Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–g...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 16; no. 5; pp. 558 - 564
Main Authors Zugic, Branko, Wang, Lucun, Heine, Christian, Zakharov, Dmitri N., Lechner, Barbara A. J., Stach, Eric A., Biener, Juergen, Salmeron, Miquel, Madix, Robert J., Friend, Cynthia M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2017
Nature Publishing Group
Springer Nature - Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials. Dynamic restructuring behaviour and composition changes in bimetallic and nanoporous gold–silver alloys correlate to catalytic activity.
AbstractList Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silvergold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct inuence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.
Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials. Dynamic restructuring behaviour and composition changes in bimetallic and nanoporous gold–silver alloys correlate to catalytic activity.
Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.
Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.
Author Zugic, Branko
Heine, Christian
Lechner, Barbara A. J.
Madix, Robert J.
Salmeron, Miquel
Friend, Cynthia M.
Biener, Juergen
Wang, Lucun
Zakharov, Dmitri N.
Stach, Eric A.
Author_xml – sequence: 1
  givenname: Branko
  surname: Zugic
  fullname: Zugic, Branko
  organization: Department of Chemistry and Chemical Biology, Harvard University
– sequence: 2
  givenname: Lucun
  surname: Wang
  fullname: Wang, Lucun
  organization: Department of Chemistry and Chemical Biology, Harvard University
– sequence: 3
  givenname: Christian
  surname: Heine
  fullname: Heine, Christian
  organization: Materials Science Division, Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Dmitri N.
  surname: Zakharov
  fullname: Zakharov, Dmitri N.
  organization: Center for Functional Nanomaterials, Brookhaven National Laboratory
– sequence: 5
  givenname: Barbara A. J.
  surname: Lechner
  fullname: Lechner, Barbara A. J.
  organization: Materials Science Division, Lawrence Berkeley National Laboratory
– sequence: 6
  givenname: Eric A.
  orcidid: 0000-0002-3366-2153
  surname: Stach
  fullname: Stach, Eric A.
  organization: Center for Functional Nanomaterials, Brookhaven National Laboratory
– sequence: 7
  givenname: Juergen
  surname: Biener
  fullname: Biener, Juergen
  organization: Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory
– sequence: 8
  givenname: Miquel
  surname: Salmeron
  fullname: Salmeron, Miquel
  organization: Materials Science Division, Lawrence Berkeley National Laboratory
– sequence: 9
  givenname: Robert J.
  surname: Madix
  fullname: Madix, Robert J.
  organization: Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 10
  givenname: Cynthia M.
  surname: Friend
  fullname: Friend, Cynthia M.
  email: friend@fas.harvard.edu
  organization: Department of Chemistry and Chemical Biology, Harvard University, Paulson School of Engineering and Applied Sciences, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27992418$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1388711$$D View this record in Osti.gov
BookMark eNqFkd9qFDEUxoNUbLsKPoEMelMvtiaZTP5cSrVaKPRGr7wImTPZmpJJ1iSzMHe-g2_ok5hld7UUoTfnHDi_83E-vlN0FGKwCL0k-JzgVr4LoylMUvYEnRAm-JJxjo_2MyGUHqPTnO8wpqTr-DN0TIVSlBF5gr59mIMZHTTJ5pImKFNy4bYZktvY3IApxs-lrg0Ut3FlbmJogglxHVOccnMb_fD756_s_Mamxngf5_1RLvk5eroyPtsX-75AXy8_frn4vLy--XR18f56CR2jZclBdZZixgVRfdv2cgW96MGyQeKOC4MVF4OR_SAHKoAJxRm0mEsxcBA9Nu0Cvd7pxlyczuCKhe8QQ7BQNGmlFIRU6GwHrVP8MVWzenQZrPcm2OpEE4UZ7TAj7HFUdoRKydRW9c0D9C5OKVS3lVK0pRjXukCv9tTUj3bQ6-RGk2Z9iKEC5zsAUsw52ZWuJkxxMZRknNcE623O-pDzvxf_Hhw0_4O-3aF5vY3WpnsvPmT_AM4Mttw
CitedBy_id crossref_primary_10_1016_j_bios_2022_115033
crossref_primary_10_1002_anie_202418645
crossref_primary_10_1007_s10971_021_05597_9
crossref_primary_10_1016_j_mencom_2020_05_008
crossref_primary_10_1021_acscatal_9b02402
crossref_primary_10_1016_j_matdes_2019_107697
crossref_primary_10_1039_D0NR07362H
crossref_primary_10_1016_j_solidstatesciences_2022_106916
crossref_primary_10_1021_acs_jpcc_4c04711
crossref_primary_10_1016_j_apsusc_2017_11_184
crossref_primary_10_1039_C9NR03266E
crossref_primary_10_3390_nano8040265
crossref_primary_10_1039_D0TA04940A
crossref_primary_10_1016_j_clay_2018_09_016
crossref_primary_10_1021_acscatal_3c04578
crossref_primary_10_1016_j_scriptamat_2017_11_018
crossref_primary_10_1021_acscatal_7b03685
crossref_primary_10_1038_s41563_021_00996_3
crossref_primary_10_1007_s12274_023_5484_6
crossref_primary_10_1080_21663831_2017_1396263
crossref_primary_10_1021_acscatal_1c01200
crossref_primary_10_1002_ppsc_202300070
crossref_primary_10_1038_s41929_024_01148_x
crossref_primary_10_1021_acs_jpcc_1c07040
crossref_primary_10_1039_C9NR01858A
crossref_primary_10_1021_acscatal_1c00478
crossref_primary_10_1021_acs_jpcc_7b08873
crossref_primary_10_1021_acsnano_9b06848
crossref_primary_10_1002_cctc_202201396
crossref_primary_10_1038_s41598_022_08182_4
crossref_primary_10_1002_ange_201901923
crossref_primary_10_1016_j_mattod_2023_06_022
crossref_primary_10_1017_S1431927621013994
crossref_primary_10_1016_j_snb_2022_131595
crossref_primary_10_1016_j_actamat_2022_118433
crossref_primary_10_1149_2_0861904jes
crossref_primary_10_1016_j_apcata_2018_10_027
crossref_primary_10_1039_D2CY00183G
crossref_primary_10_1021_acs_accounts_6b00510
crossref_primary_10_1021_jacs_3c06688
crossref_primary_10_1039_D0MA00883D
crossref_primary_10_1063_5_0067700
crossref_primary_10_1016_j_apsusc_2020_146493
crossref_primary_10_1126_science_adq0102
crossref_primary_10_1021_acsami_7b17066
crossref_primary_10_1038_s41467_018_04412_4
crossref_primary_10_1002_cphc_202400521
crossref_primary_10_1021_acs_nanolett_9b03445
crossref_primary_10_1021_acsami_4c15460
crossref_primary_10_1063_1_4994701
crossref_primary_10_1021_acs_chemmater_2c02697
crossref_primary_10_2139_ssrn_3372970
crossref_primary_10_3390_pr8111380
crossref_primary_10_1021_acsanm_3c04278
crossref_primary_10_1021_acsnano_1c09450
crossref_primary_10_1038_s41929_018_0177_3
crossref_primary_10_1002_ange_202001576
crossref_primary_10_1002_aenm_202202097
crossref_primary_10_1021_acs_jpcc_1c08222
crossref_primary_10_1021_acs_analchem_7b01238
crossref_primary_10_1016_j_nanoso_2021_100830
crossref_primary_10_1021_acsaem_9b00355
crossref_primary_10_1021_acs_jpcc_2c06519
crossref_primary_10_1039_C8CC07029F
crossref_primary_10_1038_s41467_018_03012_6
crossref_primary_10_34133_research_0043
crossref_primary_10_1103_PhysRevMaterials_6_093803
crossref_primary_10_1016_j_cej_2023_146437
crossref_primary_10_59761_RCR5087
crossref_primary_10_1038_s43246_022_00303_w
crossref_primary_10_1002_chem_201704552
crossref_primary_10_1016_j_seppur_2020_116524
crossref_primary_10_1038_s41929_019_0298_3
crossref_primary_10_1021_acs_jpcc_8b09449
crossref_primary_10_1007_s00894_023_05581_w
crossref_primary_10_3390_app9132721
crossref_primary_10_3390_nano10122377
crossref_primary_10_1021_acscatal_0c03282
crossref_primary_10_1021_jacs_8b07438
crossref_primary_10_3390_w14010019
crossref_primary_10_1021_acs_iecr_4c01029
crossref_primary_10_1039_C7CY00994A
crossref_primary_10_1016_j_apsusc_2021_151350
crossref_primary_10_1016_j_mtcomm_2022_104349
crossref_primary_10_1002_nano_202000291
crossref_primary_10_1080_23746149_2025_2481277
crossref_primary_10_1002_aenm_201902105
crossref_primary_10_1021_acsami_9b00754
crossref_primary_10_1038_s41557_019_0345_3
crossref_primary_10_1021_acscatal_0c03037
crossref_primary_10_1002_admi_201900732
crossref_primary_10_3390_molecules25163735
crossref_primary_10_1039_D3CY01655B
crossref_primary_10_1002_smll_202103852
crossref_primary_10_1038_s41570_021_00255_8
crossref_primary_10_1016_j_susc_2018_09_012
crossref_primary_10_1021_acsnano_8b03617
crossref_primary_10_1021_acs_jpcc_9b04863
crossref_primary_10_1021_acsnano_8b03978
crossref_primary_10_1038_s41467_021_25192_4
crossref_primary_10_1038_s41467_022_30483_5
crossref_primary_10_1002_adem_202201724
crossref_primary_10_1016_j_jpcs_2019_109139
crossref_primary_10_1002_adma_202414962
crossref_primary_10_1038_s41467_020_15536_x
crossref_primary_10_1007_s11244_017_0881_2
crossref_primary_10_1039_D1TA05942D
crossref_primary_10_1002_ppap_201800112
crossref_primary_10_1039_D1NR03709A
crossref_primary_10_1016_j_biomaterials_2019_05_009
crossref_primary_10_3390_catal7050134
crossref_primary_10_1021_acs_chemmater_8b04595
crossref_primary_10_1021_acs_jpcc_6b12847
crossref_primary_10_1038_s41467_017_01085_3
crossref_primary_10_1021_acsanm_2c03154
crossref_primary_10_1021_acsphotonics_4c01443
crossref_primary_10_1088_1361_6463_ac1a9d
crossref_primary_10_1126_science_abe3558
crossref_primary_10_1016_j_cattod_2019_04_021
crossref_primary_10_1016_j_jmst_2021_01_095
crossref_primary_10_1016_j_mtcomm_2020_101371
crossref_primary_10_1002_slct_201900289
crossref_primary_10_3390_nano12152524
crossref_primary_10_1007_s11244_019_01217_7
crossref_primary_10_1021_acs_chemrev_1c00967
crossref_primary_10_1002_anie_201800650
crossref_primary_10_1016_j_apsusc_2019_04_036
crossref_primary_10_1016_j_apsusc_2022_154497
crossref_primary_10_1021_acsami_8b04811
crossref_primary_10_1021_acscatal_9b01831
crossref_primary_10_1016_j_scriptamat_2021_113865
crossref_primary_10_1126_sciadv_aas9459
crossref_primary_10_3390_bios13050550
crossref_primary_10_1016_j_electacta_2022_140774
crossref_primary_10_3390_catal9050416
crossref_primary_10_1039_C7FD00219J
crossref_primary_10_1063_1_4984614
crossref_primary_10_1002_anie_202001576
crossref_primary_10_1039_D1CY02034J
crossref_primary_10_1021_acscatal_0c05421
crossref_primary_10_1021_acs_nanolett_0c04837
crossref_primary_10_3390_catal11091041
crossref_primary_10_1039_D1CP03436G
crossref_primary_10_1021_acs_chemmater_8b04533
crossref_primary_10_1021_acscatal_0c02818
crossref_primary_10_1016_j_cej_2024_151036
crossref_primary_10_1021_jacs_9b07172
crossref_primary_10_1039_D1CC06939J
crossref_primary_10_1364_JOSAB_479739
crossref_primary_10_1016_j_matlet_2017_03_096
crossref_primary_10_1021_jacs_9b02160
crossref_primary_10_1016_j_actamat_2018_09_002
crossref_primary_10_1021_acsenergylett_0c00959
crossref_primary_10_1016_j_cej_2021_129066
crossref_primary_10_1088_2632_959X_aca41f
crossref_primary_10_1021_acs_jpcc_4c07053
crossref_primary_10_1007_s10534_022_00446_w
crossref_primary_10_1016_j_electacta_2018_10_175
crossref_primary_10_59761_RCR5148
crossref_primary_10_1002_adts_202401460
crossref_primary_10_1038_s41570_024_00578_2
crossref_primary_10_1038_s43246_023_00346_7
crossref_primary_10_1016_j_jcat_2025_115975
crossref_primary_10_1063_5_0093239
crossref_primary_10_1016_j_surfin_2023_103255
crossref_primary_10_1016_j_apsusc_2019_01_099
crossref_primary_10_1002_ange_202418645
crossref_primary_10_1016_j_aca_2023_341760
crossref_primary_10_1002_smll_202305562
crossref_primary_10_1021_acsanm_9b02279
crossref_primary_10_1038_s41929_023_00932_5
crossref_primary_10_1021_acs_jpclett_1c01640
crossref_primary_10_1039_D1TA04822H
crossref_primary_10_1146_annurev_chembioeng_092120_010920
crossref_primary_10_1002_wer_1323
crossref_primary_10_1021_acs_est_8b06234
crossref_primary_10_3390_catal9050423
crossref_primary_10_1021_jacs_9b05776
crossref_primary_10_1002_cctc_202001423
crossref_primary_10_1038_s41563_019_0349_9
crossref_primary_10_1021_acs_chemrev_2c00751
crossref_primary_10_1039_C9NR09660D
crossref_primary_10_1016_j_molliq_2019_112004
crossref_primary_10_1021_acscatal_3c02225
crossref_primary_10_1021_acs_jpcc_2c03769
crossref_primary_10_1002_adom_202200463
crossref_primary_10_1016_j_jcat_2019_08_041
crossref_primary_10_1002_adem_201700389
crossref_primary_10_1021_acscatal_9b00664
crossref_primary_10_1021_acs_jpclett_5c00126
crossref_primary_10_1073_pnas_2107930118
crossref_primary_10_1364_OE_28_002909
crossref_primary_10_1007_s11244_017_0874_1
crossref_primary_10_1039_C8FD00124C
crossref_primary_10_2139_ssrn_4013429
crossref_primary_10_1038_s41929_024_01175_8
crossref_primary_10_1007_s42243_019_00298_8
crossref_primary_10_1021_acs_jpclett_1c01367
crossref_primary_10_1007_s12274_018_2157_y
crossref_primary_10_1002_smll_202005771
crossref_primary_10_1016_j_mattod_2020_05_017
crossref_primary_10_1021_acs_jpcc_2c03773
crossref_primary_10_1002_cnma_201800473
crossref_primary_10_1021_acscatal_0c01261
crossref_primary_10_1021_acscatal_2c04541
crossref_primary_10_1021_acs_chemrev_7b00776
crossref_primary_10_1002_smll_201801586
crossref_primary_10_1002_adsu_202000072
crossref_primary_10_1039_D4TA03030C
crossref_primary_10_1021_jacs_0c06401
crossref_primary_10_1039_D3CY01600E
crossref_primary_10_1021_acsami_9b06346
crossref_primary_10_1038_s41570_023_00469_y
crossref_primary_10_1038_s41598_021_89235_y
crossref_primary_10_1002_cctc_202301242
crossref_primary_10_1038_s41467_020_20293_y
crossref_primary_10_1021_acs_jpcc_4c03959
crossref_primary_10_1016_j_apcatb_2024_123780
crossref_primary_10_1021_acs_analchem_7b01897
crossref_primary_10_1021_acscatal_0c05173
crossref_primary_10_1039_C8CP01368C
crossref_primary_10_1016_j_cjche_2021_07_015
crossref_primary_10_1039_D3SC02974C
crossref_primary_10_1016_j_apsusc_2022_155086
crossref_primary_10_1021_acsaem_9b01912
crossref_primary_10_1021_acs_chemmater_3c00970
crossref_primary_10_1007_s11581_018_2806_x
crossref_primary_10_1016_j_apsusc_2020_146568
crossref_primary_10_1002_adma_201705698
crossref_primary_10_1021_acs_jpcc_0c01386
crossref_primary_10_1038_s44286_025_00179_w
crossref_primary_10_1002_anie_201901923
crossref_primary_10_1016_j_jhazmat_2022_129082
crossref_primary_10_1021_acs_jpcc_8b06676
crossref_primary_10_1021_acs_jpcc_8b07402
crossref_primary_10_1039_C9FD00128J
crossref_primary_10_1002_ange_202405379
crossref_primary_10_1038_s41929_018_0167_5
crossref_primary_10_1002_adhm_202300267
crossref_primary_10_1039_C7TA08562A
crossref_primary_10_1021_acsami_7b04659
crossref_primary_10_1038_s41529_020_00143_4
crossref_primary_10_1016_j_cattod_2018_04_013
crossref_primary_10_1002_ange_201800650
crossref_primary_10_1021_acs_chemrev_0c00582
crossref_primary_10_1021_acs_jpcc_7b06316
crossref_primary_10_1016_j_bios_2018_09_055
crossref_primary_10_1002_adma_201703601
crossref_primary_10_1021_acscatal_0c04789
crossref_primary_10_1016_j_nanoen_2018_11_060
crossref_primary_10_1002_anie_202405379
crossref_primary_10_1016_j_matt_2019_10_017
crossref_primary_10_1021_acscatal_0c03335
crossref_primary_10_1073_pnas_2411406122
crossref_primary_10_1021_acs_jpcc_8b08849
Cites_doi 10.1021/cs4004084
10.1021/acscatal.5b00330
10.1002/chem.201304837
10.1016/j.apsusc.2010.07.002
10.1126/science.1164170
10.1021/nl200993g
10.1021/ja0675503
10.1116/1.580924
10.1002/anie.200805404
10.1016/j.jcat.2015.04.022
10.1039/c0sc00214c
10.1002/sia.740210302
10.1016/j.jcat.2013.05.033
10.1016/j.jcat.2016.08.012
10.1103/PhysRevB.45.8924
10.1007/BF03215519
10.1007/s10562-012-0872-7
10.1021/jp511884k
10.1021/nl500553a
10.1021/nl403895s
10.1021/cs501728r
10.1016/S0368-2048(98)00221-7
10.1021/ac60363a019
10.1107/S0567740879006622
10.1016/0039-6028(86)90616-3
10.1021/jp107914e
10.1016/j.jcat.2008.10.003
10.1002/ange.201101772
10.1126/science.1219831
10.1038/nmat3391
10.1103/PhysRevB.62.11126
ContentType Journal Article
Copyright Springer Nature Limited 2017
Copyright Nature Publishing Group May 2017
Copyright_xml – notice: Springer Nature Limited 2017
– notice: Copyright Nature Publishing Group May 2017
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
– name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
7U5
L7M
OTOTI
DOI 10.1038/nmat4824
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database

Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 564
ExternalDocumentID 1388711
4322025165
27992418
10_1038_nmat4824
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
7U5
L7M
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c542t-6c95e2046719b33b8fcb7bce4d80567a0967da8bd8d27c47964c30687d6c7b0a3
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Mon Jul 03 03:58:24 EDT 2023
Fri Jul 11 04:48:37 EDT 2025
Fri Jul 11 08:08:45 EDT 2025
Sat Aug 23 14:57:33 EDT 2025
Thu Apr 03 07:00:25 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Tue Jul 01 02:13:57 EDT 2025
Fri Feb 21 02:40:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-6c95e2046719b33b8fcb7bce4d80567a0967da8bd8d27c47964c30687d6c7b0a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
BNL-205660-2018-JAAM; LLNL-JRNL-739604
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0012704; SC0012573; AC52-07NA27344; AC02-05CH11231
ORCID 0000-0002-3366-2153
0000000233662153
OpenAccessLink https://www.osti.gov/biblio/1414360
PMID 27992418
PQID 1892320092
PQPubID 27576
PageCount 7
ParticipantIDs osti_scitechconnect_1388711
proquest_miscellaneous_1904250414
proquest_miscellaneous_1851288491
proquest_journals_1892320092
pubmed_primary_27992418
crossref_citationtrail_10_1038_nmat4824
crossref_primary_10_1038_nmat4824
springer_journals_10_1038_nmat4824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Springer Nature - Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Springer Nature - Nature Publishing Group
References Tyson (CR29) 1992; 45
Kibis (CR30) 2010; 257
Tao (CR3) 2008; 322
Della Pina, Falletta, Rossi (CR5) 2008; 260
Stowers, Madix, Friend (CR9) 2013; 308
Boronin, Koscheev, Zhidomirov (CR28) 1998; 96
Biener (CR15) 2011; 11
Wang (CR19) 2016; 344
Krozer, Rodahl (CR22) 1997; 15
Xu, Liu, Haubrich, Madix, Friend (CR17) 2009; 48
Tanuma, Powell, Penn (CR23) 1994; 21
Kaspar, Droubay, Chambers, Bagus (CR24) 2010; 114
Fujita (CR16) 2012; 11
Xin (CR2) 2014; 14
Sault, Madix, Campbell (CR11) 1986; 169
Personick (CR13) 2015; 5
Xu, Siler, Madix, Friend (CR27) 2014; 20
Jones (CR21) 1979; 35
Fujita (CR32) 2014; 14
Behrens (CR1) 2012; 336
Meyer, Lemire, Shaikhutdinov, Freund (CR12) 2011; 37
Xu, Haubrich, Freyschlag, Madix, Friend (CR18) 2010; 1
Moskaleva, Weiss, Klüner, Bäumer (CR31) 2015; 119
Suzuki (CR8) 2013; 3
Wang (CR10) 2015; 329
Whiting (CR6) 2015; 5
CR20
Hammond, Gaarenstroom (CR25) 1975; 47
Hoflund, Hazos, Salaita (CR26) 2000; 62
Brett (CR4) 2011; 123
Kotionova (CR7) 2012; 142
Xu (CR14) 2007; 129
C Xu (BFnmat4824_CR14) 2007; 129
ML Personick (BFnmat4824_CR13) 2015; 5
T Kotionova (BFnmat4824_CR7) 2012; 142
HL Xin (BFnmat4824_CR2) 2014; 14
K Suzuki (BFnmat4824_CR8) 2013; 3
L-C Wang (BFnmat4824_CR10) 2015; 329
A Krozer (BFnmat4824_CR22) 1997; 15
M Behrens (BFnmat4824_CR1) 2012; 336
B Xu (BFnmat4824_CR27) 2014; 20
F Tao (BFnmat4824_CR3) 2008; 322
CC Tyson (BFnmat4824_CR29) 1992; 45
MM Biener (BFnmat4824_CR15) 2011; 11
C Della Pina (BFnmat4824_CR5) 2008; 260
AG Sault (BFnmat4824_CR11) 1986; 169
BFnmat4824_CR20
LS Kibis (BFnmat4824_CR30) 2010; 257
S Tanuma (BFnmat4824_CR23) 1994; 21
T Fujita (BFnmat4824_CR32) 2014; 14
R Meyer (BFnmat4824_CR12) 2011; 37
B Xu (BFnmat4824_CR17) 2009; 48
PG Jones (BFnmat4824_CR21) 1979; 35
KJ Stowers (BFnmat4824_CR9) 2013; 308
B Xu (BFnmat4824_CR18) 2010; 1
LC Wang (BFnmat4824_CR19) 2016; 344
TC Kaspar (BFnmat4824_CR24) 2010; 114
T Fujita (BFnmat4824_CR16) 2012; 11
GL Brett (BFnmat4824_CR4) 2011; 123
LV Moskaleva (BFnmat4824_CR31) 2015; 119
AI Boronin (BFnmat4824_CR28) 1998; 96
JS Hammond (BFnmat4824_CR25) 1975; 47
GB Hoflund (BFnmat4824_CR26) 2000; 62
GT Whiting (BFnmat4824_CR6) 2015; 5
References_xml – volume: 3
  start-page: 1845
  year: 2013
  end-page: 1849
  ident: CR8
  article-title: Aerobic oxidative esterification of aldehydes with alcohols by gold–nickel oxide nanoparticle catalysts with a core–shell structure
  publication-title: ACS Catalys.
  doi: 10.1021/cs4004084
– volume: 5
  start-page: 4237
  year: 2015
  end-page: 4241
  ident: CR13
  article-title: Ozone-activated nanoporous gold: a stable and storable material for catalytic oxidation
  publication-title: ACS Catalys.
  doi: 10.1021/acscatal.5b00330
– volume: 20
  start-page: 4646
  year: 2014
  end-page: 4652
  ident: CR27
  article-title: Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201304837
– volume: 257
  start-page: 404
  year: 2010
  end-page: 413
  ident: CR30
  article-title: The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.07.002
– volume: 322
  start-page: 932
  year: 2008
  end-page: 934
  ident: CR3
  article-title: Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles
  publication-title: Science
  doi: 10.1126/science.1164170
– volume: 11
  start-page: 3085
  year: 2011
  end-page: 3090
  ident: CR15
  article-title: ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity
  publication-title: Nano Lett.
  doi: 10.1021/nl200993g
– volume: 129
  start-page: 42
  year: 2007
  end-page: 43
  ident: CR14
  article-title: Low temperature CO oxidation over unsupported nanoporous gold
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0675503
– volume: 15
  start-page: 1704
  year: 1997
  end-page: 1707
  ident: CR22
  article-title: X-ray photoemission spectroscopy study of UV/ozone oxidation of Au under ultrahigh vacuum conditions
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.580924
– volume: 48
  start-page: 4206
  year: 2009
  end-page: 4209
  ident: CR17
  article-title: Selectivity control in gold-mediated esterification of methanol
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200805404
– volume: 329
  start-page: 78
  year: 2015
  end-page: 86
  ident: CR10
  article-title: Exploiting basic principles to control the selectivity of the vapor phase catalytic oxidative cross-coupling of primary alcohols over nanoporous gold catalysts
  publication-title: J. Catalys.
  doi: 10.1016/j.jcat.2015.04.022
– volume: 1
  start-page: 310
  year: 2010
  end-page: 316
  ident: CR18
  article-title: Oxygen-assisted cross-coupling of methanol with alkyl alcohols on metallic gold
  publication-title: Chem. Sci.
  doi: 10.1039/c0sc00214c
– volume: 21
  start-page: 165
  year: 1994
  end-page: 176
  ident: CR23
  article-title: Calculations of electron inelastic mean free paths
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740210302
– volume: 308
  start-page: 131
  year: 2013
  end-page: 141
  ident: CR9
  article-title: From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: oxygen-assisted coupling reactions
  publication-title: J. Catalys.
  doi: 10.1016/j.jcat.2013.05.033
– volume: 344
  start-page: 778
  year: 2016
  end-page: 783
  ident: CR19
  article-title: Active sites for methanol partial oxidation on nanoporous gold catalysts
  publication-title: J. Catalys.
  doi: 10.1016/j.jcat.2016.08.012
– volume: 45
  start-page: 8924
  year: 1992
  end-page: 8928
  ident: CR29
  article-title: Charge redistribution in Au–Ag alloys from a local perspective
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.8924
– volume: 37
  start-page: 72
  year: 2011
  end-page: 124
  ident: CR12
  article-title: Surface chemistry of catalysis by gold
  publication-title: Gold Bull.
  doi: 10.1007/BF03215519
– volume: 142
  start-page: 1114
  year: 2012
  end-page: 1120
  ident: CR7
  article-title: Oxidative esterification of homologous 1,3-propanediols
  publication-title: Catalys. Lett.
  doi: 10.1007/s10562-012-0872-7
– volume: 119
  start-page: 9215
  year: 2015
  end-page: 9226
  ident: CR31
  article-title: Chemisorbed oxygen on the Au(321) surface alloyed with silver: a first-principles investigation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp511884k
– volume: 14
  start-page: 3203
  year: 2014
  end-page: 3207
  ident: CR2
  article-title: Revealing the atomic restructuring of Pt–Co nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl500553a
– volume: 14
  start-page: 1172
  year: 2014
  end-page: 1177
  ident: CR32
  article-title: Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold
  publication-title: Nano Lett.
  doi: 10.1021/nl403895s
– volume: 5
  start-page: 637
  year: 2015
  end-page: 644
  ident: CR6
  article-title: Methyl formate formation from methanol oxidation using supported gold–palladium nanoparticles
  publication-title: ACS Catalys.
  doi: 10.1021/cs501728r
– volume: 96
  start-page: 43
  year: 1998
  end-page: 51
  ident: CR28
  article-title: XPS and UPS study of oxygen states on silver
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/S0368-2048(98)00221-7
– volume: 47
  start-page: 2193
  year: 1975
  end-page: 2199
  ident: CR25
  article-title: X-ray photoelectron spectroscopic studies of cadmium– and silver–oxygen surfaces
  publication-title: Anal. Chem.
  doi: 10.1021/ac60363a019
– volume: 35
  start-page: 1435
  year: 1979
  end-page: 1437
  ident: CR21
  article-title: Gold(III) oxide
  publication-title: Acta Crystallogr. B
  doi: 10.1107/S0567740879006622
– volume: 169
  start-page: 347
  year: 1986
  end-page: 356
  ident: CR11
  article-title: Adsorption of oxygen and hydrogen on Au(110)-(1 × 2)
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(86)90616-3
– volume: 114
  start-page: 21562
  year: 2010
  end-page: 21571
  ident: CR24
  article-title: Spectroscopic evidence for Ag(III) in highly oxidized silver films by X-ray photoelectron spectroscopy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp107914e
– volume: 260
  start-page: 384
  year: 2008
  end-page: 386
  ident: CR5
  article-title: Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst
  publication-title: J. Catalys.
  doi: 10.1016/j.jcat.2008.10.003
– volume: 123
  start-page: 10318
  year: 2011
  end-page: 10321
  ident: CR4
  article-title: Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201101772
– volume: 336
  start-page: 893
  year: 2012
  end-page: 897
  ident: CR1
  article-title: The active site of methanol synthesis over Cu/ZnO/Al O industrial catalysts
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 11
  start-page: 775
  year: 2012
  end-page: 780
  ident: CR16
  article-title: Atomic origins of the high catalytic activity of nanoporous gold
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3391
– volume: 62
  start-page: 11126
  year: 2000
  end-page: 11133
  ident: CR26
  article-title: Surface characterization study of Ag, AgO, and Ag O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.11126
– ident: CR20
– volume: 129
  start-page: 42
  year: 2007
  ident: BFnmat4824_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0675503
– volume: 48
  start-page: 4206
  year: 2009
  ident: BFnmat4824_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200805404
– volume: 336
  start-page: 893
  year: 2012
  ident: BFnmat4824_CR1
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 62
  start-page: 11126
  year: 2000
  ident: BFnmat4824_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.11126
– volume: 329
  start-page: 78
  year: 2015
  ident: BFnmat4824_CR10
  publication-title: J. Catalys.
  doi: 10.1016/j.jcat.2015.04.022
– ident: BFnmat4824_CR20
– volume: 47
  start-page: 2193
  year: 1975
  ident: BFnmat4824_CR25
  publication-title: Anal. Chem.
  doi: 10.1021/ac60363a019
– volume: 21
  start-page: 165
  year: 1994
  ident: BFnmat4824_CR23
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740210302
– volume: 14
  start-page: 1172
  year: 2014
  ident: BFnmat4824_CR32
  publication-title: Nano Lett.
  doi: 10.1021/nl403895s
– volume: 20
  start-page: 4646
  year: 2014
  ident: BFnmat4824_CR27
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201304837
– volume: 15
  start-page: 1704
  year: 1997
  ident: BFnmat4824_CR22
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.580924
– volume: 45
  start-page: 8924
  year: 1992
  ident: BFnmat4824_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.8924
– volume: 344
  start-page: 778
  year: 2016
  ident: BFnmat4824_CR19
  publication-title: J. Catalys.
  doi: 10.1016/j.jcat.2016.08.012
– volume: 322
  start-page: 932
  year: 2008
  ident: BFnmat4824_CR3
  publication-title: Science
  doi: 10.1126/science.1164170
– volume: 1
  start-page: 310
  year: 2010
  ident: BFnmat4824_CR18
  publication-title: Chem. Sci.
  doi: 10.1039/c0sc00214c
– volume: 11
  start-page: 775
  year: 2012
  ident: BFnmat4824_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3391
– volume: 96
  start-page: 43
  year: 1998
  ident: BFnmat4824_CR28
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/S0368-2048(98)00221-7
– volume: 114
  start-page: 21562
  year: 2010
  ident: BFnmat4824_CR24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp107914e
– volume: 169
  start-page: 347
  year: 1986
  ident: BFnmat4824_CR11
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(86)90616-3
– volume: 37
  start-page: 72
  year: 2011
  ident: BFnmat4824_CR12
  publication-title: Gold Bull.
  doi: 10.1007/BF03215519
– volume: 123
  start-page: 10318
  year: 2011
  ident: BFnmat4824_CR4
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201101772
– volume: 142
  start-page: 1114
  year: 2012
  ident: BFnmat4824_CR7
  publication-title: Catalys. Lett.
  doi: 10.1007/s10562-012-0872-7
– volume: 3
  start-page: 1845
  year: 2013
  ident: BFnmat4824_CR8
  publication-title: ACS Catalys.
  doi: 10.1021/cs4004084
– volume: 5
  start-page: 4237
  year: 2015
  ident: BFnmat4824_CR13
  publication-title: ACS Catalys.
  doi: 10.1021/acscatal.5b00330
– volume: 308
  start-page: 131
  year: 2013
  ident: BFnmat4824_CR9
  publication-title: J. Catalys.
  doi: 10.1016/j.jcat.2013.05.033
– volume: 35
  start-page: 1435
  year: 1979
  ident: BFnmat4824_CR21
  publication-title: Acta Crystallogr. B
  doi: 10.1107/S0567740879006622
– volume: 5
  start-page: 637
  year: 2015
  ident: BFnmat4824_CR6
  publication-title: ACS Catalys.
  doi: 10.1021/cs501728r
– volume: 260
  start-page: 384
  year: 2008
  ident: BFnmat4824_CR5
  publication-title: J. Catalys.
  doi: 10.1016/j.jcat.2008.10.003
– volume: 257
  start-page: 404
  year: 2010
  ident: BFnmat4824_CR30
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.07.002
– volume: 119
  start-page: 9215
  year: 2015
  ident: BFnmat4824_CR31
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp511884k
– volume: 11
  start-page: 3085
  year: 2011
  ident: BFnmat4824_CR15
  publication-title: Nano Lett.
  doi: 10.1021/nl200993g
– volume: 14
  start-page: 3203
  year: 2014
  ident: BFnmat4824_CR2
  publication-title: Nano Lett.
  doi: 10.1021/nl500553a
SSID ssj0021556
Score 2.6230023
Snippet Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 558
SubjectTerms 140/146
639/301/299/1013
639/638/77/887
Alloys
Bimetals
Biomaterials
Case studies
Catalysis
catalysis (heterogeneous), mesostructured materials, materials and chemistry by design, synthesis (novel materials)
Catalysts
Company structure
Condensed Matter Physics
Dynamical systems
Dynamics
Electron microscopy
Gold
Materials Science
Nanostructure
Nanostructured materials
Nanotechnology
Optical and Electronic Materials
Oxidation
Ozone
Silver
Spectroscopy
Title Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts
URI https://link.springer.com/article/10.1038/nmat4824
https://www.ncbi.nlm.nih.gov/pubmed/27992418
https://www.proquest.com/docview/1892320092
https://www.proquest.com/docview/1851288491
https://www.proquest.com/docview/1904250414
https://www.osti.gov/biblio/1388711
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbocqEHBIW2y0suQurJIn4kdk4IKNsVUldVBdJyivwCVULJQvay_56ZPBZKEZdIUWzZ8Yztbzzjbwg5EtI5kUfDorr1TFkvmNOJY8GA_REsD97jOeSvSTa-VpfTdNoduNVdWGW_JjYLdag8npEfcwNQpKEIOpk9MMwahd7VLoXGB7KK1GUY0qWnzwYX7JXt7SKdMcAVoieflea4BDyojFD_bEeDCqbVW1DzPzdps_uMNsh6BxvpaSvnTbISy0_k4wsywS1y86NNLk8x2waSwjYXEGl4RGJZ2hzTLKA2xZsMmDCCViUtbVkBAAfrn95V94HVfzFQmqIzftFVqef1NrkeXVydj1mXOIH5VIk5y3yeRgGWr-a5k9KZW--081EFA3hHWzBbdLDGBROE9gpvo3owHYwOmdcusfIzGZRVGb8SqqyMMrrUC4dMgomNqdAZvOZJEkPGh-R7P36F71jFMbnFfdF4t6Up-pEekm_LkrOWSeONMrsoggJ2f6Sw9Rjr4-cFl7AUcmhrr5dM0c20unjWC2hg-RnmCDo-bBlhBKEMwBpjVM7fKZPj8pUoDp340kp92U2hczBTuRmSw14NXnTg1T_svN_LXbImEBk0MZN7ZAAKEfcB18zdQaO88DSjnwdk9exi8vvPE1Ac-y8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEG-WFjAIxMlq_EjsHBBClGVLH6dWKqfgVxFSlRSyCO2f4jcyk8dSoOqtxyh27Ngz9jcezzcAL6TyXpbJ8qSPA9cuSO5N5nm0aH9EJ2IIdA65t1_MD_XHo_xoDX6NsTB0rXJcE7uFOjaBzsg3hUUo0lEEvTn9xilrFHlXxxQavVjspOVPNNna19tbOL8vpZy9P3g350NWAR5yLRe8CGWeJJqFRpReKW-Pgzc-JB0tggHjENOb6KyPNkoTNIVqBsTV1sQiGJ85hd-9Ale1UiVplJ19WBl4uDf30Uym4Ihj5Eh2q-xmjfhTW6n_2v4mDarxedD2P7dst9vNbsHNAaayt71c3Ya1VN-BG2fIC-_Cp60-mT2j7B5EQtsFPLL4nYhsWXcstMTajCInKEEFa2pWu7pBwN_8aNmX5iTy9itdzGbk_F8OVdpFew8OL2VI78Okbur0EJh2Kqnk8yA9MRdmLuXSFPhYZlmKhZjCq3H8qjCwmFMyjZOq86YrW40jPYVnq5KnPXPHOWXWaQoqRBtEmRvoblFYVELh0iuwrY1xZqpBs9vqjxxiA6vXqJPkaHF1whHEMgijrNWluKBMSctlpgV24kE_66tuSlOiWSzsFJ6PYnCmA__8w6OLe_kUrs0P9nar3e39nXW4LgmVdPc1N2CCwpEeI6Za-CedIDP4fNma8xuO9TUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRUJwQOW9tIBBIE7Wxo_EzgFViGXVUqg4UGk5hfixCKlKCllU7V_rr2Mmj22Bqrceo9ixY8_Y39gz3wC8lMo5mUfLo154rksvuTOJ48Gi_RFKEbync8hPB9nuof4wT-cbcDrEwpBb5bAmtgt1qD2dkU-ERSjSUgRNFr1bxOfpbOf4J6cMUnTTOqTT6ERkP65O0Hxr3uxNca5fSTl7_-XdLu8zDHCfarnkmc_TKNFENCJ3Sjm78M44H3WwCAxMifjehNK6YIM0XlPYpkeMbU3IvHFJqfC71-C6UakgHTPzM2MP9-kusslkHDGNHIhvlZ1UiEW1lfqvrXBUo0pfBHP_u6Jtd77ZJtzuISt728nYHdiI1V24dY7I8B58nXaJ7Rll-iBC2jb4kYVfRGrL2iOiFdZmFEVBySpYXbGqrGoE__Xvhn2vjwJvfpCTNiNHgFVfpVk29-HwSob0AYyquoqPgOlSRRVd6qUjFsOkjKk0GT7mSRJDJsbwehi_wveM5pRY46hob9aVLYaRHsPzdcnjjsXjgjJbNAUFIg-iz_XkZ-SXhVC4DAtsa3uYmaLX8qY4k0lsYP0a9ZMuXcoq4ghiGYRU1upcXFImp6Uz0QI78bCb9XU3pcnRRBZ2DC8GMTjXgX_-4fHlvXwGN1Bnio97B_tbcFMSQGldN7dhhLIRnyC8WrqnrRwz-HbVivMHsFk5XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+restructuring+drives+catalytic+activity+on+nanoporous+gold%E2%80%93silver+alloy+catalysts&rft.jtitle=Nature+materials&rft.au=Zugic%2C+Branko&rft.au=Wang%2C+Lucun&rft.au=Heine%2C+Christian&rft.au=Zakharov%2C+Dmitri+N.&rft.date=2017-05-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=16&rft.issue=5&rft.spage=558&rft.epage=564&rft_id=info:doi/10.1038%2Fnmat4824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nmat4824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon