Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity
Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts Submitted 10 October 2008 ; accepted in final form 11 November 2009 To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity,...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 108; no. 1; pp. 212 - 218 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Physiological Soc
01.01.2010
American Physiological Society |
Series | Pulmonary Physiology and Pathophysiology in Obesity |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
Submitted 10 October 2008
; accepted in final form 11 November 2009
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index = 38–80.7 kg/m 2 ) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P Es , P Ga ) using a balloon-catheter, airway pressure (P AO ), flow, and volume. We compared P Es to another estimate of P Pl based on P AO and flow. Reasoning that the lungs would not inflate until P AO exceeded alveolar and pleural pressures (P AO > P Alv > P Pl ), we disconnected subjects from the ventilator for 10–15 s to allow them to reach relaxation volume (V Rel ) and then slowly raised P AO until lung volume increased by 10 ml, indicating the "threshold P AO " (P AO-Thr ) for inflation, which we took to be an estimate of the lowest P Alv or P Pl to be found in the chest at V Rel . P AO-Thr ranged from 0.6 to 14.0 cmH 2 O in obese and 0.2 to 0.9 cmH 2 O in control subjects. P Es at V Rel was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH 2 O, means ± SD; P = 0.0002) and correlated with P AO-Thr ( R 2 = 0.16, P = 0.0015). Respiratory system compliance (C RS ) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH 2 O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH 2 O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH 2 O). We conclude that many severely obese supine subjects at relaxation volume have positive P pl throughout the chest. High P Es suggests high P Pl in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes.
esophageal pressure; compliance; elastance; gastric pressure; pressure-volume curve
Address for reprint requests and other correspondence: S. H. Loring, Dept. of Anesthesia, Critical Care and Pain Medicine, Dana 715, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (e-mail sloring{at}bidmc.harvard.edu ). |
---|---|
AbstractList | To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m(2)) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P(Es), P(Ga)) using a balloon-catheter, airway pressure (P(AO)), flow, and volume. We compared P(Es) to another estimate of P(Pl) based on P(AO) and flow. Reasoning that the lungs would not inflate until P(AO) exceeded alveolar and pleural pressures (P(AO) > P(Alv) > P(Pl)), we disconnected subjects from the ventilator for 10-15 s to allow them to reach relaxation volume (V(Rel)) and then slowly raised P(AO) until lung volume increased by 10 ml, indicating the "threshold P(AO)" (P(AO-Thr)) for inflation, which we took to be an estimate of the lowest P(Alv) or P(Pl) to be found in the chest at V(Rel). P(AO-Thr) ranged from 0.6 to 14.0 cmH2O in obese and 0.2 to 0.9 cmH2O in control subjects. P(Es) at V(Rel) was higher in obese than control subjects (12.5 +/- 3.9 vs. 6.9 +/- 3.1 cmH2O, means +/- SD; P = 0.0002) and correlated with P(AO-Thr) (R(2) = 0.16, P = 0.0015). Respiratory system compliance (C(RS)) was lower in obese than control (0.032 +/- 0.008 vs. 0.053 +/- 0.007 l/cmH2O) due principally to lower lung compliance (0.043 +/- 0.016 vs. 0.084 +/- 0.029 l/cmH2O) rather than chest wall compliance (obese 0.195 +/- 0.109, control 0.223 +/- 0.132 l/cmH2O). We conclude that many severely obese supine subjects at relaxation volume have positive P(pl) throughout the chest. High P(Es) suggests high P(Pl) in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes.To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m(2)) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P(Es), P(Ga)) using a balloon-catheter, airway pressure (P(AO)), flow, and volume. We compared P(Es) to another estimate of P(Pl) based on P(AO) and flow. Reasoning that the lungs would not inflate until P(AO) exceeded alveolar and pleural pressures (P(AO) > P(Alv) > P(Pl)), we disconnected subjects from the ventilator for 10-15 s to allow them to reach relaxation volume (V(Rel)) and then slowly raised P(AO) until lung volume increased by 10 ml, indicating the "threshold P(AO)" (P(AO-Thr)) for inflation, which we took to be an estimate of the lowest P(Alv) or P(Pl) to be found in the chest at V(Rel). P(AO-Thr) ranged from 0.6 to 14.0 cmH2O in obese and 0.2 to 0.9 cmH2O in control subjects. P(Es) at V(Rel) was higher in obese than control subjects (12.5 +/- 3.9 vs. 6.9 +/- 3.1 cmH2O, means +/- SD; P = 0.0002) and correlated with P(AO-Thr) (R(2) = 0.16, P = 0.0015). Respiratory system compliance (C(RS)) was lower in obese than control (0.032 +/- 0.008 vs. 0.053 +/- 0.007 l/cmH2O) due principally to lower lung compliance (0.043 +/- 0.016 vs. 0.084 +/- 0.029 l/cmH2O) rather than chest wall compliance (obese 0.195 +/- 0.109, control 0.223 +/- 0.132 l/cmH2O). We conclude that many severely obese supine subjects at relaxation volume have positive P(pl) throughout the chest. High P(Es) suggests high P(Pl) in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index = 38–80.7 kg/m 2 ) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P Es , P Ga ) using a balloon-catheter, airway pressure (P AO ), flow, and volume. We compared P Es to another estimate of P Pl based on P AO and flow. Reasoning that the lungs would not inflate until P AO exceeded alveolar and pleural pressures (P AO > P Alv > P Pl ), we disconnected subjects from the ventilator for 10–15 s to allow them to reach relaxation volume (V Rel ) and then slowly raised P AO until lung volume increased by 10 ml, indicating the “threshold P AO ” (P AO-Thr ) for inflation, which we took to be an estimate of the lowest P Alv or P Pl to be found in the chest at V Rel . P AO-Thr ranged from 0.6 to 14.0 cmH 2 O in obese and 0.2 to 0.9 cmH 2 O in control subjects. P Es at V Rel was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH 2 O, means ± SD; P = 0.0002) and correlated with P AO-Thr ( R 2 = 0.16, P = 0.0015). Respiratory system compliance (C RS ) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH 2 O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH 2 O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH 2 O). We conclude that many severely obese supine subjects at relaxation volume have positive P pl throughout the chest. High P Es suggests high P Pl in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts Submitted 10 October 2008 ; accepted in final form 11 November 2009 To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index = 38–80.7 kg/m 2 ) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P Es , P Ga ) using a balloon-catheter, airway pressure (P AO ), flow, and volume. We compared P Es to another estimate of P Pl based on P AO and flow. Reasoning that the lungs would not inflate until P AO exceeded alveolar and pleural pressures (P AO > P Alv > P Pl ), we disconnected subjects from the ventilator for 10–15 s to allow them to reach relaxation volume (V Rel ) and then slowly raised P AO until lung volume increased by 10 ml, indicating the "threshold P AO " (P AO-Thr ) for inflation, which we took to be an estimate of the lowest P Alv or P Pl to be found in the chest at V Rel . P AO-Thr ranged from 0.6 to 14.0 cmH 2 O in obese and 0.2 to 0.9 cmH 2 O in control subjects. P Es at V Rel was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH 2 O, means ± SD; P = 0.0002) and correlated with P AO-Thr ( R 2 = 0.16, P = 0.0015). Respiratory system compliance (C RS ) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH 2 O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH 2 O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH 2 O). We conclude that many severely obese supine subjects at relaxation volume have positive P pl throughout the chest. High P Es suggests high P Pl in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. esophageal pressure; compliance; elastance; gastric pressure; pressure-volume curve Address for reprint requests and other correspondence: S. H. Loring, Dept. of Anesthesia, Critical Care and Pain Medicine, Dana 715, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (e-mail sloring{at}bidmc.harvard.edu ). To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index = 38–80.7 kg/m 2 ) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P Es , P Ga ) using a balloon-catheter, airway pressure (P AO ), flow, and volume. We compared P Es to another estimate of P Pl based on P AO and flow. Reasoning that the lungs would not inflate until P AO exceeded alveolar and pleural pressures (P AO > P Alv > P Pl ), we disconnected subjects from the ventilator for 10–15 s to allow them to reach relaxation volume (V Rel ) and then slowly raised P AO until lung volume increased by 10 ml, indicating the “threshold P AO ” (P AO-Thr ) for inflation, which we took to be an estimate of the lowest P Alv or P Pl to be found in the chest at V Rel . P AO-Thr ranged from 0.6 to 14.0 cmH 2 O in obese and 0.2 to 0.9 cmH 2 O in control subjects. P Es at V Rel was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH 2 O, means ± SD; P = 0.0002) and correlated with P AO-Thr ( R 2 = 0.16, P = 0.0015). Respiratory system compliance (C RS ) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH 2 O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH 2 O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH 2 O). We conclude that many severely obese supine subjects at relaxation volume have positive P pl throughout the chest. High P Es suggests high P Pl in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P...) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m...) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P..., P...) using a balloon-catheter, airway pressure (P...), flow, and volume. We compared P... to another estimate of P... based on P... and flow. Reasoning that the lungs would not inflate until P... exceeded alveolar and pleural pressures (P... > P... > P...), we disconnected subjects from the ventilator for 10-15 s to allow them to reach relaxation volume (V...) and then slowly raised P... until lung volume increased by 10 ml, indicating the "threshold P..." (P...) for inflation, which we took to be an estimate of the lowest P... or P... to be found in the chest at V... P... ranged from 0.6 to 14.0 cmH2O in obese and 0.2 to 0.9 cmH2O in control subjects. PEs at V... was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH2O, means ± SD; P = 0.0002) and correlated with PAO-Thr (R... = 0.16, P = 0.0015). Respiratory system compliance (CRS) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH2O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH2O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH2O). We conclude that many severely obese supine subjects at relaxation volume have positive P... throughout the chest. High P... suggests high P... in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. (ProQuest: ... denotes formulae/symbols omitted.) To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m(2)) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P(Es), P(Ga)) using a balloon-catheter, airway pressure (P(AO)), flow, and volume. We compared P(Es) to another estimate of P(Pl) based on P(AO) and flow. Reasoning that the lungs would not inflate until P(AO) exceeded alveolar and pleural pressures (P(AO) > P(Alv) > P(Pl)), we disconnected subjects from the ventilator for 10-15 s to allow them to reach relaxation volume (V(Rel)) and then slowly raised P(AO) until lung volume increased by 10 ml, indicating the "threshold P(AO)" (P(AO-Thr)) for inflation, which we took to be an estimate of the lowest P(Alv) or P(Pl) to be found in the chest at V(Rel). P(AO-Thr) ranged from 0.6 to 14.0 cmH2O in obese and 0.2 to 0.9 cmH2O in control subjects. P(Es) at V(Rel) was higher in obese than control subjects (12.5 +/- 3.9 vs. 6.9 +/- 3.1 cmH2O, means +/- SD; P = 0.0002) and correlated with P(AO-Thr) (R(2) = 0.16, P = 0.0015). Respiratory system compliance (C(RS)) was lower in obese than control (0.032 +/- 0.008 vs. 0.053 +/- 0.007 l/cmH2O) due principally to lower lung compliance (0.043 +/- 0.016 vs. 0.084 +/- 0.029 l/cmH2O) rather than chest wall compliance (obese 0.195 +/- 0.109, control 0.223 +/- 0.132 l/cmH2O). We conclude that many severely obese supine subjects at relaxation volume have positive P(pl) throughout the chest. High P(Es) suggests high P(Pl) in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. |
Author | Cohen, Robert I Behazin, Negin Loring, Stephen H Jones, Stephanie B |
Author_xml | – sequence: 1 fullname: Behazin, Negin – sequence: 2 fullname: Jones, Stephanie B – sequence: 3 fullname: Cohen, Robert I – sequence: 4 fullname: Loring, Stephen H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19910329$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUc1u3CAYRFWiZpP2FVqrl_biDR8YYw6NVEX9iRQpUtWqR8RivGbFggt2Kr99cXcbpbn0AoJvZhhmztGJD94g9BrwGoCRy50aBjf0c7LBrQVQVq8Jxs0ztMpTUkKN4QStGs5wyVnDz9B5SjuMoaoYPEdnIARgSsQK_fhq0mCjGkOci2jSGK0ebfCF8m1hnLlXo2mLwZkpKne4TGHo1dbk45AJacpLYX2xD3Fj2yJsTLLj_AKddsol8_K4X6Dvnz5-u_5S3t59vrn-cFtqVpGxbHTFFVENVcIw0dZtXXeUV51uFcMt6SjBwGm76bDGRBNgqtGi0iAqxkSngF6gq4PuMG32ptXGj9moHKLdqzjLoKz8d-JtL7fhXpKmYZjTLPD2KBDDzykHIPc2aeOc8iZMSWYIrQWveUa-eYLchSn6_DtJCIFaYFjkXj3282Dkb-IZ8P4A0DGkFE0ntR3VEnm2Z50ELJeG5eOG5Z-G5dJw5vMn_Icn_st8d2D2dtv_stHIIyhs54WUBRoJkgChvwHonsDT |
CitedBy_id | crossref_primary_10_1007_s10877_019_00405_w crossref_primary_10_1016_j_chest_2023_07_008 crossref_primary_10_1164_rccm_202009_3539OC crossref_primary_10_1513_AnnalsATS_202303_216OC crossref_primary_10_59598_ME_2305_6045_2024_113_4_29_42 crossref_primary_10_1002_oto2_70033 crossref_primary_10_1007_s11818_012_0573_x crossref_primary_10_1164_rccm_201512_2448CP crossref_primary_10_1016_j_soard_2014_11_021 crossref_primary_10_21320_1818_474X_2021_3_27_46 crossref_primary_10_1186_s13054_023_04453_2 crossref_primary_10_1111_j_1440_1843_2011_02106_x crossref_primary_10_1016_j_hfc_2024_08_003 crossref_primary_10_1513_AnnalsATS_202207_640OC crossref_primary_10_1007_s00134_024_07474_9 crossref_primary_10_1111_resp_13729 crossref_primary_10_1007_s00134_015_3685_5 crossref_primary_10_3390_diagnostics14111139 crossref_primary_10_1016_j_jcrc_2021_02_005 crossref_primary_10_1111_ner_12630 crossref_primary_10_1152_japplphysiol_00838_2010 crossref_primary_10_1080_17476348_2019_1599285 crossref_primary_10_1111_j_1467_789X_2012_01008_x crossref_primary_10_1186_s13054_019_2374_0 crossref_primary_10_1186_s12890_016_0284_3 crossref_primary_10_1016_j_cjca_2015_06_031 crossref_primary_10_1016_j_jopan_2014_03_012 crossref_primary_10_1097_ALN_0000000000002638 crossref_primary_10_4037_ccn2016917 crossref_primary_10_1097_MAT_0000000000002068 crossref_primary_10_1177_1179548418801004 crossref_primary_10_1097_ALN_0000000000003442 crossref_primary_10_1111_j_1440_1843_2011_02080_x crossref_primary_10_1164_rccm_201708_1629CI crossref_primary_10_1080_21548331_2016_1179558 crossref_primary_10_1007_s11325_015_1185_z crossref_primary_10_1097_CCE_0000000000000811 crossref_primary_10_1007_s40140_024_00646_9 crossref_primary_10_1016_j_jevs_2011_08_017 crossref_primary_10_3390_jcm11061700 crossref_primary_10_1213_XAA_0000000000000408 crossref_primary_10_1002_ppul_24990 crossref_primary_10_1016_j_bja_2018_02_064 crossref_primary_10_1097_ALN_0000000000003444 crossref_primary_10_1080_17476348_2017_1322510 crossref_primary_10_1097_MCP_0000000000000754 crossref_primary_10_7570_jomes20056 crossref_primary_10_1016_j_chest_2021_05_057 crossref_primary_10_1007_s10877_023_01107_0 crossref_primary_10_1007_s11010_022_04610_1 crossref_primary_10_1016_j_resp_2013_02_006 crossref_primary_10_1097_EJA_0000000000001052 crossref_primary_10_1186_s12890_015_0063_6 crossref_primary_10_15360_1813_9779_2022_6_50_58 crossref_primary_10_2147_DMSO_S441762 crossref_primary_10_18093_0869_0189_2022_32_3_295_355 crossref_primary_10_1111_j_1399_6576_2010_02305_x crossref_primary_10_1016_j_ccc_2015_03_013 crossref_primary_10_1007_s00063_017_0372_z crossref_primary_10_1097_ALN_0000000000003154 crossref_primary_10_1111_all_12525 crossref_primary_10_1513_AnnalsATS_201312_465OI crossref_primary_10_1016_j_resp_2013_04_020 crossref_primary_10_1016_j_iac_2018_01_006 crossref_primary_10_1097_ALN_0000000000004009 crossref_primary_10_2478_inmed_2021_0150 crossref_primary_10_1152_japplphysiol_00571_2016 crossref_primary_10_2147_DMSO_S456336 crossref_primary_10_1213_ANE_0000000000002155 crossref_primary_10_1080_17476348_2018_1506331 crossref_primary_10_1016_j_rmr_2019_07_009 crossref_primary_10_1152_japplphysiol_00867_2020 crossref_primary_10_1164_rccm_202102_0376RR crossref_primary_10_1177_0885066620969132 crossref_primary_10_1378_chest_11_1389 crossref_primary_10_3390_jpm12030333 crossref_primary_10_3109_02770903_2010_534220 crossref_primary_10_1007_s00423_022_02549_x crossref_primary_10_1097_ALN_0000000000003943 crossref_primary_10_1016_j_bja_2020_06_044 crossref_primary_10_1097_ALN_0000000000002731 crossref_primary_10_1007_s13300_022_01311_2 crossref_primary_10_1016_j_ccc_2010_06_008 crossref_primary_10_1016_j_acci_2020_03_001 crossref_primary_10_1186_s13063_018_2777_2 crossref_primary_10_4081_ecj_2020_8911 crossref_primary_10_1183_09031936_00209313 crossref_primary_10_17116_anaesthesiology20200215 crossref_primary_10_1513_AnnalsATS_201404_159FR crossref_primary_10_1016_j_ccm_2013_05_003 crossref_primary_10_1097_MCC_0b013e328344dda6 crossref_primary_10_12688_f1000research_20576_1 crossref_primary_10_1016_j_chest_2019_05_029 crossref_primary_10_1016_j_chest_2024_07_171 crossref_primary_10_1097_MCC_0000000000001120 crossref_primary_10_1152_japplphysiol_00217_2011 crossref_primary_10_1016_j_chest_2018_08_1033 crossref_primary_10_1016_j_chest_2021_08_001 crossref_primary_10_3389_fphys_2021_815601 crossref_primary_10_1136_thoraxjnl_2014_205148 crossref_primary_10_1097_MCC_0000000000001122 crossref_primary_10_31857_S0301179824040063 crossref_primary_10_1093_bja_aev378 crossref_primary_10_1097_MD_0000000000028903 crossref_primary_10_1164_rccm_201701_0028LE crossref_primary_10_1186_s12871_023_02337_0 crossref_primary_10_1016_j_soard_2017_09_533 crossref_primary_10_1152_japplphysiol_00552_2014 crossref_primary_10_1016_j_radi_2014_12_013 crossref_primary_10_1152_japplphysiol_00482_2019 crossref_primary_10_1164_rccm_201008_1280CI crossref_primary_10_2215_CJN_06930714 crossref_primary_10_1186_s13054_024_05097_6 crossref_primary_10_1371_journal_pone_0311619 crossref_primary_10_3109_15412555_2013_781149 crossref_primary_10_1097_CCM_0b013e3182741790 crossref_primary_10_21320_1818_474X_2023_1_145_148 crossref_primary_10_1016_j_bcp_2020_113994 crossref_primary_10_1007_s13665_015_0108_6 crossref_primary_10_4187_respcare_09581 crossref_primary_10_1186_s12871_025_02933_2 crossref_primary_10_1080_09593985_2018_1430195 crossref_primary_10_17116_anaesthesiology20220116 crossref_primary_10_1152_japplphysiol_00835_2009 crossref_primary_10_1007_s00330_016_4205_x crossref_primary_10_1007_s40140_024_00648_7 crossref_primary_10_1513_AnnalsATS_201607_529ED crossref_primary_10_35366_117784 crossref_primary_10_1097_MCO_0b013e32833e3453 crossref_primary_10_1016_j_jtcvs_2021_07_028 crossref_primary_10_1148_radiol_2020191060 crossref_primary_10_1007_s40675_016_0035_2 crossref_primary_10_1111_j_2042_3306_2010_00304_x crossref_primary_10_1016_j_arbres_2023_05_006 crossref_primary_10_1183_23120541_00336_2020 crossref_primary_10_1016_j_disamonth_2017_04_003 crossref_primary_10_3390_healthcare9111451 crossref_primary_10_1016_j_resp_2013_05_021 crossref_primary_10_4187_respcare_07777 crossref_primary_10_1007_s11695_021_05647_9 crossref_primary_10_1097_ALN_0000000000002662 crossref_primary_10_4187_respcare_05900 crossref_primary_10_1016_j_anai_2022_08_013 crossref_primary_10_1016_j_chest_2017_07_010 crossref_primary_10_1097_CCM_0000000000002460 crossref_primary_10_1513_AnnalsATS_201704_331RL crossref_primary_10_4187_respcare_08978 crossref_primary_10_1590_S1809_29502011000200004 crossref_primary_10_1016_j_ccm_2018_01_002 crossref_primary_10_1016_j_pratan_2019_10_007 crossref_primary_10_1152_japplphysiol_01339_2013 crossref_primary_10_1007_s12028_017_0380_0 crossref_primary_10_1097_ALN_0000000000002666 crossref_primary_10_1007_s11695_017_2794_3 crossref_primary_10_1097_CCM_0b013e31829ec862 crossref_primary_10_1016_j_amjmed_2016_09_029 crossref_primary_10_1016_j_chest_2022_04_002 crossref_primary_10_1042_BSR20210979 crossref_primary_10_1186_s41606_020_00045_z crossref_primary_10_1164_rccm_201909_1687OC crossref_primary_10_1186_s13054_019_2709_x crossref_primary_10_1378_chest_10_2582 crossref_primary_10_1038_oby_2012_120 crossref_primary_10_1007_s11695_016_2522_4 crossref_primary_10_1016_j_soard_2024_10_007 crossref_primary_10_1183_16000617_0186_2022 crossref_primary_10_1378_chest_11_0767 crossref_primary_10_1080_17476348_2024_2345684 crossref_primary_10_1016_j_ccc_2021_05_003 crossref_primary_10_4187_respcare_07425 crossref_primary_10_1016_j_chest_2021_01_055 crossref_primary_10_1007_s11894_021_00822_5 crossref_primary_10_1016_S0034_9356_11_70002_0 crossref_primary_10_1136_bcr_2023_257861 crossref_primary_10_1016_j_cardfail_2023_08_009 crossref_primary_10_1152_japplphysiol_01131_2010 crossref_primary_10_5005_jp_journals_10069_0020 |
Cites_doi | 10.1093/eurheartj/ehn573 10.1111/j.1464-5491.2004.01361.x 10.1378/chest.130.3.827 10.1152/jappl.1967.23.4.475 10.1046/j.1365-2796.1997.89104000.x 10.1111/j.1399-6576.1976.tb05036.x 10.1152/jappl.1998.85.4.1236 10.1152/jappl.1959.14.4.525 10.1152/jappl.1964.19.1.97 10.1152/jappl.1964.19.5.959 10.1152/jappl.1995.79.4.1199 10.1097/01.CCM.0000215515.49001.A2 10.1152/jappl.1960.15.3.377 10.1007/s00134-006-0349-5 10.1172/JCI104957 10.1016/0034-5687(79)90019-7 10.1152/jappl.1998.84.1.389 10.1152/jappl.1984.57.2.403 10.1023/A:1011491231934 10.1152/japplphysiol.00749.2006 10.1152/japplphysiol.00697.2005 10.1378/chest.109.1.144 10.1007/BF01711092 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Jan 2010 Copyright © 2010 the American Physiological Society 2010 |
Copyright_xml | – notice: Copyright American Physiological Society Jan 2010 – notice: Copyright © 2010 the American Physiological Society 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1152/japplphysiol.91356.2008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 218 |
ExternalDocumentID | PMC2885073 1935351951 19910329 10_1152_japplphysiol_91356_2008 jap_108_1_212 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL-52586 |
GroupedDBID | - 02 29J 2WC 4.4 53G 55 5VS 85S AALRV ABFLS ABOCM ABUFD ACGFS ACIWK ACPRK ADBBV ADBIT AEILP AENEX AEULQ AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS BAWUL C1A C2- CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 H~9 KQ8 L7B O0- OK1 P-O P2P PQEST PQQKQ RAP RHF RHI RPL SJN UHB UKR UPT WH7 WOQ X X7M YCJ --- -~X .55 .GJ 18M 1CY 39C 3O- 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ACBEA ACGFO ACKIV ACYGS ADFNX ADXHL AETEA AFOSN AGNAY AI. AIDAL AJUXI BKKCC BTFSW CITATION EMOBN ITBOX J5H MVM NEJ OHT P6G RPRKH TR2 VH1 W8F XOL XSW YBH YQJ YQT YWH ZXP ~02 CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c542t-8c47a2a83a9e59d6d66f374fcda50d2f320173dbf0c02c215a8c94c194559fa13 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Thu Aug 21 13:54:51 EDT 2025 Fri Jul 11 12:12:49 EDT 2025 Mon Jun 30 08:47:21 EDT 2025 Mon Jul 21 05:57:53 EDT 2025 Tue Jul 01 01:13:29 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 Tue Jan 05 17:54:00 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-8c47a2a83a9e59d6d66f374fcda50d2f320173dbf0c02c215a8c94c194559fa13 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2885073 |
PMID | 19910329 |
PQID | 222169013 |
PQPubID | 40905 |
PageCount | 7 |
ParticipantIDs | proquest_journals_222169013 crossref_citationtrail_10_1152_japplphysiol_91356_2008 crossref_primary_10_1152_japplphysiol_91356_2008 proquest_miscellaneous_733369767 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2885073 pubmed_primary_19910329 highwire_physiology_jap_108_1_212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationSeriesTitle | Pulmonary Physiology and Pathophysiology in Obesity |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2010 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B10 B11 B12 B13 B14 B15 B16 Smith JC (B17) 1986 Fry DL (B3) 1952; 40 B19 B1 B2 Steier J (B18) 2008; 177 B4 B5 B6 B7 B8 B9 16306256 - J Appl Physiol (1985). 2006 Mar;100(3):753-8 14104296 - J Appl Physiol. 1964 Jan;19:97-104 6053673 - J Appl Physiol. 1967 Oct;23(4):475-86 17110514 - J Appl Physiol (1985). 2007 Mar;102(3):841-6 12580216 - J Clin Monit Comput. 2000;16(5-6):329-35 12990893 - J Lab Clin Med. 1952 Nov;40(5):664-73 16967294 - Intensive Care Med. 2006 Nov;32(11):1722-32 14149924 - J Clin Invest. 1964 Apr;43:728-39 9451661 - J Appl Physiol (1985). 1998 Jan;84(1):389-95 441568 - Respir Physiol. 1979 Feb;36(2):121-9 14207752 - J Appl Physiol. 1964 Sep;19:959-66 6469810 - J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):403-7 8549177 - Chest. 1996 Jan;109(1):144-51 9042096 - J Intern Med. 1997 Jan;241(1):71-9 16540960 - Crit Care Med. 2006 May;34(5):1389-94 14425845 - J Appl Physiol. 1960 May;15:377-82 785930 - Acta Anaesthesiol Scand. 1976;20(3):248-54 9760311 - J Appl Physiol (1985). 1998 Oct;85(4):1236-43 16963682 - Chest. 2006 Sep;130(3):827-33 19136488 - Eur Heart J. 2009 Apr;30(7):850-6 8294633 - Intensive Care Med. 1993;19(8):478-80 8567562 - J Appl Physiol (1985). 1995 Oct;79(4):1199-205 15569138 - Diabet Med. 2004 Dec;21(12):1339-45 |
References_xml | – ident: B9 doi: 10.1093/eurheartj/ehn573 – ident: B22 doi: 10.1111/j.1464-5491.2004.01361.x – ident: B6 doi: 10.1378/chest.130.3.827 – ident: B23 doi: 10.1152/jappl.1967.23.4.475 – ident: B19 doi: 10.1046/j.1365-2796.1997.89104000.x – ident: B5 doi: 10.1111/j.1399-6576.1976.tb05036.x – ident: B12 doi: 10.1152/jappl.1998.85.4.1236 – ident: B7 doi: 10.1152/jappl.1959.14.4.525 – ident: B14 doi: 10.1152/jappl.1964.19.1.97 – volume: 40 start-page: 664 year: 1952 ident: B3 publication-title: J Lab Clin Med – ident: B15 doi: 10.1152/jappl.1964.19.5.959 – ident: B26 doi: 10.1152/jappl.1995.79.4.1199 – ident: B21 doi: 10.1097/01.CCM.0000215515.49001.A2 – ident: B11 doi: 10.1152/jappl.1960.15.3.377 – ident: B10 doi: 10.1007/s00134-006-0349-5 – ident: B16 doi: 10.1172/JCI104957 – ident: B2 doi: 10.1016/0034-5687(79)90019-7 – ident: B24 doi: 10.1152/jappl.1998.84.1.389 – volume: 177 start-page: A275 year: 2008 ident: B18 publication-title: Am J Respir Crit Care Med – ident: B20 doi: 10.1152/jappl.1984.57.2.403 – ident: B4 doi: 10.1023/A:1011491231934 – ident: B8 doi: 10.1152/japplphysiol.00749.2006 – ident: B25 doi: 10.1152/japplphysiol.00697.2005 – start-page: 429 volume-title: Handbook of Physiology. The Respiratory System. Mechanics of Breathing year: 1986 ident: B17 – ident: B13 doi: 10.1378/chest.109.1.144 – ident: B1 doi: 10.1007/BF01711092 – reference: 15569138 - Diabet Med. 2004 Dec;21(12):1339-45 – reference: 16967294 - Intensive Care Med. 2006 Nov;32(11):1722-32 – reference: 16540960 - Crit Care Med. 2006 May;34(5):1389-94 – reference: 16306256 - J Appl Physiol (1985). 2006 Mar;100(3):753-8 – reference: 14149924 - J Clin Invest. 1964 Apr;43:728-39 – reference: 9451661 - J Appl Physiol (1985). 1998 Jan;84(1):389-95 – reference: 14104296 - J Appl Physiol. 1964 Jan;19:97-104 – reference: 785930 - Acta Anaesthesiol Scand. 1976;20(3):248-54 – reference: 17110514 - J Appl Physiol (1985). 2007 Mar;102(3):841-6 – reference: 19136488 - Eur Heart J. 2009 Apr;30(7):850-6 – reference: 9760311 - J Appl Physiol (1985). 1998 Oct;85(4):1236-43 – reference: 6469810 - J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):403-7 – reference: 8567562 - J Appl Physiol (1985). 1995 Oct;79(4):1199-205 – reference: 8549177 - Chest. 1996 Jan;109(1):144-51 – reference: 12990893 - J Lab Clin Med. 1952 Nov;40(5):664-73 – reference: 9042096 - J Intern Med. 1997 Jan;241(1):71-9 – reference: 6053673 - J Appl Physiol. 1967 Oct;23(4):475-86 – reference: 14425845 - J Appl Physiol. 1960 May;15:377-82 – reference: 16963682 - Chest. 2006 Sep;130(3):827-33 – reference: 12580216 - J Clin Monit Comput. 2000;16(5-6):329-35 – reference: 441568 - Respir Physiol. 1979 Feb;36(2):121-9 – reference: 8294633 - Intensive Care Med. 1993;19(8):478-80 – reference: 14207752 - J Appl Physiol. 1964 Sep;19:959-66 |
SSID | ssj0014451 |
Score | 2.43396 |
Snippet | Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
Submitted 10 October 2008
; accepted in... To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index... To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index... To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P...) in severe obesity, we studied 51 obese subjects (body mass index =... To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 212 |
SubjectTerms | Adult Aged Comparative analysis Esophagus - physiopathology Female Highlighted Topic Humans Lung - physiopathology Lung Compliance Lung diseases Male Medical instruments Middle Aged Obesity Obesity, Morbid - physiopathology Pleural Cavity - physiopathology Pressure Pulmonary Gas Exchange Respiration Respiratory Mechanics Respiratory system Young Adult |
Title | Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity |
URI | http://jap.physiology.org/cgi/content/abstract/108/1/212 https://www.ncbi.nlm.nih.gov/pubmed/19910329 https://www.proquest.com/docview/222169013 https://www.proquest.com/docview/733369767 https://pubmed.ncbi.nlm.nih.gov/PMC2885073 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuCFoeoVAZCXGJsiS28zq2FWgLtALUit4ix0nUldpstd090J_FL2TGjyTbh0q5RJGdWEnmy3jG83mGkPeJlEkF02zAOVeBiEEPyipJgoSVNVj3mWQ6z-z-QTI5El-O4-PR6M-AtbRclGN1eeO-kv-RKrSBXHGX7D0k2w0KDXAO8oUjSBiO_yTjn4M4OdbYmE9t4e-28nHfuERz8vy01qk1dCMWLQANgtuvtJ8913ws_2w2L6eVPzNVAm4xWKU1WPViiEndhFme8iweLCdgvsVLk5fgAGs-9AwdWxNA08pwX7u_M-4CIG6PiOF5-3tdzzfNDxzQ0fzJeLhQoflubqHCcTnDANwTM7_WVt-CLxwl9jKnkMPsGvKcemWDmZoZzX19EoiZLj4AX8V-kXEe8VgTUrJ-3nOx_ivTYUdS1O5RzIrhQIUeSNfufEAeMnBNULd-_dFHrjDhm1lTNi9rOYUw0MdbnmjVInJZqm_yeK4SdweW0OFT8sQigm4bPD4jo7pdJxvbLeDw7Df9QL93-Fgnj_Ytd2OD_BqglQ7QSgGY1KGVWrSaxg6ttEMrnbbUoJVatD4nR58_He5OAlvWI1CxYIsgUyKVTGZc5nWcVwmohoanolGVjMOKNRzAk_KqbEIVMgUmqcxULlSUC_B-GxnxF2StBdC-IpSVGUYHU1AsSvBGlpVq0MYWQtRodnkkcZ-2UDbnPZZeOS3uEK5Hwu7Gc5P25e5b3jnZFf2PiFdjEt4iKgC8Htl0Qi2sHrkowELHWHXEPUK7XlDyGLmTbT1bXhQpaNIEHIfUIy8NAvqnAgcv5Cz3SLqCje4CzB-_2tNOT3QeeZZl4A3y1_d_103yuP_D35C1xXxZvwXjfFFu6b_hLyw96zE |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiratory+restriction+and+elevated+pleural+and+esophageal+pressures+in+morbid+obesity&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Behazin%2C+Negin&rft.au=Jones%2C+Stephanie+B.&rft.au=Cohen%2C+Robert+I.&rft.au=Loring%2C+Stephen+H.&rft.date=2010-01-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=108&rft.issue=1&rft.spage=212&rft.epage=218&rft_id=info:doi/10.1152%2Fjapplphysiol.91356.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_91356_2008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |