The Exocyst Complex Associates with Microtubules to Mediate Vesicle Targeting and Neurite Outgrowth

During neuronal development, vesicles are targeted to the growth cone to promote neurite outgrowth and synaptogenesis. The Exocyst complex is an essential macromolecule in the secretory pathway that may play a role in vesicle targeting. Although it has been shown that this complex is enriched in rat...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 21; no. 11; pp. 3839 - 3848
Main Authors Vega, Irving E, Hsu, Shu-Chan
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 01.06.2001
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During neuronal development, vesicles are targeted to the growth cone to promote neurite outgrowth and synaptogenesis. The Exocyst complex is an essential macromolecule in the secretory pathway that may play a role in vesicle targeting. Although it has been shown that this complex is enriched in rat brain, the molecular mechanism underlying its function is largely unknown. Here, we report that the Exocyst complex coimmunoprecipitates with microtubules from total rat brain lysate. Additionally, the Exocyst complex subcellular localization changes on neuronal differentiation. In undifferentiated pheochromocytoma (PC12) cells, this complex is associated with microtubules at the microtubule organizing center. However, in differentiated PC12 cells and cultured hippocampal neurons, the Exocyst complex and microtubules extend to the growing neurite and colocalize at the growth cone with synaptotagmin. Inhibition of the NGF-activated MAP kinase pathway blocks the Exocyst complex and microtubule redistribution, abolishing neurite outgrowth and promoting cytosolic accumulation of secretory vesicles. Consistently, the overexpression of Exocyst sec10 subunit mutant blocks neurite outgrowth. These results indicate that the Exocyst complex targets secretory vesicles to specific domains of the plasma membrane through its association with the microtubules, promoting neurite outgrowth.
AbstractList During neuronal development, vesicles are targeted to the growth cone to promote neurite outgrowth and synaptogenesis. The Exocyst complex is an essential macromolecule in the secretory pathway that may play a role in vesicle targeting. Although it has been shown that this complex is enriched in rat brain, the molecular mechanism underlying its function is largely unknown. Here, we report that the Exocyst complex coimmunoprecipitates with microtubules from total rat brain lysate. Additionally, the Exocyst complex subcellular localization changes on neuronal differentiation. In undifferentiated pheochromocytoma (PC12) cells, this complex is associated with microtubules at the microtubule organizing center. However, in differentiated PC12 cells and cultured hippocampal neurons, the Exocyst complex and microtubules extend to the growing neurite and colocalize at the growth cone with synaptotagmin. Inhibition of the NGF-activated MAP kinase pathway blocks the Exocyst complex and microtubule redistribution, abolishing neurite outgrowth and promoting cytosolic accumulation of secretory vesicles. Consistently, the overexpression of Exocyst sec10 subunit mutant blocks neurite outgrowth. These results indicate that the Exocyst complex targets secretory vesicles to specific domains of the plasma membrane through its association with the microtubules, promoting neurite outgrowth.
During neuronal development, vesicles are targeted to the growth cone to promote neurite outgrowth and synaptogenesis. The Exocyst complex is an essential macromolecule in the secretory pathway that may play a role in vesicle targeting. Although it has been shown that this complex is enriched in rat brain, the molecular mechanism underlying its function is largely unknown. Here, we report that the Exocyst complex coimmunoprecipitates with microtubules from total rat brain lysate. Additionally, the Exocyst complex subcellular localization changes on neuronal differentiation. In undifferentiated pheochromocytoma (PC12) cells, this complex is associated with microtubules at the microtubule organizing center. However, in differentiated PC12 cells and cultured hippocampal neurons, the Exocyst complex and microtubules extend to the growing neurite and colocalize at the growth cone with synaptotagmin. Inhibition of the NGF-activated MAP kinase pathway blocks the Exocyst complex and microtubule redistribution, abolishing neurite outgrowth and promoting cytosolic accumulation of secretory vesicles. Consistently, the overexpression of Exocyst sec10 subunit mutant blocks neurite outgrowth. These results indicate that the Exocyst complex targets secretory vesicles to specific domains of the plasma membrane through its association with the microtubules, promoting neurite outgrowth.
Author Hsu, Shu-Chan
Vega, Irving E
AuthorAffiliation 2 Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
1 Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and
AuthorAffiliation_xml – name: 1 Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and
– name: 2 Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
Author_xml – sequence: 1
  fullname: Vega, Irving E
– sequence: 2
  fullname: Hsu, Shu-Chan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11356872$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv0zAYhi00xLrCX0ARBzil-LMTO-GANFUFhrZVgo6r5ThOYpTExXbI9u9xaTXgxMmS3-d75c_PBTob7agRegV4BTmhbz_fbu6-bL-ur1YEUoAU04KWK4IxPEGLSJQpyTCcoQUmHKcs49k5uvD-O8aYY-DP0DkAzVnByQKpXaeTzb1VDz4kazvse32fXHpvlZFB-2Q2oUtujHI2TNXUx5tgkxtdH9Lkm_ZG9TrZSdfqYMY2kWOd3OrJmZhup9A6O4fuOXrayN7rF6dzie4-bHbrT-n19uPV-vI6VXlGQlrQDFeUF7KpSlXUrAat6rzJJCaNzLK6gZJyICzXRVWyiiqmJGFNwVRFoSprukTvj737qRp0rfQYnOzF3plBugdhpRH_JqPpRGt_Csp4hkkZC16fCpz9MWkfxGC80n0vR20nLzguWATZf0EogBOIWpbo3RGMH-i9083jawCLg0zxKFMQEADit0xxkBmHX_69z5_Rk70IvDkCnWm72Tgt_CD7PuIg5nk-Fh766C_rGK5O
CitedBy_id crossref_primary_10_1186_s11658_016_0019_8
crossref_primary_10_1016_j_neuron_2005_02_029
crossref_primary_10_1038_nsmb987
crossref_primary_10_1016_j_febslet_2009_10_031
crossref_primary_10_1042_BJ20041090
crossref_primary_10_1074_jbc_M501674200
crossref_primary_10_1038_ncb990
crossref_primary_10_1007_s12035_017_0857_z
crossref_primary_10_1089_153685903322286575
crossref_primary_10_1083_jcb_200305029
crossref_primary_10_1111_j_1600_0722_2012_00952_x
crossref_primary_10_1016_S0014_5793_02_03605_0
crossref_primary_10_1101_cshperspect_a027870
crossref_primary_10_1038_nrn2593
crossref_primary_10_1002_ajmg_a_34081
crossref_primary_10_1084_jem_20192040
crossref_primary_10_1242_dev_00931
crossref_primary_10_1016_S0896_6273_03_00031_X
crossref_primary_10_1016_j_devcel_2010_02_017
crossref_primary_10_1074_jbc_M705167200
crossref_primary_10_1242_dev_048330
crossref_primary_10_1002_stem_2434
crossref_primary_10_1042_BJ20080723
crossref_primary_10_1016_j_neuron_2011_02_032
crossref_primary_10_1016_j_jip_2016_03_002
crossref_primary_10_1073_pnas_0706599104
crossref_primary_10_1073_pnas_0409871102
crossref_primary_10_1242_jcs_145037
crossref_primary_10_2220_biomedres_29_85
crossref_primary_10_1016_S0079_6107_02_00047_0
crossref_primary_10_1016_S0896_6273_03_00629_9
crossref_primary_10_2139_ssrn_4199099
crossref_primary_10_1097_00001756_200301200_00006
crossref_primary_10_1242_jcs_044339
crossref_primary_10_1242_jcs_174771
crossref_primary_10_1105_tpc_108_059105
crossref_primary_10_1242_jcs_156398
crossref_primary_10_1016_j_bbrc_2004_04_165
crossref_primary_10_1111_tra_12200
crossref_primary_10_1042_BCJ20160628
crossref_primary_10_1074_jbc_M307325200
crossref_primary_10_1242_jcs_016881
crossref_primary_10_1186_1471_2164_13_46
crossref_primary_10_3389_fcell_2021_765316
crossref_primary_10_1034_j_1600_0854_2002_31206_x
crossref_primary_10_1038_sj_emboj_7601065
crossref_primary_10_1016_j_tcb_2018_06_003
crossref_primary_10_1016_S0167_4889_03_00086_7
crossref_primary_10_1242_dev_151571
crossref_primary_10_1091_mbc_e07_02_0097
crossref_primary_10_1111_j_1582_4934_2008_00303_x
crossref_primary_10_4061_2011_832379
crossref_primary_10_1016_j_jmb_2007_05_018
crossref_primary_10_3390_md11114328
crossref_primary_10_1016_j_ydbio_2004_07_022
crossref_primary_10_1002_wdev_114
crossref_primary_10_1007_s12035_018_1378_0
crossref_primary_10_1016_j_brainresrev_2008_04_006
crossref_primary_10_1002_cm_21479
crossref_primary_10_1111_j_1469_8137_2009_03070_x
crossref_primary_10_1371_journal_pone_0129346
crossref_primary_10_3389_fcell_2016_00051
crossref_primary_10_1016_j_conb_2004_05_013
crossref_primary_10_1083_jcb_200410081
crossref_primary_10_1242_jcs_03475
crossref_primary_10_1016_j_febslet_2012_02_026
crossref_primary_10_1242_jcs_02785
crossref_primary_10_1095_biolreprod_104_030346
crossref_primary_10_1016_j_semcdb_2010_12_002
crossref_primary_10_1038_srep40909
crossref_primary_10_4161_cib_19018
crossref_primary_10_1111_j_1460_9568_2010_07391_x
crossref_primary_10_1042_BST0340687
crossref_primary_10_1111_j_1538_7836_2006_01952_x
crossref_primary_10_1091_mbc_e06_01_0074
crossref_primary_10_1016_j_neuroscience_2008_03_029
crossref_primary_10_1083_jcb_200107088
crossref_primary_10_1002_jcp_25619
crossref_primary_10_1083_jcb_200507061
crossref_primary_10_1091_mbc_e13_06_0299
crossref_primary_10_1002_dvdy_20618
crossref_primary_10_1186_1741_7007_3_27
crossref_primary_10_1074_jbc_M402264200
crossref_primary_10_3389_fncel_2020_556461
crossref_primary_10_1016_j_preteyeres_2013_08_004
crossref_primary_10_1186_1755_8794_3_27
crossref_primary_10_1016_j_cub_2021_09_067
crossref_primary_10_1042_EBC20220042
crossref_primary_10_1016_j_ydbio_2022_09_005
crossref_primary_10_1091_mbc_e12_06_0492
crossref_primary_10_1007_s10571_006_9054_8
crossref_primary_10_1523_JNEUROSCI_3109_10_2011
crossref_primary_10_1371_journal_pone_0039602
crossref_primary_10_3390_cells10020203
crossref_primary_10_1242_jcs_186213
crossref_primary_10_1016_j_cellsig_2015_02_015
crossref_primary_10_1074_mcp_M111_011338
crossref_primary_10_1093_aob_mcu040
crossref_primary_10_1016_j_devcel_2005_07_013
crossref_primary_10_1242_bio_012146
crossref_primary_10_1242_jcs_168740
crossref_primary_10_3390_cells9112402
crossref_primary_10_1083_jcb_200309020
crossref_primary_10_1091_mbc_e06_08_0666
crossref_primary_10_1074_jbc_M313778200
crossref_primary_10_1016_j_febslet_2009_10_084
crossref_primary_10_1128_MCB_26_10_3966_3975_2006
crossref_primary_10_1016_S1046_2023_03_00026_4
crossref_primary_10_1091_mbc_e09_06_0459
crossref_primary_10_1111_j_1365_313X_2006_02854_x
crossref_primary_10_1007_s00709_011_0330_1
crossref_primary_10_1523_JNEUROSCI_3907_09_2009
crossref_primary_10_1242_jcs_080598
crossref_primary_10_1016_S0896_6273_03_00059_X
crossref_primary_10_1016_j_celrep_2020_108536
crossref_primary_10_1016_j_tcb_2009_05_001
crossref_primary_10_1083_jcb_201811002
crossref_primary_10_1073_pnas_171317898
crossref_primary_10_1016_j_mcn_2023_103914
crossref_primary_10_3389_fphys_2016_00639
crossref_primary_10_1152_ajprenal_00596_2009
crossref_primary_10_1074_jbc_M111_333245
crossref_primary_10_1083_jcb_202112108
crossref_primary_10_1242_jcs_039982
crossref_primary_10_1016_j_cell_2008_01_012
crossref_primary_10_1242_jcs_00893
crossref_primary_10_1091_mbc_e11_07_0657
crossref_primary_10_1038_ncb0403_287
crossref_primary_10_1016_j_bpj_2008_10_036
crossref_primary_10_1002_dneu_22398
crossref_primary_10_1016_S0006_291X_02_00609_5
crossref_primary_10_1002_dneu_22553
crossref_primary_10_1042_BC20070007
crossref_primary_10_1146_annurev_neuro_29_051605_112808
crossref_primary_10_1038_sj_emboj_7600699
crossref_primary_10_1002_dneu_22033
crossref_primary_10_1242_jcs_102913
crossref_primary_10_1161_ATVBAHA_117_310294
crossref_primary_10_1016_S0306_4522_03_00065_4
crossref_primary_10_1016_j_ydbio_2014_02_021
crossref_primary_10_1186_s40659_021_00329_3
crossref_primary_10_1242_jcs_115_13_2627
crossref_primary_10_1074_jbc_M706873200
crossref_primary_10_1038_nsmb1096
crossref_primary_10_1038_nsmb1097
crossref_primary_10_1152_ajprenal_00032_2014
crossref_primary_10_1101_cshperspect_a031401
crossref_primary_10_1186_s40478_021_01246_y
crossref_primary_10_1111_j_1365_2583_2008_00807_x
crossref_primary_10_1091_mbc_e06_08_0765
crossref_primary_10_1038_nsmb1017
crossref_primary_10_1046_j_1471_4159_2001_00674_x
crossref_primary_10_1104_pp_105_062273
crossref_primary_10_1523_JNEUROSCI_4729_11_2011
crossref_primary_10_1091_mbc_e07_05_0461
crossref_primary_10_1038_emboj_2013_147
crossref_primary_10_3389_fcell_2016_00024
crossref_primary_10_1016_j_bbamcr_2007_11_011
crossref_primary_10_1083_jcb_201304101
crossref_primary_10_1073_pnas_1408327111
crossref_primary_10_1091_mbc_e06_01_0030
crossref_primary_10_1111_tra_12189
crossref_primary_10_1007_s00439_023_02558_w
crossref_primary_10_1128_MCB_24_13_5746_5756_2004
crossref_primary_10_1242_jcs_01644
crossref_primary_10_1242_jcs_187336
Cites_doi 10.1091/mbc.9.7.1725
10.1016/S0896-6273(00)81166-6
10.1016/0076-6879(86)21017-4
10.1091/mbc.11.9.3123
10.1016/S0959-4388(00)00092-1
10.1016/0896-6273(94)90352-2
10.1016/S0896-6273(00)80493-6
10.1523/JNEUROSCI.19-20-08894.1999
10.1091/mbc.8.7.1261
10.1016/0092-8674(95)90182-5
10.1016/S0955-0674(00)00123-X
10.1083/jcb.149.2.341
10.1083/jcb.118.5.1041
10.1083/jcb.130.2.299
10.1016/S0896-6273(00)81168-X
10.1016/0092-8674(93)90672-D
10.1073/pnas.92.21.9613
10.1083/jcb.143.4.1077
10.1126/science.1321498
10.1006/dbio.1997.8727
10.1016/S0092-8674(00)81435-X
10.1016/S0962-8924(00)01754-2
10.1016/S0166-2236(96)80025-7
10.1073/pnas.73.7.2424
10.1074/jbc.270.23.13585
10.1016/S0896-6273(00)81167-8
10.1016/S0896-6273(00)80251-2
10.1016/S0896-6273(00)81169-1
10.1016/0092-8674(92)90027-A
10.1523/JNEUROSCI.19-04-01324.1999
10.1073/pnas.94.26.14438
10.1016/0003-2697(86)90321-0
10.1016/S0955-0674(99)00014-9
10.1083/jcb.150.5.1101
10.1146/annurev.cellbio.1.1.145
10.1016/S0092-8674(00)80948-4
10.1016/S0896-6273(00)81170-8
ContentType Journal Article
Copyright Copyright © 2001 Society for Neuroscience 2001
Copyright_xml – notice: Copyright © 2001 Society for Neuroscience 2001
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
5PM
DOI 10.1523/JNEUROSCI.21-11-03839.2001
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Neurosciences Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 3848
ExternalDocumentID 10_1523_JNEUROSCI_21_11_03839_2001
11356872
www21_11_3839
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: F31 GM020274
– fundername: NINDS NIH HHS
  grantid: NS38892-01A1
– fundername: NINDS NIH HHS
  grantid: R01 NS038892
– fundername: NIGMS NIH HHS
  grantid: GM20274-01
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
ABBAR
ACGUR
AFCFT
AFHIN
AFOSN
AHWXS
AI.
AOIJS
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
YBU
YHG
YKV
YNH
YSK
AAYXX
CITATION
7TK
7X8
5PM
ID FETCH-LOGICAL-c542t-8340b378afb9c8d6d1ecd5f4a02fa44df19371265e8b96b3c6ca26f86cb31b9d3
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:26:33 EDT 2024
Fri Oct 25 23:33:59 EDT 2024
Sat Oct 26 01:42:01 EDT 2024
Fri Dec 06 04:55:07 EST 2024
Sat Sep 28 07:37:29 EDT 2024
Tue Nov 10 19:48:36 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-8340b378afb9c8d6d1ecd5f4a02fa44df19371265e8b96b3c6ca26f86cb31b9d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.jneurosci.org/content/jneuro/21/11/3839.full.pdf
PMID 11356872
PQID 18172138
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3674029
proquest_miscellaneous_70864026
proquest_miscellaneous_18172138
crossref_primary_10_1523_JNEUROSCI_21_11_03839_2001
pubmed_primary_11356872
highwire_smallpub1_www21_11_3839
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 20010601
2001-Jun-01
2001-06-01
PublicationDateYYYYMMDD 2001-06-01
PublicationDate_xml – month: 06
  year: 2001
  text: 20010601
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2001
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References 9630218 - Cell. 1998 May 29;93(5):731-40
1065897 - Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424-8
9655500 - Neuron. 1998 Jun;20(6):1111-22
10802541 - Trends Cell Biol. 2000 Jun;10(6):251-5
8402889 - Cell. 1993 Oct 8;75(1):1-4
10839355 - Neuron. 2000 May;26(2):357-70
8982167 - Neuron. 1996 Dec;17(6):1209-19
9658167 - Mol Biol Cell. 1998 Jul;9(7):1725-39
10839353 - Neuron. 2000 May;26(2):331-43
1512289 - J Cell Biol. 1992 Sep;118(5):1041-56
7775407 - J Biol Chem. 1995 Jun 9;270(23):13585-8
10839356 - Neuron. 2000 May;26(2):371-82
10851172 - Curr Opin Neurobiol. 2000 Jun;10(3):381-91
1321498 - Science. 1992 Jul 10;257(5067):255-9
10516309 - J Neurosci. 1999 Oct 15;19(20):8894-908
10769027 - J Cell Biol. 2000 Apr 17;149(2):341-56
10973998 - J Cell Biol. 2000 Sep 4;150(5):1101-12
9952410 - J Neurosci. 1999 Feb 15;19(4):1324-34
3724460 - Methods Enzymol. 1986;121:183-92
10873823 - Curr Opin Cell Biol. 2000 Aug;12(4):503-8
10839352 - Neuron. 2000 May;26(2):313-29
7568183 - Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9613-7
9405631 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14438-43
8658598 - Trends Neurosci. 1996 Apr;19(4):144-9
10839354 - Neuron. 2000 May;26(2):345-56
8521486 - Cell. 1995 Dec 1;83(5):693-701
9243506 - Mol Biol Cell. 1997 Jul;8(7):1261-71
3028210 - Anal Biochem. 1986 Nov 15;159(1):157-62
10982405 - Mol Biol Cell. 2000 Sep;11(9):3123-35
1547485 - Cell. 1992 Mar 6;68(5):829-40
7615633 - J Cell Biol. 1995 Jul;130(2):299-312
10508646 - Curr Opin Cell Biol. 1999 Oct;11(5):591-6
9491896 - Cell. 1998 Feb 20;92(4):559-71
9441674 - Dev Biol. 1997 Dec 15;192(2):364-74
8060616 - Neuron. 1994 Aug;13(2):353-61
9817763 - J Cell Biol. 1998 Nov 16;143(4):1077-86
3916316 - Annu Rev Cell Biol. 1985;1:145-72
2023041302483746000_21.11.3839.12
2023041302483746000_21.11.3839.34
2023041302483746000_21.11.3839.11
2023041302483746000_21.11.3839.33
2023041302483746000_21.11.3839.14
2023041302483746000_21.11.3839.36
2023041302483746000_21.11.3839.13
2023041302483746000_21.11.3839.35
2023041302483746000_21.11.3839.30
2023041302483746000_21.11.3839.10
2023041302483746000_21.11.3839.32
2023041302483746000_21.11.3839.31
2023041302483746000_21.11.3839.1
2023041302483746000_21.11.3839.19
2023041302483746000_21.11.3839.2
2023041302483746000_21.11.3839.3
2023041302483746000_21.11.3839.16
2023041302483746000_21.11.3839.15
2023041302483746000_21.11.3839.37
2023041302483746000_21.11.3839.18
2023041302483746000_21.11.3839.17
2023041302483746000_21.11.3839.8
2023041302483746000_21.11.3839.9
2023041302483746000_21.11.3839.4
2023041302483746000_21.11.3839.5
2023041302483746000_21.11.3839.6
2023041302483746000_21.11.3839.7
2023041302483746000_21.11.3839.23
2023041302483746000_21.11.3839.22
2023041302483746000_21.11.3839.25
2023041302483746000_21.11.3839.24
2023041302483746000_21.11.3839.21
2023041302483746000_21.11.3839.20
2023041302483746000_21.11.3839.27
2023041302483746000_21.11.3839.26
2023041302483746000_21.11.3839.29
2023041302483746000_21.11.3839.28
References_xml – ident: 2023041302483746000_21.11.3839.29
  doi: 10.1091/mbc.9.7.1725
– ident: 2023041302483746000_21.11.3839.35
  doi: 10.1016/S0896-6273(00)81166-6
– ident: 2023041302483746000_21.11.3839.22
  doi: 10.1016/0076-6879(86)21017-4
– ident: 2023041302483746000_21.11.3839.1
  doi: 10.1091/mbc.11.9.3123
– ident: 2023041302483746000_21.11.3839.20
  doi: 10.1016/S0959-4388(00)00092-1
– ident: 2023041302483746000_21.11.3839.27
  doi: 10.1016/0896-6273(94)90352-2
– ident: 2023041302483746000_21.11.3839.16
  doi: 10.1016/S0896-6273(00)80493-6
– ident: 2023041302483746000_21.11.3839.7
  doi: 10.1523/JNEUROSCI.19-20-08894.1999
– ident: 2023041302483746000_21.11.3839.3
  doi: 10.1091/mbc.8.7.1261
– ident: 2023041302483746000_21.11.3839.6
  doi: 10.1016/0092-8674(95)90182-5
– ident: 2023041302483746000_21.11.3839.19
  doi: 10.1016/S0955-0674(00)00123-X
– ident: 2023041302483746000_21.11.3839.23
  doi: 10.1083/jcb.149.2.341
– ident: 2023041302483746000_21.11.3839.4
  doi: 10.1083/jcb.118.5.1041
– ident: 2023041302483746000_21.11.3839.33
  doi: 10.1083/jcb.130.2.299
– ident: 2023041302483746000_21.11.3839.30
  doi: 10.1016/S0896-6273(00)81168-X
– ident: 2023041302483746000_21.11.3839.32
  doi: 10.1016/0092-8674(93)90672-D
– ident: 2023041302483746000_21.11.3839.34
  doi: 10.1073/pnas.92.21.9613
– ident: 2023041302483746000_21.11.3839.36
  doi: 10.1083/jcb.143.4.1077
– ident: 2023041302483746000_21.11.3839.2
  doi: 10.1126/science.1321498
– ident: 2023041302483746000_21.11.3839.9
  doi: 10.1006/dbio.1997.8727
– ident: 2023041302483746000_21.11.3839.12
  doi: 10.1016/S0092-8674(00)81435-X
– ident: 2023041302483746000_21.11.3839.13
  doi: 10.1016/S0962-8924(00)01754-2
– ident: 2023041302483746000_21.11.3839.10
  doi: 10.1016/S0166-2236(96)80025-7
– ident: 2023041302483746000_21.11.3839.11
  doi: 10.1073/pnas.73.7.2424
– ident: 2023041302483746000_21.11.3839.26
  doi: 10.1074/jbc.270.23.13585
– ident: 2023041302483746000_21.11.3839.37
  doi: 10.1016/S0896-6273(00)81167-8
– ident: 2023041302483746000_21.11.3839.15
  doi: 10.1016/S0896-6273(00)80251-2
– ident: 2023041302483746000_21.11.3839.17
  doi: 10.1016/S0896-6273(00)81169-1
– ident: 2023041302483746000_21.11.3839.24
  doi: 10.1016/0092-8674(92)90027-A
– ident: 2023041302483746000_21.11.3839.14
  doi: 10.1523/JNEUROSCI.19-04-01324.1999
– ident: 2023041302483746000_21.11.3839.21
  doi: 10.1073/pnas.94.26.14438
– ident: 2023041302483746000_21.11.3839.25
  doi: 10.1016/0003-2697(86)90321-0
– ident: 2023041302483746000_21.11.3839.18
  doi: 10.1016/S0955-0674(99)00014-9
– ident: 2023041302483746000_21.11.3839.31
  doi: 10.1083/jcb.150.5.1101
– ident: 2023041302483746000_21.11.3839.5
  doi: 10.1146/annurev.cellbio.1.1.145
– ident: 2023041302483746000_21.11.3839.8
  doi: 10.1016/S0092-8674(00)80948-4
– ident: 2023041302483746000_21.11.3839.28
  doi: 10.1016/S0896-6273(00)81170-8
SSID ssj0007017
Score 2.1885312
Snippet During neuronal development, vesicles are targeted to the growth cone to promote neurite outgrowth and synaptogenesis. The Exocyst complex is an essential...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3839
SubjectTerms Animals
Brain Chemistry
Calcium-Binding Proteins
Cell Differentiation - physiology
Cells, Cultured
Enzyme Inhibitors - pharmacology
Exocyst complex
Exocytosis - physiology
Growth Cones - metabolism
Growth Cones - ultrastructure
Hippocampus - cytology
Hippocampus - metabolism
Macromolecular Substances
MAP Kinase Signaling System - drug effects
Membrane Glycoproteins - metabolism
Mice
Mice, Inbred BALB C
Microtubule-Organizing Center - metabolism
Microtubules - chemistry
Microtubules - drug effects
Microtubules - metabolism
Nerve Growth Factor - pharmacology
Nerve Tissue Proteins - metabolism
Neurites - metabolism
Neurites - ultrastructure
Neurons - metabolism
Neurons - ultrastructure
PC12 Cells
Precipitin Tests
Protein Synthesis Inhibitors - pharmacology
Rats
Secretory Vesicles - metabolism
Synaptotagmins
Title The Exocyst Complex Associates with Microtubules to Mediate Vesicle Targeting and Neurite Outgrowth
URI http://www.jneurosci.org/cgi/content/abstract/21/11/3839
https://www.ncbi.nlm.nih.gov/pubmed/11356872
https://search.proquest.com/docview/18172138
https://search.proquest.com/docview/70864026
https://pubmed.ncbi.nlm.nih.gov/PMC3674029
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xnHqpWuhHWqA-VL1lN_F3jmgFolRLWxUqblHsOAVpN4uaRIJ_z9hJgK3aS085xFEsv4lnnvNmBuCj4yoRtBKx4kLEXDIVF1TZOC21sDozJQvpYoszeXLBTy_F5RaIMRcmiPatuZ7Wy9W0vr4K2sqblZ2NOrHZt8WcSYW0J5tNYILud6Tow_arktBmF-kW8iKu-FBpFAnX7PTMy-N-zD9PaRryyZCehWSV0C8mZUJqRTcd1Fg0-G8B6J86yieO6fgFPB8iSnLYz_wlbLl6B3YPa2TTqzvyiQSNZzg83wWLVkGObtf2rmmJ3wqW7paMCLmG-FNZsvAavbYzHa4DaddkEbp5OPLTNf4N5DyIx9HlkaIuia_ugWEr-dq1v5DSt1ev4OL46Hx-Eg9tFmIrOG1jzXhimNJFZTKrS1mmzpai4kVCq4Lzskp9zTwqhdMmk4ZZaQsqKy2tYanJSvYatut17d4C4YYbxSurOXV4KTOVcMYzoyqNYZM2EbBxbfObvppG7lkIgpM_gJPTFHlJHsDxXTLTCMgIQ96siuUSVz3N0VL6gX5cBB9GeHL8PvxPj6J2667JMYJBksv0v0coZHVoTjKCNz2cj1MbTCICtQH0wwBfm3vzDppsqNE9mOi7_37yPTzr5W7-wGcPttvfndvH-Kc1BzD58l0fBKu_B6JvBP0
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFAeUjFKgPiFt242_nWK1abUuzILFFvUWx47SVdrMVSaT233fsJIVFcOGUQyaK5Tex5zlvZhD65LhKBK1ErLgQMZdMxQVVNialFlanpmQhXSxbyPk5P70QFztIjLkwQbRvzfWkXq0n9fVV0FberO101IlNv2UzJhXQnnT6CD0WTKVkJOnDAqyS0GgXCBcwI674UGsUKNf0dOEFct9nJxNKQkYZELSQrhI6xhAmpFZ0e4saywb_LQT9U0n529Z0_Bw9G2JKfNiP_QXacfVLtHdYA59e3-HPOKg8w_H5HrLgF_jodmPvmhb7xWDlbvGIkWuwP5fFmVfptZ3pYCZwu8FZ6Ofh8A_X-DfgZZCPw6aHi7rEvr4HBK74a9deAqlvr16h8-Oj5WweD40WYis4bWPNeGKY0kVlUqtLWRJnS1HxIqFVwXlZEV81j0rhtEmlYVbagspKS2sYMWnJXqPdelO7twhzw43ildWcOriUqUo446lRlYbASZsIsXFu85u-nkbueQiAkz-Ak1MCzCQP4Pg-mSRCeIQhb9bFagWzTnLwld7Q20XoYIQnhy_E__YoarfpmhxiGKC5TP_bQgGvA4eSEXrTw_lraINLREhtAf1g4Ktzb98Bpw1VugcnffffTx6gJ_NldpafnSy-7KOnvfjNH_-8R7vtz859gGioNR-D798DWMkHXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSIgNAsojLVAvELtMEr-zrIaO2sIMlWhRd1H8CK00kxmRRGr_nmsnKR0EG1ZZxFEsnxP7Huf4XoQ-OCZTTioeS8Z5zASVcUmkiTOruFG5tjQcF5svxPEFO73kl_dKfQXTvtHXk3q5mtTXV8FbuVmZZPSJJWfzKRUSZE-ebGyVPESPOAWSjUJ9mIRlGortgugCdcQkG_KNguxKThfeJPdtejIhWThVBiItHFkJVWMyyoWSZHuZGlMH_y0M_dNNeW95mj1DT4e4Eh_2_X-OHrj6Bdo9rEFTr27xRxycnmELfRcZ4AY-ulmb26bFfkJYuhs84uQa7Pdm8dw79dpOdzAauF3jeajp4fB31_g34PNgIYeFD5e1xT7HBwSv-GvX_gBh3169RBezo_PpcTwUW4gNZ6SNFWWpplKVlc6NssJmzlhesTIlVcmYrTKfOY8I7pTOhaZGmJKISgmjaaZzS1-hnXpduzcIM820ZJVRjDi42FymjLJcy0pB8KR0hOg4tsWmz6lReC0C4BR34BQkA3VSBHB8rcwsQniEoWhW5XIJo54VwJe-oW8XoYMRngK-Ev_ro6zdumsKiGNA6lL17xYStB2QSkTodQ_n764NlIiQ3AL6roHP0L19B4gbMnUPRN377ycP0OOzT7Piy8ni8z560vvf_A7QW7TT_uzcOwiIWv0-UP8XIrkIcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Exocyst+Complex+Associates+with+Microtubules+to+Mediate+Vesicle+Targeting+and+Neurite+Outgrowth&rft.jtitle=The+Journal+of+neuroscience&rft.au=Vega%2C+Irving+E.&rft.au=Hsu%2C+Shu-Chan&rft.date=2001-06-01&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=21&rft.issue=11&rft.spage=3839&rft.epage=3848&rft_id=info:doi/10.1523%2FJNEUROSCI.21-11-03839.2001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_21_11_03839_2001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon