Cytochromes P450 CYP94C1 and CYP94B3 Catalyze Two Successive Oxidation Steps of Plant Hormone Jasmonoyl-isoleucine for Catabolic Turnover
The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-...
Saved in:
Published in | The Journal of biological chemistry Vol. 287; no. 9; pp. 6296 - 6306 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.02.2012
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.
Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves.
Cytochromes P450 CYP94C1 and CYP94B3 cooperate to catalyze the formation of 12OH-JA-Ile and 12COOH-JA-Ile.
CYP94C1 and CYP94B3 define a major route for JA-Ile catabolism.
Elucidation of CYP94-mediated JA-Ile oxidation opens new avenues for understanding jasmonate metabolism and signaling. |
---|---|
AbstractList | The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone. The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone. Background: Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves. Results: Cytochromes P450 CYP94C1 and CYP94B3 cooperate to catalyze the formation of 12OH-JA-Ile and 12COOH-JA-Ile. Conclusion: CYP94C1 and CYP94B3 define a major route for JA-Ile catabolism. Significance: Elucidation of CYP94-mediated JA-Ile oxidation opens new avenues for understanding jasmonate metabolism and signaling. The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone. The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone. Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves. Cytochromes P450 CYP94C1 and CYP94B3 cooperate to catalyze the formation of 12OH-JA-Ile and 12COOH-JA-Ile. CYP94C1 and CYP94B3 define a major route for JA-Ile catabolism. Elucidation of CYP94-mediated JA-Ile oxidation opens new avenues for understanding jasmonate metabolism and signaling. |
Author | Heitz, Thierry Holder, Emilie Widemann, Emilie Ullmann, Pascaline Désaubry, Laurent Miesch, Laurence Miesch, Michel Werck-Reichhart, Danièle Grausem, Bernard Lugan, Raphaël Kandel, Sylvie Pinot, Franck |
Author_xml | – sequence: 1 givenname: Thierry surname: Heitz fullname: Heitz, Thierry email: thierry.heitz@ibmp-cnrs.unistra.fr organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France – sequence: 2 givenname: Emilie surname: Widemann fullname: Widemann, Emilie organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France – sequence: 3 givenname: Raphaël surname: Lugan fullname: Lugan, Raphaël organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France – sequence: 4 givenname: Laurence surname: Miesch fullname: Miesch, Laurence organization: Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177, Université de Strasbourg, CNRS, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France – sequence: 5 givenname: Pascaline surname: Ullmann fullname: Ullmann, Pascaline organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France – sequence: 6 givenname: Laurent surname: Désaubry fullname: Désaubry, Laurent organization: Laboratoire d'Innovation Thérapeutique, Unité Mixte de Recherche 7200, Université de Strasbourg, CNRS, 74 route du Rhin, 67401 Illkirch Cedex, France – sequence: 7 givenname: Emilie surname: Holder fullname: Holder, Emilie organization: Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177, Université de Strasbourg, CNRS, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France – sequence: 8 givenname: Bernard surname: Grausem fullname: Grausem, Bernard organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France – sequence: 9 givenname: Sylvie surname: Kandel fullname: Kandel, Sylvie organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France – sequence: 10 givenname: Michel surname: Miesch fullname: Miesch, Michel organization: Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177, Université de Strasbourg, CNRS, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France – sequence: 11 givenname: Danièle surname: Werck-Reichhart fullname: Werck-Reichhart, Danièle organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France – sequence: 12 givenname: Franck surname: Pinot fullname: Pinot, Franck organization: Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22215670$$D View this record in MEDLINE/PubMed https://hal.science/hal-00680337$$DView record in HAL |
BookMark | eNp1Uk1v1DAQtVAR3RbO3JBviEO2_ojzcUEqEXRBi7pSFwlOluNMWFfZeLGd0OUf8K_xNi2CSrVkjTV-781o5p2go972gNBLSuaU5OnZda3nnymlc04znqVP0IySgidc0K9HaEYIo0nJRHGMTry_JvGkJX2GjhljVGQ5maHf1T5YvXF2Cx6vUkFw9W1VphXFqm-m9zuOKxVUt_8FeP3T4qtBa_DejIAvb0yjgrE9vgqw89i2eNWpPuCFddvYKf6kfIx23yXG2w4GbWKyte5Wsbad0Xg9uN6O4J6jp63qPLy4i6foy4f362qRLC8vPlbny0SLlIWkaFSat6oWRNUMUiU4QKG5KkgOIuMlzXMqCsEyXjSs5CVrCY8Q0LrmRFDBT9HbSXc31FtoNPTBqU7unNkqt5dWGfn_T2828rsdJeckjzcKvJkENg9oi_OlPOQIyYpYNB9pxL6-K-bsjwF8kFvjNXRxSGAHL0vGS5FRwiLy1b9t_RW-X1UEiAmgnfXeQSu1CbfDj12aTlIiD5aQ0RLyYAk5WSLyzh7w7qUfZ5QTA-IaRgNOem2g19AYBzrIxppHuX8AQ5zLhw |
CitedBy_id | crossref_primary_10_1038_s42003_019_0354_1 crossref_primary_10_1007_s00425_012_1705_z crossref_primary_10_1074_jbc_M113_499228 crossref_primary_10_3389_fpls_2022_822942 crossref_primary_10_1007_s00425_021_03720_2 crossref_primary_10_1093_bbb_zbad180 crossref_primary_10_3390_plants12163014 crossref_primary_10_1007_s10142_018_0615_y crossref_primary_10_1111_jipb_12321 crossref_primary_10_1093_plphys_kiab412 crossref_primary_10_1016_j_molp_2024_02_004 crossref_primary_10_3389_fpls_2019_00390 crossref_primary_10_1093_pcp_pcz109 crossref_primary_10_1186_s12864_023_09619_4 crossref_primary_10_1007_s00344_015_9526_5 crossref_primary_10_1007_s12042_013_9119_z crossref_primary_10_3390_antiox9050454 crossref_primary_10_1186_s12870_025_06248_9 crossref_primary_10_1111_jipb_12902 crossref_primary_10_3389_fpls_2018_01160 crossref_primary_10_1016_j_freeradbiomed_2023_01_007 crossref_primary_10_3390_plants10112257 crossref_primary_10_1016_j_molp_2017_07_010 crossref_primary_10_1098_rstb_2023_0363 crossref_primary_10_3389_fpls_2023_1221526 crossref_primary_10_1093_plphys_kiad017 crossref_primary_10_1515_biolog_2017_0003 crossref_primary_10_1016_j_molp_2023_12_020 crossref_primary_10_1371_journal_pone_0260665 crossref_primary_10_1007_s10886_014_0448_7 crossref_primary_10_1093_jxb_erv521 crossref_primary_10_1042_bse0580083 crossref_primary_10_1093_jxb_eraa565 crossref_primary_10_3390_jof9121155 crossref_primary_10_1007_s11103_021_01217_w crossref_primary_10_1007_s13205_018_1090_9 crossref_primary_10_1007_s00709_016_0941_7 crossref_primary_10_1248_bpb_35_824 crossref_primary_10_3390_ijms221810073 crossref_primary_10_3390_membranes12060606 crossref_primary_10_1007_s12374_022_09363_4 crossref_primary_10_1016_S2095_3119_14_60980_1 crossref_primary_10_1186_s12864_023_09588_8 crossref_primary_10_3390_antiox12040887 crossref_primary_10_3390_ijms22063082 crossref_primary_10_1093_aob_mct067 crossref_primary_10_1111_pce_12121 crossref_primary_10_1093_plphys_kiad003 crossref_primary_10_1105_tpc_113_117382 crossref_primary_10_1007_s42976_023_00458_3 crossref_primary_10_1093_jee_tov067 crossref_primary_10_1186_s12864_020_07124_6 crossref_primary_10_3390_genes13050841 crossref_primary_10_1016_j_xplc_2020_100113 crossref_primary_10_1371_journal_pone_0181784 crossref_primary_10_1093_plphys_kiae045 crossref_primary_10_3390_cells12071027 crossref_primary_10_1126_sciadv_1600991 crossref_primary_10_1016_j_phytochem_2020_112334 crossref_primary_10_1080_09168451_2016_1246174 crossref_primary_10_1093_plphys_kiac420 crossref_primary_10_3389_fpls_2015_01077 crossref_primary_10_1371_journal_pone_0167627 crossref_primary_10_3390_plants13091277 crossref_primary_10_1073_pnas_1701101114 crossref_primary_10_3390_ijms19092539 crossref_primary_10_4161_psb_28973 crossref_primary_10_1128_mSystems_00580_20 crossref_primary_10_1007_s00425_023_04126_y crossref_primary_10_3389_fpls_2020_567249 crossref_primary_10_3390_ijms19071850 crossref_primary_10_1007_s00709_012_0409_3 crossref_primary_10_1111_ppl_14332 crossref_primary_10_1093_jxb_erz272 crossref_primary_10_3389_fpls_2016_01897 crossref_primary_10_1093_jxb_erad086 crossref_primary_10_1016_j_plaphy_2016_12_004 crossref_primary_10_1093_bbb_zbae056 crossref_primary_10_1104_pp_113_218164 crossref_primary_10_3390_plants12142696 crossref_primary_10_1111_ppl_13371 crossref_primary_10_1016_j_plantsci_2015_06_024 crossref_primary_10_1146_annurev_arplant_042817_040047 crossref_primary_10_1016_j_phytochem_2024_114141 crossref_primary_10_1186_s12915_016_0308_8 crossref_primary_10_1007_s10886_014_0468_3 crossref_primary_10_1093_plphys_kiac078 crossref_primary_10_1186_s12864_016_2925_6 crossref_primary_10_1105_tpc_113_111112 crossref_primary_10_1016_j_molp_2015_03_011 crossref_primary_10_1007_s11306_014_0754_7 crossref_primary_10_1016_j_plantsci_2018_02_011 crossref_primary_10_1186_s12870_019_1943_3 crossref_primary_10_1093_plphys_kiae258 crossref_primary_10_1111_ppl_14357 crossref_primary_10_1093_jxb_erv011 crossref_primary_10_1186_s12864_017_4425_8 crossref_primary_10_1007_s00299_013_1400_y crossref_primary_10_1016_j_ijbiomac_2021_06_125 crossref_primary_10_1371_journal_pone_0199673 crossref_primary_10_1104_pp_113_231555 crossref_primary_10_1021_acs_jafc_5b06056 crossref_primary_10_1186_s12284_019_0303_0 crossref_primary_10_1016_j_biochi_2012_06_005 crossref_primary_10_1093_jxb_erw470 crossref_primary_10_1007_s10142_014_0426_8 crossref_primary_10_3390_ijms21207482 crossref_primary_10_3390_jox13030026 crossref_primary_10_1093_plphys_kiac589 crossref_primary_10_1007_s00299_016_2045_4 crossref_primary_10_1093_jxb_erw478 crossref_primary_10_1038_nchembio_1591 crossref_primary_10_1111_tpj_16256 crossref_primary_10_3390_ijms25179189 crossref_primary_10_1104_pp_112_198598 crossref_primary_10_4161_15592316_2014_970414 crossref_primary_10_1111_tpj_15724 crossref_primary_10_1186_s12870_020_2288_7 crossref_primary_10_3389_fpls_2019_01639 crossref_primary_10_3390_antiox10071128 crossref_primary_10_1111_pce_13753 crossref_primary_10_1111_tpj_14878 crossref_primary_10_1042_EBC20190085 crossref_primary_10_1186_s12870_021_03224_x crossref_primary_10_1016_j_plantsci_2023_111784 crossref_primary_10_1016_j_ymben_2013_08_001 crossref_primary_10_1038_s41598_021_81575_z crossref_primary_10_1016_j_nbt_2015_11_001 crossref_primary_10_1007_s11103_016_0480_9 crossref_primary_10_1080_09168451_2018_1462693 crossref_primary_10_1371_journal_pone_0159875 crossref_primary_10_1038_s41598_021_97245_z crossref_primary_10_1093_jxb_erw443 crossref_primary_10_3390_genes16010026 crossref_primary_10_3390_plants14060847 crossref_primary_10_3390_ijms24087636 crossref_primary_10_3390_ijms25115898 crossref_primary_10_1007_s10886_023_01454_x crossref_primary_10_1016_j_jbc_2021_101504 crossref_primary_10_1111_j_1365_313X_2012_05117_x crossref_primary_10_3390_ijms22189957 crossref_primary_10_1371_journal_pone_0081849 crossref_primary_10_3389_fpls_2022_1038866 crossref_primary_10_1016_j_phytochem_2013_12_019 crossref_primary_10_4161_psb_21551 crossref_primary_10_1371_journal_pone_0086182 crossref_primary_10_1371_journal_pone_0127831 crossref_primary_10_3390_ijms23073945 crossref_primary_10_1111_tpj_16200 crossref_primary_10_1016_j_xplc_2021_100231 crossref_primary_10_1111_tpj_15598 crossref_primary_10_3390_plants14071001 crossref_primary_10_1002_ejoc_201403347 crossref_primary_10_1016_j_molp_2020_09_024 crossref_primary_10_1093_hr_uhad047 crossref_primary_10_1111_pce_12298 crossref_primary_10_3390_plants5010015 crossref_primary_10_1186_s12864_015_1575_4 crossref_primary_10_1016_j_pld_2019_11_005 crossref_primary_10_1093_jxb_erac365 crossref_primary_10_1093_pcp_pcv106 crossref_primary_10_1093_plcell_koad118 crossref_primary_10_13080_z_a_2020_107_042 crossref_primary_10_3389_fgene_2019_00238 crossref_primary_10_1016_j_jplph_2012_09_004 crossref_primary_10_3390_plants5010004 crossref_primary_10_1007_s11101_017_9510_8 crossref_primary_10_1093_jxb_erv190 crossref_primary_10_1371_journal_pone_0056570 crossref_primary_10_1016_j_indcrop_2024_118039 crossref_primary_10_1007_s00299_024_03286_9 crossref_primary_10_1007_s11105_024_01505_x crossref_primary_10_1016_j_bbalip_2019_158520 crossref_primary_10_3389_fpls_2022_952301 crossref_primary_10_3390_ijms21031124 crossref_primary_10_1074_jbc_M114_603084 crossref_primary_10_1104_pp_113_217588 crossref_primary_10_1007_s00299_014_1608_5 crossref_primary_10_3389_fgene_2020_00044 crossref_primary_10_1080_15592324_2015_1046667 crossref_primary_10_3389_fpls_2024_1487092 crossref_primary_10_1093_pcp_pcu171 crossref_primary_10_3389_fpls_2021_665842 crossref_primary_10_1016_j_phytochem_2015_06_027 crossref_primary_10_1146_annurev_arplant_042817_040440 crossref_primary_10_1093_pcp_pcv006 crossref_primary_10_1104_pp_113_222828 crossref_primary_10_1016_j_bbalip_2016_03_006 crossref_primary_10_3389_fpls_2021_637959 crossref_primary_10_1007_s12355_024_01509_7 crossref_primary_10_1038_s41467_024_50928_3 crossref_primary_10_3390_genes14081598 crossref_primary_10_1016_j_postharvbio_2024_112966 crossref_primary_10_3390_genes10100756 crossref_primary_10_1016_j_molp_2021_06_028 crossref_primary_10_1093_pcp_pcz172 crossref_primary_10_1074_jbc_RA119_007600 |
Cites_doi | 10.1111/j.1742-4658.2010.07948.x 10.1093/pcp/pcr110 10.1146/annurev.arplant.043008.092007 10.1016/j.febslet.2007.01.049 10.1111/j.1365-313X.2010.04265.x 10.1105/tpc.109.065730 10.1111/j.1469-8137.2010.03622.x 10.1038/nature05960 10.1016/j.cub.2011.03.013 10.1105/tpc.107.050708 10.1016/S0021-9258(20)82244-3 10.1111/j.1365-313X.2005.02358.x 10.1146/annurev.arplant.54.031902.134840 10.1007/s004380050749 10.1046/j.1432-1327.2001.02207.x 10.1038/nature06006 10.1016/S0076-6879(96)72008-6 10.1016/j.chom.2008.05.009 10.1007/s00425-009-1080-6 10.1074/jbc.273.49.32528 10.1146/annurev.arplant.59.032607.092825 10.1105/tpc.111.089300 10.1074/jbc.M801760200 10.1038/nature08122 10.1146/annurev-arplant-042809-112305 10.1111/j.1469-8137.2007.02252.x 10.1371/journal.pone.0000718 10.1038/nchembio.161 10.1146/annurev-genet-102209-163500 10.1074/jbc.M002133200 10.1104/pp.103.037614 10.1016/j.pbi.2009.07.013 10.1111/j.1742-4658.2007.06032.x 10.4161/psb.5.4.11574 10.1073/pnas.0802332105 10.1038/nature09430 10.1093/pcp/pcn091 10.1111/j.1365-313X.2011.04529.x 10.1111/j.1364-3703.2005.00311.x 10.1186/1471-2229-8-47 10.1105/tpc.105.038455 10.1016/j.phytochem.2009.08.022 10.1104/pp.110.161497 10.1104/pp.107.115691 10.1073/pnas.1103542108 10.1021/cb900269u |
ContentType | Journal Article |
Copyright | 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. Attribution 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012 |
Copyright_xml | – notice: 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: Attribution – notice: 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1074/jbc.M111.316364 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Dual Jasmonoyl-isoleucine Oxidation by CYP94 Enzymes |
EISSN | 1083-351X |
EndPage | 6306 |
ExternalDocumentID | PMC3307330 oai_HAL_hal_00680337v1 22215670 10_1074_jbc_M111_316364 S0021925820611188 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFFNX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP C1A CITATION E.L FA8 H13 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM Z5M 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c542t-8da47fab50ab2e4a53ee8c3a807e563917715852638d29392f033eeeccb305153 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 17:58:48 EDT 2025 Thu Jul 10 09:00:01 EDT 2025 Fri Jul 11 05:36:18 EDT 2025 Wed Feb 19 02:30:05 EST 2025 Tue Jul 01 00:40:44 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Fri Feb 23 02:47:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Plant Hormones Signaling Jasmonate Metabolism Arabidopsis Cytochrome P450 Metabolic Profiling Wound Response Plant Defense Metabolism CYP94 |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-8da47fab50ab2e4a53ee8c3a807e563917715852638d29392f033eeeccb305153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Supported by a doctoral fellowship from the Ministère de l'Enseignement Supérieur et de la Recherche. |
ORCID | 0000-0001-8472-3262 0000-0002-1192-2970 |
OpenAccessLink | https://hal.science/hal-00680337 |
PMID | 22215670 |
PQID | 923956102 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3307330 hal_primary_oai_HAL_hal_00680337v1 proquest_miscellaneous_923956102 pubmed_primary_22215670 crossref_citationtrail_10_1074_jbc_M111_316364 crossref_primary_10_1074_jbc_M111_316364 elsevier_sciencedirect_doi_10_1074_jbc_M111_316364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-24 |
PublicationDateYYYYMMDD | 2012-02-24 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2012 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Winter, Vinegar, Nahal, Ammar, Wilson, Provart (bib33) 2007; 2 Ehlting, Sauveplane, Olry, Ginglinger, Provart, Werck-Reichhart (bib32) 2008; 8 Howe, Jander (bib9) 2008; 59 Chung, Cooke, Depew, Patel, Ogawa, Kobayashi, Howe (bib45) 2010; 63 Wasternack, Xie (bib44) 2010; 5 Yan, Stolz, Chételat, Reymond, Pagni, Dubugnon, Farmer (bib17) 2007; 19 Berr, McCallum, Alioua, Heintz, Heitz, Shen (bib28) 2010; 154 Brooks, Bender, Kunkel (bib39) 2005; 6 Turk, Fujioka, Seto, Shimada, Takatsuto, Yoshida, Wang, Torres, Ward, Murthy, Zhang, Walker, Neff (bib6) 2005; 42 Schuler, Werck-Reichhart (bib4) 2003; 54 Omura, Sato (bib30) 1964; 239 Suza, Rowe, Hamberg, Staswick (bib43) 2010; 231 Paschold, Bonaventure, Kant, Baldwin (bib23) 2008; 49 Ziegler, Stenzel, Hause, Maucher, Hamberg, Grimm, Ganal, Wasternack (bib42) 2000; 275 Spoel, Dong (bib10) 2008; 3 Wu, Baldwin (bib11) 2010; 44 Depuydt, Hardtke (bib1) 2011; 21 Koo, Cooke, Howe (bib27) 2011; 108 Fonseca, Chini, Hamberg, Adie, Porzel, Kramell, Miersch, Wasternack, Solano (bib34) 2009; 5 Thines, Katsir, Melotto, Niu, Mandaokar, Liu, Nomura, He, Howe, Browse (bib19) 2007; 448 Miersch, Neumerkel, Dippe, Stenzel, Wasternack (bib22) 2008; 177 Nelson, Werck-Reichhart (bib38) 2011; 66 León, Rojo, Titarenko, Sánchez-Serrano (bib36) 1998; 258 Glauser, Grata, Dubugnon, Rudaz, Farmer, Wolfender (bib21) 2008; 283 Kandel, Sauveplane, Compagnon, Franke, Millet, Schreiber, Werck-Reichhart, Pinot (bib31) 2007; 274 Pauwels, Goossens (bib46) 2011; 23 Zhu, Nomura, Xu, Zhang, Peng, Mao, Hanada, Zhou, Wang, Li, Zhu, Mander, Kamiya, Yamaguchi, He (bib7) 2006; 18 Chini, Fonseca, Fernández, Adie, Chico, Lorenzo, García-Casado, López-Vidriero, Lozano, Ponce, Micol, Solano (bib18) 2007; 448 Pompon, Louerat, Bronine, Urban (bib29) 1996; 272 Sheard, Tan, Mao, Withers, Ben-Nissan, Hinds, Kobayashi, Hsu, Sharon, Browse, He, Rizo, Howe, Zheng (bib15) 2010; 468 Chung, Niu, Browse, Howe (bib12) 2009; 70 Kitaoka, Matsubara, Sato, Takahashi, Wakuta, Kawaide, Matsui, Nabeta, Matsuura (bib26) 2011; 52 Santner, Estelle (bib2) 2009; 459 Pinot, Beisson (bib25) 2011; 278 VanDoorn, Bonaventure, Schmidt, Baldwin (bib37) 2011; 190 Scheller, Zimmer, Becher, Schauer, Schunck (bib41) 1998; 273 Wasternack, Kombrink (bib14) 2010; 5 Chung, Koo, Gao, Jayanty, Thines, Jones, Howe (bib20) 2008; 146 Saito, Hirai, Matsumoto, Ohigashi, Ohta, Sakata, Mizutani (bib5) 2004; 134 Mizutani, Ohta (bib3) 2010; 61 Yan, Zhang, Gu, Bai, Zhang, Qi, Cheng, Peng, Luo, Nan, Wang, Xie (bib16) 2009; 21 Guranowski, Miersch, Staswick, Suza, Wasternack (bib24) 2007; 581 Fonseca, Chico, Solano (bib13) 2009; 12 Le Bouquin, Skrabs, Kahn, Benveniste, Salaün, Schreiber, Durst, Pinot (bib40) 2001; 268 Browse (bib8) 2009; 60 Katsir, Schilmiller, Staswick, He, Howe (bib35) 2008; 105 Pauwels (10.1074/jbc.M111.316364_bib46) 2011; 23 Omura (10.1074/jbc.M111.316364_bib30) 1964; 239 Berr (10.1074/jbc.M111.316364_bib28) 2010; 154 Ehlting (10.1074/jbc.M111.316364_bib32) 2008; 8 Wu (10.1074/jbc.M111.316364_bib11) 2010; 44 Kandel (10.1074/jbc.M111.316364_bib31) 2007; 274 Nelson (10.1074/jbc.M111.316364_bib38) 2011; 66 Kitaoka (10.1074/jbc.M111.316364_bib26) 2011; 52 Scheller (10.1074/jbc.M111.316364_bib41) 1998; 273 Yan (10.1074/jbc.M111.316364_bib17) 2007; 19 Glauser (10.1074/jbc.M111.316364_bib21) 2008; 283 Chung (10.1074/jbc.M111.316364_bib45) 2010; 63 Sheard (10.1074/jbc.M111.316364_bib15) 2010; 468 Le Bouquin (10.1074/jbc.M111.316364_bib40) 2001; 268 Chung (10.1074/jbc.M111.316364_bib12) 2009; 70 Chini (10.1074/jbc.M111.316364_bib18) 2007; 448 Turk (10.1074/jbc.M111.316364_bib6) 2005; 42 León (10.1074/jbc.M111.316364_bib36) 1998; 258 Howe (10.1074/jbc.M111.316364_bib9) 2008; 59 Zhu (10.1074/jbc.M111.316364_bib7) 2006; 18 Thines (10.1074/jbc.M111.316364_bib19) 2007; 448 Fonseca (10.1074/jbc.M111.316364_bib13) 2009; 12 Santner (10.1074/jbc.M111.316364_bib2) 2009; 459 Koo (10.1074/jbc.M111.316364_bib27) 2011; 108 Ziegler (10.1074/jbc.M111.316364_bib42) 2000; 275 VanDoorn (10.1074/jbc.M111.316364_bib37) 2011; 190 Saito (10.1074/jbc.M111.316364_bib5) 2004; 134 Wasternack (10.1074/jbc.M111.316364_bib14) 2010; 5 Suza (10.1074/jbc.M111.316364_bib43) 2010; 231 Mizutani (10.1074/jbc.M111.316364_bib3) 2010; 61 Brooks (10.1074/jbc.M111.316364_bib39) 2005; 6 Browse (10.1074/jbc.M111.316364_bib8) 2009; 60 Pinot (10.1074/jbc.M111.316364_bib25) 2011; 278 Katsir (10.1074/jbc.M111.316364_bib35) 2008; 105 Depuydt (10.1074/jbc.M111.316364_bib1) 2011; 21 Spoel (10.1074/jbc.M111.316364_bib10) 2008; 3 Paschold (10.1074/jbc.M111.316364_bib23) 2008; 49 Schuler (10.1074/jbc.M111.316364_bib4) 2003; 54 Yan (10.1074/jbc.M111.316364_bib16) 2009; 21 Pompon (10.1074/jbc.M111.316364_bib29) 1996; 272 Chung (10.1074/jbc.M111.316364_bib20) 2008; 146 Wasternack (10.1074/jbc.M111.316364_bib44) 2010; 5 Fonseca (10.1074/jbc.M111.316364_bib34) 2009; 5 Miersch (10.1074/jbc.M111.316364_bib22) 2008; 177 Winter (10.1074/jbc.M111.316364_bib33) 2007; 2 Guranowski (10.1074/jbc.M111.316364_bib24) 2007; 581 |
References_xml | – volume: 3 start-page: 348 year: 2008 end-page: 351 ident: bib10 article-title: Making sense of hormone crosstalk during plant immune responses publication-title: Cell Host Microbe – volume: 275 start-page: 19132 year: 2000 end-page: 19138 ident: bib42 article-title: Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates publication-title: J. Biol. Chem. – volume: 60 start-page: 183 year: 2009 end-page: 205 ident: bib8 article-title: Jasmonate passes muster. A receptor and targets for the defense hormone publication-title: Annu. Rev. Plant Biol. – volume: 190 start-page: 640 year: 2011 end-page: 652 ident: bib37 article-title: Regulation of jasmonate metabolism and activation of systemic signaling in Solanum nigrum. COI1 and JAR4 play overlapping yet distinct roles publication-title: New Phytol. – volume: 581 start-page: 815 year: 2007 end-page: 820 ident: bib24 article-title: Substrate specificity and products of side reactions catalyzed by jasmonate-amino acid synthetase (JAR1) publication-title: FEBS Lett. – volume: 108 start-page: 9298 year: 2011 end-page: 9303 ident: bib27 article-title: Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl- publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 459 start-page: 1071 year: 2009 end-page: 1078 ident: bib2 article-title: Recent advances and emerging trends in plant hormone signaling publication-title: Nature – volume: 258 start-page: 412 year: 1998 end-page: 419 ident: bib36 article-title: Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca publication-title: Mol. Gen. Genet. – volume: 70 start-page: 1547 year: 2009 end-page: 1559 ident: bib12 article-title: Top hits in contemporary JAZ. An update on jasmonate signaling publication-title: Phytochemistry – volume: 49 start-page: 1165 year: 2008 end-page: 1175 ident: bib23 article-title: Jasmonate perception regulates jasmonate biosynthesis and JA-Ile metabolism. The case of COI1 in publication-title: Plant Cell Physiol. – volume: 231 start-page: 717 year: 2010 end-page: 728 ident: bib43 article-title: A tomato enzyme synthesizes (+)-7-iso-jasmonoyl- publication-title: Planta – volume: 448 start-page: 666 year: 2007 end-page: 671 ident: bib18 article-title: The JAZ family of repressors is the missing link in jasmonate signaling publication-title: Nature – volume: 5 start-page: 344 year: 2009 end-page: 350 ident: bib34 article-title: (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate publication-title: Nat. Chem. Biol. – volume: 19 start-page: 2470 year: 2007 end-page: 2483 ident: bib17 article-title: A downstream mediator in the growth repression limb of the jasmonate pathway publication-title: Plant Cell – volume: 21 start-page: 2220 year: 2009 end-page: 2236 ident: bib16 article-title: The publication-title: Plant Cell – volume: 274 start-page: 5116 year: 2007 end-page: 5127 ident: bib31 article-title: Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of publication-title: FEBS J. – volume: 105 start-page: 7100 year: 2008 end-page: 7105 ident: bib35 article-title: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 5 start-page: 337 year: 2010 end-page: 340 ident: bib44 article-title: The genuine ligand of a jasmonic acid receptor. Improved analysis of jasmonates is now required publication-title: Plant Signal. Behav. – volume: 12 start-page: 539 year: 2009 end-page: 547 ident: bib13 article-title: The jasmonate pathway. The ligand, the receptor, and the core signaling module publication-title: Curr. Opin. Plant Biol. – volume: 2 start-page: e718 year: 2007 ident: bib33 article-title: An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large scale biological data sets publication-title: PLoS One – volume: 59 start-page: 41 year: 2008 end-page: 66 ident: bib9 article-title: Plant immunity to insect herbivores publication-title: Annu. Rev. Plant Biol. – volume: 448 start-page: 661 year: 2007 end-page: 665 ident: bib19 article-title: JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling publication-title: Nature – volume: 23 start-page: 3089 year: 2011 end-page: 3100 ident: bib46 article-title: The JAZ proteins. A crucial interface in the Jasmonate signaling cascade publication-title: Plant Cell – volume: 18 start-page: 442 year: 2006 end-page: 456 ident: bib7 article-title: Elongated Uppermost Internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice publication-title: Plant Cell – volume: 42 start-page: 23 year: 2005 end-page: 34 ident: bib6 article-title: BAS1 and SOB7 act redundantly to modulate publication-title: Plant J. – volume: 268 start-page: 3083 year: 2001 end-page: 3090 ident: bib40 article-title: CYP94A5, a new cytochrome P450 from publication-title: Eur. J. Biochem. – volume: 54 start-page: 629 year: 2003 end-page: 667 ident: bib4 article-title: Functional genomics of P450s publication-title: Annu. Rev. Plant Biol. – volume: 468 start-page: 400 year: 2010 end-page: 405 ident: bib15 article-title: Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor publication-title: Nature – volume: 146 start-page: 952 year: 2008 end-page: 964 ident: bib20 article-title: Regulation and function of publication-title: Plant Physiol. – volume: 21 start-page: R365 year: 2011 end-page: R3673 ident: bib1 article-title: Hormone signaling cross-talk in plant growth regulation publication-title: Curr. Biol. – volume: 52 start-page: 1757 year: 2011 end-page: 1765 ident: bib26 article-title: CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate publication-title: Plant Cell Physiol. – volume: 6 start-page: 629 year: 2005 end-page: 639 ident: bib39 article-title: The publication-title: Mol. Plant Pathol. – volume: 8 start-page: 47 year: 2008 ident: bib32 article-title: An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in publication-title: BMC Plant Biol. – volume: 134 start-page: 1439 year: 2004 end-page: 1449 ident: bib5 article-title: CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid publication-title: Plant Physiol. – volume: 283 start-page: 16400 year: 2008 end-page: 16407 ident: bib21 article-title: Spatial and temporal dynamics of jasmonate synthesis and accumulation in publication-title: J. Biol. Chem. – volume: 66 start-page: 194 year: 2011 end-page: 211 ident: bib38 article-title: A P450-centric view of plant evolution publication-title: Plant J. – volume: 239 start-page: 2370 year: 1964 end-page: 2378 ident: bib30 article-title: The Carbon Monoxide Binding Pigment of Liver Microsomes. I. Evidence for Its Hemoprotein Nature publication-title: J. Biol. Chem. – volume: 177 start-page: 114 year: 2008 end-page: 127 ident: bib22 article-title: Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling publication-title: New Phytol. – volume: 154 start-page: 1403 year: 2010 end-page: 1414 ident: bib28 article-title: histone methyltransferase set domain group 8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi publication-title: Plant Physiol. – volume: 44 start-page: 1 year: 2010 end-page: 24 ident: bib11 article-title: New insights into plant responses to the attack from insect herbivores publication-title: Annu. Rev. Genet. – volume: 5 start-page: 63 year: 2010 end-page: 77 ident: bib14 article-title: Jasmonates. Structural requirements for lipid-derived signals active in plant stress responses and development publication-title: ACS Chem. Biol. – volume: 273 start-page: 32528 year: 1998 end-page: 32534 ident: bib41 article-title: Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3 publication-title: J. Biol. Chem. – volume: 61 start-page: 291 year: 2010 end-page: 315 ident: bib3 article-title: Diversification of P450 genes during land plant evolution publication-title: Annu. Rev. Plant Biol. – volume: 278 start-page: 195 year: 2011 end-page: 205 ident: bib25 article-title: Cytochrome P450 metabolizing fatty acids in plants. Characterization and physiological roles publication-title: FEBS J. – volume: 63 start-page: 613 year: 2010 end-page: 622 ident: bib45 article-title: Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling publication-title: Plant J. – volume: 272 start-page: 51 year: 1996 end-page: 64 ident: bib29 article-title: Yeast expression of animal and plant P450s in optimized redox environments publication-title: Methods Enzymol. – volume: 278 start-page: 195 year: 2011 ident: 10.1074/jbc.M111.316364_bib25 article-title: Cytochrome P450 metabolizing fatty acids in plants. Characterization and physiological roles publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07948.x – volume: 52 start-page: 1757 year: 2011 ident: 10.1074/jbc.M111.316364_bib26 article-title: Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr110 – volume: 60 start-page: 183 year: 2009 ident: 10.1074/jbc.M111.316364_bib8 article-title: Jasmonate passes muster. A receptor and targets for the defense hormone publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.043008.092007 – volume: 581 start-page: 815 year: 2007 ident: 10.1074/jbc.M111.316364_bib24 article-title: Substrate specificity and products of side reactions catalyzed by jasmonate-amino acid synthetase (JAR1) publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.01.049 – volume: 63 start-page: 613 year: 2010 ident: 10.1074/jbc.M111.316364_bib45 article-title: Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04265.x – volume: 21 start-page: 2220 year: 2009 ident: 10.1074/jbc.M111.316364_bib16 article-title: The Arabidopsis coronatine-insensitive 1 protein is a jasmonate receptor publication-title: Plant Cell doi: 10.1105/tpc.109.065730 – volume: 190 start-page: 640 year: 2011 ident: 10.1074/jbc.M111.316364_bib37 article-title: Regulation of jasmonate metabolism and activation of systemic signaling in Solanum nigrum. COI1 and JAR4 play overlapping yet distinct roles publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03622.x – volume: 448 start-page: 661 year: 2007 ident: 10.1074/jbc.M111.316364_bib19 article-title: JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling publication-title: Nature doi: 10.1038/nature05960 – volume: 21 start-page: R365 year: 2011 ident: 10.1074/jbc.M111.316364_bib1 article-title: Hormone signaling cross-talk in plant growth regulation publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.03.013 – volume: 19 start-page: 2470 year: 2007 ident: 10.1074/jbc.M111.316364_bib17 article-title: A downstream mediator in the growth repression limb of the jasmonate pathway publication-title: Plant Cell doi: 10.1105/tpc.107.050708 – volume: 239 start-page: 2370 year: 1964 ident: 10.1074/jbc.M111.316364_bib30 article-title: The Carbon Monoxide Binding Pigment of Liver Microsomes. I. Evidence for Its Hemoprotein Nature publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)82244-3 – volume: 42 start-page: 23 year: 2005 ident: 10.1074/jbc.M111.316364_bib6 article-title: BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02358.x – volume: 54 start-page: 629 year: 2003 ident: 10.1074/jbc.M111.316364_bib4 article-title: Functional genomics of P450s publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.54.031902.134840 – volume: 258 start-page: 412 year: 1998 ident: 10.1074/jbc.M111.316364_bib36 article-title: Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana publication-title: Mol. Gen. Genet. doi: 10.1007/s004380050749 – volume: 268 start-page: 3083 year: 2001 ident: 10.1074/jbc.M111.316364_bib40 article-title: CYP94A5, a new cytochrome P450 from Nicotiana tabacum, is able to catalyze the oxidation of fatty acids to the ω-alcohol and to the corresponding diacid publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.2001.02207.x – volume: 448 start-page: 666 year: 2007 ident: 10.1074/jbc.M111.316364_bib18 article-title: The JAZ family of repressors is the missing link in jasmonate signaling publication-title: Nature doi: 10.1038/nature06006 – volume: 272 start-page: 51 year: 1996 ident: 10.1074/jbc.M111.316364_bib29 article-title: Yeast expression of animal and plant P450s in optimized redox environments publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(96)72008-6 – volume: 3 start-page: 348 year: 2008 ident: 10.1074/jbc.M111.316364_bib10 article-title: Making sense of hormone crosstalk during plant immune responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.05.009 – volume: 231 start-page: 717 year: 2010 ident: 10.1074/jbc.M111.316364_bib43 article-title: A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-l-isoleucine in wounded leaves publication-title: Planta doi: 10.1007/s00425-009-1080-6 – volume: 273 start-page: 32528 year: 1998 ident: 10.1074/jbc.M111.316364_bib41 article-title: Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.49.32528 – volume: 59 start-page: 41 year: 2008 ident: 10.1074/jbc.M111.316364_bib9 article-title: Plant immunity to insect herbivores publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092825 – volume: 23 start-page: 3089 year: 2011 ident: 10.1074/jbc.M111.316364_bib46 article-title: The JAZ proteins. A crucial interface in the Jasmonate signaling cascade publication-title: Plant Cell doi: 10.1105/tpc.111.089300 – volume: 283 start-page: 16400 year: 2008 ident: 10.1074/jbc.M111.316364_bib21 article-title: Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801760200 – volume: 459 start-page: 1071 year: 2009 ident: 10.1074/jbc.M111.316364_bib2 article-title: Recent advances and emerging trends in plant hormone signaling publication-title: Nature doi: 10.1038/nature08122 – volume: 61 start-page: 291 year: 2010 ident: 10.1074/jbc.M111.316364_bib3 article-title: Diversification of P450 genes during land plant evolution publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112305 – volume: 177 start-page: 114 year: 2008 ident: 10.1074/jbc.M111.316364_bib22 article-title: Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02252.x – volume: 2 start-page: e718 year: 2007 ident: 10.1074/jbc.M111.316364_bib33 article-title: An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large scale biological data sets publication-title: PLoS One doi: 10.1371/journal.pone.0000718 – volume: 5 start-page: 344 year: 2009 ident: 10.1074/jbc.M111.316364_bib34 article-title: (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.161 – volume: 44 start-page: 1 year: 2010 ident: 10.1074/jbc.M111.316364_bib11 article-title: New insights into plant responses to the attack from insect herbivores publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-102209-163500 – volume: 275 start-page: 19132 year: 2000 ident: 10.1074/jbc.M111.316364_bib42 article-title: Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002133200 – volume: 134 start-page: 1439 year: 2004 ident: 10.1074/jbc.M111.316364_bib5 article-title: Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid publication-title: Plant Physiol. doi: 10.1104/pp.103.037614 – volume: 12 start-page: 539 year: 2009 ident: 10.1074/jbc.M111.316364_bib13 article-title: The jasmonate pathway. The ligand, the receptor, and the core signaling module publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2009.07.013 – volume: 274 start-page: 5116 year: 2007 ident: 10.1074/jbc.M111.316364_bib31 article-title: Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of Arabidopsis thaliana catalyzing dicarboxylic fatty acid formation in vitro publication-title: FEBS J. doi: 10.1111/j.1742-4658.2007.06032.x – volume: 5 start-page: 337 year: 2010 ident: 10.1074/jbc.M111.316364_bib44 article-title: The genuine ligand of a jasmonic acid receptor. Improved analysis of jasmonates is now required publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.4.11574 – volume: 105 start-page: 7100 year: 2008 ident: 10.1074/jbc.M111.316364_bib35 article-title: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0802332105 – volume: 468 start-page: 400 year: 2010 ident: 10.1074/jbc.M111.316364_bib15 article-title: Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor publication-title: Nature doi: 10.1038/nature09430 – volume: 49 start-page: 1165 year: 2008 ident: 10.1074/jbc.M111.316364_bib23 article-title: Jasmonate perception regulates jasmonate biosynthesis and JA-Ile metabolism. The case of COI1 in Nicotiana attenuata publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn091 – volume: 66 start-page: 194 year: 2011 ident: 10.1074/jbc.M111.316364_bib38 article-title: A P450-centric view of plant evolution publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04529.x – volume: 6 start-page: 629 year: 2005 ident: 10.1074/jbc.M111.316364_bib39 article-title: The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2005.00311.x – volume: 8 start-page: 47 year: 2008 ident: 10.1074/jbc.M111.316364_bib32 article-title: An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-8-47 – volume: 18 start-page: 442 year: 2006 ident: 10.1074/jbc.M111.316364_bib7 article-title: Elongated Uppermost Internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice publication-title: Plant Cell doi: 10.1105/tpc.105.038455 – volume: 70 start-page: 1547 year: 2009 ident: 10.1074/jbc.M111.316364_bib12 article-title: Top hits in contemporary JAZ. An update on jasmonate signaling publication-title: Phytochemistry doi: 10.1016/j.phytochem.2009.08.022 – volume: 154 start-page: 1403 year: 2010 ident: 10.1074/jbc.M111.316364_bib28 article-title: Arabidopsis histone methyltransferase set domain group 8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi publication-title: Plant Physiol. doi: 10.1104/pp.110.161497 – volume: 146 start-page: 952 year: 2008 ident: 10.1074/jbc.M111.316364_bib20 article-title: Regulation and function of Arabidopsis jasmonate ZIM-domain genes in response to wounding and herbivory publication-title: Plant Physiol. doi: 10.1104/pp.107.115691 – volume: 108 start-page: 9298 year: 2011 ident: 10.1074/jbc.M111.316364_bib27 article-title: Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1103542108 – volume: 5 start-page: 63 year: 2010 ident: 10.1074/jbc.M111.316364_bib14 article-title: Jasmonates. Structural requirements for lipid-derived signals active in plant stress responses and development publication-title: ACS Chem. Biol. doi: 10.1021/cb900269u |
SSID | ssj0000491 |
Score | 2.4926577 |
Snippet | The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a... Background: Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves. Results: Cytochromes P450 CYP94C1 and... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6296 |
SubjectTerms | Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biochemistry Biochemistry, Molecular Biology Botanics Cyclopentanes - metabolism CYP94 Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Cytochrome P450 Genotype Isoleucine - analogs & derivatives Isoleucine - metabolism Jasmonate Metabolism Life Sciences Metabolic Profiling Metabolism Metabolism - physiology Nucleotidyltransferases - metabolism Oxidation-Reduction Plant Biology Plant Defense Plant Growth Regulators - metabolism Plant Hormones Plant Leaves - enzymology Signal Transduction - physiology Signaling Vegetal Biology Wound Response |
Title | Cytochromes P450 CYP94C1 and CYP94B3 Catalyze Two Successive Oxidation Steps of Plant Hormone Jasmonoyl-isoleucine for Catabolic Turnover |
URI | https://dx.doi.org/10.1074/jbc.M111.316364 https://www.ncbi.nlm.nih.gov/pubmed/22215670 https://www.proquest.com/docview/923956102 https://hal.science/hal-00680337 https://pubmed.ncbi.nlm.nih.gov/PMC3307330 |
Volume | 287 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QAvCDYu5SYLIYRUpSR2EjePXTVUjQ2G1InxFDmJQyN1zbSmQPcP-E38Oc6xc-u2SoOXNHKT06Tni_2dnBshb-w0EUJI21Ixw5QcoawoiBNLcidx5EAoO0GP7tEnf3ziHpx6p53On1bU0rKI-vHljXkl_6NVGAO9YpbsP2i2FgoDsA_6hS1oGLa30vFoVeTxFAsOLHrHrmf3Rt-OA3fkaI-A3t_jmOMnZ6tL1Zv8zGGe0A0SMVzo86_M9FPSkV4mGG4G_3NvDDQ2B-55IBfwma9mVga3oZbogtdRiSgxwnrCvQlcJMaAtiluk2ymaa6p8mTqkFTN5ZoXsJluJ4vdQ9VFM_4Vu9aW3Zv3z7JZVqPvcPm9dFzJ86nUXv69JrIRrH7T2QqzvVUF5_KdBgaHMMukUtc5Bo4VMFPUvZqnWbkyG0AGrVnXZ4HfWsF9rosYXF8dgC7h6hDF_SOY4vscuKgpob5eh_vK-lhHLWp_vXBDEBCigNAI2CJ3GNgo2D7j45emVD2YXqZdY3krVV0p4b6_cgWbKNHWFGNzrxs-V-N3W4Ro8oDcL1VMhwaWD0lHzXfI7nAui_xsRd9SHVusnTY75O6oUv0u-d1CLUXU0hK1FFBLS9TSCrUUUEsb1NIatVSjluYp1ailJWrpTailgFpao5ZWqH1ETj7sT0Zjq2wIYsWeywprkEhXpDLybBkx5UqPKzWIuRzYQnlAtR0hHDB_GawpCdDYgKU2h0Ngloo49jLij8n2HC7lKaHKZoHrprYXeYkLPDXiqZ8kHmiDSz-K3C7pVzoJ47JaPjZtmYUbUNAl7-oTzk2hmM2HskrJYclzDX8NAaibT3oNcKhFY1X48fAwxDHdP4dz8cPpElqhJQStou9PzlW-XIRgx2EKu8265IkBTy0KLATH84XdJWINVmu_tf7NPJvqSvQcGQK3n93-3p-Te80D_4JsFxdL9RJofRG90o_PX7ID9zM |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytochromes+P450+CYP94C1+and+CYP94B3+Catalyze+Two+Successive+Oxidation+Steps+of+Plant+Hormone+Jasmonoyl-isoleucine+for+Catabolic+Turnover&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Heitz%2C+Thierry&rft.au=Widemann%2C+Emilie&rft.au=Lugan%2C+Rapha%C3%ABl&rft.au=Miesch%2C+Laurence&rft.date=2012-02-24&rft.issn=0021-9258&rft.volume=287&rft.issue=9&rft.spage=6296&rft.epage=6306&rft_id=info:doi/10.1074%2Fjbc.M111.316364&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M111_316364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |