Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts
Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–g...
Saved in:
Published in | Nature materials Vol. 16; no. 5; pp. 558 - 564 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2017
Nature Publishing Group Springer Nature - Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced
in situ
electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.
Dynamic restructuring behaviour and composition changes in bimetallic and nanoporous gold–silver alloys correlate to catalytic activity. |
---|---|
AbstractList | Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silvergold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct inuence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials. Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials. Dynamic restructuring behaviour and composition changes in bimetallic and nanoporous gold–silver alloys correlate to catalytic activity. Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials. Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials. |
Author | Zugic, Branko Heine, Christian Lechner, Barbara A. J. Madix, Robert J. Salmeron, Miquel Friend, Cynthia M. Biener, Juergen Wang, Lucun Zakharov, Dmitri N. Stach, Eric A. |
Author_xml | – sequence: 1 givenname: Branko surname: Zugic fullname: Zugic, Branko organization: Department of Chemistry and Chemical Biology, Harvard University – sequence: 2 givenname: Lucun surname: Wang fullname: Wang, Lucun organization: Department of Chemistry and Chemical Biology, Harvard University – sequence: 3 givenname: Christian surname: Heine fullname: Heine, Christian organization: Materials Science Division, Lawrence Berkeley National Laboratory – sequence: 4 givenname: Dmitri N. surname: Zakharov fullname: Zakharov, Dmitri N. organization: Center for Functional Nanomaterials, Brookhaven National Laboratory – sequence: 5 givenname: Barbara A. J. surname: Lechner fullname: Lechner, Barbara A. J. organization: Materials Science Division, Lawrence Berkeley National Laboratory – sequence: 6 givenname: Eric A. orcidid: 0000-0002-3366-2153 surname: Stach fullname: Stach, Eric A. organization: Center for Functional Nanomaterials, Brookhaven National Laboratory – sequence: 7 givenname: Juergen surname: Biener fullname: Biener, Juergen organization: Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory – sequence: 8 givenname: Miquel surname: Salmeron fullname: Salmeron, Miquel organization: Materials Science Division, Lawrence Berkeley National Laboratory – sequence: 9 givenname: Robert J. surname: Madix fullname: Madix, Robert J. organization: Paulson School of Engineering and Applied Sciences, Harvard University – sequence: 10 givenname: Cynthia M. surname: Friend fullname: Friend, Cynthia M. email: friend@fas.harvard.edu organization: Department of Chemistry and Chemical Biology, Harvard University, Paulson School of Engineering and Applied Sciences, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27992418$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1388711$$D View this record in Osti.gov |
BookMark | eNqFkd9qFDEUxoNUbLsKPoEMelMvtiaZTP5cSrVaKPRGr7wImTPZmpJJ1iSzMHe-g2_ok5hld7UUoTfnHDi_83E-vlN0FGKwCL0k-JzgVr4LoylMUvYEnRAm-JJxjo_2MyGUHqPTnO8wpqTr-DN0TIVSlBF5gr59mIMZHTTJ5pImKFNy4bYZktvY3IApxs-lrg0Ut3FlbmJogglxHVOccnMb_fD756_s_Mamxngf5_1RLvk5eroyPtsX-75AXy8_frn4vLy--XR18f56CR2jZclBdZZixgVRfdv2cgW96MGyQeKOC4MVF4OR_SAHKoAJxRm0mEsxcBA9Nu0Cvd7pxlyczuCKhe8QQ7BQNGmlFIRU6GwHrVP8MVWzenQZrPcm2OpEE4UZ7TAj7HFUdoRKydRW9c0D9C5OKVS3lVK0pRjXukCv9tTUj3bQ6-RGk2Z9iKEC5zsAUsw52ZWuJkxxMZRknNcE623O-pDzvxf_Hhw0_4O-3aF5vY3WpnsvPmT_AM4Mttw |
CitedBy_id | crossref_primary_10_1016_j_bios_2022_115033 crossref_primary_10_1002_anie_202418645 crossref_primary_10_1007_s10971_021_05597_9 crossref_primary_10_1016_j_mencom_2020_05_008 crossref_primary_10_1021_acscatal_9b02402 crossref_primary_10_1016_j_matdes_2019_107697 crossref_primary_10_1039_D0NR07362H crossref_primary_10_1016_j_solidstatesciences_2022_106916 crossref_primary_10_1021_acs_jpcc_4c04711 crossref_primary_10_1016_j_apsusc_2017_11_184 crossref_primary_10_1039_C9NR03266E crossref_primary_10_3390_nano8040265 crossref_primary_10_1039_D0TA04940A crossref_primary_10_1016_j_clay_2018_09_016 crossref_primary_10_1021_acscatal_3c04578 crossref_primary_10_1016_j_scriptamat_2017_11_018 crossref_primary_10_1021_acscatal_7b03685 crossref_primary_10_1038_s41563_021_00996_3 crossref_primary_10_1007_s12274_023_5484_6 crossref_primary_10_1080_21663831_2017_1396263 crossref_primary_10_1021_acscatal_1c01200 crossref_primary_10_1002_ppsc_202300070 crossref_primary_10_1038_s41929_024_01148_x crossref_primary_10_1021_acs_jpcc_1c07040 crossref_primary_10_1039_C9NR01858A crossref_primary_10_1021_acscatal_1c00478 crossref_primary_10_1021_acs_jpcc_7b08873 crossref_primary_10_1021_acsnano_9b06848 crossref_primary_10_1002_cctc_202201396 crossref_primary_10_1038_s41598_022_08182_4 crossref_primary_10_1002_ange_201901923 crossref_primary_10_1016_j_mattod_2023_06_022 crossref_primary_10_1017_S1431927621013994 crossref_primary_10_1016_j_snb_2022_131595 crossref_primary_10_1016_j_actamat_2022_118433 crossref_primary_10_1149_2_0861904jes crossref_primary_10_1016_j_apcata_2018_10_027 crossref_primary_10_1039_D2CY00183G crossref_primary_10_1021_acs_accounts_6b00510 crossref_primary_10_1021_jacs_3c06688 crossref_primary_10_1039_D0MA00883D crossref_primary_10_1063_5_0067700 crossref_primary_10_1016_j_apsusc_2020_146493 crossref_primary_10_1126_science_adq0102 crossref_primary_10_1021_acsami_7b17066 crossref_primary_10_1038_s41467_018_04412_4 crossref_primary_10_1002_cphc_202400521 crossref_primary_10_1021_acs_nanolett_9b03445 crossref_primary_10_1021_acsami_4c15460 crossref_primary_10_1063_1_4994701 crossref_primary_10_1021_acs_chemmater_2c02697 crossref_primary_10_2139_ssrn_3372970 crossref_primary_10_3390_pr8111380 crossref_primary_10_1021_acsanm_3c04278 crossref_primary_10_1021_acsnano_1c09450 crossref_primary_10_1038_s41929_018_0177_3 crossref_primary_10_1002_ange_202001576 crossref_primary_10_1002_aenm_202202097 crossref_primary_10_1021_acs_jpcc_1c08222 crossref_primary_10_1021_acs_analchem_7b01238 crossref_primary_10_1016_j_nanoso_2021_100830 crossref_primary_10_1021_acsaem_9b00355 crossref_primary_10_1021_acs_jpcc_2c06519 crossref_primary_10_1039_C8CC07029F crossref_primary_10_1038_s41467_018_03012_6 crossref_primary_10_34133_research_0043 crossref_primary_10_1103_PhysRevMaterials_6_093803 crossref_primary_10_1016_j_cej_2023_146437 crossref_primary_10_59761_RCR5087 crossref_primary_10_1038_s43246_022_00303_w crossref_primary_10_1002_chem_201704552 crossref_primary_10_1016_j_seppur_2020_116524 crossref_primary_10_1038_s41929_019_0298_3 crossref_primary_10_1021_acs_jpcc_8b09449 crossref_primary_10_1007_s00894_023_05581_w crossref_primary_10_3390_app9132721 crossref_primary_10_3390_nano10122377 crossref_primary_10_1021_acscatal_0c03282 crossref_primary_10_1021_jacs_8b07438 crossref_primary_10_3390_w14010019 crossref_primary_10_1021_acs_iecr_4c01029 crossref_primary_10_1039_C7CY00994A crossref_primary_10_1016_j_apsusc_2021_151350 crossref_primary_10_1016_j_mtcomm_2022_104349 crossref_primary_10_1002_nano_202000291 crossref_primary_10_1080_23746149_2025_2481277 crossref_primary_10_1002_aenm_201902105 crossref_primary_10_1021_acsami_9b00754 crossref_primary_10_1038_s41557_019_0345_3 crossref_primary_10_1021_acscatal_0c03037 crossref_primary_10_1002_admi_201900732 crossref_primary_10_3390_molecules25163735 crossref_primary_10_1039_D3CY01655B crossref_primary_10_1002_smll_202103852 crossref_primary_10_1038_s41570_021_00255_8 crossref_primary_10_1016_j_susc_2018_09_012 crossref_primary_10_1021_acsnano_8b03617 crossref_primary_10_1021_acs_jpcc_9b04863 crossref_primary_10_1021_acsnano_8b03978 crossref_primary_10_1038_s41467_021_25192_4 crossref_primary_10_1038_s41467_022_30483_5 crossref_primary_10_1002_adem_202201724 crossref_primary_10_1016_j_jpcs_2019_109139 crossref_primary_10_1002_adma_202414962 crossref_primary_10_1038_s41467_020_15536_x crossref_primary_10_1007_s11244_017_0881_2 crossref_primary_10_1039_D1TA05942D crossref_primary_10_1002_ppap_201800112 crossref_primary_10_1039_D1NR03709A crossref_primary_10_1016_j_biomaterials_2019_05_009 crossref_primary_10_3390_catal7050134 crossref_primary_10_1021_acs_chemmater_8b04595 crossref_primary_10_1021_acs_jpcc_6b12847 crossref_primary_10_1038_s41467_017_01085_3 crossref_primary_10_1021_acsanm_2c03154 crossref_primary_10_1021_acsphotonics_4c01443 crossref_primary_10_1088_1361_6463_ac1a9d crossref_primary_10_1126_science_abe3558 crossref_primary_10_1016_j_cattod_2019_04_021 crossref_primary_10_1016_j_jmst_2021_01_095 crossref_primary_10_1016_j_mtcomm_2020_101371 crossref_primary_10_1002_slct_201900289 crossref_primary_10_3390_nano12152524 crossref_primary_10_1007_s11244_019_01217_7 crossref_primary_10_1021_acs_chemrev_1c00967 crossref_primary_10_1002_anie_201800650 crossref_primary_10_1016_j_apsusc_2019_04_036 crossref_primary_10_1016_j_apsusc_2022_154497 crossref_primary_10_1021_acsami_8b04811 crossref_primary_10_1021_acscatal_9b01831 crossref_primary_10_1016_j_scriptamat_2021_113865 crossref_primary_10_1126_sciadv_aas9459 crossref_primary_10_3390_bios13050550 crossref_primary_10_1016_j_electacta_2022_140774 crossref_primary_10_3390_catal9050416 crossref_primary_10_1039_C7FD00219J crossref_primary_10_1063_1_4984614 crossref_primary_10_1002_anie_202001576 crossref_primary_10_1039_D1CY02034J crossref_primary_10_1021_acscatal_0c05421 crossref_primary_10_1021_acs_nanolett_0c04837 crossref_primary_10_3390_catal11091041 crossref_primary_10_1039_D1CP03436G crossref_primary_10_1021_acs_chemmater_8b04533 crossref_primary_10_1021_acscatal_0c02818 crossref_primary_10_1016_j_cej_2024_151036 crossref_primary_10_1021_jacs_9b07172 crossref_primary_10_1039_D1CC06939J crossref_primary_10_1364_JOSAB_479739 crossref_primary_10_1016_j_matlet_2017_03_096 crossref_primary_10_1021_jacs_9b02160 crossref_primary_10_1016_j_actamat_2018_09_002 crossref_primary_10_1021_acsenergylett_0c00959 crossref_primary_10_1016_j_cej_2021_129066 crossref_primary_10_1088_2632_959X_aca41f crossref_primary_10_1021_acs_jpcc_4c07053 crossref_primary_10_1007_s10534_022_00446_w crossref_primary_10_1016_j_electacta_2018_10_175 crossref_primary_10_59761_RCR5148 crossref_primary_10_1002_adts_202401460 crossref_primary_10_1038_s41570_024_00578_2 crossref_primary_10_1038_s43246_023_00346_7 crossref_primary_10_1016_j_jcat_2025_115975 crossref_primary_10_1063_5_0093239 crossref_primary_10_1016_j_surfin_2023_103255 crossref_primary_10_1016_j_apsusc_2019_01_099 crossref_primary_10_1002_ange_202418645 crossref_primary_10_1016_j_aca_2023_341760 crossref_primary_10_1002_smll_202305562 crossref_primary_10_1021_acsanm_9b02279 crossref_primary_10_1038_s41929_023_00932_5 crossref_primary_10_1021_acs_jpclett_1c01640 crossref_primary_10_1039_D1TA04822H crossref_primary_10_1146_annurev_chembioeng_092120_010920 crossref_primary_10_1002_wer_1323 crossref_primary_10_1021_acs_est_8b06234 crossref_primary_10_3390_catal9050423 crossref_primary_10_1021_jacs_9b05776 crossref_primary_10_1002_cctc_202001423 crossref_primary_10_1038_s41563_019_0349_9 crossref_primary_10_1021_acs_chemrev_2c00751 crossref_primary_10_1039_C9NR09660D crossref_primary_10_1016_j_molliq_2019_112004 crossref_primary_10_1021_acscatal_3c02225 crossref_primary_10_1021_acs_jpcc_2c03769 crossref_primary_10_1002_adom_202200463 crossref_primary_10_1016_j_jcat_2019_08_041 crossref_primary_10_1002_adem_201700389 crossref_primary_10_1021_acscatal_9b00664 crossref_primary_10_1021_acs_jpclett_5c00126 crossref_primary_10_1073_pnas_2107930118 crossref_primary_10_1364_OE_28_002909 crossref_primary_10_1007_s11244_017_0874_1 crossref_primary_10_1039_C8FD00124C crossref_primary_10_2139_ssrn_4013429 crossref_primary_10_1038_s41929_024_01175_8 crossref_primary_10_1007_s42243_019_00298_8 crossref_primary_10_1021_acs_jpclett_1c01367 crossref_primary_10_1007_s12274_018_2157_y crossref_primary_10_1002_smll_202005771 crossref_primary_10_1016_j_mattod_2020_05_017 crossref_primary_10_1021_acs_jpcc_2c03773 crossref_primary_10_1002_cnma_201800473 crossref_primary_10_1021_acscatal_0c01261 crossref_primary_10_1021_acscatal_2c04541 crossref_primary_10_1021_acs_chemrev_7b00776 crossref_primary_10_1002_smll_201801586 crossref_primary_10_1002_adsu_202000072 crossref_primary_10_1039_D4TA03030C crossref_primary_10_1021_jacs_0c06401 crossref_primary_10_1039_D3CY01600E crossref_primary_10_1021_acsami_9b06346 crossref_primary_10_1038_s41570_023_00469_y crossref_primary_10_1038_s41598_021_89235_y crossref_primary_10_1002_cctc_202301242 crossref_primary_10_1038_s41467_020_20293_y crossref_primary_10_1021_acs_jpcc_4c03959 crossref_primary_10_1016_j_apcatb_2024_123780 crossref_primary_10_1021_acs_analchem_7b01897 crossref_primary_10_1021_acscatal_0c05173 crossref_primary_10_1039_C8CP01368C crossref_primary_10_1016_j_cjche_2021_07_015 crossref_primary_10_1039_D3SC02974C crossref_primary_10_1016_j_apsusc_2022_155086 crossref_primary_10_1021_acsaem_9b01912 crossref_primary_10_1021_acs_chemmater_3c00970 crossref_primary_10_1007_s11581_018_2806_x crossref_primary_10_1016_j_apsusc_2020_146568 crossref_primary_10_1002_adma_201705698 crossref_primary_10_1021_acs_jpcc_0c01386 crossref_primary_10_1038_s44286_025_00179_w crossref_primary_10_1002_anie_201901923 crossref_primary_10_1016_j_jhazmat_2022_129082 crossref_primary_10_1021_acs_jpcc_8b06676 crossref_primary_10_1021_acs_jpcc_8b07402 crossref_primary_10_1039_C9FD00128J crossref_primary_10_1002_ange_202405379 crossref_primary_10_1038_s41929_018_0167_5 crossref_primary_10_1002_adhm_202300267 crossref_primary_10_1039_C7TA08562A crossref_primary_10_1021_acsami_7b04659 crossref_primary_10_1038_s41529_020_00143_4 crossref_primary_10_1016_j_cattod_2018_04_013 crossref_primary_10_1002_ange_201800650 crossref_primary_10_1021_acs_chemrev_0c00582 crossref_primary_10_1021_acs_jpcc_7b06316 crossref_primary_10_1016_j_bios_2018_09_055 crossref_primary_10_1002_adma_201703601 crossref_primary_10_1021_acscatal_0c04789 crossref_primary_10_1016_j_nanoen_2018_11_060 crossref_primary_10_1002_anie_202405379 crossref_primary_10_1016_j_matt_2019_10_017 crossref_primary_10_1021_acscatal_0c03335 crossref_primary_10_1073_pnas_2411406122 crossref_primary_10_1021_acs_jpcc_8b08849 |
Cites_doi | 10.1021/cs4004084 10.1021/acscatal.5b00330 10.1002/chem.201304837 10.1016/j.apsusc.2010.07.002 10.1126/science.1164170 10.1021/nl200993g 10.1021/ja0675503 10.1116/1.580924 10.1002/anie.200805404 10.1016/j.jcat.2015.04.022 10.1039/c0sc00214c 10.1002/sia.740210302 10.1016/j.jcat.2013.05.033 10.1016/j.jcat.2016.08.012 10.1103/PhysRevB.45.8924 10.1007/BF03215519 10.1007/s10562-012-0872-7 10.1021/jp511884k 10.1021/nl500553a 10.1021/nl403895s 10.1021/cs501728r 10.1016/S0368-2048(98)00221-7 10.1021/ac60363a019 10.1107/S0567740879006622 10.1016/0039-6028(86)90616-3 10.1021/jp107914e 10.1016/j.jcat.2008.10.003 10.1002/ange.201101772 10.1126/science.1219831 10.1038/nmat3391 10.1103/PhysRevB.62.11126 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2017 Copyright Nature Publishing Group May 2017 |
Copyright_xml | – notice: Springer Nature Limited 2017 – notice: Copyright Nature Publishing Group May 2017 |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 7U5 L7M OTOTI |
DOI | 10.1038/nmat4824 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 564 |
ExternalDocumentID | 1388711 4322025165 27992418 10_1038_nmat4824 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 7U5 L7M AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c542t-6c95e2046719b33b8fcb7bce4d80567a0967da8bd8d27c47964c30687d6c7b0a3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Mon Jul 03 03:58:24 EDT 2023 Fri Jul 11 04:48:37 EDT 2025 Fri Jul 11 08:08:45 EDT 2025 Sat Aug 23 14:57:33 EDT 2025 Thu Apr 03 07:00:25 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Tue Jul 01 02:13:57 EDT 2025 Fri Feb 21 02:40:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-6c95e2046719b33b8fcb7bce4d80567a0967da8bd8d27c47964c30687d6c7b0a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 BNL-205660-2018-JAAM; LLNL-JRNL-739604 USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0012704; SC0012573; AC52-07NA27344; AC02-05CH11231 |
ORCID | 0000-0002-3366-2153 0000000233662153 |
OpenAccessLink | https://www.osti.gov/biblio/1414360 |
PMID | 27992418 |
PQID | 1892320092 |
PQPubID | 27576 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1388711 proquest_miscellaneous_1904250414 proquest_miscellaneous_1851288491 proquest_journals_1892320092 pubmed_primary_27992418 crossref_citationtrail_10_1038_nmat4824 crossref_primary_10_1038_nmat4824 springer_journals_10_1038_nmat4824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Springer Nature - Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Springer Nature - Nature Publishing Group |
References | Tyson (CR29) 1992; 45 Kibis (CR30) 2010; 257 Tao (CR3) 2008; 322 Della Pina, Falletta, Rossi (CR5) 2008; 260 Stowers, Madix, Friend (CR9) 2013; 308 Boronin, Koscheev, Zhidomirov (CR28) 1998; 96 Biener (CR15) 2011; 11 Wang (CR19) 2016; 344 Krozer, Rodahl (CR22) 1997; 15 Xu, Liu, Haubrich, Madix, Friend (CR17) 2009; 48 Tanuma, Powell, Penn (CR23) 1994; 21 Kaspar, Droubay, Chambers, Bagus (CR24) 2010; 114 Fujita (CR16) 2012; 11 Xin (CR2) 2014; 14 Sault, Madix, Campbell (CR11) 1986; 169 Personick (CR13) 2015; 5 Xu, Siler, Madix, Friend (CR27) 2014; 20 Jones (CR21) 1979; 35 Fujita (CR32) 2014; 14 Behrens (CR1) 2012; 336 Meyer, Lemire, Shaikhutdinov, Freund (CR12) 2011; 37 Xu, Haubrich, Freyschlag, Madix, Friend (CR18) 2010; 1 Moskaleva, Weiss, Klüner, Bäumer (CR31) 2015; 119 Suzuki (CR8) 2013; 3 Wang (CR10) 2015; 329 Whiting (CR6) 2015; 5 CR20 Hammond, Gaarenstroom (CR25) 1975; 47 Hoflund, Hazos, Salaita (CR26) 2000; 62 Brett (CR4) 2011; 123 Kotionova (CR7) 2012; 142 Xu (CR14) 2007; 129 C Xu (BFnmat4824_CR14) 2007; 129 ML Personick (BFnmat4824_CR13) 2015; 5 T Kotionova (BFnmat4824_CR7) 2012; 142 HL Xin (BFnmat4824_CR2) 2014; 14 K Suzuki (BFnmat4824_CR8) 2013; 3 L-C Wang (BFnmat4824_CR10) 2015; 329 A Krozer (BFnmat4824_CR22) 1997; 15 M Behrens (BFnmat4824_CR1) 2012; 336 B Xu (BFnmat4824_CR27) 2014; 20 F Tao (BFnmat4824_CR3) 2008; 322 CC Tyson (BFnmat4824_CR29) 1992; 45 MM Biener (BFnmat4824_CR15) 2011; 11 C Della Pina (BFnmat4824_CR5) 2008; 260 AG Sault (BFnmat4824_CR11) 1986; 169 BFnmat4824_CR20 LS Kibis (BFnmat4824_CR30) 2010; 257 S Tanuma (BFnmat4824_CR23) 1994; 21 T Fujita (BFnmat4824_CR32) 2014; 14 R Meyer (BFnmat4824_CR12) 2011; 37 B Xu (BFnmat4824_CR17) 2009; 48 PG Jones (BFnmat4824_CR21) 1979; 35 KJ Stowers (BFnmat4824_CR9) 2013; 308 B Xu (BFnmat4824_CR18) 2010; 1 LC Wang (BFnmat4824_CR19) 2016; 344 TC Kaspar (BFnmat4824_CR24) 2010; 114 T Fujita (BFnmat4824_CR16) 2012; 11 GL Brett (BFnmat4824_CR4) 2011; 123 LV Moskaleva (BFnmat4824_CR31) 2015; 119 AI Boronin (BFnmat4824_CR28) 1998; 96 JS Hammond (BFnmat4824_CR25) 1975; 47 GB Hoflund (BFnmat4824_CR26) 2000; 62 GT Whiting (BFnmat4824_CR6) 2015; 5 |
References_xml | – volume: 3 start-page: 1845 year: 2013 end-page: 1849 ident: CR8 article-title: Aerobic oxidative esterification of aldehydes with alcohols by gold–nickel oxide nanoparticle catalysts with a core–shell structure publication-title: ACS Catalys. doi: 10.1021/cs4004084 – volume: 5 start-page: 4237 year: 2015 end-page: 4241 ident: CR13 article-title: Ozone-activated nanoporous gold: a stable and storable material for catalytic oxidation publication-title: ACS Catalys. doi: 10.1021/acscatal.5b00330 – volume: 20 start-page: 4646 year: 2014 end-page: 4652 ident: CR27 article-title: Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface publication-title: Chem. Eur. J. doi: 10.1002/chem.201304837 – volume: 257 start-page: 404 year: 2010 end-page: 413 ident: CR30 article-title: The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.07.002 – volume: 322 start-page: 932 year: 2008 end-page: 934 ident: CR3 article-title: Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles publication-title: Science doi: 10.1126/science.1164170 – volume: 11 start-page: 3085 year: 2011 end-page: 3090 ident: CR15 article-title: ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity publication-title: Nano Lett. doi: 10.1021/nl200993g – volume: 129 start-page: 42 year: 2007 end-page: 43 ident: CR14 article-title: Low temperature CO oxidation over unsupported nanoporous gold publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0675503 – volume: 15 start-page: 1704 year: 1997 end-page: 1707 ident: CR22 article-title: X-ray photoemission spectroscopy study of UV/ozone oxidation of Au under ultrahigh vacuum conditions publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.580924 – volume: 48 start-page: 4206 year: 2009 end-page: 4209 ident: CR17 article-title: Selectivity control in gold-mediated esterification of methanol publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200805404 – volume: 329 start-page: 78 year: 2015 end-page: 86 ident: CR10 article-title: Exploiting basic principles to control the selectivity of the vapor phase catalytic oxidative cross-coupling of primary alcohols over nanoporous gold catalysts publication-title: J. Catalys. doi: 10.1016/j.jcat.2015.04.022 – volume: 1 start-page: 310 year: 2010 end-page: 316 ident: CR18 article-title: Oxygen-assisted cross-coupling of methanol with alkyl alcohols on metallic gold publication-title: Chem. Sci. doi: 10.1039/c0sc00214c – volume: 21 start-page: 165 year: 1994 end-page: 176 ident: CR23 article-title: Calculations of electron inelastic mean free paths publication-title: Surf. Interface Anal. doi: 10.1002/sia.740210302 – volume: 308 start-page: 131 year: 2013 end-page: 141 ident: CR9 article-title: From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: oxygen-assisted coupling reactions publication-title: J. Catalys. doi: 10.1016/j.jcat.2013.05.033 – volume: 344 start-page: 778 year: 2016 end-page: 783 ident: CR19 article-title: Active sites for methanol partial oxidation on nanoporous gold catalysts publication-title: J. Catalys. doi: 10.1016/j.jcat.2016.08.012 – volume: 45 start-page: 8924 year: 1992 end-page: 8928 ident: CR29 article-title: Charge redistribution in Au–Ag alloys from a local perspective publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.8924 – volume: 37 start-page: 72 year: 2011 end-page: 124 ident: CR12 article-title: Surface chemistry of catalysis by gold publication-title: Gold Bull. doi: 10.1007/BF03215519 – volume: 142 start-page: 1114 year: 2012 end-page: 1120 ident: CR7 article-title: Oxidative esterification of homologous 1,3-propanediols publication-title: Catalys. Lett. doi: 10.1007/s10562-012-0872-7 – volume: 119 start-page: 9215 year: 2015 end-page: 9226 ident: CR31 article-title: Chemisorbed oxygen on the Au(321) surface alloyed with silver: a first-principles investigation publication-title: J. Phys. Chem. C doi: 10.1021/jp511884k – volume: 14 start-page: 3203 year: 2014 end-page: 3207 ident: CR2 article-title: Revealing the atomic restructuring of Pt–Co nanoparticles publication-title: Nano Lett. doi: 10.1021/nl500553a – volume: 14 start-page: 1172 year: 2014 end-page: 1177 ident: CR32 article-title: Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold publication-title: Nano Lett. doi: 10.1021/nl403895s – volume: 5 start-page: 637 year: 2015 end-page: 644 ident: CR6 article-title: Methyl formate formation from methanol oxidation using supported gold–palladium nanoparticles publication-title: ACS Catalys. doi: 10.1021/cs501728r – volume: 96 start-page: 43 year: 1998 end-page: 51 ident: CR28 article-title: XPS and UPS study of oxygen states on silver publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/S0368-2048(98)00221-7 – volume: 47 start-page: 2193 year: 1975 end-page: 2199 ident: CR25 article-title: X-ray photoelectron spectroscopic studies of cadmium– and silver–oxygen surfaces publication-title: Anal. Chem. doi: 10.1021/ac60363a019 – volume: 35 start-page: 1435 year: 1979 end-page: 1437 ident: CR21 article-title: Gold(III) oxide publication-title: Acta Crystallogr. B doi: 10.1107/S0567740879006622 – volume: 169 start-page: 347 year: 1986 end-page: 356 ident: CR11 article-title: Adsorption of oxygen and hydrogen on Au(110)-(1 × 2) publication-title: Surf. Sci. doi: 10.1016/0039-6028(86)90616-3 – volume: 114 start-page: 21562 year: 2010 end-page: 21571 ident: CR24 article-title: Spectroscopic evidence for Ag(III) in highly oxidized silver films by X-ray photoelectron spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/jp107914e – volume: 260 start-page: 384 year: 2008 end-page: 386 ident: CR5 article-title: Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst publication-title: J. Catalys. doi: 10.1016/j.jcat.2008.10.003 – volume: 123 start-page: 10318 year: 2011 end-page: 10321 ident: CR4 article-title: Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions publication-title: Angew. Chem. doi: 10.1002/ange.201101772 – volume: 336 start-page: 893 year: 2012 end-page: 897 ident: CR1 article-title: The active site of methanol synthesis over Cu/ZnO/Al O industrial catalysts publication-title: Science doi: 10.1126/science.1219831 – volume: 11 start-page: 775 year: 2012 end-page: 780 ident: CR16 article-title: Atomic origins of the high catalytic activity of nanoporous gold publication-title: Nat. Mater. doi: 10.1038/nmat3391 – volume: 62 start-page: 11126 year: 2000 end-page: 11133 ident: CR26 article-title: Surface characterization study of Ag, AgO, and Ag O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.11126 – ident: CR20 – volume: 129 start-page: 42 year: 2007 ident: BFnmat4824_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0675503 – volume: 48 start-page: 4206 year: 2009 ident: BFnmat4824_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200805404 – volume: 336 start-page: 893 year: 2012 ident: BFnmat4824_CR1 publication-title: Science doi: 10.1126/science.1219831 – volume: 62 start-page: 11126 year: 2000 ident: BFnmat4824_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.11126 – volume: 329 start-page: 78 year: 2015 ident: BFnmat4824_CR10 publication-title: J. Catalys. doi: 10.1016/j.jcat.2015.04.022 – ident: BFnmat4824_CR20 – volume: 47 start-page: 2193 year: 1975 ident: BFnmat4824_CR25 publication-title: Anal. Chem. doi: 10.1021/ac60363a019 – volume: 21 start-page: 165 year: 1994 ident: BFnmat4824_CR23 publication-title: Surf. Interface Anal. doi: 10.1002/sia.740210302 – volume: 14 start-page: 1172 year: 2014 ident: BFnmat4824_CR32 publication-title: Nano Lett. doi: 10.1021/nl403895s – volume: 20 start-page: 4646 year: 2014 ident: BFnmat4824_CR27 publication-title: Chem. Eur. J. doi: 10.1002/chem.201304837 – volume: 15 start-page: 1704 year: 1997 ident: BFnmat4824_CR22 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.580924 – volume: 45 start-page: 8924 year: 1992 ident: BFnmat4824_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.8924 – volume: 344 start-page: 778 year: 2016 ident: BFnmat4824_CR19 publication-title: J. Catalys. doi: 10.1016/j.jcat.2016.08.012 – volume: 322 start-page: 932 year: 2008 ident: BFnmat4824_CR3 publication-title: Science doi: 10.1126/science.1164170 – volume: 1 start-page: 310 year: 2010 ident: BFnmat4824_CR18 publication-title: Chem. Sci. doi: 10.1039/c0sc00214c – volume: 11 start-page: 775 year: 2012 ident: BFnmat4824_CR16 publication-title: Nat. Mater. doi: 10.1038/nmat3391 – volume: 96 start-page: 43 year: 1998 ident: BFnmat4824_CR28 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/S0368-2048(98)00221-7 – volume: 114 start-page: 21562 year: 2010 ident: BFnmat4824_CR24 publication-title: J. Phys. Chem. C doi: 10.1021/jp107914e – volume: 169 start-page: 347 year: 1986 ident: BFnmat4824_CR11 publication-title: Surf. Sci. doi: 10.1016/0039-6028(86)90616-3 – volume: 37 start-page: 72 year: 2011 ident: BFnmat4824_CR12 publication-title: Gold Bull. doi: 10.1007/BF03215519 – volume: 123 start-page: 10318 year: 2011 ident: BFnmat4824_CR4 publication-title: Angew. Chem. doi: 10.1002/ange.201101772 – volume: 142 start-page: 1114 year: 2012 ident: BFnmat4824_CR7 publication-title: Catalys. Lett. doi: 10.1007/s10562-012-0872-7 – volume: 3 start-page: 1845 year: 2013 ident: BFnmat4824_CR8 publication-title: ACS Catalys. doi: 10.1021/cs4004084 – volume: 5 start-page: 4237 year: 2015 ident: BFnmat4824_CR13 publication-title: ACS Catalys. doi: 10.1021/acscatal.5b00330 – volume: 308 start-page: 131 year: 2013 ident: BFnmat4824_CR9 publication-title: J. Catalys. doi: 10.1016/j.jcat.2013.05.033 – volume: 35 start-page: 1435 year: 1979 ident: BFnmat4824_CR21 publication-title: Acta Crystallogr. B doi: 10.1107/S0567740879006622 – volume: 5 start-page: 637 year: 2015 ident: BFnmat4824_CR6 publication-title: ACS Catalys. doi: 10.1021/cs501728r – volume: 260 start-page: 384 year: 2008 ident: BFnmat4824_CR5 publication-title: J. Catalys. doi: 10.1016/j.jcat.2008.10.003 – volume: 257 start-page: 404 year: 2010 ident: BFnmat4824_CR30 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.07.002 – volume: 119 start-page: 9215 year: 2015 ident: BFnmat4824_CR31 publication-title: J. Phys. Chem. C doi: 10.1021/jp511884k – volume: 11 start-page: 3085 year: 2011 ident: BFnmat4824_CR15 publication-title: Nano Lett. doi: 10.1021/nl200993g – volume: 14 start-page: 3203 year: 2014 ident: BFnmat4824_CR2 publication-title: Nano Lett. doi: 10.1021/nl500553a |
SSID | ssj0021556 |
Score | 2.6230023 |
Snippet | Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and... |
SourceID | osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 558 |
SubjectTerms | 140/146 639/301/299/1013 639/638/77/887 Alloys Bimetals Biomaterials Case studies Catalysis catalysis (heterogeneous), mesostructured materials, materials and chemistry by design, synthesis (novel materials) Catalysts Company structure Condensed Matter Physics Dynamical systems Dynamics Electron microscopy Gold Materials Science Nanostructure Nanostructured materials Nanotechnology Optical and Electronic Materials Oxidation Ozone Silver Spectroscopy |
Title | Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts |
URI | https://link.springer.com/article/10.1038/nmat4824 https://www.ncbi.nlm.nih.gov/pubmed/27992418 https://www.proquest.com/docview/1892320092 https://www.proquest.com/docview/1851288491 https://www.proquest.com/docview/1904250414 https://www.osti.gov/biblio/1388711 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbocqEHBIW2y0suQurJIn4kdk4IKNsVUldVBdJyivwCVULJQvay_56ZPBZKEZdIUWzZ8Yztbzzjbwg5EtI5kUfDorr1TFkvmNOJY8GA_REsD97jOeSvSTa-VpfTdNoduNVdWGW_JjYLdag8npEfcwNQpKEIOpk9MMwahd7VLoXGB7KK1GUY0qWnzwYX7JXt7SKdMcAVoieflea4BDyojFD_bEeDCqbVW1DzPzdps_uMNsh6BxvpaSvnTbISy0_k4wsywS1y86NNLk8x2waSwjYXEGl4RGJZ2hzTLKA2xZsMmDCCViUtbVkBAAfrn95V94HVfzFQmqIzftFVqef1NrkeXVydj1mXOIH5VIk5y3yeRgGWr-a5k9KZW--081EFA3hHWzBbdLDGBROE9gpvo3owHYwOmdcusfIzGZRVGb8SqqyMMrrUC4dMgomNqdAZvOZJEkPGh-R7P36F71jFMbnFfdF4t6Up-pEekm_LkrOWSeONMrsoggJ2f6Sw9Rjr4-cFl7AUcmhrr5dM0c20unjWC2hg-RnmCDo-bBlhBKEMwBpjVM7fKZPj8pUoDp340kp92U2hczBTuRmSw14NXnTg1T_svN_LXbImEBk0MZN7ZAAKEfcB18zdQaO88DSjnwdk9exi8vvPE1Ac-y8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEG-WFjAIxMlq_EjsHBBClGVLH6dWKqfgVxFSlRSyCO2f4jcyk8dSoOqtxyh27Ngz9jcezzcAL6TyXpbJ8qSPA9cuSO5N5nm0aH9EJ2IIdA65t1_MD_XHo_xoDX6NsTB0rXJcE7uFOjaBzsg3hUUo0lEEvTn9xilrFHlXxxQavVjspOVPNNna19tbOL8vpZy9P3g350NWAR5yLRe8CGWeJJqFRpReKW-Pgzc-JB0tggHjENOb6KyPNkoTNIVqBsTV1sQiGJ85hd-9Ale1UiVplJ19WBl4uDf30Uym4Ihj5Eh2q-xmjfhTW6n_2v4mDarxedD2P7dst9vNbsHNAaayt71c3Ya1VN-BG2fIC-_Cp60-mT2j7B5EQtsFPLL4nYhsWXcstMTajCInKEEFa2pWu7pBwN_8aNmX5iTy9itdzGbk_F8OVdpFew8OL2VI78Okbur0EJh2Kqnk8yA9MRdmLuXSFPhYZlmKhZjCq3H8qjCwmFMyjZOq86YrW40jPYVnq5KnPXPHOWXWaQoqRBtEmRvoblFYVELh0iuwrY1xZqpBs9vqjxxiA6vXqJPkaHF1whHEMgijrNWluKBMSctlpgV24kE_66tuSlOiWSzsFJ6PYnCmA__8w6OLe_kUrs0P9nar3e39nXW4LgmVdPc1N2CCwpEeI6Za-CedIDP4fNma8xuO9TUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRUJwQOW9tIBBIE7Wxo_EzgFViGXVUqg4UGk5hfixCKlKCllU7V_rr2Mmj22Bqrceo9ixY8_Y39gz3wC8lMo5mUfLo154rksvuTOJ48Gi_RFKEbync8hPB9nuof4wT-cbcDrEwpBb5bAmtgt1qD2dkU-ERSjSUgRNFr1bxOfpbOf4J6cMUnTTOqTT6ERkP65O0Hxr3uxNca5fSTl7_-XdLu8zDHCfarnkmc_TKNFENCJ3Sjm78M44H3WwCAxMifjehNK6YIM0XlPYpkeMbU3IvHFJqfC71-C6UakgHTPzM2MP9-kusslkHDGNHIhvlZ1UiEW1lfqvrXBUo0pfBHP_u6Jtd77ZJtzuISt728nYHdiI1V24dY7I8B58nXaJ7Rll-iBC2jb4kYVfRGrL2iOiFdZmFEVBySpYXbGqrGoE__Xvhn2vjwJvfpCTNiNHgFVfpVk29-HwSob0AYyquoqPgOlSRRVd6qUjFsOkjKk0GT7mSRJDJsbwehi_wveM5pRY46hob9aVLYaRHsPzdcnjjsXjgjJbNAUFIg-iz_XkZ-SXhVC4DAtsa3uYmaLX8qY4k0lsYP0a9ZMuXcoq4ghiGYRU1upcXFImp6Uz0QI78bCb9XU3pcnRRBZ2DC8GMTjXgX_-4fHlvXwGN1Bnio97B_tbcFMSQGldN7dhhLIRnyC8WrqnrRwz-HbVivMHsFk5XQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+restructuring+drives+catalytic+activity+on+nanoporous+gold%E2%80%93silver+alloy+catalysts&rft.jtitle=Nature+materials&rft.au=Zugic%2C+Branko&rft.au=Wang%2C+Lucun&rft.au=Heine%2C+Christian&rft.au=Zakharov%2C+Dmitri+N.&rft.date=2017-05-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=16&rft.issue=5&rft.spage=558&rft.epage=564&rft_id=info:doi/10.1038%2Fnmat4824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nmat4824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |