Impact of soil treatment with Nitrilo Triacetic Acid (NTA) on Cd fractionation and microbial biomass in cultivated and uncultivated calcareous soil

Purpose The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated ( Zea   mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations re...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental health science and engineering Vol. 21; no. 2; pp. 319 - 332
Main Authors Mehrab, Narges, Chorom, Mostafa, Norouzi Masir, Mojtaba, Biswas, Jayanta Kumar, Fernandes de Souza, Marcella, Meers, Erik
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2023
BioMed Central Ltd
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated ( Zea   mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil–plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation. Methods The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg −1 soil) and three levels of NTA (0, 15, and 30 mmol L −1 ) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times. Results The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd 50 NTA 30 was 9.2 and 6.1 mg L −1 , respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd 25 NTA 30 was 5.7 and 3.1 mg L −1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd 25 NTA 30 in cultivated soil. In Cd 25 NTA 30 compared to Cd 25 NTA 0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg −1 ), and soil respiration (27.5 mg C-CO 2 kg −1 24 h −1 ) decreased, while metabolic quotient (qCO 2 , 0.05) and dissolved organic carbon (DOC, 20.0 mg L −1 ) increased. Moreover, the changes of Cd fractions in Cd 25 NTA 30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F 1 , 0.27 mg kg −1 ) and Fe/Mn-oxide-bounded Cd (F 4 , 0.15 mg kg −1 ) fractions increased, in contrast, carbonate-Cd (F 2 , 2.67 mg kg −1 ) and, organically bounded Cd (F 3 , 0.06 mg kg −1 ) fractions decreased. NTA had no significant effect on the residual fraction (F 5 ). Conclusion The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.
AbstractList The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (   L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil-plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation. The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg soil) and three levels of NTA (0, 15, and 30 mmol L ) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times. The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd NTA was 9.2 and 6.1 mg L , respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd NTA was 5.7 and 3.1 mg L respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd NTA in cultivated soil. In Cd NTA compared to Cd NTA in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg ), and soil respiration (27.5 mg C-CO kg 24 h ) decreased, while metabolic quotient (qCO , 0.05) and dissolved organic carbon (DOC, 20.0 mg L ) increased. Moreover, the changes of Cd fractions in Cd NTA in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F , 0.27 mg kg ) and Fe/Mn-oxide-bounded Cd (F , 0.15 mg kg ) fractions increased, in contrast, carbonate-Cd (F , 2.67 mg kg ) and, organically bounded Cd (F , 0.06 mg kg ) fractions decreased. NTA had no significant effect on the residual fraction (F ). The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.
The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (Zea mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil-plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation.PurposeThe aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (Zea mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil-plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation.The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg-1 soil) and three levels of NTA (0, 15, and 30 mmol L-1) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times.MethodsThe experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg-1 soil) and three levels of NTA (0, 15, and 30 mmol L-1) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times.The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd50NTA30 was 9.2 and 6.1 mg L-1, respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd25NTA30 was 5.7 and 3.1 mg L-1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd25NTA30 in cultivated soil. In Cd25NTA30 compared to Cd25NTA0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg-1), and soil respiration (27.5 mg C-CO2 kg-1 24 h-1) decreased, while metabolic quotient (qCO2, 0.05) and dissolved organic carbon (DOC, 20.0 mg L-1) increased. Moreover, the changes of Cd fractions in Cd25NTA30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F1, 0.27 mg kg-1) and Fe/Mn-oxide-bounded Cd (F4, 0.15 mg kg-1) fractions increased, in contrast, carbonate-Cd (F2, 2.67 mg kg-1) and, organically bounded Cd (F3, 0.06 mg kg-1) fractions decreased. NTA had no significant effect on the residual fraction (F5).ResultsThe results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd50NTA30 was 9.2 and 6.1 mg L-1, respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd25NTA30 was 5.7 and 3.1 mg L-1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd25NTA30 in cultivated soil. In Cd25NTA30 compared to Cd25NTA0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg-1), and soil respiration (27.5 mg C-CO2 kg-1 24 h-1) decreased, while metabolic quotient (qCO2, 0.05) and dissolved organic carbon (DOC, 20.0 mg L-1) increased. Moreover, the changes of Cd fractions in Cd25NTA30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F1, 0.27 mg kg-1) and Fe/Mn-oxide-bounded Cd (F4, 0.15 mg kg-1) fractions increased, in contrast, carbonate-Cd (F2, 2.67 mg kg-1) and, organically bounded Cd (F3, 0.06 mg kg-1) fractions decreased. NTA had no significant effect on the residual fraction (F5).The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.ConclusionThe use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.
The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (Zea mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil-plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation. The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg.sup.-1 soil) and three levels of NTA (0, 15, and 30 mmol L.sup.-1) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times. The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd.sub.50NTA.sub.30 was 9.2 and 6.1 mg L.sup.-1, respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd.sub.25NTA.sub.30 was 5.7 and 3.1 mg L.sup.-1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd.sub.25NTA.sub.30 in cultivated soil. In Cd.sub.25NTA.sub.30 compared to Cd.sub.25NTA.sub.0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg.sup.-1), and soil respiration (27.5 mg C-CO.sub.2 kg.sup.-1 24 h.sup.-1) decreased, while metabolic quotient (qCO.sub.2, 0.05) and dissolved organic carbon (DOC, 20.0 mg L.sup.-1) increased. Moreover, the changes of Cd fractions in Cd.sub.25NTA.sub.30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F.sub.1, 0.27 mg kg.sup.-1) and Fe/Mn-oxide-bounded Cd (F.sub.4, 0.15 mg kg.sup.-1) fractions increased, in contrast, carbonate-Cd (F.sub.2, 2.67 mg kg.sup.-1) and, organically bounded Cd (F.sub.3, 0.06 mg kg.sup.-1) fractions decreased. NTA had no significant effect on the residual fraction (F.sub.5). The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.
Purpose The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated ( Zea   mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil–plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation. Methods The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg −1 soil) and three levels of NTA (0, 15, and 30 mmol L −1 ) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times. Results The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd 50 NTA 30 was 9.2 and 6.1 mg L −1 , respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd 25 NTA 30 was 5.7 and 3.1 mg L −1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd 25 NTA 30 in cultivated soil. In Cd 25 NTA 30 compared to Cd 25 NTA 0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg −1 ), and soil respiration (27.5 mg C-CO 2 kg −1 24 h −1 ) decreased, while metabolic quotient (qCO 2 , 0.05) and dissolved organic carbon (DOC, 20.0 mg L −1 ) increased. Moreover, the changes of Cd fractions in Cd 25 NTA 30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F 1 , 0.27 mg kg −1 ) and Fe/Mn-oxide-bounded Cd (F 4 , 0.15 mg kg −1 ) fractions increased, in contrast, carbonate-Cd (F 2 , 2.67 mg kg −1 ) and, organically bounded Cd (F 3 , 0.06 mg kg −1 ) fractions decreased. NTA had no significant effect on the residual fraction (F 5 ). Conclusion The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.
Purpose The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (Zea mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil-plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation. Methods The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg.sup.-1 soil) and three levels of NTA (0, 15, and 30 mmol L.sup.-1) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times. Results The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd.sub.50NTA.sub.30 was 9.2 and 6.1 mg L.sup.-1, respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd.sub.25NTA.sub.30 was 5.7 and 3.1 mg L.sup.-1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd.sub.25NTA.sub.30 in cultivated soil. In Cd.sub.25NTA.sub.30 compared to Cd.sub.25NTA.sub.0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg.sup.-1), and soil respiration (27.5 mg C-CO.sub.2 kg.sup.-1 24 h.sup.-1) decreased, while metabolic quotient (qCO.sub.2, 0.05) and dissolved organic carbon (DOC, 20.0 mg L.sup.-1) increased. Moreover, the changes of Cd fractions in Cd.sub.25NTA.sub.30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F.sub.1, 0.27 mg kg.sup.-1) and Fe/Mn-oxide-bounded Cd (F.sub.4, 0.15 mg kg.sup.-1) fractions increased, in contrast, carbonate-Cd (F.sub.2, 2.67 mg kg.sup.-1) and, organically bounded Cd (F.sub.3, 0.06 mg kg.sup.-1) fractions decreased. NTA had no significant effect on the residual fraction (F.sub.5). Conclusion The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize. Keywords: Available cadmium, Calcium carbonate, Soil remediation, Leaching, Biodegradable chelators
PurposeThe aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (Zea mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil–plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation.MethodsThe experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg−1 soil) and three levels of NTA (0, 15, and 30 mmol L−1) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times.ResultsThe results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd50NTA30 was 9.2 and 6.1 mg L−1, respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd25NTA30 was 5.7 and 3.1 mg L−1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd25NTA30 in cultivated soil. In Cd25NTA30 compared to Cd25NTA0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg−1), and soil respiration (27.5 mg C-CO2 kg−1 24 h−1) decreased, while metabolic quotient (qCO2, 0.05) and dissolved organic carbon (DOC, 20.0 mg L−1) increased. Moreover, the changes of Cd fractions in Cd25NTA30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F1, 0.27 mg kg−1) and Fe/Mn-oxide-bounded Cd (F4, 0.15 mg kg−1) fractions increased, in contrast, carbonate-Cd (F2, 2.67 mg kg−1) and, organically bounded Cd (F3, 0.06 mg kg−1) fractions decreased. NTA had no significant effect on the residual fraction (F5).ConclusionThe use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.
Audience Academic
Author Fernandes de Souza, Marcella
Chorom, Mostafa
Mehrab, Narges
Meers, Erik
Biswas, Jayanta Kumar
Norouzi Masir, Mojtaba
Author_xml – sequence: 1
  givenname: Narges
  orcidid: 0000-0002-0665-5732
  surname: Mehrab
  fullname: Mehrab, Narges
  email: narges_mehrab@yahoo.com, narges.mehrab86@gmail.com
  organization: Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University
– sequence: 2
  givenname: Mostafa
  surname: Chorom
  fullname: Chorom, Mostafa
  organization: Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz
– sequence: 3
  givenname: Mojtaba
  surname: Norouzi Masir
  fullname: Norouzi Masir, Mojtaba
  organization: Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz
– sequence: 4
  givenname: Jayanta Kumar
  surname: Biswas
  fullname: Biswas, Jayanta Kumar
  organization: Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani
– sequence: 5
  givenname: Marcella
  surname: Fernandes de Souza
  fullname: Fernandes de Souza, Marcella
  organization: Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University
– sequence: 6
  givenname: Erik
  surname: Meers
  fullname: Meers, Erik
  organization: Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37869606$$D View this record in MEDLINE/PubMed
BookMark eNp9kstq3DAYhU1JadI0L9BFEXSTLpzqYsnKqgxDL4GQbqbQnZBlefIHWZpKcso8R1-4mpmkmYQSDJKRv3OsI53X1YEP3lbVW4LPCMbtx9RgikmNKasxlryt1y-qI4o5rRkTPw_23g-rk5RuMMYEMybP-avqkLVSnAssjqo_F-NKm4zCgFIAh3K0Oo_WZ_Qb8jW6ghzBBbSIoI3NYNDMQI9OrxazDyh4NO_REIsegtebAWnfoxFMDB1ohzoIo04JgUdmchludbb9lpn83oLRzuhow5S2m3hTvRy0S_bkbj6ufnz5vJh_qy-_f72Yzy5rwxuaa9nhluN-4IQyLogYOsMpNY1uDeOsEYxI3pm20bzMVNjzdhBdJ_HQcCG6VrPj6tPOdzV1o-1NSR21U6sIo45rFTSox188XKtluFUEc9m0khWH0zuHGH5NNmU1QjLWOe03aRSVEkvaMN4U9P0T9CZM0Zd8ihHBJCNEkAdqqZ1V4IdQfmw2pmrWlnQNlpgX6uw_VHl6W86-9GSAsv5I8G4_6b-I9z0ogNwB5eZSinZQBvL2RoszuJJYbVqndq1TpXVq2zq1LlL6RHrv_qyI7USpwH5p48NpPKP6CyED6fo
CitedBy_id crossref_primary_10_1007_s12517_023_11745_y
crossref_primary_10_1007_s44154_024_00153_1
Cites_doi 10.1016/j.scitotenv.2017.08.228
10.1007/s10311-020-01012-x
10.1016/j.jhazmat.2010.09.093
10.1016/j.chemosphere.2018.11.021
10.1080/03650340213845
10.1016/j.geoderma.2006.04.007
10.1016/j.apgeochem.2017.09.001
10.1016/j.ecoenv.2019.109399
10.1080/01904160802324829
10.1007/s11104-007-9512-1
10.1007/s40201-020-00491-y
10.1007/s10653-016-9826-0
10.1016/j.jhazmat.2013.09.009
10.1007/s10653-017-9927-4
10.1016/S1001-0742(09)60080-2
10.1081/CSS-120037545
10.1016/j.jhazmat.2013.04.032
10.2134/jeq2009.0292
10.1080/16226510590950423
10.1007/s40201-021-00725-7
10.1016/j.chemosphere.2013.01.116
10.1016/j.envpol.2005.03.013
10.1016/j.ecoenv.2016.03.019
10.1016/j.chemosphere.2014.12.060
10.1016/j.jece.2020.104080
10.1016/j.chemosphere.2012.04.047
10.1016/S1001-0742(09)60151-0
10.1080/15324982.2020.1746707
10.1007/s12517-021-08639-2
10.1016/j.jhazmat.2016.12.060
10.1007/s11356-019-05168-0
10.2134/agronj2005.0173
10.1016/j.eti.2017.08.002
10.1021/ac50043a017
10.1016/j.envpol.2015.11.021
10.1016/j.envpol.2010.09.019
10.1016/j.jece.2021.106526
10.1080/16226510490454777
10.2113/EEG-2123
10.1016/j.chemosphere.2007.07.044
10.1007/s00244-006-0252-7
10.1016/j.ecoenv.2017.11.070
10.3390/ijerph14010094
10.1080/20025891107023
10.1080/00103620802006651
10.1007/s12665-022-10586-4
10.1016/j.scitotenv.2018.01.054
10.1016/j.jclepro.2020.121491
10.1016/j.chemosphere.2019.124480
10.15244/pjoes/101621
10.1016/j.chemosphere.2005.02.026
10.1007/s11356-015-5966-5
10.1016/j.chemosphere.2009.08.015
10.1104/pp.104.047357
10.1016/j.chemosphere.2019.05.121
10.2136/sssaj1978.03615995004200030009x
10.1186/1735-2746-10-28
10.1016/j.jclepro.2019.118055
10.1016/S0929-1393(96)00123-0
10.1007/s11270-020-04545-7
10.1007/s11356-022-19877-6
10.1016/j.geoderma.2014.01.009
10.1897/04-231R.1
10.1016/j.agee.2017.01.006
10.3390/plants9020223
10.1007/s11356-014-2592-6
10.1007/s11356-017-1156-y
10.1016/j.jenvman.2021.112805
10.2134/agronmonogr9.2.2ed.c41
10.21203/rs.3.rs-436736/v1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Tehran University of Medical Sciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 BioMed Central Ltd.
Copyright BioMed Central 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Tehran University of Medical Sciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: Copyright BioMed Central 2023
DBID AAYXX
CITATION
NPM
7ST
C1K
K9.
SOI
7X8
5PM
DOI 10.1007/s40201-023-00857-y
DatabaseName CrossRef
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic



ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2052-336X
EndPage 332
ExternalDocumentID PMC10584783
A752240805
37869606
10_1007_s40201_023_00857_y
Genre Journal Article
GrantInformation_xml – fundername: Shahid Chamran University of Ahvaz
  grantid: SCU.AS99.692
  funderid: http://dx.doi.org/10.13039/501100005412
– fundername: ;
  grantid: SCU.AS99.692
GroupedDBID -A0
-EM
0R~
2NT
2XV
3V.
406
5VS
7X7
7XC
8C1
8FE
8FG
8FH
8FI
8FJ
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABKCH
ABMQK
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ACAOD
ACDTI
ACGFS
ACHSB
ACOKC
ACPIV
ACZOJ
ADBBV
ADINQ
ADKNI
ADRAZ
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AEUYN
AFBBN
AFKRA
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHBYD
AHSBF
AHYZX
AIGIU
AILAN
AITGF
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOIJS
ATCPS
AXYYD
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C24
CCPQU
DIK
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
FYUFA
GGCAI
GJIRD
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IKXTQ
ITC
IWAJR
J-C
JZLTJ
KQ8
L6V
LK8
LLZTM
M48
M7P
M7S
M~E
NPVJJ
NQJWS
O9J
OK1
PATMY
PQQKQ
PROAC
PT4
PTHSS
PYCSY
RBZ
ROL
RPM
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
UKHRP
UOJIU
UTJUX
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
AEIIB
7ST
C1K
K9.
SOI
7X8
5PM
ID FETCH-LOGICAL-c542t-8b0750df51235616fbc522c4a7c353463185bc74a585b26e97f6bb80f4566b7a3
IEDL.DBID M48
ISSN 2052-336X
IngestDate Thu Aug 21 18:33:31 EDT 2025
Tue Aug 05 10:33:15 EDT 2025
Wed Aug 27 14:45:04 EDT 2025
Tue Jun 17 21:08:37 EDT 2025
Tue Jun 10 20:25:21 EDT 2025
Mon Jul 21 06:06:41 EDT 2025
Thu Apr 24 22:56:36 EDT 2025
Tue Jul 01 02:19:28 EDT 2025
Fri Feb 21 02:42:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Biodegradable chelators
Soil remediation
Available cadmium
Leaching
Calcium carbonate
Language English
License The Author(s), under exclusive licence to Tehran University of Medical Sciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-8b0750df51235616fbc522c4a7c353463185bc74a585b26e97f6bb80f4566b7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0665-5732
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10584783
PMID 37869606
PQID 3163831161
PQPubID 2034561
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10584783
proquest_miscellaneous_2880824354
proquest_journals_3163831161
gale_infotracmisc_A752240805
gale_infotracacademiconefile_A752240805
pubmed_primary_37869606
crossref_citationtrail_10_1007_s40201_023_00857_y
crossref_primary_10_1007_s40201_023_00857_y
springer_journals_10_1007_s40201_023_00857_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Journal of environmental health science and engineering
PublicationTitleAbbrev J Environ Health Sci Engineer
PublicationTitleAlternate J Environ Health Sci Eng
PublicationYear 2023
Publisher Springer International Publishing
BioMed Central Ltd
Nature Publishing Group
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Nature Publishing Group
References Han, Dai, Zhan, Wei (CR29) 2019; 239
Xie, Yang, Liu, Pi, Wang (CR4) 2020; 231
Zhou, Zhang, Wang, Liu, Cheng, Li (CR68) 2017; 239
Meers, Lesage, Lamsal, Hopgood, Vervaeke, Tack (CR27) 2005; 7
Lapie, Leglize, Paris, Buisson, Sterckeman (CR59) 2019; 26
Yang, Wang, Cheng, Liu, Shen, Luo (CR70) 2013; 262
Pinto, Sim Es, Mota (CR60) 2008; 31
Mehrab, Chorom, NorouziMasir, de Souza, Meers (CR12) 2021; 14
de Santiago-Martín, Valverde-Asenjo, Quintana, Vázquez, Lafuente, González-Huecas (CR48) 2014; 221
Lindsay, Norvell (CR42) 1978; 42
Cui, Luo, Tang, Chan, Li (CR14) 2017; 329
Ayangbenro, Babalola (CR17) 2017; 14
Jalali, Khanlari (CR77) 2007; 53
Mohsenzadeh, Mohammadzadeh (CR45) 2018; 24
Meers, Tack, Verloo (CR64) 2008; 70
Kim, Owens, Kwon (CR57) 2010; 22
Meers, Unamuno, Vandegehuchte, Vanbroekhoven, Geebelen, Samson (CR71) 2005; 24
Meyer, Joergensen, Meyer (CR55) 1997; 5
Xiao, Ali, Wang, Li, Tian, Zhang (CR21) 2019; 230
Cristaldi, Conti, Jho, Zuccarello, Grasso, Copat (CR22) 2017; 8
Wenger, Kayser, Gupta, Furrer, Schulin (CR49) 2002; 11
Usman, Almaroai, Ahmad, Vithanage, Ok (CR65) 2013; 262
Rajaie, Karimian, Maftoun, Yasrebi, Assad (CR75) 2006; 136
Van Poucke, Ainsworth, Maeseele, Ok, Meers, Tack (CR9) 2018; 88
Tavili, Hassanabadi, Jafari, Azarnivand, Motesharezadeh, Jahantab (CR8) 2021; 19
Mehrab, Chorom, NorouziMasir, de Souza, Meers (CR13) 2022; 81
Zhang, Zhang, Song (CR50) 2008; 39
Gapta (CR43) 2000
Li, Shen, Zhang, Clairotte, Drevon, Le Cadre (CR61) 2008; 312
Suzuki, Nakase, Tamenishi, Niinae (CR76) 2020; 8
Huang, Duan, Wu, Yu, Shabala (CR2) 2020; 9
Wang, Liu, Song, Khan, Qiu (CR33) 2019; 182
Gabriele, Race, Papirio, Esposito (CR23) 2021; 293
Lan, Zhang, Lin, Li, Xu, Li (CR36) 2013; 91
Fan, Jia, Li, Jiang, Lu (CR78) 2012; 88
Bayouli, Gómez-Gómez, Bayouli, Pérez-Corona, Meers, Ammar (CR47) 2020; 13
Tessier, Campbell, Bisson (CR44) 1979; 51
Pineros, Shaff, Manslank, Carvalho Alves, Kochian (CR63) 2005; 137
Chamannejadian, Sayyad, Moezzi, Jahangiri (CR1) 2013; 10
Pinto, Neto, Soares (CR28) 2014; 21
Soleimani, Hajabbasi, Afyuni, Akbar, Jensen, Holm (CR38) 2010; 39
Masoudi, Shirvani, Shariatmadari, Sabzalian (CR30) 2020; 18
Xian, Wang, Chen (CR69) 2015; 139
Hauptvogl, Kotrla, Prčík, Pauková, Kováčik, Lošák (CR20) 2020; 29
Qi, Lamb, Naidu, Bolan, Yan, Ok (CR73) 2018; 610
Song, Ammami, Benamar, Mezazigh, Wang (CR34) 2016; 23
Wang, Liu, Song, Wang, Qiu (CR18) 2019; 237
Asad, Farooq, Afzal, West (CR19) 2019; 217
Sharma, Rathee, Ahmad, Raina, Batish, Singh (CR39) 2022; 20
Rayment, Higginson (CR51) 1992
Khodaverdiloo, Han, HamzenejadTaghlidabad, Karimi, Moradi, Kazery (CR11) 2020; 34
CR58
Chen, Yang, Wang (CR26) 2020; 263
Zhan, Li, Zhang, Yu, Zhao (CR16) 2018; 148
Suman, Lal, Singh, Gaur (CR66) 2006; 98
Meers, Ruttens, Hopgood, Lesage, Tack (CR32) 2005; 61
Yanai, Zhao, McGrath, Kosaki (CR41) 2006; 139
Maftoun, Rassooli, Ali Nejad, Karimian (CR74) 2004; 35
Meers, Hopgood, Lesage, Vervaeke, Tack, Verloo (CR31) 2004; 6
Parelho, Rodrigues, Barreto, Ferreira, Garcia (CR67) 2016; 129
Xie, Ma, Wang, Sun, Liu, Liu (CR3) 2021; 9
Anderson, Page (CR54) 1982
Yu, Liu, Zhu, Li, Deng, Wang (CR72) 2016; 209
Meers, Van Slycken, Adriaensen, Ruttens, Vangronsveld, Du Laing (CR25) 2010; 78
Rizwan, Ali, Qayyum, Ok, Zia-ur-Rehman, Abbas (CR24) 2017; 39
Herbert, Bertsch, William, McFee, Kelly (CR52) 1995
Hesami, Salimi, Ghaderian (CR46) 2018; 25
Li, Di, Islam, Jiang, Yang (CR15) 2011; 185
Bali, Sidhu, Kumar (CR5) 2020; 18
Shaheen, Antoniadis, Kwon, Biswas, Wang, Ok (CR7) 2017; 39
Egene, Van Poucke, Ok, Meers, Tack (CR6) 2018; 626
Jenkinson, Ladd, Paul, Ladd (CR53) 1981
Hai, Sanderson, Qi, Du, Nong, Bolan (CR40) 2022; 29
Bai (CR35) 2018
Zeng, Ali, Zhang, Ouyang, Qiu, Wu (CR10) 2011; 159
Zhou, Dang, Chen, Xu, Xie (CR37) 2007; 26
Zhang, Zhang (CR56) 2010; 22
Kizilkaya, Aşkin (CR62) 2002; 48
A Tessier (857_CR44) 1979; 51
K Wang (857_CR18) 2019; 237
E Meers (857_CR71) 2005; 24
R Xiao (857_CR21) 2019; 230
L Zhang (857_CR50) 2008; 39
DS Jenkinson (857_CR53) 1981
X Huang (857_CR2) 2020; 9
X Xie (857_CR4) 2020; 231
H-Y Yu (857_CR72) 2016; 209
R Van Poucke (857_CR9) 2018; 88
F Zeng (857_CR10) 2011; 159
Y Xian (857_CR69) 2015; 139
JL Cui (857_CR14) 2017; 329
K Meyer (857_CR55) 1997; 5
R Han (857_CR29) 2019; 239
J Yanai (857_CR41) 2006; 139
F Masoudi (857_CR30) 2020; 18
R Kizilkaya (857_CR62) 2002; 48
I Gabriele (857_CR23) 2021; 293
L Yang (857_CR70) 2013; 262
T Li (857_CR15) 2011; 185
E Meers (857_CR27) 2005; 7
AR Usman (857_CR65) 2013; 262
T Suzuki (857_CR76) 2020; 8
K-R Kim (857_CR57) 2010; 22
N Mehrab (857_CR12) 2021; 14
A de Santiago-Martín (857_CR48) 2014; 221
E Meers (857_CR64) 2008; 70
Y Song (857_CR34) 2016; 23
M Jalali (857_CR77) 2007; 53
W Fan (857_CR78) 2012; 88
H Xie (857_CR3) 2021; 9
A Chamannejadian (857_CR1) 2013; 10
E Meers (857_CR31) 2004; 6
M Soleimani (857_CR38) 2010; 39
L Chen (857_CR26) 2020; 263
J Zhan (857_CR16) 2018; 148
857_CR58
A Suman (857_CR66) 2006; 98
W Bai (857_CR35) 2018
N Mehrab (857_CR13) 2022; 81
A Tavili (857_CR8) 2021; 19
P Sharma (857_CR39) 2022; 20
F Qi (857_CR73) 2018; 610
H Zhou (857_CR68) 2017; 239
IS Pinto (857_CR28) 2014; 21
AS Ayangbenro (857_CR17) 2017; 14
JPE Anderson (857_CR54) 1982
J Lan (857_CR36) 2013; 91
M Zhang (857_CR56) 2010; 22
WL Lindsay (857_CR42) 1978; 42
M Hauptvogl (857_CR20) 2020; 29
NNS Hai (857_CR40) 2022; 29
C Lapie (857_CR59) 2019; 26
A Pinto (857_CR60) 2008; 31
M Maftoun (857_CR74) 2004; 35
P Gapta (857_CR43) 2000
F Mohsenzadeh (857_CR45) 2018; 24
J Zhou (857_CR37) 2007; 26
C Parelho (857_CR67) 2016; 129
H Li (857_CR61) 2008; 312
SM Shaheen (857_CR7) 2017; 39
M Rizwan (857_CR24) 2017; 39
R Hesami (857_CR46) 2018; 25
SA Asad (857_CR19) 2019; 217
E Meers (857_CR32) 2005; 61
G Rayment (857_CR51) 1992
AS Bali (857_CR5) 2020; 18
H Khodaverdiloo (857_CR11) 2020; 34
M Rajaie (857_CR75) 2006; 136
MA Pineros (857_CR63) 2005; 137
A Cristaldi (857_CR22) 2017; 8
BE Herbert (857_CR52) 1995
CE Egene (857_CR6) 2018; 626
K Wang (857_CR33) 2019; 182
IT Bayouli (857_CR47) 2020; 13
K Wenger (857_CR49) 2002; 11
E Meers (857_CR25) 2010; 78
References_xml – start-page: 831
  year: 1982
  end-page: 871
  ident: CR54
  article-title: Soil respiration
  publication-title: Methods of Soil Analysis Part 2 Chemical and Microbiological Properties
– volume: 610
  start-page: 1457
  year: 2018
  end-page: 1466
  ident: CR73
  article-title: Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.08.228
– volume: 18
  start-page: 1243
  issue: 4
  year: 2020
  end-page: 1275
  ident: CR5
  article-title: Root exudates ameliorate cadmium tolerance in plants: a review
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-020-01012-x
– volume: 185
  start-page: 818
  issue: 2–3
  year: 2011
  end-page: 823
  ident: CR15
  article-title: Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2010.09.093
– volume: 217
  start-page: 925
  year: 2019
  end-page: 941
  ident: CR19
  article-title: Integrated phytobial heavy metal remediation strategies for a sustainable clean environment-A review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.021
– year: 2018
  ident: CR35
  article-title: Effects of Application of NTA and EDTA on Accumulation of Soil Heavy Metals in Chrysanthemum
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 48
  start-page: 263
  issue: 3
  year: 2002
  end-page: 272
  ident: CR62
  article-title: Influence of cadmium fractions on microbiological properties in Bafra plain soils
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340213845
– volume: 26
  start-page: 453
  issue: 2
  year: 2007
  end-page: 457
  ident: CR37
  article-title: Influence of NTA on accumulation and chemical form of copper and zinc in maize
  publication-title: J Agro-Environ Sci
– volume: 136
  start-page: 533
  issue: 3–4
  year: 2006
  end-page: 541
  ident: CR75
  article-title: Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.04.007
– volume: 88
  start-page: 122
  year: 2018
  end-page: 130
  ident: CR9
  article-title: Chemical stabilization of Cd-contaminated soil using biochar
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2017.09.001
– volume: 182
  start-page: 109399
  year: 2019
  ident: CR33
  article-title: Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2019.109399
– volume: 31
  start-page: 1746
  issue: 10
  year: 2008
  end-page: 1755
  ident: CR60
  article-title: Cadmium impact on root exudates of sorghum and maize plants: a speciation study
  publication-title: J Plant Nutr
  doi: 10.1080/01904160802324829
– volume: 312
  start-page: 139
  issue: 1
  year: 2008
  end-page: 50
  ident: CR61
  article-title: Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9512-1
– volume: 18
  start-page: 655
  issue: 2
  year: 2020
  end-page: 664
  ident: CR30
  article-title: Performance of new biodegradable chelants in enhancing phytoextraction of heavy metals from a contaminated calcareous soil
  publication-title: J Environ Health Sci Eng
  doi: 10.1007/s40201-020-00491-y
– ident: CR58
– volume: 39
  start-page: 259
  issue: 2
  year: 2017
  end-page: 77
  ident: CR24
  article-title: Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-016-9826-0
– volume: 262
  start-page: 561
  year: 2013
  end-page: 570
  ident: CR70
  article-title: Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2013.09.009
– volume: 39
  start-page: 1365
  issue: 6
  year: 2017
  end-page: 1379
  ident: CR7
  article-title: Biosolids application affects the competitive sorption and lability of cadmium, copper, nickel, lead, and zinc in fluvial and calcareous soils
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-017-9927-4
– volume: 22
  start-page: 98
  issue: 1
  year: 2010
  end-page: 105
  ident: CR57
  article-title: Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study
  publication-title: J Environ Sci
  doi: 10.1016/S1001-0742(09)60080-2
– volume: 35
  start-page: 1271
  issue: 9–10
  year: 2004
  end-page: 1282
  ident: CR74
  article-title: Cadmium sorption behavior in some highly calcareous soils of Iran
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1081/CSS-120037545
– volume: 262
  start-page: 1022
  year: 2013
  end-page: 1030
  ident: CR65
  article-title: Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2013.04.032
– volume: 39
  start-page: 855
  issue: 3
  year: 2010
  end-page: 862
  ident: CR38
  article-title: Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal–polluted soil
  publication-title: J Environ Qual
  doi: 10.2134/jeq2009.0292
– volume: 7
  start-page: 129
  issue: 2
  year: 2005
  end-page: 42
  ident: CR27
  article-title: Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil
  publication-title: Int J Phytoremediation
  doi: 10.1080/16226510590950423
– volume: 19
  start-page: 1713
  issue: 2
  year: 2021
  end-page: 21
  ident: CR8
  article-title: Phytoremediation ability of H. strobilaceum and S. herbacea around an industrial town
  publication-title: J Environ Health Sci Eng
  doi: 10.1007/s40201-021-00725-7
– volume: 91
  start-page: 1362
  issue: 9
  year: 2013
  end-page: 7
  ident: CR36
  article-title: Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L grown in Cd-contaminated soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.01.116
– volume: 139
  start-page: 167
  issue: 1
  year: 2006
  end-page: 175
  ident: CR41
  article-title: Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2005.03.013
– volume: 129
  start-page: 242
  year: 2016
  end-page: 249
  ident: CR67
  article-title: Assessing microbial activities in metal contaminated agricultural volcanic soils–an integrative approach
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2016.03.019
– volume: 139
  start-page: 604
  year: 2015
  end-page: 608
  ident: CR69
  article-title: Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.060
– volume: 8
  start-page: 104080
  issue: 5
  year: 2020
  ident: CR76
  article-title: Influence of pH and Cations Contained in Rainwater on Leaching of Cd (II) from Artificially Contaminated Montmorillonite
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.104080
– volume: 88
  start-page: 751
  issue: 6
  year: 2012
  end-page: 756
  ident: CR78
  article-title: Phytoavailability and geospeciation of cadmium in contaminated soil remediated by Rhodobacter sphaeroides
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.04.047
– volume: 22
  start-page: 598
  issue: 4
  year: 2010
  end-page: 606
  ident: CR56
  article-title: Co-transport of dissolved organic matter and heavy metals in soils induced by excessive phosphorus applications
  publication-title: J Environ Sci
  doi: 10.1016/S1001-0742(09)60151-0
– volume: 34
  start-page: 361
  issue: 4
  year: 2020
  end-page: 391
  ident: CR11
  article-title: Potentially toxic element contamination of arid and semi-arid soils and its phytoremediation
  publication-title: Arid Land Res Manag
  doi: 10.1080/15324982.2020.1746707
– start-page: 63
  year: 1995
  end-page: 88
  ident: CR52
  article-title: Characterization of dissolved and colloidal organic matter in soil solution: a review
  publication-title: Carbon forms and functions in forest soils
– volume: 14
  start-page: 1
  issue: 21
  year: 2021
  end-page: 14
  ident: CR12
  article-title: Alteration in chemical form and subcellular distribution of cadmium in maize (Zea mays L.) after NTA-assisted remediation of a spiked calcareous soil
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-021-08639-2
– volume: 329
  start-page: 150
  year: 2017
  end-page: 158
  ident: CR14
  article-title: Speciation and leaching of trace metal contaminants from e-waste contaminated soils
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2016.12.060
– volume: 26
  start-page: 17520
  issue: 17
  year: 2019
  end-page: 17534
  ident: CR59
  article-title: Profiling of main metabolites in root exudates and mucilage collected from maize submitted to cadmium stress
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05168-0
– volume: 98
  start-page: 698
  issue: 3
  year: 2006
  end-page: 704
  ident: CR66
  article-title: Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems
  publication-title: Agron J
  doi: 10.2134/agronj2005.0173
– volume: 8
  start-page: 309
  year: 2017
  end-page: 26
  ident: CR22
  article-title: Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review
  publication-title: Env Technol Innov
  doi: 10.1016/j.eti.2017.08.002
– volume: 51
  start-page: 844
  issue: 7
  year: 1979
  end-page: 851
  ident: CR44
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal Chem
  doi: 10.1021/ac50043a017
– year: 2000
  ident: CR43
  publication-title: Soil, plant, water, and fertilizer analysis
– volume: 209
  start-page: 38
  year: 2016
  end-page: 45
  ident: CR72
  article-title: Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2015.11.021
– volume: 20
  start-page: 1
  year: 2022
  end-page: 10
  ident: CR39
  article-title: Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Solanum nigrum
  publication-title: Int J Phytoremed
– volume: 159
  start-page: 84
  issue: 1
  year: 2011
  end-page: 91
  ident: CR10
  article-title: The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.09.019
– volume: 9
  start-page: 106526
  issue: 6
  year: 2021
  ident: CR3
  article-title: Biological response and phytoremediation of perennial ryegrass to halogenated flame retardants and Cd in contaminated soils
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.106526
– volume: 6
  start-page: 95
  issue: 2
  year: 2004
  end-page: 109
  ident: CR31
  article-title: Enhanced phytoextraction: in search of EDTA alternatives
  publication-title: Int J Phytorem
  doi: 10.1080/16226510490454777
– volume: 24
  start-page: 441
  issue: 4
  year: 2018
  end-page: 450
  ident: CR45
  article-title: Phytoremediation ability of the new heavy metal accumulator plants
  publication-title: Environ Eng Geosci
  doi: 10.2113/EEG-2123
– volume: 70
  start-page: 358
  issue: 3
  year: 2008
  end-page: 363
  ident: CR64
  article-title: Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.07.044
– volume: 53
  start-page: 519
  issue: 4
  year: 2007
  end-page: 532
  ident: CR77
  article-title: Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-006-0252-7
– volume: 148
  start-page: 892
  year: 2018
  end-page: 900
  ident: CR16
  article-title: Rhizosphere characteristics of phytostabilizer Athyrium wardii (Hook.) involved in Cd and Pb accumulation
  publication-title: Ecot Environ Safety
  doi: 10.1016/j.ecoenv.2017.11.070
– volume: 14
  start-page: 94
  issue: 1
  year: 2017
  ident: CR17
  article-title: A new strategy for heavy metal polluted environments: a review of microbial biosorbents
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph14010094
– volume: 11
  start-page: 655
  issue: 5
  year: 2002
  end-page: 672
  ident: CR49
  article-title: Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation
  publication-title: Soil Sediment Contam
  doi: 10.1080/20025891107023
– volume: 39
  start-page: 1517
  issue: 9–10
  year: 2008
  end-page: 1531
  ident: CR50
  article-title: Cadmium uptake and distribution by different maize genotypes in maturing stage
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103620802006651
– volume: 81
  start-page: 1
  issue: 18
  year: 2022
  end-page: 13
  ident: CR13
  article-title: Effect of soil application of biochar produced from Cd-enriched maize on the available Cd in a calcareous soil
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-022-10586-4
– volume: 13
  start-page: 1
  issue: 2
  year: 2020
  end-page: 11
  ident: CR47
  article-title: Heavy metal transport and fate in soil-plant system: study case of industrial cement vicinity
  publication-title: Tunis Arab J Geosci
– volume: 626
  start-page: 195
  year: 2018
  end-page: 202
  ident: CR6
  article-title: Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.054
– volume: 263
  start-page: 121491
  year: 2020
  ident: CR26
  article-title: Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.121491
– volume: 237
  start-page: 124480
  year: 2019
  ident: CR18
  article-title: Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124480
– volume: 29
  start-page: 505
  issue: 1
  year: 2020
  end-page: 516
  ident: CR20
  article-title: Phytoremediation potential of fast-growing energy plants: challenges and perspectives–a review
  publication-title: Pol J Environ Stud
  doi: 10.15244/pjoes/101621
– volume: 61
  start-page: 561
  issue: 4
  year: 2005
  end-page: 572
  ident: CR32
  article-title: Potential of brassic rapa, cannabis sativa, helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.02.026
– volume: 23
  start-page: 10577
  issue: 11
  year: 2016
  end-page: 10586
  ident: CR34
  article-title: Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-015-5966-5
– volume: 78
  start-page: 35
  issue: 1
  year: 2010
  end-page: 41
  ident: CR25
  article-title: The use of bio-energy crops (Zea mays) for ‘phytoattenuation’of heavy metals on moderately contaminated soils: a field experiment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.08.015
– volume: 137
  start-page: 231
  issue: 1
  year: 2005
  end-page: 241
  ident: CR63
  article-title: Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.047357
– volume: 230
  start-page: 510
  year: 2019
  end-page: 518
  ident: CR21
  article-title: Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (Cd) and zinc (Zn) in contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.121
– volume: 42
  start-page: 421
  issue: 3
  year: 1978
  end-page: 428
  ident: CR42
  article-title: Development of a DTPA soil test for zinc, iron, manganese, and copper
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1978.03615995004200030009x
– start-page: 415
  year: 1981
  end-page: 471
  ident: CR53
  article-title: Microbial biomass in soil: measurement and turnover
  publication-title: Soil biochemistry
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  end-page: 5
  ident: CR1
  article-title: Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils
  publication-title: Iran J Environ Health Sci Eng
  doi: 10.1186/1735-2746-10-28
– volume: 239
  start-page: 118055
  year: 2019
  ident: CR29
  article-title: Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118055
– volume: 5
  start-page: 71
  issue: 1
  year: 1997
  end-page: 79
  ident: CR55
  article-title: The effects of reduced tillage on microbial biomass C and P in sandy loess soils
  publication-title: Appl Soil Ecol
  doi: 10.1016/S0929-1393(96)00123-0
– volume: 231
  start-page: 1
  issue: 4
  year: 2020
  end-page: 12
  ident: CR4
  article-title: The behavior of cadmium leaching from contaminated soil by nitrilotriacetic acid: Implication for Cd-contaminated soil remediation
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-020-04545-7
– volume: 29
  start-page: 42102
  issue: 28
  year: 2022
  end-page: 16
  ident: CR40
  article-title: Effects of chelates (EDTA, EDDS, NTA) on phytoavailability of heavy metals (As, Cd, Cu, Pb, Zn) using ryegrass (Lolium multiflorum Lam.)
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-19877-6
– volume: 221
  start-page: 103
  year: 2014
  end-page: 112
  ident: CR48
  article-title: Carbonate, organic and clay fractions determine metal bioavailability in periurban calcareous agricultural soils in the Mediterranean area
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.01.009
– volume: 24
  start-page: 499
  issue: 3
  year: 2005
  end-page: 509
  ident: CR71
  article-title: Soil-solution speciation of Cd as affected by soil characteristics in unpolluted and polluted soils
  publication-title: Environ Toxicol Chem: Int J
  doi: 10.1897/04-231R.1
– year: 1992
  ident: CR51
  publication-title: Australian laboratory handbook of soil and water chemical methods
– volume: 239
  start-page: 80
  year: 2017
  end-page: 89
  ident: CR68
  article-title: Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2017.01.006
– volume: 9
  start-page: 223
  issue: 2
  year: 2020
  ident: CR2
  article-title: Reducing cadmium accumulation in plants: structure–function relations and tissue-specific operation of transporters in the spotlight
  publication-title: Plants
  doi: 10.3390/plants9020223
– volume: 21
  start-page: 11893
  issue: 20
  year: 2014
  end-page: 11906
  ident: CR28
  article-title: Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-014-2592-6
– volume: 25
  start-page: 8701
  issue: 9
  year: 2018
  end-page: 8714
  ident: CR46
  article-title: Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine
  publication-title: Iran Environ Sci Pollut Res
  doi: 10.1007/s11356-017-1156-y
– volume: 293
  start-page: 112805
  year: 2021
  ident: CR23
  article-title: Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.112805
– volume: 31
  start-page: 1746
  issue: 10
  year: 2008
  ident: 857_CR60
  publication-title: J Plant Nutr
  doi: 10.1080/01904160802324829
– volume: 610
  start-page: 1457
  year: 2018
  ident: 857_CR73
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.08.228
– volume: 626
  start-page: 195
  year: 2018
  ident: 857_CR6
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.054
– volume: 22
  start-page: 98
  issue: 1
  year: 2010
  ident: 857_CR57
  publication-title: J Environ Sci
  doi: 10.1016/S1001-0742(09)60080-2
– volume: 24
  start-page: 499
  issue: 3
  year: 2005
  ident: 857_CR71
  publication-title: Environ Toxicol Chem: Int J
  doi: 10.1897/04-231R.1
– volume: 262
  start-page: 1022
  year: 2013
  ident: 857_CR65
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2013.04.032
– volume: 51
  start-page: 844
  issue: 7
  year: 1979
  ident: 857_CR44
  publication-title: Anal Chem
  doi: 10.1021/ac50043a017
– volume: 39
  start-page: 1517
  issue: 9–10
  year: 2008
  ident: 857_CR50
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103620802006651
– volume: 70
  start-page: 358
  issue: 3
  year: 2008
  ident: 857_CR64
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.07.044
– volume: 19
  start-page: 1713
  issue: 2
  year: 2021
  ident: 857_CR8
  publication-title: J Environ Health Sci Eng
  doi: 10.1007/s40201-021-00725-7
– volume: 5
  start-page: 71
  issue: 1
  year: 1997
  ident: 857_CR55
  publication-title: Appl Soil Ecol
  doi: 10.1016/S0929-1393(96)00123-0
– volume: 8
  start-page: 104080
  issue: 5
  year: 2020
  ident: 857_CR76
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.104080
– volume: 20
  start-page: 1
  year: 2022
  ident: 857_CR39
  publication-title: Int J Phytoremed
– volume: 13
  start-page: 1
  issue: 2
  year: 2020
  ident: 857_CR47
  publication-title: Tunis Arab J Geosci
– volume: 148
  start-page: 892
  year: 2018
  ident: 857_CR16
  publication-title: Ecot Environ Safety
  doi: 10.1016/j.ecoenv.2017.11.070
– volume: 7
  start-page: 129
  issue: 2
  year: 2005
  ident: 857_CR27
  publication-title: Int J Phytoremediation
  doi: 10.1080/16226510590950423
– volume: 18
  start-page: 655
  issue: 2
  year: 2020
  ident: 857_CR30
  publication-title: J Environ Health Sci Eng
  doi: 10.1007/s40201-020-00491-y
– volume: 24
  start-page: 441
  issue: 4
  year: 2018
  ident: 857_CR45
  publication-title: Environ Eng Geosci
  doi: 10.2113/EEG-2123
– start-page: 63
  volume-title: Carbon forms and functions in forest soils
  year: 1995
  ident: 857_CR52
– volume: 6
  start-page: 95
  issue: 2
  year: 2004
  ident: 857_CR31
  publication-title: Int J Phytorem
  doi: 10.1080/16226510490454777
– volume: 263
  start-page: 121491
  year: 2020
  ident: 857_CR26
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.121491
– volume-title: Australian laboratory handbook of soil and water chemical methods
  year: 1992
  ident: 857_CR51
– volume: 230
  start-page: 510
  year: 2019
  ident: 857_CR21
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.121
– volume: 26
  start-page: 17520
  issue: 17
  year: 2019
  ident: 857_CR59
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05168-0
– volume: 231
  start-page: 1
  issue: 4
  year: 2020
  ident: 857_CR4
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-020-04545-7
– volume: 48
  start-page: 263
  issue: 3
  year: 2002
  ident: 857_CR62
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340213845
– volume: 39
  start-page: 1365
  issue: 6
  year: 2017
  ident: 857_CR7
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-017-9927-4
– volume: 78
  start-page: 35
  issue: 1
  year: 2010
  ident: 857_CR25
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.08.015
– volume: 22
  start-page: 598
  issue: 4
  year: 2010
  ident: 857_CR56
  publication-title: J Environ Sci
  doi: 10.1016/S1001-0742(09)60151-0
– volume: 42
  start-page: 421
  issue: 3
  year: 1978
  ident: 857_CR42
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1978.03615995004200030009x
– volume: 262
  start-page: 561
  year: 2013
  ident: 857_CR70
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2013.09.009
– volume: 18
  start-page: 1243
  issue: 4
  year: 2020
  ident: 857_CR5
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-020-01012-x
– volume: 14
  start-page: 94
  issue: 1
  year: 2017
  ident: 857_CR17
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph14010094
– volume: 139
  start-page: 604
  year: 2015
  ident: 857_CR69
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.060
– volume: 9
  start-page: 106526
  issue: 6
  year: 2021
  ident: 857_CR3
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.106526
– volume: 23
  start-page: 10577
  issue: 11
  year: 2016
  ident: 857_CR34
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-015-5966-5
– volume-title: Soil, plant, water, and fertilizer analysis
  year: 2000
  ident: 857_CR43
– volume: 239
  start-page: 80
  year: 2017
  ident: 857_CR68
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2017.01.006
– volume: 137
  start-page: 231
  issue: 1
  year: 2005
  ident: 857_CR63
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.047357
– volume: 53
  start-page: 519
  issue: 4
  year: 2007
  ident: 857_CR77
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-006-0252-7
– volume: 8
  start-page: 309
  year: 2017
  ident: 857_CR22
  publication-title: Env Technol Innov
  doi: 10.1016/j.eti.2017.08.002
– volume: 29
  start-page: 42102
  issue: 28
  year: 2022
  ident: 857_CR40
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-19877-6
– volume: 136
  start-page: 533
  issue: 3–4
  year: 2006
  ident: 857_CR75
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.04.007
– volume: 239
  start-page: 118055
  year: 2019
  ident: 857_CR29
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118055
– volume: 11
  start-page: 655
  issue: 5
  year: 2002
  ident: 857_CR49
  publication-title: Soil Sediment Contam
  doi: 10.1080/20025891107023
– volume: 14
  start-page: 1
  issue: 21
  year: 2021
  ident: 857_CR12
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-021-08639-2
– volume: 88
  start-page: 122
  year: 2018
  ident: 857_CR9
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2017.09.001
– volume: 139
  start-page: 167
  issue: 1
  year: 2006
  ident: 857_CR41
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2005.03.013
– volume: 29
  start-page: 505
  issue: 1
  year: 2020
  ident: 857_CR20
  publication-title: Pol J Environ Stud
  doi: 10.15244/pjoes/101621
– volume: 9
  start-page: 223
  issue: 2
  year: 2020
  ident: 857_CR2
  publication-title: Plants
  doi: 10.3390/plants9020223
– volume: 21
  start-page: 11893
  issue: 20
  year: 2014
  ident: 857_CR28
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-014-2592-6
– volume: 88
  start-page: 751
  issue: 6
  year: 2012
  ident: 857_CR78
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.04.047
– volume: 129
  start-page: 242
  year: 2016
  ident: 857_CR67
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2016.03.019
– volume: 61
  start-page: 561
  issue: 4
  year: 2005
  ident: 857_CR32
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.02.026
– volume: 329
  start-page: 150
  year: 2017
  ident: 857_CR14
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2016.12.060
– volume: 185
  start-page: 818
  issue: 2–3
  year: 2011
  ident: 857_CR15
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2010.09.093
– volume-title: IOP Conference Series: Earth and Environmental Science
  year: 2018
  ident: 857_CR35
– volume: 35
  start-page: 1271
  issue: 9–10
  year: 2004
  ident: 857_CR74
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1081/CSS-120037545
– volume: 25
  start-page: 8701
  issue: 9
  year: 2018
  ident: 857_CR46
  publication-title: Iran Environ Sci Pollut Res
  doi: 10.1007/s11356-017-1156-y
– volume: 221
  start-page: 103
  year: 2014
  ident: 857_CR48
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.01.009
– start-page: 831
  volume-title: Methods of Soil Analysis Part 2 Chemical and Microbiological Properties
  year: 1982
  ident: 857_CR54
  doi: 10.2134/agronmonogr9.2.2ed.c41
– volume: 81
  start-page: 1
  issue: 18
  year: 2022
  ident: 857_CR13
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-022-10586-4
– volume: 182
  start-page: 109399
  year: 2019
  ident: 857_CR33
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2019.109399
– volume: 237
  start-page: 124480
  year: 2019
  ident: 857_CR18
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124480
– volume: 217
  start-page: 925
  year: 2019
  ident: 857_CR19
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.021
– volume: 39
  start-page: 259
  issue: 2
  year: 2017
  ident: 857_CR24
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-016-9826-0
– volume: 91
  start-page: 1362
  issue: 9
  year: 2013
  ident: 857_CR36
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.01.116
– volume: 26
  start-page: 453
  issue: 2
  year: 2007
  ident: 857_CR37
  publication-title: J Agro-Environ Sci
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: 857_CR1
  publication-title: Iran J Environ Health Sci Eng
  doi: 10.1186/1735-2746-10-28
– start-page: 415
  volume-title: Soil biochemistry
  year: 1981
  ident: 857_CR53
– volume: 293
  start-page: 112805
  year: 2021
  ident: 857_CR23
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.112805
– volume: 34
  start-page: 361
  issue: 4
  year: 2020
  ident: 857_CR11
  publication-title: Arid Land Res Manag
  doi: 10.1080/15324982.2020.1746707
– volume: 39
  start-page: 855
  issue: 3
  year: 2010
  ident: 857_CR38
  publication-title: J Environ Qual
  doi: 10.2134/jeq2009.0292
– ident: 857_CR58
  doi: 10.21203/rs.3.rs-436736/v1
– volume: 312
  start-page: 139
  issue: 1
  year: 2008
  ident: 857_CR61
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9512-1
– volume: 159
  start-page: 84
  issue: 1
  year: 2011
  ident: 857_CR10
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.09.019
– volume: 98
  start-page: 698
  issue: 3
  year: 2006
  ident: 857_CR66
  publication-title: Agron J
  doi: 10.2134/agronj2005.0173
– volume: 209
  start-page: 38
  year: 2016
  ident: 857_CR72
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2015.11.021
SSID ssj0001033895
Score 2.2951963
Snippet Purpose The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous...
The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil...
Purpose The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous...
PurposeThe aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 319
SubjectTerms Bacterial leaching
Biological activity
Biomass
Cadmium
Calcareous soils
Calcium carbonate
Carbon content
Carbon dioxide
CD25 antigen
Chelating agents
Chelation
Corn
Cultivation
Dissolved organic carbon
Earth and Environmental Science
Environment
Environmental Economics
Environmental Engineering/Biotechnology
Environmental Health
Environmental Law/Policy/Ecojustice
Fractionation
Leaching
Loam
Microbial activity
Microbial contamination
Microorganisms
Nitrilotriacetic acid
Phytoremediation
Plant roots
Quality of Life Research
Research Article
Soil chemistry
Soil contamination
Soil investigations
Soil pollution
Soil remediation
Soil treatment
Soils
Toxicity
Waste Management/Waste Technology
Title Impact of soil treatment with Nitrilo Triacetic Acid (NTA) on Cd fractionation and microbial biomass in cultivated and uncultivated calcareous soil
URI https://link.springer.com/article/10.1007/s40201-023-00857-y
https://www.ncbi.nlm.nih.gov/pubmed/37869606
https://www.proquest.com/docview/3163831161
https://www.proquest.com/docview/2880824354
https://pubmed.ncbi.nlm.nih.gov/PMC10584783
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAFD7s5UUQ8W50LSMIKhpJMpPJ5EGkll1WYYtIC30LmckEAzXRtgv2d_iHPWdyWVtW8aUPnUl6mHP7zvRcAJ5zXgqRp5HPLZpAYUXgpybNfWO0laiYgbJ0oX8xledz8WkRLw6gH3fUHeD62tCO5knNV8u3P39s36PCvxvK4CgGwqA44r5r2O5vD-EYPVNCEw0uOrjv7lwCDMjcIJYoiJE8LhddHc31r9nxVfsW-w-XtZ9OufefqnNVZ7fhVocx2bgVijtwYOu7cLO9oGNt3dE9-PXR1UeypmTrplqyIeOc0dUsm1abVbVs2AwF1FChIxubqmAvp7PxK9bUbFKwctUWRTjesrwu2LfKtXXC36aqfoTlrKoZ9fagEWq2cHvQj159gQJCqWfN5doRcR_mZ6ezybnfTWjwTSyija80IY6ijKniVoay1AbxnBF5YnjMhaTSbG0SkWNQoiNp06SUWqugRNgmdZLzB3BUN7V9BEwUaAqSOErKNEU7kuugVKkIBVqUQqrQehD2vMhM176cpmgss6HxsuNfhvzLHP-yrQevh2e-t807_rn7BbE4I1nDN5u8K1BA-qhHVjZG6qghXBB7cLKzEzXS7C73QpL1Ap1xAr48RIDtwbNhmZ6kLLeaTjqL0JiqCAGs8OBhK1MD3TxRkqJND9SOtA0bqE_47kpdfXX9whFCIwZR3IM3vWBe0fX383j8H3Q-gRsRKYzL7zmBo83q0j5FlLbRIzhMFgl-qkk4guMPp9PPX0ZOHX8Drno44w
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+soil+treatment+with+Nitrilo+Triacetic+Acid+%28NTA%29+on+Cd+fractionation+and+microbial+biomass+in+cultivated+and+uncultivated+calcareous+soil&rft.jtitle=Journal+of+environmental+health+science+and+engineering&rft.au=Mehrab%2C+Narges&rft.au=Chorom%2C+Mostafa&rft.au=Norouzi+Masir%2C+Mojtaba&rft.au=Biswas%2C+Jayanta+Kumar&rft.date=2023-12-01&rft.issn=2052-336X&rft.eissn=2052-336X&rft.volume=21&rft.issue=2&rft.spage=319&rft_id=info:doi/10.1007%2Fs40201-023-00857-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-336X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-336X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-336X&client=summon