Learning the quantum algorithm for state overlap
Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing...
Saved in:
Published in | New journal of physics Vol. 20; no. 11; pp. 113022 - 113035 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
14.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap Tr ( ) between two quantum states and . The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to = , quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti's and IBM's quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error-compared to the Swap Test-on these computers. |
---|---|
AbstractList | Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap Tr ( ) between two quantum states and . The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to = , quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti's and IBM's quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error-compared to the Swap Test-on these computers. Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap $\mathrm{Tr}(\rho \sigma )$ between two quantum states ρ and σ. The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to ρ = σ, quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti's and IBM's quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error—compared to the Swap Test—on these computers. Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap $\mathrm{Tr}(\rho \sigma )$ between two quantum states ρ and σ . The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to ρ = σ , quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti’s and IBM’s quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error—compared to the Swap Test—on these computers. |
Author | Suba, Yi it Coles, Patrick J Cincio, Lukasz Sornborger, Andrew T |
Author_xml | – sequence: 1 givenname: Lukasz surname: Cincio fullname: Cincio, Lukasz organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America – sequence: 2 givenname: Yi it surname: Suba fullname: Suba, Yi it organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America – sequence: 3 givenname: Andrew T surname: Sornborger fullname: Sornborger, Andrew T email: lcincio@lanl.gov organization: Information Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America – sequence: 4 givenname: Patrick J surname: Coles fullname: Coles, Patrick J organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America |
BackLink | https://www.osti.gov/biblio/1482266$$D View this record in Osti.gov |
BookMark | eNp9kc1rGzEQxUVxIXbae45Le8mhrvWxq5WPwaRJwNBLexZj7ciWWUtrSQ7kv4_cLUkJJSCQGH7v8fRmRiY-eCTkitHvjCq1YEK2cy4FXQDgsoYPZPoymvzzviCzlPaUMqY4nxK6Roje-W2Vd1gdT-Dz6VBBvw3R5d2hsiFWKUPGKjxi7GH4RD5a6BN-_ntfkt8_bn-t7ufrn3cPq5v13DQ1z3PJawXAW2YRqMLWKhBNg0J1nRSSQqPsRkrTbgRVS0aNMqrm0OISGyZKfnFJHkbfLsBeD9EdID7pAE7_GYS41RCzMz1qJoqw26CtBatts4SOtkYaUNTwupGseH0ZvULKTifjMpqdCd6jyZrVpQgpC_R1hIYYjidMWe_DKfryR80F4w1XkqlC0ZEyMaQU0b5EY1SfF6HPTetz03pcRJHIN5ISALILPkdw_XvCb6PQheE1zDv49X9wvx80LxJWjqCc66Gz4hksMKhf |
CODEN | NJOPFM |
CitedBy_id | crossref_primary_10_1080_23746149_2023_2165452 crossref_primary_10_1088_2058_9565_ab4eb5 crossref_primary_10_1103_PhysRevA_107_010101 crossref_primary_10_1103_PhysRevLett_124_060503 crossref_primary_10_1364_OE_495919 crossref_primary_10_3847_1538_4357_abe6ac crossref_primary_10_1088_2058_9565_ad5228 crossref_primary_10_1007_s11128_023_04065_3 crossref_primary_10_1007_s11128_019_2348_9 crossref_primary_10_1103_PhysRevB_103_064309 crossref_primary_10_1103_PRXQuantum_1_010301 crossref_primary_10_1103_PhysRevResearch_3_033083 crossref_primary_10_1007_s11128_024_04317_w crossref_primary_10_1021_acs_jctc_2c00218 crossref_primary_10_1103_PhysRevA_109_032418 crossref_primary_10_1016_j_scib_2021_06_023 crossref_primary_10_1088_2632_2153_abc17d crossref_primary_10_22331_q_2021_11_26_592 crossref_primary_10_1016_j_automatica_2023_111263 crossref_primary_10_1088_1367_2630_ab784c crossref_primary_10_1088_2632_2153_ac28dd crossref_primary_10_1103_PhysRevA_98_062333 crossref_primary_10_1103_PhysRevResearch_5_013105 crossref_primary_10_1103_PhysRevLett_124_140504 crossref_primary_10_1103_PhysRevLett_127_140501 crossref_primary_10_1103_PhysRevA_105_042604 crossref_primary_10_1103_PhysRevApplied_21_067001 crossref_primary_10_1038_s41586_019_0980_2 crossref_primary_10_22331_q_2021_10_20_567 crossref_primary_10_1088_1751_8121_aaf54d crossref_primary_10_1140_epjqt_s40507_024_00259_5 crossref_primary_10_1016_j_ifacol_2022_07_526 crossref_primary_10_1103_PhysRevApplied_21_054056 crossref_primary_10_1088_2058_9565_adaede crossref_primary_10_1109_TQE_2021_3053921 crossref_primary_10_22331_q_2022_01_24_628 crossref_primary_10_1103_PhysRevA_99_022301 crossref_primary_10_1103_PhysRevA_103_L030401 crossref_primary_10_1103_PhysRevA_105_022441 crossref_primary_10_1088_2058_9565_ad7be7 crossref_primary_10_1103_PhysRevResearch_4_013213 crossref_primary_10_22331_q_2021_09_02_535 crossref_primary_10_1088_1751_8121_ab73ad crossref_primary_10_1103_PhysRevA_105_022208 crossref_primary_10_35848_1347_4065_ac5152 crossref_primary_10_1088_1674_1056_acb9fb crossref_primary_10_3390_a14060187 crossref_primary_10_1103_PhysRevA_99_062304 crossref_primary_10_1088_1367_2630_ab14b5 crossref_primary_10_22331_q_2019_07_01_156 crossref_primary_10_1103_PhysRevA_106_042431 crossref_primary_10_1016_j_cpc_2023_108909 crossref_primary_10_1103_PRXQuantum_2_010324 crossref_primary_10_1002_que2_80 crossref_primary_10_1016_j_jmaa_2025_129254 crossref_primary_10_1088_1367_2630_ad1b7f crossref_primary_10_1007_s11128_021_03370_z crossref_primary_10_1021_acs_jpca_4c06960 crossref_primary_10_1038_s42254_021_00348_9 crossref_primary_10_1088_1674_1056_ac1b84 crossref_primary_10_1088_2058_9565_aceb87 crossref_primary_10_1103_PhysRevResearch_3_033098 crossref_primary_10_1038_s41534_019_0167_6 crossref_primary_10_1103_PhysRevApplied_21_034033 crossref_primary_10_1007_s11128_023_04079_x crossref_primary_10_1007_s11433_021_1793_6 crossref_primary_10_1007_s42484_022_00070_4 crossref_primary_10_1103_PRXQuantum_5_020328 crossref_primary_10_3390_e25040580 crossref_primary_10_1017_S1431927621005031 crossref_primary_10_1109_TQE_2021_3121797 crossref_primary_10_1103_PhysRevLett_126_170502 crossref_primary_10_1007_s11128_024_04642_0 crossref_primary_10_1088_1612_202X_ac81b6 crossref_primary_10_22331_q_2023_06_06_1034 crossref_primary_10_1038_s41467_021_27045_6 crossref_primary_10_1016_j_ins_2020_05_127 crossref_primary_10_1103_PhysRevApplied_18_024013 crossref_primary_10_1103_PhysRevA_102_062425 crossref_primary_10_1145_3517340 crossref_primary_10_1007_s11128_023_04146_3 crossref_primary_10_1088_2058_9565_abd3db crossref_primary_10_22331_q_2020_10_11_341 crossref_primary_10_1007_s42484_022_00063_3 crossref_primary_10_1103_PhysRevA_110_042616 crossref_primary_10_1088_1367_2630_abe0ae crossref_primary_10_1007_s11128_024_04461_3 crossref_primary_10_1103_PhysRevApplied_16_044039 crossref_primary_10_1103_PhysRevA_107_062424 crossref_primary_10_1103_PRXQuantum_2_010342 crossref_primary_10_1007_s42484_023_00132_1 crossref_primary_10_1038_s41534_024_00804_1 crossref_primary_10_1103_PhysRevA_107_012606 crossref_primary_10_1103_PhysRevLett_128_190402 crossref_primary_10_22331_q_2019_05_13_140 crossref_primary_10_1103_PhysRevA_105_032616 crossref_primary_10_1007_s11128_021_03148_3 crossref_primary_10_1103_PhysRevA_100_012326 crossref_primary_10_1109_JSAIT_2020_3015235 crossref_primary_10_1088_2058_9565_ac87cd crossref_primary_10_1140_epjp_s13360_022_02714_7 crossref_primary_10_1007_s42484_022_00093_x crossref_primary_10_1103_PhysRevResearch_1_033159 crossref_primary_10_1145_3550488 crossref_primary_10_1103_PhysRevResearch_6_013029 crossref_primary_10_1103_PhysRevA_105_022417 crossref_primary_10_1126_science_ade7651 crossref_primary_10_1038_s41534_024_00857_2 crossref_primary_10_1103_PhysRevResearch_6_013143 crossref_primary_10_1103_PRXQuantum_3_030341 crossref_primary_10_22331_q_2023_07_13_1060 crossref_primary_10_1103_PhysRevA_104_062411 crossref_primary_10_1007_s11128_020_02877_1 crossref_primary_10_1103_PhysRevA_106_062413 crossref_primary_10_22331_q_2023_01_19_899 crossref_primary_10_1103_PhysRevA_99_052335 crossref_primary_10_7566_JPSJ_90_044002 crossref_primary_10_1103_PhysRevA_110_012604 crossref_primary_10_1088_1367_2630_ace077 crossref_primary_10_1038_s41467_019_11417_0 crossref_primary_10_1103_PhysRevA_107_022402 crossref_primary_10_1016_j_comnet_2024_110672 crossref_primary_10_1088_1361_6633_ad85f0 crossref_primary_10_1088_1751_8121_acecc5 crossref_primary_10_1103_PhysRevResearch_6_023130 crossref_primary_10_1038_s41467_022_32550_3 crossref_primary_10_1103_PhysRevA_101_012330 crossref_primary_10_1038_s43588_022_00311_3 crossref_primary_10_1088_2058_9565_ad4583 crossref_primary_10_1103_PhysRevA_100_022103 crossref_primary_10_1103_PhysRevA_110_022403 crossref_primary_10_1088_2058_9565_abfbef crossref_primary_10_22331_q_2023_11_22_1188 crossref_primary_10_1016_j_physa_2024_129530 crossref_primary_10_1103_PhysRevA_105_012423 crossref_primary_10_1103_PhysRevApplied_19_034017 crossref_primary_10_1007_s11128_023_04231_7 crossref_primary_10_1109_ACCESS_2024_3411307 crossref_primary_10_1016_j_rinp_2022_106131 crossref_primary_10_1088_1402_4896_ad579f crossref_primary_10_1088_2632_2153_abaf98 crossref_primary_10_1103_PhysRevA_106_032434 crossref_primary_10_1038_s41534_022_00611_6 crossref_primary_10_1103_PhysRevC_110_054604 crossref_primary_10_1103_PhysRevLett_132_190801 crossref_primary_10_4236_jamp_2021_96083 crossref_primary_10_1063_5_0209201 crossref_primary_10_1103_PhysRevResearch_3_033056 crossref_primary_10_1088_1367_2630_ab5c60 crossref_primary_10_1103_PhysRevLett_129_190501 crossref_primary_10_1103_PRXQuantum_3_020323 crossref_primary_10_1103_PhysRevLett_133_260603 crossref_primary_10_22331_q_2019_03_25_130 crossref_primary_10_1109_TQE_2024_3425969 crossref_primary_10_1145_3505181 crossref_primary_10_1007_s11433_024_2598_y crossref_primary_10_1103_PhysRevResearch_7_013201 crossref_primary_10_22331_q_2022_09_08_800 crossref_primary_10_1103_PhysRevResearch_1_013006 crossref_primary_10_3390_math11224678 crossref_primary_10_7566_JPSJ_90_032001 crossref_primary_10_1007_s11128_023_03961_y crossref_primary_10_1103_PhysRevB_107_024204 crossref_primary_10_1007_s11128_023_04050_w crossref_primary_10_1103_PhysRevResearch_4_013083 crossref_primary_10_1021_acs_jpca_4c01234 crossref_primary_10_1103_PhysRevA_103_042423 crossref_primary_10_1016_j_physa_2022_128117 crossref_primary_10_1103_PhysRevLett_130_210601 crossref_primary_10_1103_PhysRevApplied_16_054035 crossref_primary_10_1103_PhysRevA_106_052429 crossref_primary_10_1103_PhysRevA_104_032405 crossref_primary_10_1088_2058_9565_ac0e7a crossref_primary_10_1103_PhysRevResearch_3_033200 crossref_primary_10_1088_2058_9565_aaf59e crossref_primary_10_1103_PhysRevA_107_022429 crossref_primary_10_1103_PhysRevLett_125_120502 crossref_primary_10_1103_PhysRevA_109_042612 crossref_primary_10_1016_j_optlastec_2020_106516 |
Cites_doi | 10.1016/j.jmr.2004.11.004 10.1103/PhysRevA.98.032309 10.1088/1367-2630/aa5e47 10.1103/PhysRevLett.87.167902 10.1109/ISCAS.2018.8351885 10.1103/PhysRevLett.113.130503 10.1103/PhysRevApplied.6.054005 10.26421/QIC8.5-6-8 10.1126/sciadv.1501531 10.1109/CLEOE-IQEC.2013.6801703 10.1103/PhysRevA.86.032324 10.1088/2058-9565/aaa331 10.1007/s10710-009-9080-7 10.1038/nature23459 10.1016/j.physleta.2017.08.043 10.26421/QIC14.3-4-7 10.1088/2058-9565/aaa5cc 10.1103/PhysRevA.53.2855 10.1103/PhysRevLett.116.230504 10.1103/PhysRevA.87.052330 10.1023/B:AIRE.0000006605.86111.79 10.1103/PhysRevB.96.195136 10.1126/science.aao4309 10.1103/PhysRevA.87.032341 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft – notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | O3W TSCCA AAYXX CITATION 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO H8D L7M PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS OTOTI DOA |
DOI | 10.1088/1367-2630/aae94a |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Aerospace Database Advanced Technologies Database with Aerospace ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Mathematics Computer Science |
DocumentTitleAlternate | Learning the quantum algorithm for state overlap |
EISSN | 1367-2630 |
ExternalDocumentID | oai_doaj_org_article_13a7edbef4314f59ad07c6ca80c24561 1482266 10_1088_1367_2630_aae94a njpaae94a |
GrantInformation_xml | – fundername: U.S. Department of Energy grantid: J. Robert Oppenheimer fellowship funderid: https://doi.org/10.13039/100000015 – fundername: Los Alamos National Laboratory grantid: Beyond Moore's Law project; LDRD program funderid: https://doi.org/10.13039/100008902 |
GroupedDBID | 123 1JI 1PV 29N 2WC 5PX 5VS 7.M AAFWJ AAJIO AAJKP AALHV ABHWH ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EJD EQZZN F5P GROUPED_DOAJ GX1 HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP M45 M48 M~E N5L N9A NT- O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XPP XSB ZMT AAYXX CITATION OVT PHGZM PHGZT 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI PRINS AAPBV ABPTK OTOTI PUEGO |
ID | FETCH-LOGICAL-c542t-6248aa271fea08e7f8a355e38dd6360a58fb66c7b308910c8c842a7e9e513e943 |
IEDL.DBID | M48 |
ISSN | 1367-2630 |
IngestDate | Wed Aug 27 01:17:07 EDT 2025 Thu May 18 22:31:59 EDT 2023 Mon Jun 30 08:10:06 EDT 2025 Tue Jul 01 01:30:22 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Wed Aug 21 03:34:11 EDT 2024 Thu Jan 07 13:52:00 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-6248aa271fea08e7f8a355e38dd6360a58fb66c7b308910c8c842a7e9e513e943 |
Notes | NJP-108880.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE 89233218CNA000001 LANL Laboratory Directed Research and Development (LDRD) Program LA-UR-18-21984 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/aae94a |
PQID | 2312528618 |
PQPubID | 4491272 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1088_1367_2630_aae94a doaj_primary_oai_doaj_org_article_13a7edbef4314f59ad07c6ca80c24561 iop_journals_10_1088_1367_2630_aae94a proquest_journals_2312528618 crossref_citationtrail_10_1088_1367_2630_aae94a osti_scitechconnect_1482266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-14 |
PublicationDateYYYYMMDD | 2018-11-14 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United Kingdom |
PublicationTitle | New journal of physics |
PublicationTitleAbbrev | NJP |
PublicationTitleAlternate | New J. Phys |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 24 25 26 Smith R S (28) 2016 Lloyd S (30) 2013 Martinez E A (15) 2016; 18 Preskill J (1) 2012 Svore K M (36) 2014; 14 Shende V V (35) 2009; 9 Gottesman D (23) 2001 Benedetti M (6) 2018 Linke N M (27) 2017 Maslov D (14) 2017; 19 Wiebe N (31) 2014; 15 10 32 33 Venturelli D (11) 2018; 3 34 Cross A W (29) 2017 16 Hachtel G D (20) 1996 17 Häner T (13) 2018; 3 18 19 Ball P (3) 2018 Khatri S (12) 2018 2 4 5 7 8 9 21 |
References_xml | – year: 2018 ident: 3 publication-title: Quanta Mag. – ident: 8 doi: 10.1016/j.jmr.2004.11.004 – ident: 7 doi: 10.1103/PhysRevA.98.032309 – year: 2018 ident: 12 – volume: 19 issn: 1367-2630 year: 2017 ident: 14 publication-title: New J. Phys. doi: 10.1088/1367-2630/aa5e47 – year: 1996 ident: 20 publication-title: Logic Synthesis and Verification Algorithms – ident: 22 doi: 10.1103/PhysRevLett.87.167902 – ident: 21 doi: 10.1109/ISCAS.2018.8351885 – year: 2017 ident: 27 – ident: 32 doi: 10.1103/PhysRevLett.113.130503 – ident: 18 doi: 10.1103/PhysRevApplied.6.054005 – volume: 15 start-page: 0318 issn: 1533-7146 year: 2014 ident: 31 publication-title: Quantum Inf. Comput. – volume: 9 start-page: 0461 issn: 1533-7146 year: 2009 ident: 35 publication-title: Quantum Inf. Comput. doi: 10.26421/QIC8.5-6-8 – year: 2018 ident: 6 – ident: 25 doi: 10.1126/sciadv.1501531 – year: 2016 ident: 28 – ident: 26 doi: 10.1109/CLEOE-IQEC.2013.6801703 – year: 2001 ident: 23 – year: 2012 ident: 1 – ident: 4 doi: 10.1103/PhysRevA.86.032324 – volume: 3 issn: 2058-9565 year: 2018 ident: 11 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aaa331 – ident: 9 doi: 10.1007/s10710-009-9080-7 – ident: 16 doi: 10.1038/nature23459 – ident: 17 doi: 10.1016/j.physleta.2017.08.043 – volume: 14 start-page: 306 issn: 1533-7146 year: 2014 ident: 36 publication-title: Quantum Inf. Comput. doi: 10.26421/QIC14.3-4-7 – volume: 3 start-page: 020501 year: 2018 ident: 13 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aaa5cc – volume: 18 issn: 1367-2630 year: 2016 ident: 15 publication-title: New J. Phys. – year: 2017 ident: 29 – year: 2013 ident: 30 – ident: 34 doi: 10.1103/PhysRevA.53.2855 – ident: 19 doi: 10.1103/PhysRevLett.116.230504 – ident: 24 doi: 10.1103/PhysRevA.87.052330 – ident: 10 doi: 10.1023/B:AIRE.0000006605.86111.79 – ident: 33 doi: 10.1103/PhysRevB.96.195136 – ident: 2 doi: 10.1126/science.aao4309 – ident: 5 doi: 10.1103/PhysRevA.87.032341 |
SSID | ssj0011822 |
Score | 2.6474211 |
Snippet | Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important... |
SourceID | doaj osti proquest crossref iop |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113022 |
SubjectTerms | Algorithms Computer Science Error reduction Information Science Machine learning Mathematics MATHEMATICS AND COMPUTING Physics Quantum computers Quantum computing quantum computing algorithms Quantum entanglement state overlap Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9ZVqaAHD2XTJE2nRxVFBD0p7C2kSeqDdbe6u__fmbbrA2G9CL20JG3zTZP5ppl8YewYRMBhMRRJzj1PVFlWCUhdJspbCbkl0kq_Bm7v9PWDuhlkg29bfVFOWCsP3ALXT6XNgy9DhZ5OVVlhPc-ddha4ozm7JvBBnzcPprr5A2TNopuUxG7UJ12yRGjJ-9aGQv10Qo1WP7qW53GNJ2PsWb_G5cbZXK2ztY4lxmft222wpTDaZCtNtqabbDHeqaI-xkjf4rcZojN7je3wcYyh_tNrjEQ0blYKxZSgObT1Nnu4ury_uE66rQ8SlykxTbRQYK3I0ypYDiGvwCIxCBK8J4Evm0FVau3yUnJAh-_AgRIIVBGyVGIL5Q5bHo1HYZfFMlcVxr9p4T1yDZWWGkmhcFg_U9YXPGL9ORbGdbrgtD3F0DTz0wCG0DOEnmnRi9jpZ4261cRYUPac4P0sR2rWzQW0selsbP6yccRO0Dim612TBQ87-lFu9FIbQUEOHhLJiql9FbEemdggwSCVXEfpRG5qSA4VuUrE9ueW_7oNUmCRCdAp7P1Ha3psFVkX0ILGVO2z5en7LBwgs5mWh81H_AEeIvC1 priority: 102 providerName: Directory of Open Access Journals – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUhceCNCCwoSHDhkN7EdZyJOgKgqJB4HKvWAZPmV8tjuhjZ74dczk3gXFVCFkHJIIjt2Pseez5nxZ4AnKCINi7EtmjKUhXKuK1BqV6hgJTaWSSv_Gnj7Th8eqTfH9fEOPN-uhVn1aeif0ekkFDxBmALicM4iY4XQspxbG1tF5OiKRDKcvHrv_YetC4GIs0h-yb_lumCHRrl-si5UJF2sqHP9MTSP9ubgBnza1HQKM_k2Ww9u5n_8JuL4n69yE64nHpq_mJLegp24vA1Xx3hQf34HyqS7epITQcy_rwn_9WluFyersy_D59OcqG4-rkXKOQR0Yfu7cHTw-uOrwyJtrlD4Womh0EKhtaKpumhLjE2HlqhHlBgCS4jZGjuntW-cLJEohUePStgmtrGuJNVV3oPd5WoZ70MuG9XRDLtqQyA2oyqniXYKT_lrZUNbZjDfQG18Uh7nDTAWZvSAIxrGwTAOZsIhg2fbHP2kunFJ2pfcett0rJc93iDATQKcMlHVg4sd8SXV1a0NZeO1t1h69vxWGTylNjKp_55fUtjjC-mWX3sjeBpFhyQ6ZPrQZbDHX5ChxmcdXs8BS34wLLhKbCiD_c2H9esxRLJFLVBX-OAfK7IH14i6Ia-KrNQ-7A5n6_iQ6NHgHo3d4CcCCgXO priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZbymAvo90P5rUbLmwPexCRJVk-P5V1tJRCyxgr9E3IkpxtpLHbOP__7hwlpQwCfrEt2fLJd_dJJ33H2GeQEc1irHklguC6aVoOyjRcB6egcgRaaWrg6tpc3OjL2_I2Tbgt07LKjU0cDXXoPM2RTxGHyFKCKeCkv-eUNYqiqymFxnO2hyYYYML2Ts-uf_zcxhEQPcsUnER1mhI_GZdGialzsdZPndHI2Y8u5k_X40mHGvaffR6dzvk-e5XQYv5t3b0H7FlcvGYvxlWbfvmGicSOOssRxuX3K5TS6i538xk2fPh9lyMgzccdQzkt1Jy7_i27OT_79f2CpxQI3JdaDtxIDc7JqmijExCrFhwChKggBCL6ciW0jTG-apQAdPwePGjpqljHslD4heodmyy6RXzPclXpFsfBRR0CYg5dNAbBofRYv9Qu1CJj040srE_84JSmYm7HODWAJelZkp5dSy9jX7c1-jU3xo6ypyTebTlitR4vdA8zm5QEK2HTQxNbRDW6LWsXROWNdyA8xWeLjH3BzrFJy5Y7Xnb8pNzib28lDXbwUAhabB_ajB1SF1sEGsSW62lZkR8s0aIiZsnY0abnHx_z-At-2H37kL1EXAW0ZbHQR2wyPKziR8QuQ_Mp_aD_AN856S8 priority: 102 providerName: ProQuest |
Title | Learning the quantum algorithm for state overlap |
URI | https://iopscience.iop.org/article/10.1088/1367-2630/aae94a https://www.proquest.com/docview/2312528618 https://www.osti.gov/biblio/1482266 https://doaj.org/article/13a7edbef4314f59ad07c6ca80c24561 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3va9QwGMeDbAi-EZ2KdfPoQF_4ol6bpMnTFyJubExhPxAP9y6kSXpObtfu1gP9732etrdjbAyEEmhJ2ubJr09-fcPYO-ABq8VQJDr1aSLLskpAqDKR3grQlqCVhgaOT9TRRH47z8_X26MHA17f27Wj86Qmi9nHP1d_P2OB_9SvkIMxqY4lXIl0bG0oJNLSJrZLms4zOJbrOQUkad7vwup9D5OW973hViPVaflj03NRN3hTY8m7U293jdHhM_Z0oMj4S5_sz9mjMN9ij7vVnO76BUsH1dRpjHgXXy3ResvL2M6m9eKi_XUZI6jG3U6imBZwzmzzkk0OD37sHyXD0QiJyyVvE8UlWMt1VgWbQtAVWASHIMB7EgCzOVSlUk6XIgUEAgcOJLc6FCHPBMZQvGIb83oeXrNYaFlh_zgrvEcWkVmpEBq5w_C5tL5IIzZe2cK4QTecjq-YmW7-GsCQ9QxZz_TWi9iHmxBNr5nxgN89Mu-NP1K77h7Ui6kZCg8Gwl_3ZaiQdmSVF9an2ilnIXU0b5tF7D0mjlllngc-tnvL3_x3Yzh1gvASCDOm8VXEtimJDQIIqeg6Wm7kWkNyqcgyEdtZpfz6NYjIPOegMnjzHzHfZk8QvoD2NWZyh220i2V4i4DTliO2uXdwcvZ91A0QoPv19GzU5WV0T8XPf-Jm9Uc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-RtkCQ6IFDtIntOM4BIQqttrRdIdRKvRnHdhaq7SbtZoX4U_xGZrLJVhXS3irlksTjRPPwfPbYMwDvFPM4LPo8ymIXR6IoykhxWUTCGa4yQ6CVlgZOxnJ0Jr6ep-cb8Lc_C0PbKvsxsR2oXWVpjXyIOISlTMlEfayvIqoaRdHVvoTGUi2O_J_fOGWbfzj8gvLdZexg__TzKOqqCkQ2FayJJBPKGJYlpTex8lmpDPpcz5VzlDvLpKospLRZwWOFvtQqqwQzmc99mnCfC4793oNNgW3ZADb39sffvq_iFojWWRcMRfMdUj60iEkeD41B0tvOr60RgC7tV1XjTYUW_Z8_aJ3cwWN41KHT8NNSnZ7Ahp89hfvtLlE7fwZxl411EiJsDK8WKJXFZWimE2RU8_MyRAActieUQtoYOjX1czi7E-a8gMGsmvmXEPJMlDjvTnLnEOOIpJAIRplF-lQYl8cBDHteaNvlI6eyGFPdxsWV0sQ9TdzTS-4F8H5FUS9zcaxpu0fsXbWjLNrtg-p6ojujRCL8dVf4ElGUKNPcuDiz0hoVW4oHJwHsonB0Z9XzNR97e6vd7KLWjCZXeHEESbp2ZQDbJGKNwIay81raxmQbTWlYESMFsNNL_qabG5XfWv_6DTwYnZ4c6-PD8dE2PERMp-i4ZCJ2YNBcL_wrxE1N8bpT1hB-3LV9_AOpbCVF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYhLy6sitECQ4MAhu47tOM6xPFblVXqgUm_GsZ1Cu90NbfbCr-9M4l1UQBUSUg5JNBM749eXzMxngOeaB5wWQ5WVzLNM1nWTaaHqTHordGkJtNKvgU97avdAvj8sDuM-p30uzLyNU_8ITwei4MGEMSBOj4lkLONKsLG1oZJ23PrmOtwoBK6dlMH3eX_lRkDwzKNv8m-al9ainrIfVxgsFi_mOMD-mJ77NWeyAV-XtR1CTU5Gi64euZ-_ETn-x-vcgfWIR9OdQfwuXAuze3Czjwt15_eBRf7VoxSBYvpjge2wOE3t9Gh-9r37dpoi5E37nKSUQkGntn0AB5O3X17vZnGThcwVkneZ4lJby8u8CZbpUDbaIgQJQntPVGK20E2tlCtrwTRCC6edltyWoQpFLrC-YhPWZvNZeAipKGWDX9p55T2iGpnXCuEnd6hfSOsrlsB4aW7jIgM5bYQxNb0nXGtDtjBkCzPYIoGXK412YN-4QvYVteBKjniz-xtodBONjkpYdV-HBnGTbIrKelY65axmjjzAeQIvsJ1MHMfnVxT27JLc7Lg1nD6n8BAIiww2YgJb1IsMdgDi43UUuOQ6Q8SriIoS2F52rl-PQbDNC65Vrh_9Y0Wewq39NxPz8d3ehy24jWhOU6JkLrdhrTtbhMeImLr6ST8qLgD01Qsy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+quantum+algorithm+for+state+overlap&rft.jtitle=New+journal+of+physics&rft.au=Cincio%2C+Lukasz&rft.au=Suba%C5%9F%C4%B1%2C+Yi%C4%9Fit&rft.au=Sornborger%2C+Andrew+T&rft.au=Coles%2C+Patrick+J&rft.date=2018-11-14&rft.issn=1367-2630&rft.eissn=1367-2630&rft.volume=20&rft.issue=11&rft.spage=113022&rft_id=info:doi/10.1088%2F1367-2630%2Faae94a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1367_2630_aae94a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon |