_10_3390_antiox12040887
crossref_primary_10_3390_ijms22063082
crossref_primary_10_1093_aob_mct067
crossref_primary_10_1111_pce_12121
crossref_primary_10_1093_plphys_kiad003
crossref_primary_10_1105_tpc_113_117382
crossref_primary_10_1007_s42976_023_00458_3
crossref_primary_10_1093_jee_tov067
crossref_primary_10_1186_s12864_020_07124_6
crossref_primary_10_3390_genes13050841
crossref_primary_10_1016_j_xplc_2020_100113
crossref_primary_10_1371_journal_pone_0181784
crossref_primary_10_1093_plphys_kiae045
crossref_primary_10_3390_cells12071027
crossref_primary_10_1126_sciadv_1600991
crossref_primary_10_1016_j_phytochem_2020_112334
crossref_primary_10_1080_09168451_2016_1246174
crossref_primary_10_1093_plphys_kiac420
crossref_primary_10_3389_fpls_2015_01077
crossref_primary_10_1371_journal_pone_0167627
crossref_primary_10_3390_plants13091277
crossref_primary_10_1073_pnas_1701101114
crossref_primary_10_3390_ijms19092539
crossref_primary_10_4161_psb_28973
crossref_primary_10_1128_mSystems_00580_20
crossref_primary_10_1007_s00425_023_04126_y
crossref_primary_10_3389_fpls_2020_567249
crossref_primary_10_3390_ijms19071850
crossref_primary_10_1007_s00709_012_0409_3
crossref_primary_10_1111_ppl_14332
crossref_primary_10_1093_jxb_erz272
crossref_primary_10_3389_fpls_2016_01897
crossref_primary_10_1093_jxb_erad086
crossref_primary_10_1016_j_plaphy_2016_12_004
crossref_primary_10_1093_bbb_zbae056
crossref_primary_10_1104_pp_113_218164
crossref_primary_10_3390_plants12142696
crossref_primary_10_1111_ppl_13371
crossref_primary_10_1016_j_plantsci_2015_06_024
crossref_primary_10_1146_annurev_arplant_042817_040047
crossref_primary_10_1016_j_phytochem_2024_114141
crossref_primary_10_1186_s12915_016_0308_8
crossref_primary_10_1007_s10886_014_0468_3
crossref_primary_10_1093_plphys_kiac078
crossref_primary_10_1186_s12864_016_2925_6
crossref_primary_10_1105_tpc_113_111112
crossref_primary_10_1016_j_molp_2015_03_011
crossref_primary_10_1007_s11306_014_0754_7
crossref_primary_10_1016_j_plantsci_2018_02_011
crossref_primary_10_1186_s12870_019_1943_3
crossref_primary_10_1093_plphys_kiae258
crossref_primary_10_1111_ppl_14357
crossref_primary_10_1093_jxb_erv011
crossref_primary_10_1186_s12864_017_4425_8
crossref_primary_10_1007_s00299_013_1400_y
crossref_primary_10_1016_j_ijbiomac_2021_06_125
crossref_primary_10_1371_journal_pone_0199673
crossref_primary_10_1104_pp_113_231555
crossref_primary_10_1021_acs_jafc_5b06056
crossref_primary_10_1186_s12284_019_0303_0
crossref_primary_10_1016_j_biochi_2012_06_005
crossref_primary_10_1093_jxb_erw470
crossref_primary_10_1007_s10142_014_0426_8
crossref_primary_10_3390_ijms21207482
crossref_primary_10_3390_jox13030026
crossref_primary_10_1093_plphys_kiac589
crossref_primary_10_1007_s00299_016_2045_4
crossref_primary_10_1093_jxb_erw478
crossref_primary_10_1038_nchembio_1591
crossref_primary_10_1111_tpj_16256
crossref_primary_10_3390_ijms25179189
crossref_primary_10_1104_pp_112_198598
crossref_primary_10_4161_15592316_2014_970414
crossref_primary_10_1111_tpj_15724
crossref_primary_10_1186_s12870_020_2288_7
crossref_primary_10_3389_fpls_2019_01639
crossref_primary_10_3390_antiox10071128
crossref_primary_10_1111_pce_13753
crossref_primary_10_1111_tpj_14878
crossref_primary_10_1042_EBC20190085
crossref_primary_10_1186_s12870_021_03224_x
crossref_primary_10_1016_j_plantsci_2023_111784
crossref_primary_10_1016_j_ymben_2013_08_001
crossref_primary_10_1038_s41598_021_81575_z
crossref_primary_10_1016_j_nbt_2015_11_001
crossref_primary_10_1007_s11103_016_0480_9
crossref_primary_10_1080_09168451_2018_1462693
crossref_primary_10_1371_journal_pone_0159875
crossref_primary_10_1038_s41598_021_97245_z
crossref_primary_10_1093_jxb_erw443
crossref_primary_10_3390_genes16010026
crossref_primary_10_3390_plants14060847
crossref_primary_10_3390_ijms24087636
crossref_primary_10_3390_ijms25115898
crossref_primary_10_1007_s10886_023_01454_x
crossref_primary_10_1016_j_jbc_2021_101504
crossref_primary_10_1111_j_1365_313X_2012_05117_x
crossref_primary_10_3390_ijms22189957
crossref_primary_10_1371_journal_pone_0081849
crossref_primary_10_3389_fpls_2022_1038866
crossref_primary_10_1016_j_phytochem_2013_12_019
crossref_primary_10_4161_psb_21551
crossref_primary_10_1371_journal_pone_0086182
crossref_primary_10_1371_journal_pone_0127831
crossref_primary_10_3390_ijms23073945
crossref_primary_10_1111_tpj_16200
crossref_primary_10_1016_j_xplc_2021_100231
crossref_primary_10_1111_tpj_15598
crossref_primary_10_3390_plants14071001
crossref_primary_10_1002_ejoc_201403347
crossref_primary_10_1016_j_molp_2020_09_024
crossref_primary_10_1093_hr_uhad047
crossref_primary_10_1111_pce_12298
crossref_primary_10_3390_plants5010015
crossref_primary_10_1186_s12864_015_1575_4
crossref_primary_10_1016_j_pld_2019_11_005
crossref_primary_10_1093_jxb_erac365
crossref_primary_10_1093_pcp_pcv106
crossref_primary_10_1093_plcell_koad118
crossref_primary_10_13080_z_a_2020_107_042
crossref_primary_10_3389_fgene_2019_00238
crossref_primary_10_1016_j_jplph_2012_09_004
crossref_primary_10_3390_plants5010004
crossref_primary_10_1007_s11101_017_9510_8
crossref_primary_10_1093_jxb_erv190
crossref_primary_10_1371_journal_pone_0056570
crossref_primary_10_1016_j_indcrop_2024_118039
crossref_primary_10_1007_s00299_024_03286_9
crossref_primary_10_1007_s11105_024_01505_x
crossref_primary_10_1016_j_bbalip_2019_158520
crossref_primary_10_3389_fpls_2022_952301
crossref_primary_10_3390_ijms21031124
crossref_primary_10_1074_jbc_M114_603084
crossref_primary_10_1104_pp_113_217588
crossref_primary_10_1007_s00299_014_1608_5
crossref_primary_10_3389_fgene_2020_00044
crossref_primary_10_1080_15592324_2015_1046667
crossref_primary_10_3389_fpls_2024_1487092
crossref_primary_10_1093_pcp_pcu171
crossref_primary_10_3389_fpls_2021_665842
crossref_primary_10_1016_j_phytochem_2015_06_027
crossref_primary_10_1146_annurev_arplant_042817_040440
crossref_primary_10_1093_pcp_pcv006
crossref_primary_10_1104_pp_113_222828
crossref_primary_10_1016_j_bbalip_2016_03_006
crossref_primary_10_3389_fpls_2021_637959
crossref_primary_10_1007_s12355_024_01509_7
crossref_primary_10_1038_s41467_024_50928_3
crossref_primary_10_3390_genes14081598
crossref_primary_10_1016_j_postharvbio_2024_112966
crossref_primary_10_3390_genes10100756
crossref_primary_10_1016_j_molp_2021_06_028
crossref_primary_10_1093_pcp_pcz172
crossref_primary_10_1074_jbc_RA119_007600
Cites_doi 10.1111/j.1742-4658.2010.07948.x
10.1093/pcp/pcr110
10.1146/annurev.arplant.043008.092007
10.1016/j.febslet.2007.01.049
10.1111/j.1365-313X.2010.04265.x
10.1105/tpc.109.065730
10.1111/j.1469-8137.2010.03622.x
10.1038/nature05960
10.1016/j.cub.2011.03.013
10.1105/tpc.107.050708
10.1016/S0021-9258(20)82244-3
10.1111/j.1365-313X.2005.02358.x
10.1146/annurev.arplant.54.031902.134840
10.1007/s004380050749
10.1046/j.1432-1327.2001.02207.x
10.1038/nature06006
10.1016/S0076-6879(96)72008-6
10.1016/j.chom.2008.05.009
10.1007/s00425-009-1080-6
10.1074/jbc.273.49.32528
10.1146/annurev.arplant.59.032607.092825
10.1105/tpc.111.089300
10.1074/jbc.M801760200
10.1038/nature08122
10.1146/annurev-arplant-042809-112305
10.1111/j.1469-8137.2007.02252.x
10.1371/journal.pone.0000718
10.1038/nchembio.161
10.1146/annurev-genet-102209-163500
10.1074/jbc.M002133200
10.1104/pp.103.037614
10.1016/j.pbi.2009.07.013
10.1111/j.1742-4658.2007.06032.x
10.4161/psb.5.4.11574
10.1073/pnas.0802332105
10.1038/nature09430
10.1093/pcp/pcn091
10.1111/j.1365-313X.2011.04529.x
10.1111/j.1364-3703.2005.00311.x
10.1186/1471-2229-8-47
10.1105/tpc.105.038455
10.1016/j.phytochem.2009.08.022
10.1104/pp.110.161497
10.1104/pp.107.115691
10.1073/pnas.1103542108
10.1021/cb900269u
ContentType Journal Article
Copyright 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
Attribution
2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012
Copyright_xml – notice: 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: Attribution
– notice: 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1074/jbc.M111.316364
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Dual Jasmonoyl-isoleucine Oxidation by CYP94 Enzymes
EISSN 1083-351X
EndPage 6306
ExternalDocumentID PMC3307330
oai_HAL_hal_00680337v1
22215670
10_1074_jbc_M111_316364
S0021925820611188
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
E.L
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c542t-8da47fab50ab2e4a53ee8c3a807e563917715852638d29392f033eeeccb305153
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 17:58:48 EDT 2025
Thu Jul 10 09:00:01 EDT 2025
Fri Jul 11 05:36:18 EDT 2025
Wed Feb 19 02:30:05 EST 2025
Tue Jul 01 00:40:44 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Fri Feb 23 02:47:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Plant Hormones
Signaling
Jasmonate Metabolism
Arabidopsis
Cytochrome P450
Metabolic Profiling
Wound Response
Plant Defense
Metabolism
CYP94
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-8da47fab50ab2e4a53ee8c3a807e563917715852638d29392f033eeeccb305153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Supported by a doctoral fellowship from the Ministère de l'Enseignement Supérieur et de la Recherche.
ORCID 0000-0001-8472-3262
0000-0002-1192-2970
OpenAccessLink https://hal.science/hal-00680337
PMID 22215670
PQID 923956102
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3307330
hal_primary_oai_HAL_hal_00680337v1
proquest_miscellaneous_923956102
pubmed_primary_22215670
crossref_citationtrail_10_1074_jbc_M111_316364
crossref_primary_10_1074_jbc_M111_316364
elsevier_sciencedirect_doi_10_1074_jbc_M111_316364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-24
PublicationDateYYYYMMDD 2012-02-24
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2012
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Winter, Vinegar, Nahal, Ammar, Wilson, Provart (bib33) 2007; 2
Ehlting, Sauveplane, Olry, Ginglinger, Provart, Werck-Reichhart (bib32) 2008; 8
Howe, Jander (bib9) 2008; 59
Chung, Cooke, Depew, Patel, Ogawa, Kobayashi, Howe (bib45) 2010; 63
Wasternack, Xie (bib44) 2010; 5
Yan, Stolz, Chételat, Reymond, Pagni, Dubugnon, Farmer (bib17) 2007; 19
Berr, McCallum, Alioua, Heintz, Heitz, Shen (bib28) 2010; 154
Brooks, Bender, Kunkel (bib39) 2005; 6
Turk, Fujioka, Seto, Shimada, Takatsuto, Yoshida, Wang, Torres, Ward, Murthy, Zhang, Walker, Neff (bib6) 2005; 42
Schuler, Werck-Reichhart (bib4) 2003; 54
Omura, Sato (bib30) 1964; 239
Suza, Rowe, Hamberg, Staswick (bib43) 2010; 231
Paschold, Bonaventure, Kant, Baldwin (bib23) 2008; 49
Ziegler, Stenzel, Hause, Maucher, Hamberg, Grimm, Ganal, Wasternack (bib42) 2000; 275
Spoel, Dong (bib10) 2008; 3
Wu, Baldwin (bib11) 2010; 44
Depuydt, Hardtke (bib1) 2011; 21
Koo, Cooke, Howe (bib27) 2011; 108
Fonseca, Chini, Hamberg, Adie, Porzel, Kramell, Miersch, Wasternack, Solano (bib34) 2009; 5
Thines, Katsir, Melotto, Niu, Mandaokar, Liu, Nomura, He, Howe, Browse (bib19) 2007; 448
Miersch, Neumerkel, Dippe, Stenzel, Wasternack (bib22) 2008; 177
Nelson, Werck-Reichhart (bib38) 2011; 66
León, Rojo, Titarenko, Sánchez-Serrano (bib36) 1998; 258
Glauser, Grata, Dubugnon, Rudaz, Farmer, Wolfender (bib21) 2008; 283
Kandel, Sauveplane, Compagnon, Franke, Millet, Schreiber, Werck-Reichhart, Pinot (bib31) 2007; 274
Pauwels, Goossens (bib46) 2011; 23
Zhu, Nomura, Xu, Zhang, Peng, Mao, Hanada, Zhou, Wang, Li, Zhu, Mander, Kamiya, Yamaguchi, He (bib7) 2006; 18
Chini, Fonseca, Fernández, Adie, Chico, Lorenzo, García-Casado, López-Vidriero, Lozano, Ponce, Micol, Solano (bib18) 2007; 448
Pompon, Louerat, Bronine, Urban (bib29) 1996; 272
Sheard, Tan, Mao, Withers, Ben-Nissan, Hinds, Kobayashi, Hsu, Sharon, Browse, He, Rizo, Howe, Zheng (bib15) 2010; 468
Chung, Niu, Browse, Howe (bib12) 2009; 70
Kitaoka, Matsubara, Sato, Takahashi, Wakuta, Kawaide, Matsui, Nabeta, Matsuura (bib26) 2011; 52
Santner, Estelle (bib2) 2009; 459
Pinot, Beisson (bib25) 2011; 278
VanDoorn, Bonaventure, Schmidt, Baldwin (bib37) 2011; 190
Scheller, Zimmer, Becher, Schauer, Schunck (bib41) 1998; 273
Wasternack, Kombrink (bib14) 2010; 5
Chung, Koo, Gao, Jayanty, Thines, Jones, Howe (bib20) 2008; 146
Saito, Hirai, Matsumoto, Ohigashi, Ohta, Sakata, Mizutani (bib5) 2004; 134
Mizutani, Ohta (bib3) 2010; 61
Yan, Zhang, Gu, Bai, Zhang, Qi, Cheng, Peng, Luo, Nan, Wang, Xie (bib16) 2009; 21
Guranowski, Miersch, Staswick, Suza, Wasternack (bib24) 2007; 581
Fonseca, Chico, Solano (bib13) 2009; 12
Le Bouquin, Skrabs, Kahn, Benveniste, Salaün, Schreiber, Durst, Pinot (bib40) 2001; 268
Browse (bib8) 2009; 60
Katsir, Schilmiller, Staswick, He, Howe (bib35) 2008; 105
Pauwels (10.1074/jbc.M111.316364_bib46) 2011; 23
Omura (10.1074/jbc.M111.316364_bib30) 1964; 239
Berr (10.1074/jbc.M111.316364_bib28) 2010; 154
Ehlting (10.1074/jbc.M111.316364_bib32) 2008; 8
Wu (10.1074/jbc.M111.316364_bib11) 2010; 44
Kandel (10.1074/jbc.M111.316364_bib31) 2007; 274
Nelson (10.1074/jbc.M111.316364_bib38) 2011; 66
Kitaoka (10.1074/jbc.M111.316364_bib26) 2011; 52
Scheller (10.1074/jbc.M111.316364_bib41) 1998; 273
Yan (10.1074/jbc.M111.316364_bib17) 2007; 19
Glauser (10.1074/jbc.M111.316364_bib21) 2008; 283
Chung (10.1074/jbc.M111.316364_bib45) 2010; 63
Sheard (10.1074/jbc.M111.316364_bib15) 2010; 468
Le Bouquin (10.1074/jbc.M111.316364_bib40) 2001; 268
Chung (10.1074/jbc.M111.316364_bib12) 2009; 70
Chini (10.1074/jbc.M111.316364_bib18) 2007; 448
Turk (10.1074/jbc.M111.316364_bib6) 2005; 42
León (10.1074/jbc.M111.316364_bib36) 1998; 258
Howe (10.1074/jbc.M111.316364_bib9) 2008; 59
Zhu (10.1074/jbc.M111.316364_bib7) 2006; 18
Thines (10.1074/jbc.M111.316364_bib19) 2007; 448
Fonseca (10.1074/jbc.M111.316364_bib13) 2009; 12
Santner (10.1074/jbc.M111.316364_bib2) 2009; 459
Koo (10.1074/jbc.M111.316364_bib27) 2011; 108
Ziegler (10.1074/jbc.M111.316364_bib42) 2000; 275
VanDoorn (10.1074/jbc.M111.316364_bib37) 2011; 190
Saito (10.1074/jbc.M111.316364_bib5) 2004; 134
Wasternack (10.1074/jbc.M111.316364_bib14) 2010; 5
Suza (10.1074/jbc.M111.316364_bib43) 2010; 231
Mizutani (10.1074/jbc.M111.316364_bib3) 2010; 61
Brooks (10.1074/jbc.M111.316364_bib39) 2005; 6
Browse (10.1074/jbc.M111.316364_bib8) 2009; 60
Pinot (10.1074/jbc.M111.316364_bib25) 2011; 278
Katsir (10.1074/jbc.M111.316364_bib35) 2008; 105
Depuydt (10.1074/jbc.M111.316364_bib1) 2011; 21
Spoel (10.1074/jbc.M111.316364_bib10) 2008; 3
Paschold (10.1074/jbc.M111.316364_bib23) 2008; 49
Schuler (10.1074/jbc.M111.316364_bib4) 2003; 54
Yan (10.1074/jbc.M111.316364_bib16) 2009; 21
Pompon (10.1074/jbc.M111.316364_bib29) 1996; 272
Chung (10.1074/jbc.M111.316364_bib20) 2008; 146
Wasternack (10.1074/jbc.M111.316364_bib44) 2010; 5
Fonseca (10.1074/jbc.M111.316364_bib34) 2009; 5
Miersch (10.1074/jbc.M111.316364_bib22) 2008; 177
Winter (10.1074/jbc.M111.316364_bib33) 2007; 2
Guranowski (10.1074/jbc.M111.316364_bib24) 2007; 581
References_xml – volume: 3
  start-page: 348
  year: 2008
  end-page: 351
  ident: bib10
  article-title: Making sense of hormone crosstalk during plant immune responses
  publication-title: Cell Host Microbe
– volume: 275
  start-page: 19132
  year: 2000
  end-page: 19138
  ident: bib42
  article-title: Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates
  publication-title: J. Biol. Chem.
– volume: 60
  start-page: 183
  year: 2009
  end-page: 205
  ident: bib8
  article-title: Jasmonate passes muster. A receptor and targets for the defense hormone
  publication-title: Annu. Rev. Plant Biol.
– volume: 190
  start-page: 640
  year: 2011
  end-page: 652
  ident: bib37
  article-title: Regulation of jasmonate metabolism and activation of systemic signaling in Solanum nigrum. COI1 and JAR4 play overlapping yet distinct roles
  publication-title: New Phytol.
– volume: 581
  start-page: 815
  year: 2007
  end-page: 820
  ident: bib24
  article-title: Substrate specificity and products of side reactions catalyzed by jasmonate-amino acid synthetase (JAR1)
  publication-title: FEBS Lett.
– volume: 108
  start-page: 9298
  year: 2011
  end-page: 9303
  ident: bib27
  article-title: Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 459
  start-page: 1071
  year: 2009
  end-page: 1078
  ident: bib2
  article-title: Recent advances and emerging trends in plant hormone signaling
  publication-title: Nature
– volume: 258
  start-page: 412
  year: 1998
  end-page: 419
  ident: bib36
  article-title: Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca
  publication-title: Mol. Gen. Genet.
– volume: 70
  start-page: 1547
  year: 2009
  end-page: 1559
  ident: bib12
  article-title: Top hits in contemporary JAZ. An update on jasmonate signaling
  publication-title: Phytochemistry
– volume: 49
  start-page: 1165
  year: 2008
  end-page: 1175
  ident: bib23
  article-title: Jasmonate perception regulates jasmonate biosynthesis and JA-Ile metabolism. The case of COI1 in
  publication-title: Plant Cell Physiol.
– volume: 231
  start-page: 717
  year: 2010
  end-page: 728
  ident: bib43
  article-title: A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-
  publication-title: Planta
– volume: 448
  start-page: 666
  year: 2007
  end-page: 671
  ident: bib18
  article-title: The JAZ family of repressors is the missing link in jasmonate signaling
  publication-title: Nature
– volume: 5
  start-page: 344
  year: 2009
  end-page: 350
  ident: bib34
  article-title: (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate
  publication-title: Nat. Chem. Biol.
– volume: 19
  start-page: 2470
  year: 2007
  end-page: 2483
  ident: bib17
  article-title: A downstream mediator in the growth repression limb of the jasmonate pathway
  publication-title: Plant Cell
– volume: 21
  start-page: 2220
  year: 2009
  end-page: 2236
  ident: bib16
  article-title: The
  publication-title: Plant Cell
– volume: 274
  start-page: 5116
  year: 2007
  end-page: 5127
  ident: bib31
  article-title: Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of
  publication-title: FEBS J.
– volume: 105
  start-page: 7100
  year: 2008
  end-page: 7105
  ident: bib35
  article-title: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 5
  start-page: 337
  year: 2010
  end-page: 340
  ident: bib44
  article-title: The genuine ligand of a jasmonic acid receptor. Improved analysis of jasmonates is now required
  publication-title: Plant Signal. Behav.
– volume: 12
  start-page: 539
  year: 2009
  end-page: 547
  ident: bib13
  article-title: The jasmonate pathway. The ligand, the receptor, and the core signaling module
  publication-title: Curr. Opin. Plant Biol.
– volume: 2
  start-page: e718
  year: 2007
  ident: bib33
  article-title: An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large scale biological data sets
  publication-title: PLoS One
– volume: 59
  start-page: 41
  year: 2008
  end-page: 66
  ident: bib9
  article-title: Plant immunity to insect herbivores
  publication-title: Annu. Rev. Plant Biol.
– volume: 448
  start-page: 661
  year: 2007
  end-page: 665
  ident: bib19
  article-title: JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling
  publication-title: Nature
– volume: 23
  start-page: 3089
  year: 2011
  end-page: 3100
  ident: bib46
  article-title: The JAZ proteins. A crucial interface in the Jasmonate signaling cascade
  publication-title: Plant Cell
– volume: 18
  start-page: 442
  year: 2006
  end-page: 456
  ident: bib7
  article-title: Elongated Uppermost Internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice
  publication-title: Plant Cell
– volume: 42
  start-page: 23
  year: 2005
  end-page: 34
  ident: bib6
  article-title: BAS1 and SOB7 act redundantly to modulate
  publication-title: Plant J.
– volume: 268
  start-page: 3083
  year: 2001
  end-page: 3090
  ident: bib40
  article-title: CYP94A5, a new cytochrome P450 from
  publication-title: Eur. J. Biochem.
– volume: 54
  start-page: 629
  year: 2003
  end-page: 667
  ident: bib4
  article-title: Functional genomics of P450s
  publication-title: Annu. Rev. Plant Biol.
– volume: 468
  start-page: 400
  year: 2010
  end-page: 405
  ident: bib15
  article-title: Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor
  publication-title: Nature
– volume: 146
  start-page: 952
  year: 2008
  end-page: 964
  ident: bib20
  article-title: Regulation and function of
  publication-title: Plant Physiol.
– volume: 21
  start-page: R365
  year: 2011
  end-page: R3673
  ident: bib1
  article-title: Hormone signaling cross-talk in plant growth regulation
  publication-title: Curr. Biol.
– volume: 52
  start-page: 1757
  year: 2011
  end-page: 1765
  ident: bib26
  article-title: CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate
  publication-title: Plant Cell Physiol.
– volume: 6
  start-page: 629
  year: 2005
  end-page: 639
  ident: bib39
  article-title: The
  publication-title: Mol. Plant Pathol.
– volume: 8
  start-page: 47
  year: 2008
  ident: bib32
  article-title: An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in
  publication-title: BMC Plant Biol.
– volume: 134
  start-page: 1439
  year: 2004
  end-page: 1449
  ident: bib5
  article-title: CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid
  publication-title: Plant Physiol.
– volume: 283
  start-page: 16400
  year: 2008
  end-page: 16407
  ident: bib21
  article-title: Spatial and temporal dynamics of jasmonate synthesis and accumulation in
  publication-title: J. Biol. Chem.
– volume: 66
  start-page: 194
  year: 2011
  end-page: 211
  ident: bib38
  article-title: A P450-centric view of plant evolution
  publication-title: Plant J.
– volume: 239
  start-page: 2370
  year: 1964
  end-page: 2378
  ident: bib30
  article-title: The Carbon Monoxide Binding Pigment of Liver Microsomes. I. Evidence for Its Hemoprotein Nature
  publication-title: J. Biol. Chem.
– volume: 177
  start-page: 114
  year: 2008
  end-page: 127
  ident: bib22
  article-title: Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling
  publication-title: New Phytol.
– volume: 154
  start-page: 1403
  year: 2010
  end-page: 1414
  ident: bib28
  article-title: histone methyltransferase set domain group 8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi
  publication-title: Plant Physiol.
– volume: 44
  start-page: 1
  year: 2010
  end-page: 24
  ident: bib11
  article-title: New insights into plant responses to the attack from insect herbivores
  publication-title: Annu. Rev. Genet.
– volume: 5
  start-page: 63
  year: 2010
  end-page: 77
  ident: bib14
  article-title: Jasmonates. Structural requirements for lipid-derived signals active in plant stress responses and development
  publication-title: ACS Chem. Biol.
– volume: 273
  start-page: 32528
  year: 1998
  end-page: 32534
  ident: bib41
  article-title: Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3
  publication-title: J. Biol. Chem.
– volume: 61
  start-page: 291
  year: 2010
  end-page: 315
  ident: bib3
  article-title: Diversification of P450 genes during land plant evolution
  publication-title: Annu. Rev. Plant Biol.
– volume: 278
  start-page: 195
  year: 2011
  end-page: 205
  ident: bib25
  article-title: Cytochrome P450 metabolizing fatty acids in plants. Characterization and physiological roles
  publication-title: FEBS J.
– volume: 63
  start-page: 613
  year: 2010
  end-page: 622
  ident: bib45
  article-title: Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling
  publication-title: Plant J.
– volume: 272
  start-page: 51
  year: 1996
  end-page: 64
  ident: bib29
  article-title: Yeast expression of animal and plant P450s in optimized redox environments
  publication-title: Methods Enzymol.
– volume: 278
  start-page: 195
  year: 2011
  ident: 10.1074/jbc.M111.316364_bib25
  article-title: Cytochrome P450 metabolizing fatty acids in plants. Characterization and physiological roles
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07948.x
– volume: 52
  start-page: 1757
  year: 2011
  ident: 10.1074/jbc.M111.316364_bib26
  article-title: Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcr110
– volume: 60
  start-page: 183
  year: 2009
  ident: 10.1074/jbc.M111.316364_bib8
  article-title: Jasmonate passes muster. A receptor and targets for the defense hormone
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.043008.092007
– volume: 581
  start-page: 815
  year: 2007
  ident: 10.1074/jbc.M111.316364_bib24
  article-title: Substrate specificity and products of side reactions catalyzed by jasmonate-amino acid synthetase (JAR1)
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.01.049
– volume: 63
  start-page: 613
  year: 2010
  ident: 10.1074/jbc.M111.316364_bib45
  article-title: Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04265.x
– volume: 21
  start-page: 2220
  year: 2009
  ident: 10.1074/jbc.M111.316364_bib16
  article-title: The Arabidopsis coronatine-insensitive 1 protein is a jasmonate receptor
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.065730
– volume: 190
  start-page: 640
  year: 2011
  ident: 10.1074/jbc.M111.316364_bib37
  article-title: Regulation of jasmonate metabolism and activation of systemic signaling in Solanum nigrum. COI1 and JAR4 play overlapping yet distinct roles
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03622.x
– volume: 448
  start-page: 661
  year: 2007
  ident: 10.1074/jbc.M111.316364_bib19
  article-title: JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling
  publication-title: Nature
  doi: 10.1038/nature05960
– volume: 21
  start-page: R365
  year: 2011
  ident: 10.1074/jbc.M111.316364_bib1
  article-title: Hormone signaling cross-talk in plant growth regulation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.03.013
– volume: 19
  start-page: 2470
  year: 2007
  ident: 10.1074/jbc.M111.316364_bib17
  article-title: A downstream mediator in the growth repression limb of the jasmonate pathway
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.050708
– volume: 239
  start-page: 2370
  year: 1964
  ident: 10.1074/jbc.M111.316364_bib30
  article-title: The Carbon Monoxide Binding Pigment of Liver Microsomes. I. Evidence for Its Hemoprotein Nature
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)82244-3
– volume: 42
  start-page: 23
  year: 2005
  ident: 10.1074/jbc.M111.316364_bib6
  article-title: BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02358.x
– volume: 54
  start-page: 629
  year: 2003
  ident: 10.1074/jbc.M111.316364_bib4
  article-title: Functional genomics of P450s
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.54.031902.134840
– volume: 258
  start-page: 412
  year: 1998
  ident: 10.1074/jbc.M111.316364_bib36
  article-title: Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/s004380050749
– volume: 268
  start-page: 3083
  year: 2001
  ident: 10.1074/jbc.M111.316364_bib40
  article-title: CYP94A5, a new cytochrome P450 from Nicotiana tabacum, is able to catalyze the oxidation of fatty acids to the ω-alcohol and to the corresponding diacid
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.2001.02207.x
– volume: 448
  start-page: 666
  year: 2007
  ident: 10.1074/jbc.M111.316364_bib18
  article-title: The JAZ family of repressors is the missing link in jasmonate signaling
  publication-title: Nature
  doi: 10.1038/nature06006
– volume: 272
  start-page: 51
  year: 1996
  ident: 10.1074/jbc.M111.316364_bib29
  article-title: Yeast expression of animal and plant P450s in optimized redox environments
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(96)72008-6
– volume: 3
  start-page: 348
  year: 2008
  ident: 10.1074/jbc.M111.316364_bib10
  article-title: Making sense of hormone crosstalk during plant immune responses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.05.009
– volume: 231
  start-page: 717
  year: 2010
  ident: 10.1074/jbc.M111.316364_bib43
  article-title: A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-l-isoleucine in wounded leaves
  publication-title: Planta
  doi: 10.1007/s00425-009-1080-6
– volume: 273
  start-page: 32528
  year: 1998
  ident: 10.1074/jbc.M111.316364_bib41
  article-title: Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.49.32528
– volume: 59
  start-page: 41
  year: 2008
  ident: 10.1074/jbc.M111.316364_bib9
  article-title: Plant immunity to insect herbivores
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092825
– volume: 23
  start-page: 3089
  year: 2011
  ident: 10.1074/jbc.M111.316364_bib46
  article-title: The JAZ proteins. A crucial interface in the Jasmonate signaling cascade
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.089300
– volume: 283
  start-page: 16400
  year: 2008
  ident: 10.1074/jbc.M111.316364_bib21
  article-title: Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801760200
– volume: 459
  start-page: 1071
  year: 2009
  ident: 10.1074/jbc.M111.316364_bib2
  article-title: Recent advances and emerging trends in plant hormone signaling
  publication-title: Nature
  doi: 10.1038/nature08122
– volume: 61
  start-page: 291
  year: 2010
  ident: 10.1074/jbc.M111.316364_bib3
  article-title: Diversification of P450 genes during land plant evolution
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112305
– volume: 177
  start-page: 114
  year: 2008
  ident: 10.1074/jbc.M111.316364_bib22
  article-title: Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02252.x
– volume: 2
  start-page: e718
  year: 2007
  ident: 10.1074/jbc.M111.316364_bib33
  article-title: An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large scale biological data sets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000718
– volume: 5
  start-page: 344
  year: 2009
  ident: 10.1074/jbc.M111.316364_bib34
  article-title: (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.161
– volume: 44
  start-page: 1
  year: 2010
  ident: 10.1074/jbc.M111.316364_bib11
  article-title: New insights into plant responses to the attack from insect herbivores
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-102209-163500
– volume: 275
  start-page: 19132
  year: 2000
  ident: 10.1074/jbc.M111.316364_bib42
  article-title: Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002133200
– volume: 134
  start-page: 1439
  year: 2004
  ident: 10.1074/jbc.M111.316364_bib5
  article-title: Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.037614
– volume: 12
  start-page: 539
  year: 2009
  ident: 10.1074/jbc.M111.316364_bib13
  article-title: The jasmonate pathway. The ligand, the receptor, and the core signaling module
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2009.07.013
– volume: 274
  start-page: 5116
  year: 2007
  ident: 10.1074/jbc.M111.316364_bib31
  article-title: Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of Arabidopsis thaliana catalyzing dicarboxylic fatty acid formation in vitro
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2007.06032.x
– volume: 5
  start-page: 337
  year: 2010
  ident: 10.1074/jbc.M111.316364_bib44
  article-title: The genuine ligand of a jasmonic acid receptor. Improved analysis of jasmonates is now required
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.4.11574
– volume: 105
  start-page: 7100
  year: 2008
  ident: 10.1074/jbc.M111.316364_bib35
  article-title: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0802332105
– volume: 468
  start-page: 400
  year: 2010
  ident: 10.1074/jbc.M111.316364_bib15
  article-title: Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor
  publication-title: Nature
  doi: 10.1038/nature09430
– volume: 49
  start-page: 1165
  year: 2008
  ident: 10.1074/jbc.M111.316364_bib23
  article-title: Jasmonate perception regulates jasmonate biosynthesis and JA-Ile metabolism. The case of COI1 in Nicotiana attenuata
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcn091
– volume: 66
  start-page: 194
  year: 2011
  ident: 10.1074/jbc.M111.316364_bib38
  article-title: A P450-centric view of plant evolution
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04529.x
– volume: 6
  start-page: 629
  year: 2005
  ident: 10.1074/jbc.M111.316364_bib39
  article-title: The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2005.00311.x
– volume: 8
  start-page: 47
  year: 2008
  ident: 10.1074/jbc.M111.316364_bib32
  article-title: An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-8-47
– volume: 18
  start-page: 442
  year: 2006
  ident: 10.1074/jbc.M111.316364_bib7
  article-title: Elongated Uppermost Internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.038455
– volume: 70
  start-page: 1547
  year: 2009
  ident: 10.1074/jbc.M111.316364_bib12
  article-title: Top hits in contemporary JAZ. An update on jasmonate signaling
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2009.08.022
– volume: 154
  start-page: 1403
  year: 2010
  ident: 10.1074/jbc.M111.316364_bib28
  article-title: Arabidopsis histone methyltransferase set domain group 8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.161497
– volume: 146
  start-page: 952
  year: 2008
  ident: 10.1074/jbc.M111.316364_bib20
  article-title: Regulation and function of Arabidopsis jasmonate ZIM-domain genes in response to wounding and herbivory
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.115691
– volume: 108
  start-page: 9298
  year: 2011
  ident: 10.1074/jbc.M111.316364_bib27
  article-title: Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1103542108
– volume: 5
  start-page: 63
  year: 2010
  ident: 10.1074/jbc.M111.316364_bib14
  article-title: Jasmonates. Structural requirements for lipid-derived signals active in plant stress responses and development
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb900269u
SSID ssj0000491
Score 2.4926577
Snippet The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a...
Background: Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves. Results: Cytochromes P450 CYP94C1 and...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6296
SubjectTerms Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biochemistry
Biochemistry, Molecular Biology
Botanics
Cyclopentanes - metabolism
CYP94
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450
Genotype
Isoleucine - analogs & derivatives
Isoleucine - metabolism
Jasmonate Metabolism
Life Sciences
Metabolic Profiling
Metabolism
Metabolism - physiology
Nucleotidyltransferases - metabolism
Oxidation-Reduction
Plant Biology
Plant Defense
Plant Growth Regulators - metabolism
Plant Hormones
Plant Leaves - enzymology
Signal Transduction - physiology
Signaling
Vegetal Biology
Wound Response
Title Cytochromes P450 CYP94C1 and CYP94B3 Catalyze Two Successive Oxidation Steps of Plant Hormone Jasmonoyl-isoleucine for Catabolic Turnover
URI https://dx.doi.org/10.1074/jbc.M111.316364
https://www.ncbi.nlm.nih.gov/pubmed/22215670
https://www.proquest.com/docview/923956102
https://hal.science/hal-00680337
https://pubmed.ncbi.nlm.nih.gov/PMC3307330
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QAvCDYu5SYLIYRUpSR2EjePXTVUjQ2G1InxFDmJQyN1zbSmQPcP-E38Oc6xc-u2SoOXNHKT06Tni_2dnBshb-w0EUJI21Ixw5QcoawoiBNLcidx5EAoO0GP7tEnf3ziHpx6p53On1bU0rKI-vHljXkl_6NVGAO9YpbsP2i2FgoDsA_6hS1oGLa30vFoVeTxFAsOLHrHrmf3Rt-OA3fkaI-A3t_jmOMnZ6tL1Zv8zGGe0A0SMVzo86_M9FPSkV4mGG4G_3NvDDQ2B-55IBfwma9mVga3oZbogtdRiSgxwnrCvQlcJMaAtiluk2ymaa6p8mTqkFTN5ZoXsJluJ4vdQ9VFM_4Vu9aW3Zv3z7JZVqPvcPm9dFzJ86nUXv69JrIRrH7T2QqzvVUF5_KdBgaHMMukUtc5Bo4VMFPUvZqnWbkyG0AGrVnXZ4HfWsF9rosYXF8dgC7h6hDF_SOY4vscuKgpob5eh_vK-lhHLWp_vXBDEBCigNAI2CJ3GNgo2D7j45emVD2YXqZdY3krVV0p4b6_cgWbKNHWFGNzrxs-V-N3W4Ro8oDcL1VMhwaWD0lHzXfI7nAui_xsRd9SHVusnTY75O6oUv0u-d1CLUXU0hK1FFBLS9TSCrUUUEsb1NIatVSjluYp1ailJWrpTailgFpao5ZWqH1ETj7sT0Zjq2wIYsWeywprkEhXpDLybBkx5UqPKzWIuRzYQnlAtR0hHDB_GawpCdDYgKU2h0Ngloo49jLij8n2HC7lKaHKZoHrprYXeYkLPDXiqZ8kHmiDSz-K3C7pVzoJ47JaPjZtmYUbUNAl7-oTzk2hmM2HskrJYclzDX8NAaibT3oNcKhFY1X48fAwxDHdP4dz8cPpElqhJQStou9PzlW-XIRgx2EKu8265IkBTy0KLATH84XdJWINVmu_tf7NPJvqSvQcGQK3n93-3p-Te80D_4JsFxdL9RJofRG90o_PX7ID9zM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytochromes+P450+CYP94C1+and+CYP94B3+Catalyze+Two+Successive+Oxidation+Steps+of+Plant+Hormone+Jasmonoyl-isoleucine+for+Catabolic+Turnover&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Heitz%2C+Thierry&rft.au=Widemann%2C+Emilie&rft.au=Lugan%2C+Rapha%C3%ABl&rft.au=Miesch%2C+Laurence&rft.date=2012-02-24&rft.issn=0021-9258&rft.volume=287&rft.issue=9&rft.spage=6296&rft.epage=6306&rft_id=info:doi/10.1074%2Fjbc.M111.316364&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M111_316364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon