Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity

Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts Submitted 10 October 2008 ; accepted in final form 11 November 2009 To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity,...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 108; no. 1; pp. 212 - 218
Main Authors Behazin, Negin, Jones, Stephanie B, Cohen, Robert I, Loring, Stephen H
Format Journal Article
LanguageEnglish
Published United States Am Physiological Soc 01.01.2010
American Physiological Society
SeriesPulmonary Physiology and Pathophysiology in Obesity
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts Submitted 10 October 2008 ; accepted in final form 11 November 2009 To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index = 38–80.7 kg/m 2 ) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P Es , P Ga ) using a balloon-catheter, airway pressure (P AO ), flow, and volume. We compared P Es to another estimate of P Pl based on P AO and flow. Reasoning that the lungs would not inflate until P AO exceeded alveolar and pleural pressures (P AO > P Alv > P Pl ), we disconnected subjects from the ventilator for 10–15 s to allow them to reach relaxation volume (V Rel ) and then slowly raised P AO until lung volume increased by 10 ml, indicating the "threshold P AO " (P AO-Thr ) for inflation, which we took to be an estimate of the lowest P Alv or P Pl to be found in the chest at V Rel . P AO-Thr ranged from 0.6 to 14.0 cmH 2 O in obese and 0.2 to 0.9 cmH 2 O in control subjects. P Es at V Rel was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH 2 O, means ± SD; P = 0.0002) and correlated with P AO-Thr ( R 2 = 0.16, P = 0.0015). Respiratory system compliance (C RS ) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH 2 O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH 2 O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH 2 O). We conclude that many severely obese supine subjects at relaxation volume have positive P pl throughout the chest. High P Es suggests high P Pl in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. esophageal pressure; compliance; elastance; gastric pressure; pressure-volume curve Address for reprint requests and other correspondence: S. H. Loring, Dept. of Anesthesia, Critical Care and Pain Medicine, Dana 715, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (e-mail sloring{at}bidmc.harvard.edu ).
AbstractList To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m(2)) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P(Es), P(Ga)) using a balloon-catheter, airway pressure (P(AO)), flow, and volume. We compared P(Es) to another estimate of P(Pl) based on P(AO) and flow. Reasoning that the lungs would not inflate until P(AO) exceeded alveolar and pleural pressures (P(AO) > P(Alv) > P(Pl)), we disconnected subjects from the ventilator for 10-15 s to allow them to reach relaxation volume (V(Rel)) and then slowly raised P(AO) until lung volume increased by 10 ml, indicating the "threshold P(AO)" (P(AO-Thr)) for inflation, which we took to be an estimate of the lowest P(Alv) or P(Pl) to be found in the chest at V(Rel). P(AO-Thr) ranged from 0.6 to 14.0 cmH2O in obese and 0.2 to 0.9 cmH2O in control subjects. P(Es) at V(Rel) was higher in obese than control subjects (12.5 +/- 3.9 vs. 6.9 +/- 3.1 cmH2O, means +/- SD; P = 0.0002) and correlated with P(AO-Thr) (R(2) = 0.16, P = 0.0015). Respiratory system compliance (C(RS)) was lower in obese than control (0.032 +/- 0.008 vs. 0.053 +/- 0.007 l/cmH2O) due principally to lower lung compliance (0.043 +/- 0.016 vs. 0.084 +/- 0.029 l/cmH2O) rather than chest wall compliance (obese 0.195 +/- 0.109, control 0.223 +/- 0.132 l/cmH2O). We conclude that many severely obese supine subjects at relaxation volume have positive P(pl) throughout the chest. High P(Es) suggests high P(Pl) in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes.To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m(2)) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P(Es), P(Ga)) using a balloon-catheter, airway pressure (P(AO)), flow, and volume. We compared P(Es) to another estimate of P(Pl) based on P(AO) and flow. Reasoning that the lungs would not inflate until P(AO) exceeded alveolar and pleural pressures (P(AO) > P(Alv) > P(Pl)), we disconnected subjects from the ventilator for 10-15 s to allow them to reach relaxation volume (V(Rel)) and then slowly raised P(AO) until lung volume increased by 10 ml, indicating the "threshold P(AO)" (P(AO-Thr)) for inflation, which we took to be an estimate of the lowest P(Alv) or P(Pl) to be found in the chest at V(Rel). P(AO-Thr) ranged from 0.6 to 14.0 cmH2O in obese and 0.2 to 0.9 cmH2O in control subjects. P(Es) at V(Rel) was higher in obese than control subjects (12.5 +/- 3.9 vs. 6.9 +/- 3.1 cmH2O, means +/- SD; P = 0.0002) and correlated with P(AO-Thr) (R(2) = 0.16, P = 0.0015). Respiratory system compliance (C(RS)) was lower in obese than control (0.032 +/- 0.008 vs. 0.053 +/- 0.007 l/cmH2O) due principally to lower lung compliance (0.043 +/- 0.016 vs. 0.084 +/- 0.029 l/cmH2O) rather than chest wall compliance (obese 0.195 +/- 0.109, control 0.223 +/- 0.132 l/cmH2O). We conclude that many severely obese supine subjects at relaxation volume have positive P(pl) throughout the chest. High P(Es) suggests high P(Pl) in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes.
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index = 38–80.7 kg/m 2 ) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P Es , P Ga ) using a balloon-catheter, airway pressure (P AO ), flow, and volume. We compared P Es to another estimate of P Pl based on P AO and flow. Reasoning that the lungs would not inflate until P AO exceeded alveolar and pleural pressures (P AO > P Alv > P Pl ), we disconnected subjects from the ventilator for 10–15 s to allow them to reach relaxation volume (V Rel ) and then slowly raised P AO until lung volume increased by 10 ml, indicating the “threshold P AO ” (P AO-Thr ) for inflation, which we took to be an estimate of the lowest P Alv or P Pl to be found in the chest at V Rel . P AO-Thr ranged from 0.6 to 14.0 cmH 2 O in obese and 0.2 to 0.9 cmH 2 O in control subjects. P Es at V Rel was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH 2 O, means ± SD; P = 0.0002) and correlated with P AO-Thr ( R 2 = 0.16, P = 0.0015). Respiratory system compliance (C RS ) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH 2 O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH 2 O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH 2 O). We conclude that many severely obese supine subjects at relaxation volume have positive P pl throughout the chest. High P Es suggests high P Pl in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes.
Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts Submitted 10 October 2008 ; accepted in final form 11 November 2009 To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index = 38–80.7 kg/m 2 ) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P Es , P Ga ) using a balloon-catheter, airway pressure (P AO ), flow, and volume. We compared P Es to another estimate of P Pl based on P AO and flow. Reasoning that the lungs would not inflate until P AO exceeded alveolar and pleural pressures (P AO > P Alv > P Pl ), we disconnected subjects from the ventilator for 10–15 s to allow them to reach relaxation volume (V Rel ) and then slowly raised P AO until lung volume increased by 10 ml, indicating the "threshold P AO " (P AO-Thr ) for inflation, which we took to be an estimate of the lowest P Alv or P Pl to be found in the chest at V Rel . P AO-Thr ranged from 0.6 to 14.0 cmH 2 O in obese and 0.2 to 0.9 cmH 2 O in control subjects. P Es at V Rel was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH 2 O, means ± SD; P = 0.0002) and correlated with P AO-Thr ( R 2 = 0.16, P = 0.0015). Respiratory system compliance (C RS ) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH 2 O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH 2 O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH 2 O). We conclude that many severely obese supine subjects at relaxation volume have positive P pl throughout the chest. High P Es suggests high P Pl in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. esophageal pressure; compliance; elastance; gastric pressure; pressure-volume curve Address for reprint requests and other correspondence: S. H. Loring, Dept. of Anesthesia, Critical Care and Pain Medicine, Dana 715, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (e-mail sloring{at}bidmc.harvard.edu ).
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index = 38–80.7 kg/m 2 ) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P Es , P Ga ) using a balloon-catheter, airway pressure (P AO ), flow, and volume. We compared P Es to another estimate of P Pl based on P AO and flow. Reasoning that the lungs would not inflate until P AO exceeded alveolar and pleural pressures (P AO > P Alv > P Pl ), we disconnected subjects from the ventilator for 10–15 s to allow them to reach relaxation volume (V Rel ) and then slowly raised P AO until lung volume increased by 10 ml, indicating the “threshold P AO ” (P AO-Thr ) for inflation, which we took to be an estimate of the lowest P Alv or P Pl to be found in the chest at V Rel . P AO-Thr ranged from 0.6 to 14.0 cmH 2 O in obese and 0.2 to 0.9 cmH 2 O in control subjects. P Es at V Rel was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH 2 O, means ± SD; P = 0.0002) and correlated with P AO-Thr ( R 2 = 0.16, P = 0.0015). Respiratory system compliance (C RS ) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH 2 O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH 2 O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH 2 O). We conclude that many severely obese supine subjects at relaxation volume have positive P pl throughout the chest. High P Es suggests high P Pl in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes.
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P...) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m...) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P..., P...) using a balloon-catheter, airway pressure (P...), flow, and volume. We compared P... to another estimate of P... based on P... and flow. Reasoning that the lungs would not inflate until P... exceeded alveolar and pleural pressures (P... > P... > P...), we disconnected subjects from the ventilator for 10-15 s to allow them to reach relaxation volume (V...) and then slowly raised P... until lung volume increased by 10 ml, indicating the "threshold P..." (P...) for inflation, which we took to be an estimate of the lowest P... or P... to be found in the chest at V... P... ranged from 0.6 to 14.0 cmH2O in obese and 0.2 to 0.9 cmH2O in control subjects. PEs at V... was higher in obese than control subjects (12.5 ± 3.9 vs. 6.9 ± 3.1 cmH2O, means ± SD; P = 0.0002) and correlated with PAO-Thr (R... = 0.16, P = 0.0015). Respiratory system compliance (CRS) was lower in obese than control (0.032 ± 0.008 vs. 0.053 ± 0.007 l/cmH2O) due principally to lower lung compliance (0.043 ± 0.016 vs. 0.084 ± 0.029 l/cmH2O) rather than chest wall compliance (obese 0.195 ± 0.109, control 0.223 ± 0.132 l/cmH2O). We conclude that many severely obese supine subjects at relaxation volume have positive P... throughout the chest. High P... suggests high P... in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes. (ProQuest: ... denotes formulae/symbols omitted.)
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index = 38-80.7 kg/m(2)) and 10 nonobese subjects, both groups without lung disease, anesthetized, and paralyzed for surgery. We measured esophageal and gastric pressures (P(Es), P(Ga)) using a balloon-catheter, airway pressure (P(AO)), flow, and volume. We compared P(Es) to another estimate of P(Pl) based on P(AO) and flow. Reasoning that the lungs would not inflate until P(AO) exceeded alveolar and pleural pressures (P(AO) > P(Alv) > P(Pl)), we disconnected subjects from the ventilator for 10-15 s to allow them to reach relaxation volume (V(Rel)) and then slowly raised P(AO) until lung volume increased by 10 ml, indicating the "threshold P(AO)" (P(AO-Thr)) for inflation, which we took to be an estimate of the lowest P(Alv) or P(Pl) to be found in the chest at V(Rel). P(AO-Thr) ranged from 0.6 to 14.0 cmH2O in obese and 0.2 to 0.9 cmH2O in control subjects. P(Es) at V(Rel) was higher in obese than control subjects (12.5 +/- 3.9 vs. 6.9 +/- 3.1 cmH2O, means +/- SD; P = 0.0002) and correlated with P(AO-Thr) (R(2) = 0.16, P = 0.0015). Respiratory system compliance (C(RS)) was lower in obese than control (0.032 +/- 0.008 vs. 0.053 +/- 0.007 l/cmH2O) due principally to lower lung compliance (0.043 +/- 0.016 vs. 0.084 +/- 0.029 l/cmH2O) rather than chest wall compliance (obese 0.195 +/- 0.109, control 0.223 +/- 0.132 l/cmH2O). We conclude that many severely obese supine subjects at relaxation volume have positive P(pl) throughout the chest. High P(Es) suggests high P(Pl) in such individuals. Lung and respiratory system compliances are low because of breathing at abnormally low lung volumes.
Author Cohen, Robert I
Behazin, Negin
Loring, Stephen H
Jones, Stephanie B
Author_xml – sequence: 1
  fullname: Behazin, Negin
– sequence: 2
  fullname: Jones, Stephanie B
– sequence: 3
  fullname: Cohen, Robert I
– sequence: 4
  fullname: Loring, Stephen H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19910329$$D View this record in MEDLINE/PubMed
BookMark eNqFUc1u3CAYRFWiZpP2FVqrl_biDR8YYw6NVEX9iRQpUtWqR8RivGbFggt2Kr99cXcbpbn0AoJvZhhmztGJD94g9BrwGoCRy50aBjf0c7LBrQVQVq8Jxs0ztMpTUkKN4QStGs5wyVnDz9B5SjuMoaoYPEdnIARgSsQK_fhq0mCjGkOci2jSGK0ebfCF8m1hnLlXo2mLwZkpKne4TGHo1dbk45AJacpLYX2xD3Fj2yJsTLLj_AKddsol8_K4X6Dvnz5-u_5S3t59vrn-cFtqVpGxbHTFFVENVcIw0dZtXXeUV51uFcMt6SjBwGm76bDGRBNgqtGi0iAqxkSngF6gq4PuMG32ptXGj9moHKLdqzjLoKz8d-JtL7fhXpKmYZjTLPD2KBDDzykHIPc2aeOc8iZMSWYIrQWveUa-eYLchSn6_DtJCIFaYFjkXj3282Dkb-IZ8P4A0DGkFE0ntR3VEnm2Z50ELJeG5eOG5Z-G5dJw5vMn_Icn_st8d2D2dtv_stHIIyhs54WUBRoJkgChvwHonsDT
CitedBy_id crossref_primary_10_1007_s10877_019_00405_w
crossref_primary_10_1016_j_chest_2023_07_008
crossref_primary_10_1164_rccm_202009_3539OC
crossref_primary_10_1513_AnnalsATS_202303_216OC
crossref_primary_10_59598_ME_2305_6045_2024_113_4_29_42
crossref_primary_10_1002_oto2_70033
crossref_primary_10_1007_s11818_012_0573_x
crossref_primary_10_1164_rccm_201512_2448CP
crossref_primary_10_1016_j_soard_2014_11_021
crossref_primary_10_21320_1818_474X_2021_3_27_46
crossref_primary_10_1186_s13054_023_04453_2
crossref_primary_10_1111_j_1440_1843_2011_02106_x
crossref_primary_10_1016_j_hfc_2024_08_003
crossref_primary_10_1513_AnnalsATS_202207_640OC
crossref_primary_10_1007_s00134_024_07474_9
crossref_primary_10_1111_resp_13729
crossref_primary_10_1007_s00134_015_3685_5
crossref_primary_10_3390_diagnostics14111139
crossref_primary_10_1016_j_jcrc_2021_02_005
crossref_primary_10_1111_ner_12630
crossref_primary_10_1152_japplphysiol_00838_2010
crossref_primary_10_1080_17476348_2019_1599285
crossref_primary_10_1111_j_1467_789X_2012_01008_x
crossref_primary_10_1186_s13054_019_2374_0
crossref_primary_10_1186_s12890_016_0284_3
crossref_primary_10_1016_j_cjca_2015_06_031
crossref_primary_10_1016_j_jopan_2014_03_012
crossref_primary_10_1097_ALN_0000000000002638
crossref_primary_10_4037_ccn2016917
crossref_primary_10_1097_MAT_0000000000002068
crossref_primary_10_1177_1179548418801004
crossref_primary_10_1097_ALN_0000000000003442
crossref_primary_10_1111_j_1440_1843_2011_02080_x
crossref_primary_10_1164_rccm_201708_1629CI
crossref_primary_10_1080_21548331_2016_1179558
crossref_primary_10_1007_s11325_015_1185_z
crossref_primary_10_1097_CCE_0000000000000811
crossref_primary_10_1007_s40140_024_00646_9
crossref_primary_10_1016_j_jevs_2011_08_017
crossref_primary_10_3390_jcm11061700
crossref_primary_10_1213_XAA_0000000000000408
crossref_primary_10_1002_ppul_24990
crossref_primary_10_1016_j_bja_2018_02_064
crossref_primary_10_1097_ALN_0000000000003444
crossref_primary_10_1080_17476348_2017_1322510
crossref_primary_10_1097_MCP_0000000000000754
crossref_primary_10_7570_jomes20056
crossref_primary_10_1016_j_chest_2021_05_057
crossref_primary_10_1007_s10877_023_01107_0
crossref_primary_10_1007_s11010_022_04610_1
crossref_primary_10_1016_j_resp_2013_02_006
crossref_primary_10_1097_EJA_0000000000001052
crossref_primary_10_1186_s12890_015_0063_6
crossref_primary_10_15360_1813_9779_2022_6_50_58
crossref_primary_10_2147_DMSO_S441762
crossref_primary_10_18093_0869_0189_2022_32_3_295_355
crossref_primary_10_1111_j_1399_6576_2010_02305_x
crossref_primary_10_1016_j_ccc_2015_03_013
crossref_primary_10_1007_s00063_017_0372_z
crossref_primary_10_1097_ALN_0000000000003154
crossref_primary_10_1111_all_12525
crossref_primary_10_1513_AnnalsATS_201312_465OI
crossref_primary_10_1016_j_resp_2013_04_020
crossref_primary_10_1016_j_iac_2018_01_006
crossref_primary_10_1097_ALN_0000000000004009
crossref_primary_10_2478_inmed_2021_0150
crossref_primary_10_1152_japplphysiol_00571_2016
crossref_primary_10_2147_DMSO_S456336
crossref_primary_10_1213_ANE_0000000000002155
crossref_primary_10_1080_17476348_2018_1506331
crossref_primary_10_1016_j_rmr_2019_07_009
crossref_primary_10_1152_japplphysiol_00867_2020
crossref_primary_10_1164_rccm_202102_0376RR
crossref_primary_10_1177_0885066620969132
crossref_primary_10_1378_chest_11_1389
crossref_primary_10_3390_jpm12030333
crossref_primary_10_3109_02770903_2010_534220
crossref_primary_10_1007_s00423_022_02549_x
crossref_primary_10_1097_ALN_0000000000003943
crossref_primary_10_1016_j_bja_2020_06_044
crossref_primary_10_1097_ALN_0000000000002731
crossref_primary_10_1007_s13300_022_01311_2
crossref_primary_10_1016_j_ccc_2010_06_008
crossref_primary_10_1016_j_acci_2020_03_001
crossref_primary_10_1186_s13063_018_2777_2
crossref_primary_10_4081_ecj_2020_8911
crossref_primary_10_1183_09031936_00209313
crossref_primary_10_17116_anaesthesiology20200215
crossref_primary_10_1513_AnnalsATS_201404_159FR
crossref_primary_10_1016_j_ccm_2013_05_003
crossref_primary_10_1097_MCC_0b013e328344dda6
crossref_primary_10_12688_f1000research_20576_1
crossref_primary_10_1016_j_chest_2019_05_029
crossref_primary_10_1016_j_chest_2024_07_171
crossref_primary_10_1097_MCC_0000000000001120
crossref_primary_10_1152_japplphysiol_00217_2011
crossref_primary_10_1016_j_chest_2018_08_1033
crossref_primary_10_1016_j_chest_2021_08_001
crossref_primary_10_3389_fphys_2021_815601
crossref_primary_10_1136_thoraxjnl_2014_205148
crossref_primary_10_1097_MCC_0000000000001122
crossref_primary_10_31857_S0301179824040063
crossref_primary_10_1093_bja_aev378
crossref_primary_10_1097_MD_0000000000028903
crossref_primary_10_1164_rccm_201701_0028LE
crossref_primary_10_1186_s12871_023_02337_0
crossref_primary_10_1016_j_soard_2017_09_533
crossref_primary_10_1152_japplphysiol_00552_2014
crossref_primary_10_1016_j_radi_2014_12_013
crossref_primary_10_1152_japplphysiol_00482_2019
crossref_primary_10_1164_rccm_201008_1280CI
crossref_primary_10_2215_CJN_06930714
crossref_primary_10_1186_s13054_024_05097_6
crossref_primary_10_1371_journal_pone_0311619
crossref_primary_10_3109_15412555_2013_781149
crossref_primary_10_1097_CCM_0b013e3182741790
crossref_primary_10_21320_1818_474X_2023_1_145_148
crossref_primary_10_1016_j_bcp_2020_113994
crossref_primary_10_1007_s13665_015_0108_6
crossref_primary_10_4187_respcare_09581
crossref_primary_10_1186_s12871_025_02933_2
crossref_primary_10_1080_09593985_2018_1430195
crossref_primary_10_17116_anaesthesiology20220116
crossref_primary_10_1152_japplphysiol_00835_2009
crossref_primary_10_1007_s00330_016_4205_x
crossref_primary_10_1007_s40140_024_00648_7
crossref_primary_10_1513_AnnalsATS_201607_529ED
crossref_primary_10_35366_117784
crossref_primary_10_1097_MCO_0b013e32833e3453
crossref_primary_10_1016_j_jtcvs_2021_07_028
crossref_primary_10_1148_radiol_2020191060
crossref_primary_10_1007_s40675_016_0035_2
crossref_primary_10_1111_j_2042_3306_2010_00304_x
crossref_primary_10_1016_j_arbres_2023_05_006
crossref_primary_10_1183_23120541_00336_2020
crossref_primary_10_1016_j_disamonth_2017_04_003
crossref_primary_10_3390_healthcare9111451
crossref_primary_10_1016_j_resp_2013_05_021
crossref_primary_10_4187_respcare_07777
crossref_primary_10_1007_s11695_021_05647_9
crossref_primary_10_1097_ALN_0000000000002662
crossref_primary_10_4187_respcare_05900
crossref_primary_10_1016_j_anai_2022_08_013
crossref_primary_10_1016_j_chest_2017_07_010
crossref_primary_10_1097_CCM_0000000000002460
crossref_primary_10_1513_AnnalsATS_201704_331RL
crossref_primary_10_4187_respcare_08978
crossref_primary_10_1590_S1809_29502011000200004
crossref_primary_10_1016_j_ccm_2018_01_002
crossref_primary_10_1016_j_pratan_2019_10_007
crossref_primary_10_1152_japplphysiol_01339_2013
crossref_primary_10_1007_s12028_017_0380_0
crossref_primary_10_1097_ALN_0000000000002666
crossref_primary_10_1007_s11695_017_2794_3
crossref_primary_10_1097_CCM_0b013e31829ec862
crossref_primary_10_1016_j_amjmed_2016_09_029
crossref_primary_10_1016_j_chest_2022_04_002
crossref_primary_10_1042_BSR20210979
crossref_primary_10_1186_s41606_020_00045_z
crossref_primary_10_1164_rccm_201909_1687OC
crossref_primary_10_1186_s13054_019_2709_x
crossref_primary_10_1378_chest_10_2582
crossref_primary_10_1038_oby_2012_120
crossref_primary_10_1007_s11695_016_2522_4
crossref_primary_10_1016_j_soard_2024_10_007
crossref_primary_10_1183_16000617_0186_2022
crossref_primary_10_1378_chest_11_0767
crossref_primary_10_1080_17476348_2024_2345684
crossref_primary_10_1016_j_ccc_2021_05_003
crossref_primary_10_4187_respcare_07425
crossref_primary_10_1016_j_chest_2021_01_055
crossref_primary_10_1007_s11894_021_00822_5
crossref_primary_10_1016_S0034_9356_11_70002_0
crossref_primary_10_1136_bcr_2023_257861
crossref_primary_10_1016_j_cardfail_2023_08_009
crossref_primary_10_1152_japplphysiol_01131_2010
crossref_primary_10_5005_jp_journals_10069_0020
Cites_doi 10.1093/eurheartj/ehn573
10.1111/j.1464-5491.2004.01361.x
10.1378/chest.130.3.827
10.1152/jappl.1967.23.4.475
10.1046/j.1365-2796.1997.89104000.x
10.1111/j.1399-6576.1976.tb05036.x
10.1152/jappl.1998.85.4.1236
10.1152/jappl.1959.14.4.525
10.1152/jappl.1964.19.1.97
10.1152/jappl.1964.19.5.959
10.1152/jappl.1995.79.4.1199
10.1097/01.CCM.0000215515.49001.A2
10.1152/jappl.1960.15.3.377
10.1007/s00134-006-0349-5
10.1172/JCI104957
10.1016/0034-5687(79)90019-7
10.1152/jappl.1998.84.1.389
10.1152/jappl.1984.57.2.403
10.1023/A:1011491231934
10.1152/japplphysiol.00749.2006
10.1152/japplphysiol.00697.2005
10.1378/chest.109.1.144
10.1007/BF01711092
ContentType Journal Article
Copyright Copyright American Physiological Society Jan 2010
Copyright © 2010 the American Physiological Society 2010
Copyright_xml – notice: Copyright American Physiological Society Jan 2010
– notice: Copyright © 2010 the American Physiological Society 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1152/japplphysiol.91356.2008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 218
ExternalDocumentID PMC2885073
1935351951
19910329
10_1152_japplphysiol_91356_2008
jap_108_1_212
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL-52586
GroupedDBID -
02
29J
2WC
4.4
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
C2-
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
H~9
KQ8
L7B
O0-
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
WH7
WOQ
X
X7M
YCJ
---
-~X
.55
.GJ
18M
1CY
39C
3O-
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ACBEA
ACGFO
ACKIV
ACYGS
ADFNX
ADXHL
AETEA
AFOSN
AGNAY
AI.
AIDAL
AJUXI
BKKCC
BTFSW
CITATION
EMOBN
ITBOX
J5H
MVM
NEJ
OHT
P6G
RPRKH
TR2
VH1
W8F
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c542t-8c47a2a83a9e59d6d66f374fcda50d2f320173dbf0c02c215a8c94c194559fa13
ISSN 8750-7587
1522-1601
IngestDate Thu Aug 21 13:54:51 EDT 2025
Fri Jul 11 12:12:49 EDT 2025
Mon Jun 30 08:47:21 EDT 2025
Mon Jul 21 05:57:53 EDT 2025
Tue Jul 01 01:13:29 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
Tue Jan 05 17:54:00 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-8c47a2a83a9e59d6d66f374fcda50d2f320173dbf0c02c215a8c94c194559fa13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2885073
PMID 19910329
PQID 222169013
PQPubID 40905
PageCount 7
ParticipantIDs proquest_journals_222169013
crossref_citationtrail_10_1152_japplphysiol_91356_2008
crossref_primary_10_1152_japplphysiol_91356_2008
proquest_miscellaneous_733369767
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2885073
pubmed_primary_19910329
highwire_physiology_jap_108_1_212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationSeriesTitle Pulmonary Physiology and Pathophysiology in Obesity
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2010
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B10
B11
B12
B13
B14
B15
B16
Smith JC (B17) 1986
Fry DL (B3) 1952; 40
B19
B1
B2
Steier J (B18) 2008; 177
B4
B5
B6
B7
B8
B9
16306256 - J Appl Physiol (1985). 2006 Mar;100(3):753-8
14104296 - J Appl Physiol. 1964 Jan;19:97-104
6053673 - J Appl Physiol. 1967 Oct;23(4):475-86
17110514 - J Appl Physiol (1985). 2007 Mar;102(3):841-6
12580216 - J Clin Monit Comput. 2000;16(5-6):329-35
12990893 - J Lab Clin Med. 1952 Nov;40(5):664-73
16967294 - Intensive Care Med. 2006 Nov;32(11):1722-32
14149924 - J Clin Invest. 1964 Apr;43:728-39
9451661 - J Appl Physiol (1985). 1998 Jan;84(1):389-95
441568 - Respir Physiol. 1979 Feb;36(2):121-9
14207752 - J Appl Physiol. 1964 Sep;19:959-66
6469810 - J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):403-7
8549177 - Chest. 1996 Jan;109(1):144-51
9042096 - J Intern Med. 1997 Jan;241(1):71-9
16540960 - Crit Care Med. 2006 May;34(5):1389-94
14425845 - J Appl Physiol. 1960 May;15:377-82
785930 - Acta Anaesthesiol Scand. 1976;20(3):248-54
9760311 - J Appl Physiol (1985). 1998 Oct;85(4):1236-43
16963682 - Chest. 2006 Sep;130(3):827-33
19136488 - Eur Heart J. 2009 Apr;30(7):850-6
8294633 - Intensive Care Med. 1993;19(8):478-80
8567562 - J Appl Physiol (1985). 1995 Oct;79(4):1199-205
15569138 - Diabet Med. 2004 Dec;21(12):1339-45
References_xml – ident: B9
  doi: 10.1093/eurheartj/ehn573
– ident: B22
  doi: 10.1111/j.1464-5491.2004.01361.x
– ident: B6
  doi: 10.1378/chest.130.3.827
– ident: B23
  doi: 10.1152/jappl.1967.23.4.475
– ident: B19
  doi: 10.1046/j.1365-2796.1997.89104000.x
– ident: B5
  doi: 10.1111/j.1399-6576.1976.tb05036.x
– ident: B12
  doi: 10.1152/jappl.1998.85.4.1236
– ident: B7
  doi: 10.1152/jappl.1959.14.4.525
– ident: B14
  doi: 10.1152/jappl.1964.19.1.97
– volume: 40
  start-page: 664
  year: 1952
  ident: B3
  publication-title: J Lab Clin Med
– ident: B15
  doi: 10.1152/jappl.1964.19.5.959
– ident: B26
  doi: 10.1152/jappl.1995.79.4.1199
– ident: B21
  doi: 10.1097/01.CCM.0000215515.49001.A2
– ident: B11
  doi: 10.1152/jappl.1960.15.3.377
– ident: B10
  doi: 10.1007/s00134-006-0349-5
– ident: B16
  doi: 10.1172/JCI104957
– ident: B2
  doi: 10.1016/0034-5687(79)90019-7
– ident: B24
  doi: 10.1152/jappl.1998.84.1.389
– volume: 177
  start-page: A275
  year: 2008
  ident: B18
  publication-title: Am J Respir Crit Care Med
– ident: B20
  doi: 10.1152/jappl.1984.57.2.403
– ident: B4
  doi: 10.1023/A:1011491231934
– ident: B8
  doi: 10.1152/japplphysiol.00749.2006
– ident: B25
  doi: 10.1152/japplphysiol.00697.2005
– start-page: 429
  volume-title: Handbook of Physiology. The Respiratory System. Mechanics of Breathing
  year: 1986
  ident: B17
– ident: B13
  doi: 10.1378/chest.109.1.144
– ident: B1
  doi: 10.1007/BF01711092
– reference: 15569138 - Diabet Med. 2004 Dec;21(12):1339-45
– reference: 16967294 - Intensive Care Med. 2006 Nov;32(11):1722-32
– reference: 16540960 - Crit Care Med. 2006 May;34(5):1389-94
– reference: 16306256 - J Appl Physiol (1985). 2006 Mar;100(3):753-8
– reference: 14149924 - J Clin Invest. 1964 Apr;43:728-39
– reference: 9451661 - J Appl Physiol (1985). 1998 Jan;84(1):389-95
– reference: 14104296 - J Appl Physiol. 1964 Jan;19:97-104
– reference: 785930 - Acta Anaesthesiol Scand. 1976;20(3):248-54
– reference: 17110514 - J Appl Physiol (1985). 2007 Mar;102(3):841-6
– reference: 19136488 - Eur Heart J. 2009 Apr;30(7):850-6
– reference: 9760311 - J Appl Physiol (1985). 1998 Oct;85(4):1236-43
– reference: 6469810 - J Appl Physiol Respir Environ Exerc Physiol. 1984 Aug;57(2):403-7
– reference: 8567562 - J Appl Physiol (1985). 1995 Oct;79(4):1199-205
– reference: 8549177 - Chest. 1996 Jan;109(1):144-51
– reference: 12990893 - J Lab Clin Med. 1952 Nov;40(5):664-73
– reference: 9042096 - J Intern Med. 1997 Jan;241(1):71-9
– reference: 6053673 - J Appl Physiol. 1967 Oct;23(4):475-86
– reference: 14425845 - J Appl Physiol. 1960 May;15:377-82
– reference: 16963682 - Chest. 2006 Sep;130(3):827-33
– reference: 12580216 - J Clin Monit Comput. 2000;16(5-6):329-35
– reference: 441568 - Respir Physiol. 1979 Feb;36(2):121-9
– reference: 8294633 - Intensive Care Med. 1993;19(8):478-80
– reference: 14207752 - J Appl Physiol. 1964 Sep;19:959-66
SSID ssj0014451
Score 2.43396
Snippet Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts Submitted 10 October 2008 ; accepted in...
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index...
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P(Pl)) in severe obesity, we studied 51 obese subjects (body mass index...
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P...) in severe obesity, we studied 51 obese subjects (body mass index =...
To explore mechanisms of restrictive respiratory physiology and high pleural pressure (P Pl ) in severe obesity, we studied 51 obese subjects (body mass index...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 212
SubjectTerms Adult
Aged
Comparative analysis
Esophagus - physiopathology
Female
Highlighted Topic
Humans
Lung - physiopathology
Lung Compliance
Lung diseases
Male
Medical instruments
Middle Aged
Obesity
Obesity, Morbid - physiopathology
Pleural Cavity - physiopathology
Pressure
Pulmonary Gas Exchange
Respiration
Respiratory Mechanics
Respiratory system
Young Adult
Title Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity
URI http://jap.physiology.org/cgi/content/abstract/108/1/212
https://www.ncbi.nlm.nih.gov/pubmed/19910329
https://www.proquest.com/docview/222169013
https://www.proquest.com/docview/733369767
https://pubmed.ncbi.nlm.nih.gov/PMC2885073
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuCFoeoVAZCXGJsiS28zq2FWgLtALUit4ix0nUldpstd090J_FL2TGjyTbh0q5RJGdWEnmy3jG83mGkPeJlEkF02zAOVeBiEEPyipJgoSVNVj3mWQ6z-z-QTI5El-O4-PR6M-AtbRclGN1eeO-kv-RKrSBXHGX7D0k2w0KDXAO8oUjSBiO_yTjn4M4OdbYmE9t4e-28nHfuERz8vy01qk1dCMWLQANgtuvtJ8913ws_2w2L6eVPzNVAm4xWKU1WPViiEndhFme8iweLCdgvsVLk5fgAGs-9AwdWxNA08pwX7u_M-4CIG6PiOF5-3tdzzfNDxzQ0fzJeLhQoflubqHCcTnDANwTM7_WVt-CLxwl9jKnkMPsGvKcemWDmZoZzX19EoiZLj4AX8V-kXEe8VgTUrJ-3nOx_ivTYUdS1O5RzIrhQIUeSNfufEAeMnBNULd-_dFHrjDhm1lTNi9rOYUw0MdbnmjVInJZqm_yeK4SdweW0OFT8sQigm4bPD4jo7pdJxvbLeDw7Df9QL93-Fgnj_Ytd2OD_BqglQ7QSgGY1KGVWrSaxg6ttEMrnbbUoJVatD4nR58_He5OAlvWI1CxYIsgUyKVTGZc5nWcVwmohoanolGVjMOKNRzAk_KqbEIVMgUmqcxULlSUC_B-GxnxF2StBdC-IpSVGUYHU1AsSvBGlpVq0MYWQtRodnkkcZ-2UDbnPZZeOS3uEK5Hwu7Gc5P25e5b3jnZFf2PiFdjEt4iKgC8Htl0Qi2sHrkowELHWHXEPUK7XlDyGLmTbT1bXhQpaNIEHIfUIy8NAvqnAgcv5Cz3SLqCje4CzB-_2tNOT3QeeZZl4A3y1_d_103yuP_D35C1xXxZvwXjfFFu6b_hLyw96zE
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiratory+restriction+and+elevated+pleural+and+esophageal+pressures+in+morbid+obesity&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Behazin%2C+Negin&rft.au=Jones%2C+Stephanie+B.&rft.au=Cohen%2C+Robert+I.&rft.au=Loring%2C+Stephen+H.&rft.date=2010-01-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=108&rft.issue=1&rft.spage=212&rft.epage=218&rft_id=info:doi/10.1152%2Fjapplphysiol.91356.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_91356_2008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon