Learning the quantum algorithm for state overlap

Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 20; no. 11; pp. 113022 - 113035
Main Authors Cincio, Lukasz, Suba, Yi it, Sornborger, Andrew T, Coles, Patrick J
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 14.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap Tr ( ) between two quantum states and . The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to = , quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti's and IBM's quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error-compared to the Swap Test-on these computers.
AbstractList Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap Tr ( ) between two quantum states and . The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to = , quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti's and IBM's quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error-compared to the Swap Test-on these computers.
Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap $\mathrm{Tr}(\rho \sigma )$ between two quantum states ρ and σ. The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to ρ = σ, quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti's and IBM's quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error—compared to the Swap Test—on these computers.
Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap $\mathrm{Tr}(\rho \sigma )$ between two quantum states ρ and σ . The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to ρ  =  σ , quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti’s and IBM’s quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error—compared to the Swap Test—on these computers.
Author Suba, Yi it
Coles, Patrick J
Cincio, Lukasz
Sornborger, Andrew T
Author_xml – sequence: 1
  givenname: Lukasz
  surname: Cincio
  fullname: Cincio, Lukasz
  organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
– sequence: 2
  givenname: Yi it
  surname: Suba
  fullname: Suba, Yi it
  organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
– sequence: 3
  givenname: Andrew T
  surname: Sornborger
  fullname: Sornborger, Andrew T
  email: lcincio@lanl.gov
  organization: Information Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
– sequence: 4
  givenname: Patrick J
  surname: Coles
  fullname: Coles, Patrick J
  organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
BackLink https://www.osti.gov/biblio/1482266$$D View this record in Osti.gov
BookMark eNp9kc1rGzEQxUVxIXbae45Le8mhrvWxq5WPwaRJwNBLexZj7ciWWUtrSQ7kv4_cLUkJJSCQGH7v8fRmRiY-eCTkitHvjCq1YEK2cy4FXQDgsoYPZPoymvzzviCzlPaUMqY4nxK6Roje-W2Vd1gdT-Dz6VBBvw3R5d2hsiFWKUPGKjxi7GH4RD5a6BN-_ntfkt8_bn-t7ufrn3cPq5v13DQ1z3PJawXAW2YRqMLWKhBNg0J1nRSSQqPsRkrTbgRVS0aNMqrm0OISGyZKfnFJHkbfLsBeD9EdID7pAE7_GYS41RCzMz1qJoqw26CtBatts4SOtkYaUNTwupGseH0ZvULKTifjMpqdCd6jyZrVpQgpC_R1hIYYjidMWe_DKfryR80F4w1XkqlC0ZEyMaQU0b5EY1SfF6HPTetz03pcRJHIN5ISALILPkdw_XvCb6PQheE1zDv49X9wvx80LxJWjqCc66Gz4hksMKhf
CODEN NJOPFM
CitedBy_id crossref_primary_10_1080_23746149_2023_2165452
crossref_primary_10_1088_2058_9565_ab4eb5
crossref_primary_10_1103_PhysRevA_107_010101
crossref_primary_10_1103_PhysRevLett_124_060503
crossref_primary_10_1364_OE_495919
crossref_primary_10_3847_1538_4357_abe6ac
crossref_primary_10_1088_2058_9565_ad5228
crossref_primary_10_1007_s11128_023_04065_3
crossref_primary_10_1007_s11128_019_2348_9
crossref_primary_10_1103_PhysRevB_103_064309
crossref_primary_10_1103_PRXQuantum_1_010301
crossref_primary_10_1103_PhysRevResearch_3_033083
crossref_primary_10_1007_s11128_024_04317_w
crossref_primary_10_1021_acs_jctc_2c00218
crossref_primary_10_1103_PhysRevA_109_032418
crossref_primary_10_1016_j_scib_2021_06_023
crossref_primary_10_1088_2632_2153_abc17d
crossref_primary_10_22331_q_2021_11_26_592
crossref_primary_10_1016_j_automatica_2023_111263
crossref_primary_10_1088_1367_2630_ab784c
crossref_primary_10_1088_2632_2153_ac28dd
crossref_primary_10_1103_PhysRevA_98_062333
crossref_primary_10_1103_PhysRevResearch_5_013105
crossref_primary_10_1103_PhysRevLett_124_140504
crossref_primary_10_1103_PhysRevLett_127_140501
crossref_primary_10_1103_PhysRevA_105_042604
crossref_primary_10_1103_PhysRevApplied_21_067001
crossref_primary_10_1038_s41586_019_0980_2
crossref_primary_10_22331_q_2021_10_20_567
crossref_primary_10_1088_1751_8121_aaf54d
crossref_primary_10_1140_epjqt_s40507_024_00259_5
crossref_primary_10_1016_j_ifacol_2022_07_526
crossref_primary_10_1103_PhysRevApplied_21_054056
crossref_primary_10_1088_2058_9565_adaede
crossref_primary_10_1109_TQE_2021_3053921
crossref_primary_10_22331_q_2022_01_24_628
crossref_primary_10_1103_PhysRevA_99_022301
crossref_primary_10_1103_PhysRevA_103_L030401
crossref_primary_10_1103_PhysRevA_105_022441
crossref_primary_10_1088_2058_9565_ad7be7
crossref_primary_10_1103_PhysRevResearch_4_013213
crossref_primary_10_22331_q_2021_09_02_535
crossref_primary_10_1088_1751_8121_ab73ad
crossref_primary_10_1103_PhysRevA_105_022208
crossref_primary_10_35848_1347_4065_ac5152
crossref_primary_10_1088_1674_1056_acb9fb
crossref_primary_10_3390_a14060187
crossref_primary_10_1103_PhysRevA_99_062304
crossref_primary_10_1088_1367_2630_ab14b5
crossref_primary_10_22331_q_2019_07_01_156
crossref_primary_10_1103_PhysRevA_106_042431
crossref_primary_10_1016_j_cpc_2023_108909
crossref_primary_10_1103_PRXQuantum_2_010324
crossref_primary_10_1002_que2_80
crossref_primary_10_1016_j_jmaa_2025_129254
crossref_primary_10_1088_1367_2630_ad1b7f
crossref_primary_10_1007_s11128_021_03370_z
crossref_primary_10_1021_acs_jpca_4c06960
crossref_primary_10_1038_s42254_021_00348_9
crossref_primary_10_1088_1674_1056_ac1b84
crossref_primary_10_1088_2058_9565_aceb87
crossref_primary_10_1103_PhysRevResearch_3_033098
crossref_primary_10_1038_s41534_019_0167_6
crossref_primary_10_1103_PhysRevApplied_21_034033
crossref_primary_10_1007_s11128_023_04079_x
crossref_primary_10_1007_s11433_021_1793_6
crossref_primary_10_1007_s42484_022_00070_4
crossref_primary_10_1103_PRXQuantum_5_020328
crossref_primary_10_3390_e25040580
crossref_primary_10_1017_S1431927621005031
crossref_primary_10_1109_TQE_2021_3121797
crossref_primary_10_1103_PhysRevLett_126_170502
crossref_primary_10_1007_s11128_024_04642_0
crossref_primary_10_1088_1612_202X_ac81b6
crossref_primary_10_22331_q_2023_06_06_1034
crossref_primary_10_1038_s41467_021_27045_6
crossref_primary_10_1016_j_ins_2020_05_127
crossref_primary_10_1103_PhysRevApplied_18_024013
crossref_primary_10_1103_PhysRevA_102_062425
crossref_primary_10_1145_3517340
crossref_primary_10_1007_s11128_023_04146_3
crossref_primary_10_1088_2058_9565_abd3db
crossref_primary_10_22331_q_2020_10_11_341
crossref_primary_10_1007_s42484_022_00063_3
crossref_primary_10_1103_PhysRevA_110_042616
crossref_primary_10_1088_1367_2630_abe0ae
crossref_primary_10_1007_s11128_024_04461_3
crossref_primary_10_1103_PhysRevApplied_16_044039
crossref_primary_10_1103_PhysRevA_107_062424
crossref_primary_10_1103_PRXQuantum_2_010342
crossref_primary_10_1007_s42484_023_00132_1
crossref_primary_10_1038_s41534_024_00804_1
crossref_primary_10_1103_PhysRevA_107_012606
crossref_primary_10_1103_PhysRevLett_128_190402
crossref_primary_10_22331_q_2019_05_13_140
crossref_primary_10_1103_PhysRevA_105_032616
crossref_primary_10_1007_s11128_021_03148_3
crossref_primary_10_1103_PhysRevA_100_012326
crossref_primary_10_1109_JSAIT_2020_3015235
crossref_primary_10_1088_2058_9565_ac87cd
crossref_primary_10_1140_epjp_s13360_022_02714_7
crossref_primary_10_1007_s42484_022_00093_x
crossref_primary_10_1103_PhysRevResearch_1_033159
crossref_primary_10_1145_3550488
crossref_primary_10_1103_PhysRevResearch_6_013029
crossref_primary_10_1103_PhysRevA_105_022417
crossref_primary_10_1126_science_ade7651
crossref_primary_10_1038_s41534_024_00857_2
crossref_primary_10_1103_PhysRevResearch_6_013143
crossref_primary_10_1103_PRXQuantum_3_030341
crossref_primary_10_22331_q_2023_07_13_1060
crossref_primary_10_1103_PhysRevA_104_062411
crossref_primary_10_1007_s11128_020_02877_1
crossref_primary_10_1103_PhysRevA_106_062413
crossref_primary_10_22331_q_2023_01_19_899
crossref_primary_10_1103_PhysRevA_99_052335
crossref_primary_10_7566_JPSJ_90_044002
crossref_primary_10_1103_PhysRevA_110_012604
crossref_primary_10_1088_1367_2630_ace077
crossref_primary_10_1038_s41467_019_11417_0
crossref_primary_10_1103_PhysRevA_107_022402
crossref_primary_10_1016_j_comnet_2024_110672
crossref_primary_10_1088_1361_6633_ad85f0
crossref_primary_10_1088_1751_8121_acecc5
crossref_primary_10_1103_PhysRevResearch_6_023130
crossref_primary_10_1038_s41467_022_32550_3
crossref_primary_10_1103_PhysRevA_101_012330
crossref_primary_10_1038_s43588_022_00311_3
crossref_primary_10_1088_2058_9565_ad4583
crossref_primary_10_1103_PhysRevA_100_022103
crossref_primary_10_1103_PhysRevA_110_022403
crossref_primary_10_1088_2058_9565_abfbef
crossref_primary_10_22331_q_2023_11_22_1188
crossref_primary_10_1016_j_physa_2024_129530
crossref_primary_10_1103_PhysRevA_105_012423
crossref_primary_10_1103_PhysRevApplied_19_034017
crossref_primary_10_1007_s11128_023_04231_7
crossref_primary_10_1109_ACCESS_2024_3411307
crossref_primary_10_1016_j_rinp_2022_106131
crossref_primary_10_1088_1402_4896_ad579f
crossref_primary_10_1088_2632_2153_abaf98
crossref_primary_10_1103_PhysRevA_106_032434
crossref_primary_10_1038_s41534_022_00611_6
crossref_primary_10_1103_PhysRevC_110_054604
crossref_primary_10_1103_PhysRevLett_132_190801
crossref_primary_10_4236_jamp_2021_96083
crossref_primary_10_1063_5_0209201
crossref_primary_10_1103_PhysRevResearch_3_033056
crossref_primary_10_1088_1367_2630_ab5c60
crossref_primary_10_1103_PhysRevLett_129_190501
crossref_primary_10_1103_PRXQuantum_3_020323
crossref_primary_10_1103_PhysRevLett_133_260603
crossref_primary_10_22331_q_2019_03_25_130
crossref_primary_10_1109_TQE_2024_3425969
crossref_primary_10_1145_3505181
crossref_primary_10_1007_s11433_024_2598_y
crossref_primary_10_1103_PhysRevResearch_7_013201
crossref_primary_10_22331_q_2022_09_08_800
crossref_primary_10_1103_PhysRevResearch_1_013006
crossref_primary_10_3390_math11224678
crossref_primary_10_7566_JPSJ_90_032001
crossref_primary_10_1007_s11128_023_03961_y
crossref_primary_10_1103_PhysRevB_107_024204
crossref_primary_10_1007_s11128_023_04050_w
crossref_primary_10_1103_PhysRevResearch_4_013083
crossref_primary_10_1021_acs_jpca_4c01234
crossref_primary_10_1103_PhysRevA_103_042423
crossref_primary_10_1016_j_physa_2022_128117
crossref_primary_10_1103_PhysRevLett_130_210601
crossref_primary_10_1103_PhysRevApplied_16_054035
crossref_primary_10_1103_PhysRevA_106_052429
crossref_primary_10_1103_PhysRevA_104_032405
crossref_primary_10_1088_2058_9565_ac0e7a
crossref_primary_10_1103_PhysRevResearch_3_033200
crossref_primary_10_1088_2058_9565_aaf59e
crossref_primary_10_1103_PhysRevA_107_022429
crossref_primary_10_1103_PhysRevLett_125_120502
crossref_primary_10_1103_PhysRevA_109_042612
crossref_primary_10_1016_j_optlastec_2020_106516
Cites_doi 10.1016/j.jmr.2004.11.004
10.1103/PhysRevA.98.032309
10.1088/1367-2630/aa5e47
10.1103/PhysRevLett.87.167902
10.1109/ISCAS.2018.8351885
10.1103/PhysRevLett.113.130503
10.1103/PhysRevApplied.6.054005
10.26421/QIC8.5-6-8
10.1126/sciadv.1501531
10.1109/CLEOE-IQEC.2013.6801703
10.1103/PhysRevA.86.032324
10.1088/2058-9565/aaa331
10.1007/s10710-009-9080-7
10.1038/nature23459
10.1016/j.physleta.2017.08.043
10.26421/QIC14.3-4-7
10.1088/2058-9565/aaa5cc
10.1103/PhysRevA.53.2855
10.1103/PhysRevLett.116.230504
10.1103/PhysRevA.87.052330
10.1023/B:AIRE.0000006605.86111.79
10.1103/PhysRevB.96.195136
10.1126/science.aao4309
10.1103/PhysRevA.87.032341
ContentType Journal Article
Copyright 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
OTOTI
DOA
DOI 10.1088/1367-2630/aae94a
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Mathematics
Computer Science
DocumentTitleAlternate Learning the quantum algorithm for state overlap
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_13a7edbef4314f59ad07c6ca80c24561
1482266
10_1088_1367_2630_aae94a
njpaae94a
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: J. Robert Oppenheimer fellowship
  funderid: https://doi.org/10.13039/100000015
– fundername: Los Alamos National Laboratory
  grantid: Beyond Moore's Law project; LDRD program
  funderid: https://doi.org/10.13039/100008902
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
AALHV
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EJD
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M45
M48
M~E
N5L
N9A
NT-
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
AAPBV
ABPTK
OTOTI
PUEGO
ID FETCH-LOGICAL-c542t-6248aa271fea08e7f8a355e38dd6360a58fb66c7b308910c8c842a7e9e513e943
IEDL.DBID M48
ISSN 1367-2630
IngestDate Wed Aug 27 01:17:07 EDT 2025
Thu May 18 22:31:59 EDT 2023
Mon Jun 30 08:10:06 EDT 2025
Tue Jul 01 01:30:22 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Wed Aug 21 03:34:11 EDT 2024
Thu Jan 07 13:52:00 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-6248aa271fea08e7f8a355e38dd6360a58fb66c7b308910c8c842a7e9e513e943
Notes NJP-108880.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
89233218CNA000001
LANL Laboratory Directed Research and Development (LDRD) Program
LA-UR-18-21984
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/aae94a
PQID 2312528618
PQPubID 4491272
PageCount 14
ParticipantIDs crossref_primary_10_1088_1367_2630_aae94a
doaj_primary_oai_doaj_org_article_13a7edbef4314f59ad07c6ca80c24561
iop_journals_10_1088_1367_2630_aae94a
proquest_journals_2312528618
crossref_citationtrail_10_1088_1367_2630_aae94a
osti_scitechconnect_1482266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-14
PublicationDateYYYYMMDD 2018-11-14
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-14
  day: 14
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United Kingdom
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
24
25
26
Smith R S (28) 2016
Lloyd S (30) 2013
Martinez E A (15) 2016; 18
Preskill J (1) 2012
Svore K M (36) 2014; 14
Shende V V (35) 2009; 9
Gottesman D (23) 2001
Benedetti M (6) 2018
Linke N M (27) 2017
Maslov D (14) 2017; 19
Wiebe N (31) 2014; 15
10
32
33
Venturelli D (11) 2018; 3
34
Cross A W (29) 2017
16
Hachtel G D (20) 1996
17
Häner T (13) 2018; 3
18
19
Ball P (3) 2018
Khatri S (12) 2018
2
4
5
7
8
9
21
References_xml – year: 2018
  ident: 3
  publication-title: Quanta Mag.
– ident: 8
  doi: 10.1016/j.jmr.2004.11.004
– ident: 7
  doi: 10.1103/PhysRevA.98.032309
– year: 2018
  ident: 12
– volume: 19
  issn: 1367-2630
  year: 2017
  ident: 14
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa5e47
– year: 1996
  ident: 20
  publication-title: Logic Synthesis and Verification Algorithms
– ident: 22
  doi: 10.1103/PhysRevLett.87.167902
– ident: 21
  doi: 10.1109/ISCAS.2018.8351885
– year: 2017
  ident: 27
– ident: 32
  doi: 10.1103/PhysRevLett.113.130503
– ident: 18
  doi: 10.1103/PhysRevApplied.6.054005
– volume: 15
  start-page: 0318
  issn: 1533-7146
  year: 2014
  ident: 31
  publication-title: Quantum Inf. Comput.
– volume: 9
  start-page: 0461
  issn: 1533-7146
  year: 2009
  ident: 35
  publication-title: Quantum Inf. Comput.
  doi: 10.26421/QIC8.5-6-8
– year: 2018
  ident: 6
– ident: 25
  doi: 10.1126/sciadv.1501531
– year: 2016
  ident: 28
– ident: 26
  doi: 10.1109/CLEOE-IQEC.2013.6801703
– year: 2001
  ident: 23
– year: 2012
  ident: 1
– ident: 4
  doi: 10.1103/PhysRevA.86.032324
– volume: 3
  issn: 2058-9565
  year: 2018
  ident: 11
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aaa331
– ident: 9
  doi: 10.1007/s10710-009-9080-7
– ident: 16
  doi: 10.1038/nature23459
– ident: 17
  doi: 10.1016/j.physleta.2017.08.043
– volume: 14
  start-page: 306
  issn: 1533-7146
  year: 2014
  ident: 36
  publication-title: Quantum Inf. Comput.
  doi: 10.26421/QIC14.3-4-7
– volume: 3
  start-page: 020501
  year: 2018
  ident: 13
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aaa5cc
– volume: 18
  issn: 1367-2630
  year: 2016
  ident: 15
  publication-title: New J. Phys.
– year: 2017
  ident: 29
– year: 2013
  ident: 30
– ident: 34
  doi: 10.1103/PhysRevA.53.2855
– ident: 19
  doi: 10.1103/PhysRevLett.116.230504
– ident: 24
  doi: 10.1103/PhysRevA.87.052330
– ident: 10
  doi: 10.1023/B:AIRE.0000006605.86111.79
– ident: 33
  doi: 10.1103/PhysRevB.96.195136
– ident: 2
  doi: 10.1126/science.aao4309
– ident: 5
  doi: 10.1103/PhysRevA.87.032341
SSID ssj0011822
Score 2.6474211
Snippet Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important...
SourceID doaj
osti
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113022
SubjectTerms Algorithms
Computer Science
Error reduction
Information Science
Machine learning
Mathematics
MATHEMATICS AND COMPUTING
Physics
Quantum computers
Quantum computing
quantum computing algorithms
Quantum entanglement
state overlap
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9ZVqaAHD2XTJE2nRxVFBD0p7C2kSeqDdbe6u__fmbbrA2G9CL20JG3zTZP5ppl8YewYRMBhMRRJzj1PVFlWCUhdJspbCbkl0kq_Bm7v9PWDuhlkg29bfVFOWCsP3ALXT6XNgy9DhZ5OVVlhPc-ddha4ozm7JvBBnzcPprr5A2TNopuUxG7UJ12yRGjJ-9aGQv10Qo1WP7qW53GNJ2PsWb_G5cbZXK2ztY4lxmft222wpTDaZCtNtqabbDHeqaI-xkjf4rcZojN7je3wcYyh_tNrjEQ0blYKxZSgObT1Nnu4ury_uE66rQ8SlykxTbRQYK3I0ypYDiGvwCIxCBK8J4Evm0FVau3yUnJAh-_AgRIIVBGyVGIL5Q5bHo1HYZfFMlcVxr9p4T1yDZWWGkmhcFg_U9YXPGL9ORbGdbrgtD3F0DTz0wCG0DOEnmnRi9jpZ4261cRYUPac4P0sR2rWzQW0selsbP6yccRO0Dim612TBQ87-lFu9FIbQUEOHhLJiql9FbEemdggwSCVXEfpRG5qSA4VuUrE9ueW_7oNUmCRCdAp7P1Ha3psFVkX0ILGVO2z5en7LBwgs5mWh81H_AEeIvC1
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUhceCNCCwoSHDhkN7EdZyJOgKgqJB4HKvWAZPmV8tjuhjZ74dczk3gXFVCFkHJIIjt2Pseez5nxZ4AnKCINi7EtmjKUhXKuK1BqV6hgJTaWSSv_Gnj7Th8eqTfH9fEOPN-uhVn1aeif0ekkFDxBmALicM4iY4XQspxbG1tF5OiKRDKcvHrv_YetC4GIs0h-yb_lumCHRrl-si5UJF2sqHP9MTSP9ubgBnza1HQKM_k2Ww9u5n_8JuL4n69yE64nHpq_mJLegp24vA1Xx3hQf34HyqS7epITQcy_rwn_9WluFyersy_D59OcqG4-rkXKOQR0Yfu7cHTw-uOrwyJtrlD4Womh0EKhtaKpumhLjE2HlqhHlBgCS4jZGjuntW-cLJEohUePStgmtrGuJNVV3oPd5WoZ70MuG9XRDLtqQyA2oyqniXYKT_lrZUNbZjDfQG18Uh7nDTAWZvSAIxrGwTAOZsIhg2fbHP2kunFJ2pfcett0rJc93iDATQKcMlHVg4sd8SXV1a0NZeO1t1h69vxWGTylNjKp_55fUtjjC-mWX3sjeBpFhyQ6ZPrQZbDHX5ChxmcdXs8BS34wLLhKbCiD_c2H9esxRLJFLVBX-OAfK7IH14i6Ia-KrNQ-7A5n6_iQ6NHgHo3d4CcCCgXO
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZbymAvo90P5rUbLmwPexCRJVk-P5V1tJRCyxgr9E3IkpxtpLHbOP__7hwlpQwCfrEt2fLJd_dJJ33H2GeQEc1irHklguC6aVoOyjRcB6egcgRaaWrg6tpc3OjL2_I2Tbgt07LKjU0cDXXoPM2RTxGHyFKCKeCkv-eUNYqiqymFxnO2hyYYYML2Ts-uf_zcxhEQPcsUnER1mhI_GZdGialzsdZPndHI2Y8u5k_X40mHGvaffR6dzvk-e5XQYv5t3b0H7FlcvGYvxlWbfvmGicSOOssRxuX3K5TS6i538xk2fPh9lyMgzccdQzkt1Jy7_i27OT_79f2CpxQI3JdaDtxIDc7JqmijExCrFhwChKggBCL6ciW0jTG-apQAdPwePGjpqljHslD4heodmyy6RXzPclXpFsfBRR0CYg5dNAbBofRYv9Qu1CJj040srE_84JSmYm7HODWAJelZkp5dSy9jX7c1-jU3xo6ypyTebTlitR4vdA8zm5QEK2HTQxNbRDW6LWsXROWNdyA8xWeLjH3BzrFJy5Y7Xnb8pNzib28lDXbwUAhabB_ajB1SF1sEGsSW62lZkR8s0aIiZsnY0abnHx_z-At-2H37kL1EXAW0ZbHQR2wyPKziR8QuQ_Mp_aD_AN856S8
  priority: 102
  providerName: ProQuest
Title Learning the quantum algorithm for state overlap
URI https://iopscience.iop.org/article/10.1088/1367-2630/aae94a
https://www.proquest.com/docview/2312528618
https://www.osti.gov/biblio/1482266
https://doaj.org/article/13a7edbef4314f59ad07c6ca80c24561
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3va9QwGMeDbAi-EZ2KdfPoQF_4ol6bpMnTFyJubExhPxAP9y6kSXpObtfu1gP9732etrdjbAyEEmhJ2ubJr09-fcPYO-ABq8VQJDr1aSLLskpAqDKR3grQlqCVhgaOT9TRRH47z8_X26MHA17f27Wj86Qmi9nHP1d_P2OB_9SvkIMxqY4lXIl0bG0oJNLSJrZLms4zOJbrOQUkad7vwup9D5OW973hViPVaflj03NRN3hTY8m7U293jdHhM_Z0oMj4S5_sz9mjMN9ij7vVnO76BUsH1dRpjHgXXy3ResvL2M6m9eKi_XUZI6jG3U6imBZwzmzzkk0OD37sHyXD0QiJyyVvE8UlWMt1VgWbQtAVWASHIMB7EgCzOVSlUk6XIgUEAgcOJLc6FCHPBMZQvGIb83oeXrNYaFlh_zgrvEcWkVmpEBq5w_C5tL5IIzZe2cK4QTecjq-YmW7-GsCQ9QxZz_TWi9iHmxBNr5nxgN89Mu-NP1K77h7Ui6kZCg8Gwl_3ZaiQdmSVF9an2ilnIXU0b5tF7D0mjlllngc-tnvL3_x3Yzh1gvASCDOm8VXEtimJDQIIqeg6Wm7kWkNyqcgyEdtZpfz6NYjIPOegMnjzHzHfZk8QvoD2NWZyh220i2V4i4DTliO2uXdwcvZ91A0QoPv19GzU5WV0T8XPf-Jm9Uc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-RtkCQ6IFDtIntOM4BIQqttrRdIdRKvRnHdhaq7SbtZoX4U_xGZrLJVhXS3irlksTjRPPwfPbYMwDvFPM4LPo8ymIXR6IoykhxWUTCGa4yQ6CVlgZOxnJ0Jr6ep-cb8Lc_C0PbKvsxsR2oXWVpjXyIOISlTMlEfayvIqoaRdHVvoTGUi2O_J_fOGWbfzj8gvLdZexg__TzKOqqCkQ2FayJJBPKGJYlpTex8lmpDPpcz5VzlDvLpKospLRZwWOFvtQqqwQzmc99mnCfC4793oNNgW3ZADb39sffvq_iFojWWRcMRfMdUj60iEkeD41B0tvOr60RgC7tV1XjTYUW_Z8_aJ3cwWN41KHT8NNSnZ7Ahp89hfvtLlE7fwZxl411EiJsDK8WKJXFZWimE2RU8_MyRAActieUQtoYOjX1czi7E-a8gMGsmvmXEPJMlDjvTnLnEOOIpJAIRplF-lQYl8cBDHteaNvlI6eyGFPdxsWV0sQ9TdzTS-4F8H5FUS9zcaxpu0fsXbWjLNrtg-p6ojujRCL8dVf4ElGUKNPcuDiz0hoVW4oHJwHsonB0Z9XzNR97e6vd7KLWjCZXeHEESbp2ZQDbJGKNwIay81raxmQbTWlYESMFsNNL_qabG5XfWv_6DTwYnZ4c6-PD8dE2PERMp-i4ZCJ2YNBcL_wrxE1N8bpT1hB-3LV9_AOpbCVF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYhLy6sitECQ4MAhu47tOM6xPFblVXqgUm_GsZ1Cu90NbfbCr-9M4l1UQBUSUg5JNBM749eXzMxngOeaB5wWQ5WVzLNM1nWTaaHqTHordGkJtNKvgU97avdAvj8sDuM-p30uzLyNU_8ITwei4MGEMSBOj4lkLONKsLG1oZJ23PrmOtwoBK6dlMH3eX_lRkDwzKNv8m-al9ainrIfVxgsFi_mOMD-mJ77NWeyAV-XtR1CTU5Gi64euZ-_ETn-x-vcgfWIR9OdQfwuXAuze3Czjwt15_eBRf7VoxSBYvpjge2wOE3t9Gh-9r37dpoi5E37nKSUQkGntn0AB5O3X17vZnGThcwVkneZ4lJby8u8CZbpUDbaIgQJQntPVGK20E2tlCtrwTRCC6edltyWoQpFLrC-YhPWZvNZeAipKGWDX9p55T2iGpnXCuEnd6hfSOsrlsB4aW7jIgM5bYQxNb0nXGtDtjBkCzPYIoGXK412YN-4QvYVteBKjniz-xtodBONjkpYdV-HBnGTbIrKelY65axmjjzAeQIvsJ1MHMfnVxT27JLc7Lg1nD6n8BAIiww2YgJb1IsMdgDi43UUuOQ6Q8SriIoS2F52rl-PQbDNC65Vrh_9Y0Wewq39NxPz8d3ehy24jWhOU6JkLrdhrTtbhMeImLr6ST8qLgD01Qsy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+quantum+algorithm+for+state+overlap&rft.jtitle=New+journal+of+physics&rft.au=Cincio%2C+Lukasz&rft.au=Suba%C5%9F%C4%B1%2C+Yi%C4%9Fit&rft.au=Sornborger%2C+Andrew+T&rft.au=Coles%2C+Patrick+J&rft.date=2018-11-14&rft.issn=1367-2630&rft.eissn=1367-2630&rft.volume=20&rft.issue=11&rft.spage=113022&rft_id=info:doi/10.1088%2F1367-2630%2Faae94a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1367_2630_aae94a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon