Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal im...
Saved in:
Published in | Nature microbiology Vol. 3; no. 4; pp. 470 - 480 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant–microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (
Avena
barbata
) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.
Using comparative genomics and exometabolomics, the authors characterize the chemical composition of plant root exudates and show that this chemical succession is a likely driver of microbial community assembly in the rhizosphere. |
---|---|
AbstractList | Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant–microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (
Avena
barbata
) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.
Using comparative genomics and exometabolomics, the authors characterize the chemical composition of plant root exudates and show that this chemical succession is a likely driver of microbial community assembly in the rhizosphere. Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant–microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes. Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes. Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant–microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. In this paper, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. Finally, this discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes. |
Author | Hao, Zhao Loqué, Dominique Firestone, Mary K. Cho, Heejung Louie, Katherine B. Northen, Trent R. Bowen, Benjamin P. Brodie, Eoin L. Shi, Shengjing da Rocha, Ulisses Nunes Zhalnina, Kateryna Karaoz, Ulas Mansoori, Nasim |
Author_xml | – sequence: 1 givenname: Kateryna surname: Zhalnina fullname: Zhalnina, Kateryna organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Earth and Environmental Sciences, Lawrence Berkeley National Laboratory – sequence: 2 givenname: Katherine B. surname: Louie fullname: Louie, Katherine B. organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory – sequence: 3 givenname: Zhao orcidid: 0000-0003-0677-8529 surname: Hao fullname: Hao, Zhao organization: Earth and Environmental Sciences, Lawrence Berkeley National Laboratory – sequence: 4 givenname: Nasim surname: Mansoori fullname: Mansoori, Nasim organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Biosystems Engineering Division, Lawrence Berkeley National Laboratory – sequence: 5 givenname: Ulisses Nunes surname: da Rocha fullname: da Rocha, Ulisses Nunes organization: Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ – sequence: 6 givenname: Shengjing surname: Shi fullname: Shi, Shengjing organization: Lincoln Science Centre, AgResearch Ltd – sequence: 7 givenname: Heejung surname: Cho fullname: Cho, Heejung organization: Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Department of Plant and Microbial Biology, University of California – sequence: 8 givenname: Ulas orcidid: 0000-0002-8238-6757 surname: Karaoz fullname: Karaoz, Ulas organization: Earth and Environmental Sciences, Lawrence Berkeley National Laboratory – sequence: 9 givenname: Dominique surname: Loqué fullname: Loqué, Dominique organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Biosystems Engineering Division, Lawrence Berkeley National Laboratory, Department of Plant and Microbial Biology, University of California, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1 – sequence: 10 givenname: Benjamin P. surname: Bowen fullname: Bowen, Benjamin P. organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory – sequence: 11 givenname: Mary K. surname: Firestone fullname: Firestone, Mary K. organization: Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Department of Environmental Science, Policy and Management, University of California – sequence: 12 givenname: Trent R. orcidid: 0000-0001-8404-3259 surname: Northen fullname: Northen, Trent R. email: trnorthen@lbl.gov organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory – sequence: 13 givenname: Eoin L. orcidid: 0000-0002-8453-8435 surname: Brodie fullname: Brodie, Eoin L. email: elbrodie@lbl.gov organization: Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Department of Environmental Science, Policy and Management, University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29556109$$D View this record in MEDLINE/PubMed https://hal.science/hal-02000374$$DView record in HAL https://www.osti.gov/servlets/purl/1471041$$D View this record in Osti.gov |
BookMark | eNp9kstu1TAQhi1UREvpA7BBEWxgEfAldpJlVS5FOhIbWFtOPCGuEvtgO1UPEu_ORGmhqgQLy9b4-8eef-YpOfLBAyHPGX3LqGjepYpJVZWUNbh4W4pH5IRT2ZSS1-ro3vmYnKV0RSlliivVqCfkmLdSKkbbE_Lr_cGb2fVFDCEXcLNYk6HoR5hdyvFQGG8LvI6hc2Yq0tJhdCX2EQaI4HtIhY3uGiMmZ4g-Fc4XcXQ_Q9qPSNxT92GeF-8yZk0J5m46PCOPBzMlOLvdT8m3jx--XlyWuy-fPl-c78peVjyXcui4kmZgBqwchg6rsMLShtYCOiugNapuW8s5p42gthPGqGaolVQtZYJbcUpebnlDyk6n3mXoxz54D33WrKoZrRhCbzZoNJPeRzebeNDBOH15vtNrjHI0UdTV9cq-3th9DD8WSFmjXz1Mk_EQlqQ5ZbIRNRcS0VcP0KuwRI_las5EjR1qBUXqxS21dDPYP-_fdQqBegPQzZTQfY1VmOyCx4a4STOq17HQ21hoHAu9joUWqGQPlHfJ_6fhmyYh679D_Pvpf4t-A8g5yZs |
CitedBy_id | crossref_primary_10_1016_j_rhisph_2023_100709 crossref_primary_10_1128_aem_01843_22 crossref_primary_10_2166_wrd_2023_062 crossref_primary_10_1073_pnas_1805944115 crossref_primary_10_3390_foods12040747 crossref_primary_10_1016_j_soilbio_2020_107724 crossref_primary_10_1016_j_soilbio_2020_107968 crossref_primary_10_3389_fmicb_2020_548037 crossref_primary_10_1016_j_apsoil_2021_104305 crossref_primary_10_1007_s11104_022_05813_7 crossref_primary_10_1016_j_jhazmat_2023_132648 crossref_primary_10_3389_fmicb_2021_754453 crossref_primary_10_1007_s42832_023_0180_8 crossref_primary_10_3390_f14020209 crossref_primary_10_1007_s11104_023_06391_y crossref_primary_10_1016_j_scitotenv_2021_152515 crossref_primary_10_3390_metabo11060357 crossref_primary_10_3390_su14042253 crossref_primary_10_3390_f14112209 crossref_primary_10_1093_femsec_fiaa213 crossref_primary_10_1111_nph_19870 crossref_primary_10_1016_j_foreco_2023_121490 crossref_primary_10_1186_s12866_019_1572_x crossref_primary_10_1007_s11104_024_06947_6 crossref_primary_10_1038_s41477_025_01918_w crossref_primary_10_3390_agriculture13020326 crossref_primary_10_1021_acs_analchem_3c02370 crossref_primary_10_1016_j_watres_2020_116450 crossref_primary_10_1038_s41477_021_00967_1 crossref_primary_10_1186_s12870_020_02365_9 crossref_primary_10_1007_s11104_024_06825_1 crossref_primary_10_1007_s00284_022_02979_2 crossref_primary_10_1038_s41522_020_00164_6 crossref_primary_10_3390_agriculture9070142 crossref_primary_10_3390_plants13030384 crossref_primary_10_1128_spectrum_00358_22 crossref_primary_10_3390_microorganisms13010041 crossref_primary_10_1016_j_scitotenv_2020_140494 crossref_primary_10_1007_s44290_024_00108_5 crossref_primary_10_1093_femsec_fiz100 crossref_primary_10_1016_j_apsoil_2024_105465 crossref_primary_10_1016_j_funeco_2023_101227 crossref_primary_10_1016_j_micres_2019_02_005 crossref_primary_10_1111_tpj_15775 crossref_primary_10_1016_j_csbj_2021_07_027 crossref_primary_10_1016_j_soilbio_2020_107742 crossref_primary_10_3390_agronomy14081828 crossref_primary_10_3390_ijms242216118 crossref_primary_10_1016_j_apsoil_2022_104617 crossref_primary_10_3389_fbioe_2021_567548 crossref_primary_10_1016_j_apsoil_2021_104326 crossref_primary_10_1016_j_ejsobi_2020_103169 crossref_primary_10_1111_1758_2229_12816 crossref_primary_10_1080_03650340_2022_2128190 crossref_primary_10_1094_MPMI_02_24_0020_R crossref_primary_10_1016_j_chemosphere_2023_137860 crossref_primary_10_1016_j_copbio_2024_103196 crossref_primary_10_1016_j_catena_2020_104841 crossref_primary_10_1016_j_heliyon_2024_e36602 crossref_primary_10_1111_1751_7915_14273 crossref_primary_10_1016_j_fmre_2021_12_016 crossref_primary_10_1128_msystems_00975_21 crossref_primary_10_3390_microorganisms11040835 crossref_primary_10_1111_1365_2745_14448 crossref_primary_10_1186_s12866_023_02946_2 crossref_primary_10_1016_j_apsoil_2022_104628 crossref_primary_10_1016_j_scitotenv_2019_04_212 crossref_primary_10_1038_s41467_022_28055_8 crossref_primary_10_1016_j_jhazmat_2019_121695 crossref_primary_10_1186_s40168_022_01375_z crossref_primary_10_1039_C8EN00645H crossref_primary_10_3390_ijms23136985 crossref_primary_10_1093_jxb_eraa111 crossref_primary_10_1094_PBIOMES_12_19_0069_FI crossref_primary_10_3390_microorganisms8121893 crossref_primary_10_1007_s00709_021_01647_9 crossref_primary_10_1111_ele_13271 crossref_primary_10_1186_s40793_024_00618_w crossref_primary_10_3389_fbioe_2020_00896 crossref_primary_10_1016_j_scitotenv_2020_140457 crossref_primary_10_1111_nph_16171 crossref_primary_10_3390_app10186387 crossref_primary_10_1016_j_jenvman_2024_120407 crossref_primary_10_1111_pce_14755 crossref_primary_10_1038_s41467_024_46254_3 crossref_primary_10_3390_agronomy15010056 crossref_primary_10_3390_microorganisms8111687 crossref_primary_10_1016_j_soilbio_2022_108577 crossref_primary_10_3389_fmicb_2019_01146 crossref_primary_10_3389_fsufs_2020_00106 crossref_primary_10_1007_s00374_021_01594_w crossref_primary_10_3389_fmicb_2023_1318586 crossref_primary_10_1007_s11356_021_14595_x crossref_primary_10_1371_journal_pone_0207903 crossref_primary_10_1111_nph_18118 crossref_primary_10_1002_imo2_70006 crossref_primary_10_1007_s11104_023_06216_y crossref_primary_10_1080_00103624_2025_2474180 crossref_primary_10_3389_fbioe_2021_613307 crossref_primary_10_1016_j_tplants_2022_06_004 crossref_primary_10_1016_j_scitotenv_2023_167140 crossref_primary_10_1093_jxb_erac520 crossref_primary_10_3389_fmicb_2020_00198 crossref_primary_10_1186_s40168_021_01049_2 crossref_primary_10_1080_03650340_2020_1852549 crossref_primary_10_31857_S2500262723010106 crossref_primary_10_1016_j_scitotenv_2021_148235 crossref_primary_10_1016_j_soilbio_2020_107752 crossref_primary_10_1016_j_rhisph_2021_100334 crossref_primary_10_1016_j_jia_2023_04_018 crossref_primary_10_1128_spectrum_02370_22 crossref_primary_10_1007_s12355_023_01299_4 crossref_primary_10_1016_j_gecco_2024_e03080 crossref_primary_10_1111_nph_18582 crossref_primary_10_3389_fmicb_2020_574110 crossref_primary_10_1016_j_apsoil_2022_104802 crossref_primary_10_1007_s00203_022_03084_5 crossref_primary_10_1016_j_ecoenv_2023_115739 crossref_primary_10_1186_s40793_023_00469_x crossref_primary_10_1016_j_cub_2019_10_067 crossref_primary_10_1016_j_plantsci_2025_112439 crossref_primary_10_1016_j_foreco_2021_119403 crossref_primary_10_1016_j_micres_2023_127564 crossref_primary_10_1007_s10661_024_12527_z crossref_primary_10_1002_ldr_4699 crossref_primary_10_1007_s00572_025_01186_8 crossref_primary_10_1111_nph_18109 crossref_primary_10_1016_j_plantsci_2025_112431 crossref_primary_10_3390_ijms22157880 crossref_primary_10_3390_soilsystems8030084 crossref_primary_10_1093_femsec_fiaa020 crossref_primary_10_1371_journal_pgen_1008837 crossref_primary_10_1007_s00203_022_03321_x crossref_primary_10_1016_j_crmicr_2024_100322 crossref_primary_10_3389_fmicb_2024_1470450 crossref_primary_10_1016_j_micres_2024_127829 crossref_primary_10_1128_msystems_01190_23 crossref_primary_10_1016_j_rhisph_2022_100649 crossref_primary_10_1007_s11104_022_05508_z crossref_primary_10_1038_s41467_023_36515_y crossref_primary_10_3389_fpls_2023_1186162 crossref_primary_10_1093_jambio_lxad161 crossref_primary_10_1016_j_rhisph_2022_100645 crossref_primary_10_3390_su16156381 crossref_primary_10_1111_pce_13636 crossref_primary_10_1002_advs_202410990 crossref_primary_10_1016_j_plantsci_2023_111896 crossref_primary_10_3389_fmicb_2019_01361 crossref_primary_10_1016_j_tplants_2023_11_026 crossref_primary_10_1016_j_micres_2024_127852 crossref_primary_10_3390_microorganisms10091739 crossref_primary_10_1038_s41579_024_01079_1 crossref_primary_10_3390_microorganisms10091737 crossref_primary_10_1128_spectrum_01226_22 crossref_primary_10_1038_s41559_022_01764_5 crossref_primary_10_1186_s12866_022_02633_8 crossref_primary_10_1094_PBIOMES_09_18_0041_R crossref_primary_10_1016_j_envexpbot_2023_105587 crossref_primary_10_1016_j_tplants_2020_04_015 crossref_primary_10_1111_nph_19653 crossref_primary_10_1016_j_baae_2021_01_002 crossref_primary_10_1016_j_funeco_2020_100985 crossref_primary_10_1016_j_rhisph_2020_100297 crossref_primary_10_1016_j_soilbio_2020_107775 crossref_primary_10_1016_j_scitotenv_2024_177453 crossref_primary_10_3390_microorganisms11040879 crossref_primary_10_3390_ijms24129879 crossref_primary_10_1021_acs_est_2c08540 crossref_primary_10_1111_pce_14742 crossref_primary_10_1007_s11104_023_06347_2 crossref_primary_10_1111_pce_13892 crossref_primary_10_1016_j_soilbio_2022_108785 crossref_primary_10_3390_agronomy13030813 crossref_primary_10_1111_nph_18569 crossref_primary_10_1016_j_pbi_2021_102025 crossref_primary_10_1515_opag_2022_0392 crossref_primary_10_3389_fmicb_2023_1232846 crossref_primary_10_1016_j_chom_2018_09_005 crossref_primary_10_1016_j_jenvman_2023_118642 crossref_primary_10_1016_j_jclepro_2024_143798 crossref_primary_10_1016_j_cbpa_2023_102320 crossref_primary_10_1186_s40529_020_00295_1 crossref_primary_10_1007_s11104_025_07359_w crossref_primary_10_1016_j_jenvman_2023_118644 crossref_primary_10_3389_fmicb_2020_00784 crossref_primary_10_3390_agriculture11030234 crossref_primary_10_1139_cjm_2020_0174 crossref_primary_10_1111_pce_13615 crossref_primary_10_3390_life13101956 crossref_primary_10_1016_j_apsoil_2025_105923 crossref_primary_10_1016_j_apsoil_2024_105649 crossref_primary_10_1016_j_rhisph_2023_100790 crossref_primary_10_1016_j_envpol_2022_119989 crossref_primary_10_1051_e3sconf_202129203061 crossref_primary_10_1007_s42832_022_0142_6 crossref_primary_10_34133_2020_7914051 crossref_primary_10_1007_s10653_022_01387_6 crossref_primary_10_1111_1365_2745_14030 crossref_primary_10_1111_gcb_14482 crossref_primary_10_3389_fpls_2019_01626 crossref_primary_10_1038_s41396_020_0587_5 crossref_primary_10_1016_j_apsoil_2024_105651 crossref_primary_10_1038_s41396_023_01402_3 crossref_primary_10_3390_microorganisms11082094 crossref_primary_10_3389_fmicb_2022_853077 crossref_primary_10_1111_pbi_13950 crossref_primary_10_1016_j_scitotenv_2022_155467 crossref_primary_10_1111_gcb_16413 crossref_primary_10_1016_j_micres_2020_126424 crossref_primary_10_3389_fpls_2023_1277262 crossref_primary_10_1016_j_soilbio_2020_107797 crossref_primary_10_1016_j_apsoil_2024_105414 crossref_primary_10_3934_agrfood_2021029 crossref_primary_10_3389_fsufs_2023_1253735 crossref_primary_10_3389_fagro_2020_00008 crossref_primary_10_1016_j_ncrops_2024_100023 crossref_primary_10_12688_f1000research_21796_1 crossref_primary_10_1038_s41598_021_98914_9 crossref_primary_10_1016_j_agee_2021_107336 crossref_primary_10_1016_j_soilbio_2019_01_025 crossref_primary_10_3390_ijms23031084 crossref_primary_10_1016_j_scitotenv_2023_164221 crossref_primary_10_3389_fmicb_2021_625697 crossref_primary_10_1093_pcp_pcz076 crossref_primary_10_1094_PBIOMES_12_20_0090_E crossref_primary_10_1007_s11427_024_2876_0 crossref_primary_10_1016_j_pedsph_2024_03_004 crossref_primary_10_1038_s41396_022_01288_7 crossref_primary_10_1111_1462_2920_16528 crossref_primary_10_1128_msystems_01352_23 crossref_primary_10_3389_fmicb_2023_1229454 crossref_primary_10_1016_j_ijbiomac_2022_04_015 crossref_primary_10_1111_nph_19225 crossref_primary_10_1016_j_micres_2022_127294 crossref_primary_10_1002_ldr_4649 crossref_primary_10_3103_S106836742302009X crossref_primary_10_1007_s11104_022_05528_9 crossref_primary_10_1186_s40168_021_01014_z crossref_primary_10_3390_f13081338 crossref_primary_10_3390_agronomy13020377 crossref_primary_10_1093_ismejo_wraf022 crossref_primary_10_5897_AJMR2021_9587 crossref_primary_10_1016_j_jhazmat_2024_135135 crossref_primary_10_1016_j_soilbio_2022_108753 crossref_primary_10_1002_imt2_37 crossref_primary_10_3390_microorganisms9071388 crossref_primary_10_3390_cimb45110558 crossref_primary_10_1002_ppp3_10448 crossref_primary_10_1016_j_mib_2023_102317 crossref_primary_10_1038_s41559_022_01740_z crossref_primary_10_1128_JB_00216_21 crossref_primary_10_1111_nph_19697 crossref_primary_10_3389_fpls_2023_1163271 crossref_primary_10_1016_j_envpol_2024_124680 crossref_primary_10_1016_j_scitotenv_2021_147123 crossref_primary_10_3389_fmicb_2023_1188376 crossref_primary_10_1016_j_scitotenv_2024_174783 crossref_primary_10_1007_s11103_023_01365_1 crossref_primary_10_1016_j_ecolind_2022_109793 crossref_primary_10_1016_j_micres_2020_126446 crossref_primary_10_3389_fmicb_2021_579920 crossref_primary_10_1186_s40793_025_00675_9 crossref_primary_10_1016_j_apsoil_2024_105634 crossref_primary_10_7717_peerj_17225 crossref_primary_10_1186_s13717_021_00347_9 crossref_primary_10_3389_fmicb_2021_616932 crossref_primary_10_1021_acssynbio_3c00008 crossref_primary_10_34133_2022_9858049 crossref_primary_10_1007_s11368_024_03918_3 crossref_primary_10_3390_microorganisms10051053 crossref_primary_10_1007_s10342_023_01569_6 crossref_primary_10_1016_j_micres_2023_127349 crossref_primary_10_1111_tpj_14852 crossref_primary_10_1016_j_envpol_2024_125528 crossref_primary_10_1002_mlf2_12077 crossref_primary_10_1002_ps_7445 crossref_primary_10_1007_s00344_023_11128_3 crossref_primary_10_1007_s00344_024_11583_6 crossref_primary_10_7717_peerj_12601 crossref_primary_10_1016_j_chemosphere_2020_127156 crossref_primary_10_1016_j_pbi_2020_02_010 crossref_primary_10_3390_agronomy14091891 crossref_primary_10_1016_j_apsoil_2020_103778 crossref_primary_10_1038_s41598_024_58687_3 crossref_primary_10_2139_ssrn_4055107 crossref_primary_10_1016_j_scitotenv_2022_158710 crossref_primary_10_1111_1365_2435_13682 crossref_primary_10_1016_j_envres_2023_116658 crossref_primary_10_1016_j_micres_2021_126901 crossref_primary_10_1111_nph_20272 crossref_primary_10_1021_acs_est_9b07562 crossref_primary_10_3390_microorganisms9030575 crossref_primary_10_1016_j_soilbio_2024_109382 crossref_primary_10_1016_j_apsoil_2023_105171 crossref_primary_10_3389_fmicb_2025_1573724 crossref_primary_10_1007_s11356_022_24111_4 crossref_primary_10_3390_biology12081067 crossref_primary_10_1093_femsec_fiad126 crossref_primary_10_1038_s41396_019_0582_x crossref_primary_10_1093_femsec_fiaa099 crossref_primary_10_1016_j_rhisph_2022_100477 crossref_primary_10_1149_1945_7111_ac1e56 crossref_primary_10_1038_s41598_020_65203_w crossref_primary_10_1016_j_scitotenv_2022_155263 crossref_primary_10_3389_fmicb_2024_1460067 crossref_primary_10_1007_s11356_022_25020_2 crossref_primary_10_3389_fpls_2018_01205 crossref_primary_10_1016_j_foreco_2022_120215 crossref_primary_10_1016_j_scitotenv_2023_163175 crossref_primary_10_1016_j_scitotenv_2023_167774 crossref_primary_10_3389_fpls_2021_711333 crossref_primary_10_1007_s00128_019_02779_8 crossref_primary_10_3389_fmicb_2021_567961 crossref_primary_10_1002_pld3_207 crossref_primary_10_1016_j_jenvman_2023_117375 crossref_primary_10_1042_ETLS20210262 crossref_primary_10_1016_j_apsoil_2024_105660 crossref_primary_10_3389_fmicb_2019_01519 crossref_primary_10_1016_j_csbj_2021_09_035 crossref_primary_10_1016_j_cej_2023_142455 crossref_primary_10_1016_j_catena_2024_108282 crossref_primary_10_1016_j_scitotenv_2024_175421 crossref_primary_10_1021_jasms_2c00081 crossref_primary_10_3390_microorganisms10122376 crossref_primary_10_1016_j_scitotenv_2021_147798 crossref_primary_10_1016_j_soilbio_2022_108713 crossref_primary_10_2139_ssrn_4020052 crossref_primary_10_1007_s12275_022_1060_0 crossref_primary_10_1186_s12866_022_02517_x crossref_primary_10_3389_fmicb_2022_842372 crossref_primary_10_1016_j_micres_2024_127698 crossref_primary_10_1093_ismeco_ycae172 crossref_primary_10_1128_mbio_03584_22 crossref_primary_10_1371_journal_pone_0280516 crossref_primary_10_7554_eLife_79679 crossref_primary_10_1016_j_scitotenv_2022_155007 crossref_primary_10_1016_j_watres_2023_120750 crossref_primary_10_1016_j_apsoil_2024_105678 crossref_primary_10_1016_j_chemosphere_2021_129600 crossref_primary_10_1016_j_soilbio_2022_108700 crossref_primary_10_1038_s41396_023_01406_z crossref_primary_10_1073_pnas_1917265117 crossref_primary_10_1128_mSphere_01316_20 crossref_primary_10_1073_pnas_2303439121 crossref_primary_10_3390_ijms242316779 crossref_primary_10_1186_s12866_022_02470_9 crossref_primary_10_1093_ismejo_wrae120 crossref_primary_10_3390_atmos13060893 crossref_primary_10_1007_s11104_024_06595_w crossref_primary_10_1007_s13199_024_00981_9 crossref_primary_10_1016_j_scitotenv_2023_162063 crossref_primary_10_1038_s41597_020_00617_9 crossref_primary_10_1186_s12866_022_02648_1 crossref_primary_10_1186_s40168_018_0499_z crossref_primary_10_3389_fmicb_2020_00370 crossref_primary_10_1007_s11104_024_06571_4 crossref_primary_10_1016_j_jhazmat_2021_126079 crossref_primary_10_1016_j_scitotenv_2024_172894 crossref_primary_10_1016_j_scitotenv_2023_164508 crossref_primary_10_1016_j_tplants_2024_07_017 crossref_primary_10_1016_j_scitotenv_2023_164515 crossref_primary_10_1186_s40168_023_01572_4 crossref_primary_10_1016_j_jclepro_2022_131169 crossref_primary_10_3390_agronomy11081539 crossref_primary_10_1186_s12866_021_02421_w crossref_primary_10_1007_s11356_024_32578_6 crossref_primary_10_1002_pld3_259 crossref_primary_10_1016_j_ecolind_2023_110758 crossref_primary_10_1016_j_scitotenv_2022_154418 crossref_primary_10_1007_s11427_024_2533_2 crossref_primary_10_3389_fmicb_2023_1235708 crossref_primary_10_1186_s40793_023_00526_5 crossref_primary_10_1016_j_ecoenv_2025_117956 crossref_primary_10_1038_s41598_019_52148_y crossref_primary_10_1038_s41579_021_00621_9 crossref_primary_10_1016_j_foreco_2022_120658 crossref_primary_10_1016_j_wasman_2023_10_021 crossref_primary_10_1016_j_soilbio_2020_108120 crossref_primary_10_1128_mSystems_00835_21 crossref_primary_10_1007_s11104_024_06853_x crossref_primary_10_1007_s12403_023_00593_6 crossref_primary_10_1016_j_agee_2024_109181 crossref_primary_10_3389_fmicb_2021_782135 crossref_primary_10_1007_s42729_022_01114_1 crossref_primary_10_1007_s00374_024_01807_y crossref_primary_10_1038_s43705_023_00297_7 crossref_primary_10_3389_fmicb_2024_1485197 crossref_primary_10_1038_s43017_021_00162_y crossref_primary_10_1016_j_plaphy_2024_109345 crossref_primary_10_1016_j_jwpe_2024_106799 crossref_primary_10_1007_s10533_024_01180_w crossref_primary_10_3389_fpls_2022_830666 crossref_primary_10_1073_pnas_2312396121 crossref_primary_10_1128_mSystems_00092_19 crossref_primary_10_3390_horticulturae10010025 crossref_primary_10_1128_msystems_00749_20 crossref_primary_10_3390_plants10071410 crossref_primary_10_1007_s00374_019_01424_0 crossref_primary_10_1128_mSystems_00721_20 crossref_primary_10_1016_j_mib_2019_10_010 crossref_primary_10_3390_agriculture12101548 crossref_primary_10_7717_peerj_12978 crossref_primary_10_1016_j_scitotenv_2024_170205 crossref_primary_10_1111_pce_15063 crossref_primary_10_1128_spectrum_01679_21 crossref_primary_10_1016_j_soilbio_2018_09_013 crossref_primary_10_1016_j_soilbio_2024_109481 crossref_primary_10_1016_j_envint_2024_109116 crossref_primary_10_1186_s13213_024_01750_1 crossref_primary_10_3389_fpls_2021_740456 crossref_primary_10_3389_fpls_2021_683690 crossref_primary_10_3389_fpls_2019_00605 crossref_primary_10_1073_pnas_1818604116 crossref_primary_10_1016_j_rhisph_2024_100885 crossref_primary_10_1007_s11104_019_04359_5 crossref_primary_10_1016_j_indcrop_2024_119227 crossref_primary_10_1016_j_soilbio_2025_109771 crossref_primary_10_1093_jxb_erz572 crossref_primary_10_3389_fmicb_2022_945927 crossref_primary_10_4315_JFP_22_160 crossref_primary_10_1007_s11104_023_06133_0 crossref_primary_10_1016_j_ecoenv_2024_116552 crossref_primary_10_1080_00380768_2023_2166775 crossref_primary_10_3390_jof8040384 crossref_primary_10_3390_microorganisms12112176 crossref_primary_10_1038_s41579_022_00695_z crossref_primary_10_1186_s40793_023_00539_0 crossref_primary_10_1016_j_ymben_2024_11_002 crossref_primary_10_1016_j_jaridenv_2023_105074 crossref_primary_10_1016_j_soilbio_2021_108219 crossref_primary_10_1099_ijsem_0_004029 crossref_primary_10_1016_j_geoderma_2021_115186 crossref_primary_10_1016_S1002_0160_19_60834_9 crossref_primary_10_1016_j_catena_2023_107175 crossref_primary_10_1016_j_jhazmat_2024_133651 crossref_primary_10_1016_j_still_2024_106328 crossref_primary_10_1007_s11104_021_05036_2 crossref_primary_10_1016_j_heliyon_2023_e13825 crossref_primary_10_3389_fmicb_2021_629169 crossref_primary_10_1007_s11356_023_26944_z crossref_primary_10_1007_s00253_021_11629_9 crossref_primary_10_1094_PBIOMES_02_24_0028_R crossref_primary_10_1128_aem_00226_22 crossref_primary_10_1007_s11104_023_06022_6 crossref_primary_10_3389_fmicb_2020_00871 crossref_primary_10_3389_fmicb_2024_1468627 crossref_primary_10_1016_j_soilbio_2021_108468 crossref_primary_10_1021_acs_analchem_4c00184 crossref_primary_10_1038_s41564_023_01582_w crossref_primary_10_1016_j_soilbio_2021_108229 crossref_primary_10_1016_j_ecolind_2022_109215 crossref_primary_10_1111_1365_2745_13934 crossref_primary_10_1128_msystems_01238_22 crossref_primary_10_1007_s11356_021_15838_7 crossref_primary_10_1094_PBIOMES_5_1 crossref_primary_10_1016_j_scitotenv_2020_144019 crossref_primary_10_1094_PBIOMES_5_2 crossref_primary_10_1038_s41396_020_00751_7 crossref_primary_10_1016_j_chemosphere_2022_136605 crossref_primary_10_1007_s42773_023_00284_0 crossref_primary_10_1007_s13580_023_00516_z crossref_primary_10_1007_s11104_021_05123_4 crossref_primary_10_3390_agronomy12092168 crossref_primary_10_1111_nph_15638 crossref_primary_10_7554_eLife_94558_3 crossref_primary_10_1007_s00344_023_11061_5 crossref_primary_10_1016_j_agee_2023_108525 crossref_primary_10_1128_mBio_01774_21 crossref_primary_10_1038_s41564_021_00941_9 crossref_primary_10_1016_j_chemosphere_2020_126681 crossref_primary_10_1016_j_indcrop_2022_115932 crossref_primary_10_1016_j_soilbio_2023_109129 crossref_primary_10_1007_s11104_021_05112_7 crossref_primary_10_1007_s11104_022_05788_5 crossref_primary_10_1016_j_mib_2023_102358 crossref_primary_10_3389_fpls_2024_1325048 crossref_primary_10_1111_nph_16957 crossref_primary_10_1128_aem_00971_22 crossref_primary_10_1007_s11101_024_10036_y crossref_primary_10_1111_1462_2920_15764 crossref_primary_10_1016_j_ecoenv_2025_117734 crossref_primary_10_1016_j_agee_2023_108774 crossref_primary_10_1186_s40168_021_01042_9 crossref_primary_10_3389_fmicb_2021_598180 crossref_primary_10_1016_j_indcrop_2024_118331 crossref_primary_10_1073_pnas_1820691116 crossref_primary_10_3389_fbioe_2022_957140 crossref_primary_10_3390_agronomy13051294 crossref_primary_10_1007_s11104_019_04311_7 crossref_primary_10_1016_j_jenvman_2022_115288 crossref_primary_10_1111_mec_15882 crossref_primary_10_1016_j_apsoil_2018_06_012 crossref_primary_10_1016_j_soilbio_2025_109738 crossref_primary_10_3389_fsoil_2021_741012 crossref_primary_10_3390_ijerph19084512 crossref_primary_10_12677_HJSS_2023_113020 crossref_primary_10_1016_j_scitotenv_2023_165612 crossref_primary_10_1094_PBIOMES_01_20_0003_R crossref_primary_10_3389_fmicb_2022_824437 crossref_primary_10_1007_s00253_024_13184_5 crossref_primary_10_1016_j_scitotenv_2024_170017 crossref_primary_10_3389_fmicb_2018_02479 crossref_primary_10_1016_j_geoderma_2023_116409 crossref_primary_10_1038_s43705_021_00009_z crossref_primary_10_1126_science_abe0725 crossref_primary_10_1016_j_geoderma_2025_117202 crossref_primary_10_1016_j_jenvman_2024_122503 crossref_primary_10_1111_nph_17622 crossref_primary_10_1007_s11104_023_06286_y crossref_primary_10_1016_j_soilbio_2018_11_010 crossref_primary_10_1146_annurev_micro_022620_014327 crossref_primary_10_1094_PBIOMES_01_19_0005_R crossref_primary_10_1111_tpj_15158 crossref_primary_10_3389_fpls_2023_1206870 crossref_primary_10_1007_s11104_023_06262_6 crossref_primary_10_1016_j_tplants_2021_07_014 crossref_primary_10_1094_PBIOMES_01_20_0014_FI crossref_primary_10_1007_s11104_020_04684_0 crossref_primary_10_3390_ijms24032826 crossref_primary_10_1038_s41396_018_0257_z crossref_primary_10_1186_s40168_019_0756_9 crossref_primary_10_1007_s11270_023_06495_2 crossref_primary_10_1016_j_tplants_2024_05_008 crossref_primary_10_1007_s11356_021_13465_w crossref_primary_10_3389_fmicb_2024_1364355 crossref_primary_10_1016_j_cpb_2021_100210 crossref_primary_10_3389_fmicb_2022_848057 crossref_primary_10_1111_nph_18719 crossref_primary_10_1007_s00253_020_10466_6 crossref_primary_10_1111_gcb_17198 crossref_primary_10_1016_j_agee_2022_108252 crossref_primary_10_1007_s10142_025_01536_x crossref_primary_10_1093_plphys_kiab480 crossref_primary_10_2139_ssrn_4182812 crossref_primary_10_1016_j_agee_2023_108797 crossref_primary_10_1111_ejss_13047 crossref_primary_10_1007_s00203_019_01779_w crossref_primary_10_1111_1365_2664_13802 crossref_primary_10_1016_j_micres_2024_128031 crossref_primary_10_1016_j_envexpbot_2019_103891 crossref_primary_10_1016_j_rhisph_2018_06_004 crossref_primary_10_1086_706198 crossref_primary_10_1007_s11104_019_04379_1 crossref_primary_10_1186_s40538_018_0139_7 crossref_primary_10_1016_j_soilbio_2023_109111 crossref_primary_10_1016_j_chemosphere_2020_129084 crossref_primary_10_1038_s41396_021_00920_2 crossref_primary_10_1016_j_cell_2025_01_035 crossref_primary_10_3389_fmicb_2019_03135 crossref_primary_10_1111_pce_14163 crossref_primary_10_1111_nph_17854 crossref_primary_10_1016_j_catena_2023_107306 crossref_primary_10_3389_fmicb_2020_569366 crossref_primary_10_1016_j_sjbs_2023_103578 crossref_primary_10_1016_j_jhazmat_2021_125367 crossref_primary_10_1186_s13059_020_01999_0 crossref_primary_10_1007_s00253_020_10938_9 crossref_primary_10_1111_nph_15662 crossref_primary_10_1093_jxb_erad448 crossref_primary_10_3389_fpls_2022_997292 crossref_primary_10_1007_s11104_024_06686_8 crossref_primary_10_1111_tpj_15135 crossref_primary_10_1007_s00374_020_01504_6 crossref_primary_10_3389_fpls_2023_1266916 crossref_primary_10_1007_s11104_023_06284_0 crossref_primary_10_3390_f13101628 crossref_primary_10_1186_s13213_021_01633_9 crossref_primary_10_1016_j_ecolind_2020_107117 crossref_primary_10_1016_j_ecolind_2020_107118 crossref_primary_10_1038_s41396_022_01337_1 crossref_primary_10_1016_j_soilbio_2024_109647 crossref_primary_10_3389_fmicb_2022_954489 crossref_primary_10_3389_fmicb_2019_02252 crossref_primary_10_1007_s42729_021_00556_3 crossref_primary_10_1111_pce_15224 crossref_primary_10_24326_as_2021_2_2 crossref_primary_10_3389_fpls_2020_00787 crossref_primary_10_1093_pcp_pcac108 crossref_primary_10_3390_f15122140 crossref_primary_10_1128_spectrum_01476_22 crossref_primary_10_1186_s12870_025_06217_2 crossref_primary_10_3389_fmicb_2021_747982 crossref_primary_10_3390_agronomy13051257 crossref_primary_10_1007_s11368_020_02704_1 crossref_primary_10_1038_s41598_023_30915_2 crossref_primary_10_1111_1751_7915_14435 crossref_primary_10_1007_s11104_022_05579_y crossref_primary_10_1111_mec_17228 crossref_primary_10_1093_treephys_tpad030 crossref_primary_10_1016_j_soilbio_2018_10_003 crossref_primary_10_1016_j_cofs_2023_101064 crossref_primary_10_1016_j_envres_2021_111599 crossref_primary_10_3390_plants13152029 crossref_primary_10_1111_pce_15471 crossref_primary_10_3389_fsufs_2021_668195 crossref_primary_10_1016_j_agee_2022_108065 crossref_primary_10_1111_gcbb_13041 crossref_primary_10_1016_j_apsoil_2023_104994 crossref_primary_10_1093_treephys_tpac116 crossref_primary_10_1128_spectrum_01886_24 crossref_primary_10_3390_microorganisms9010161 crossref_primary_10_1016_j_soilbio_2023_109306 crossref_primary_10_1038_s41467_024_52679_7 crossref_primary_10_1016_j_soilbio_2020_107923 crossref_primary_10_3389_fmicb_2023_1104297 crossref_primary_10_1007_s00248_022_02074_w crossref_primary_10_14397_jals_2019_53_5_1 crossref_primary_10_3390_microorganisms13020289 crossref_primary_10_1007_s13213_019_01448_9 crossref_primary_10_1016_j_apsoil_2021_104102 crossref_primary_10_1186_s40168_024_01814_z crossref_primary_10_1111_ppl_14165 crossref_primary_10_1021_acsomega_4c07971 crossref_primary_10_1007_s11356_023_29181_6 crossref_primary_10_1111_aab_12694 crossref_primary_10_1093_femsre_fuad066 crossref_primary_10_1016_j_scitotenv_2024_171770 crossref_primary_10_1038_s41396_019_0543_4 crossref_primary_10_1016_j_micres_2025_128134 crossref_primary_10_3389_fmicb_2023_1140378 crossref_primary_10_1098_rspb_2023_0469 crossref_primary_10_1007_s12275_024_00114_3 crossref_primary_10_1016_j_jes_2020_05_011 crossref_primary_10_1038_s41396_021_00957_3 crossref_primary_10_1111_pce_15458 crossref_primary_10_3389_fmolb_2021_686110 crossref_primary_10_1038_s41467_024_45925_5 crossref_primary_10_1111_pce_15456 crossref_primary_10_1016_j_envpol_2022_118900 crossref_primary_10_1007_s11104_024_07049_z crossref_primary_10_1016_j_crmicr_2024_100285 crossref_primary_10_3389_fmicb_2022_849573 crossref_primary_10_1016_j_scitotenv_2021_150148 crossref_primary_10_3389_fpls_2024_1471044 crossref_primary_10_2139_ssrn_4142160 crossref_primary_10_3389_fmicb_2024_1340575 crossref_primary_10_1002_jobm_202400100 crossref_primary_10_1016_j_cpb_2021_100228 crossref_primary_10_1007_s11274_023_03837_4 crossref_primary_10_3390_agronomy12061277 crossref_primary_10_1016_j_apsoil_2023_104971 crossref_primary_10_1094_PBIOMES_05_20_0042_RVW crossref_primary_10_1186_s40168_024_01910_0 crossref_primary_10_1186_s12870_024_04982_0 crossref_primary_10_1038_s42003_021_01988_4 crossref_primary_10_1038_s41396_021_01184_6 crossref_primary_10_1111_mec_15012 crossref_primary_10_1146_annurev_biophys_030722_021957 crossref_primary_10_1038_s41396_019_0510_0 crossref_primary_10_1007_s42729_025_02242_0 crossref_primary_10_1186_s40168_024_01812_1 crossref_primary_10_1016_j_envres_2023_116195 crossref_primary_10_1016_j_micres_2025_128141 crossref_primary_10_1016_j_apsoil_2022_104418 crossref_primary_10_1016_j_ejsobi_2024_103646 crossref_primary_10_1094_MPMI_10_20_0298_R crossref_primary_10_1016_j_apsoil_2021_104129 crossref_primary_10_3389_fmicb_2022_829717 crossref_primary_10_1111_pce_14570 crossref_primary_10_1021_acs_est_1c00300 crossref_primary_10_1111_rec_14351 crossref_primary_10_1007_s10661_024_12957_9 crossref_primary_10_1111_jpy_13504 crossref_primary_10_1016_j_apsoil_2023_104960 crossref_primary_10_3389_fmicb_2022_944646 crossref_primary_10_3390_soilsystems3030050 crossref_primary_10_3354_meps14682 crossref_primary_10_1002_ece3_11481 crossref_primary_10_1073_pnas_2217951120 crossref_primary_10_1016_j_apsoil_2023_104968 crossref_primary_10_3389_fpls_2021_690567 crossref_primary_10_1094_PBIOMES_06_23_0050_R crossref_primary_10_1094_PBIOMES_01_20_0007_R crossref_primary_10_3390_f16030404 crossref_primary_10_3389_fmicb_2024_1401794 crossref_primary_10_1111_1462_2920_15926 crossref_primary_10_1016_j_crmicr_2025_100365 crossref_primary_10_3389_fmicb_2021_620309 crossref_primary_10_3389_fmicb_2022_953340 crossref_primary_10_1094_PHYTO_04_22_0115_RVW crossref_primary_10_1094_PBIOMES_11_19_0064_FI crossref_primary_10_1128_aem_01109_23 crossref_primary_10_3389_fmicb_2023_1339125 crossref_primary_10_1111_1751_7915_14164 crossref_primary_10_1111_1462_2920_15172 crossref_primary_10_1016_j_ecolind_2023_110071 crossref_primary_10_1093_femsec_fiz005 crossref_primary_10_1038_s41467_024_47752_0 crossref_primary_10_1186_s40538_024_00561_5 crossref_primary_10_1186_s40168_019_0775_6 crossref_primary_10_3390_microorganisms12091752 crossref_primary_10_31251_pos_v3i3_128 crossref_primary_10_1016_j_scitotenv_2024_170904 crossref_primary_10_1038_s43247_024_01879_6 crossref_primary_10_1080_17429145_2023_2178680 crossref_primary_10_1016_j_rhisph_2023_100837 crossref_primary_10_1016_j_scitotenv_2021_152878 crossref_primary_10_1038_s41598_020_72844_4 crossref_primary_10_1016_j_apsoil_2023_105075 crossref_primary_10_1111_nph_16001 crossref_primary_10_1007_s42995_021_00100_3 crossref_primary_10_1080_10643389_2020_1738193 crossref_primary_10_1016_j_jhazmat_2021_125898 crossref_primary_10_1093_jxb_eraa424 crossref_primary_10_3390_agronomy13082111 crossref_primary_10_1038_s41467_022_35452_6 crossref_primary_10_1038_s42003_022_03157_7 crossref_primary_10_1016_j_jhazmat_2025_137542 crossref_primary_10_1021_acs_est_4c04108 crossref_primary_10_1007_s00374_022_01620_5 crossref_primary_10_1016_j_apsoil_2022_104722 crossref_primary_10_1021_acs_est_4c07881 crossref_primary_10_1016_j_jare_2024_11_034 crossref_primary_10_1038_s41564_024_01833_4 crossref_primary_10_1016_j_jhazmat_2023_131681 crossref_primary_10_3389_fmicb_2020_571159 crossref_primary_10_2174_1389202921999200515140420 crossref_primary_10_3390_agriculture14010080 crossref_primary_10_3390_agronomy9110764 crossref_primary_10_3390_agronomy12123129 crossref_primary_10_1007_s11104_024_06913_2 crossref_primary_10_3389_fmicb_2021_799014 crossref_primary_10_1016_j_pbi_2024_102603 crossref_primary_10_1093_treephys_tpab123 crossref_primary_10_1016_j_rhisph_2022_100564 crossref_primary_10_1186_s40793_022_00427_z crossref_primary_10_3389_fpls_2024_1429096 crossref_primary_10_1039_C7NP00062F crossref_primary_10_1007_s11104_022_05320_9 crossref_primary_10_1109_TMBMC_2023_3274112 crossref_primary_10_3390_agronomy13010060 crossref_primary_10_1021_acs_biochem_2c00367 crossref_primary_10_3389_fmicb_2024_1424687 crossref_primary_10_3390_insects13090769 crossref_primary_10_1111_1462_2920_16245 crossref_primary_10_1016_j_micres_2024_127937 crossref_primary_10_3390_f15060897 crossref_primary_10_1016_j_agwat_2025_109354 crossref_primary_10_1016_j_micres_2025_128073 crossref_primary_10_1111_1462_2920_16015 crossref_primary_10_1111_nph_16223 crossref_primary_10_1111_nph_18886 crossref_primary_10_1016_j_apsoil_2025_105892 crossref_primary_10_1016_j_jece_2024_112221 crossref_primary_10_1016_j_chemosphere_2021_131820 crossref_primary_10_1016_j_stress_2023_100242 crossref_primary_10_1016_j_scitotenv_2020_144508 crossref_primary_10_1038_s41396_022_01345_1 crossref_primary_10_1038_s41396_020_0666_7 crossref_primary_10_1094_PBIOMES_05_22_0032_R crossref_primary_10_1093_plcell_koac163 crossref_primary_10_1016_j_envres_2021_111757 crossref_primary_10_1007_s12275_023_00012_0 crossref_primary_10_1186_s40793_021_00383_0 crossref_primary_10_1007_s11368_021_02967_2 crossref_primary_10_1016_j_jhazmat_2023_132757 crossref_primary_10_3389_fmicb_2025_1555523 crossref_primary_10_1094_MPMI_05_22_0116_TA crossref_primary_10_1016_j_geoderma_2024_117002 crossref_primary_10_1186_s40168_019_0668_8 crossref_primary_10_1038_s43705_021_00059_3 crossref_primary_10_1002_ldr_4107 crossref_primary_10_1016_j_scitotenv_2022_160742 crossref_primary_10_1128_aem_01635_24 crossref_primary_10_1016_j_indcrop_2023_117736 crossref_primary_10_1073_pnas_2322217121 crossref_primary_10_3389_fbinf_2022_918853 crossref_primary_10_1007_s00425_021_03569_5 crossref_primary_10_1016_j_soilbio_2022_108697 crossref_primary_10_1111_pce_14870 crossref_primary_10_1038_s41598_022_23000_7 crossref_primary_10_1094_MPMI_34_6 crossref_primary_10_1186_s40793_024_00550_z crossref_primary_10_1146_annurev_phyto_021622_113058 crossref_primary_10_1371_journal_ppat_1011866 crossref_primary_10_1111_tpj_14781 crossref_primary_10_1186_s40168_022_01387_9 crossref_primary_10_1038_s41589_023_01462_8 crossref_primary_10_3389_fpls_2024_1375194 crossref_primary_10_1007_s11104_024_07078_8 crossref_primary_10_2139_ssrn_3967446 crossref_primary_10_1128_spectrum_03611_22 crossref_primary_10_1016_j_rhisph_2021_100459 crossref_primary_10_3389_fpls_2024_1461893 crossref_primary_10_3390_agronomy13030712 crossref_primary_10_1016_j_scitotenv_2023_161944 crossref_primary_10_1007_s11274_025_04253_6 crossref_primary_10_3389_fpls_2024_1369754 crossref_primary_10_1007_s11104_021_04952_7 crossref_primary_10_3390_su142215255 crossref_primary_10_3389_fmicb_2019_02368 crossref_primary_10_1039_D1EN00230A crossref_primary_10_1007_s11104_024_06839_9 crossref_primary_10_1016_j_pbi_2022_102227 crossref_primary_10_1128_msystems_00320_19 crossref_primary_10_1007_s13199_023_00941_9 crossref_primary_10_1016_j_scitotenv_2021_150426 crossref_primary_10_1128_mSystems_00866_20 crossref_primary_10_1016_j_apsoil_2024_105384 crossref_primary_10_3389_fmicb_2024_1279536 crossref_primary_10_3390_biology13020095 crossref_primary_10_1093_jxb_eraa498 crossref_primary_10_1093_jxb_erac437 crossref_primary_10_15302_J_FASE_2019275 crossref_primary_10_1111_1462_2920_16042 crossref_primary_10_1111_pce_13519 crossref_primary_10_1038_s41467_020_20271_4 crossref_primary_10_3389_fmicb_2023_1257164 crossref_primary_10_1038_s41396_021_00966_2 crossref_primary_10_1111_ele_14462 crossref_primary_10_1016_j_soilbio_2023_108956 crossref_primary_10_1007_s00248_021_01943_0 crossref_primary_10_1016_j_rhisph_2025_101026 crossref_primary_10_3390_microorganisms9071462 crossref_primary_10_1111_jipb_13073 crossref_primary_10_1111_sum_12762 crossref_primary_10_1016_j_scitotenv_2022_158697 crossref_primary_10_1128_msystems_00651_21 crossref_primary_10_3389_fmicb_2024_1474941 crossref_primary_10_1093_jxb_erac439 crossref_primary_10_1007_s11104_020_04659_1 crossref_primary_10_3389_fmicb_2021_698703 crossref_primary_10_1039_C9EN00933G crossref_primary_10_1016_j_chemosphere_2020_129020 crossref_primary_10_1016_j_soilbio_2020_107899 crossref_primary_10_3389_fmicb_2021_685408 crossref_primary_10_3390_ijms26010109 crossref_primary_10_1016_j_still_2022_105588 crossref_primary_10_1111_1462_2920_16293 crossref_primary_10_1186_s40793_021_00381_2 crossref_primary_10_1128_msystems_00354_24 crossref_primary_10_1093_jxb_erab338 crossref_primary_10_3389_fmicb_2024_1441814 crossref_primary_10_1002_ppp3_10534 crossref_primary_10_3389_fpls_2023_1281010 crossref_primary_10_3389_fbioe_2020_530067 crossref_primary_10_1186_s12284_023_00636_1 crossref_primary_10_1007_s11356_020_08629_z crossref_primary_10_3390_microorganisms12112371 crossref_primary_10_3390_v15112269 crossref_primary_10_1007_s00374_024_01863_4 crossref_primary_10_1007_s11104_022_05460_y crossref_primary_10_1002_sae2_12081 crossref_primary_10_1126_sciadv_adg7888 crossref_primary_10_3389_fmicb_2019_02706 crossref_primary_10_1007_s11104_024_06800_w crossref_primary_10_3390_microorganisms8050694 crossref_primary_10_1093_ismejo_wrae071 crossref_primary_10_1111_1365_2745_14398 crossref_primary_10_1371_journal_pbio_3002232 crossref_primary_10_1016_j_scitotenv_2023_165689 crossref_primary_10_1128_AEM_02541_20 crossref_primary_10_1146_annurev_micro_090817_062524 crossref_primary_10_1186_s40168_021_01133_7 crossref_primary_10_1016_j_apsoil_2021_103970 crossref_primary_10_1016_j_chemosphere_2019_125271 crossref_primary_10_1016_j_jes_2022_06_017 crossref_primary_10_3389_fpls_2019_01741 crossref_primary_10_3390_microorganisms12030510 crossref_primary_10_1080_17429145_2022_2086307 crossref_primary_10_1016_j_apsoil_2024_105531 crossref_primary_10_1007_s00248_020_01594_7 crossref_primary_10_1016_j_envres_2023_117672 crossref_primary_10_3389_fpls_2025_1558191 crossref_primary_10_1007_s11104_023_06420_w crossref_primary_10_3390_plants11172256 crossref_primary_10_1007_s11104_021_05284_2 crossref_primary_10_3390_microorganisms9071491 crossref_primary_10_1094_PBIOMES_3_3 crossref_primary_10_1016_j_jare_2023_06_015 crossref_primary_10_1016_j_soilbio_2022_108884 crossref_primary_10_1094_PBIOMES_3_1 crossref_primary_10_1128_msystems_00025_22 crossref_primary_10_1093_ismejo_wrae068 crossref_primary_10_3389_fmicb_2024_1500260 crossref_primary_10_1016_j_ejsobi_2020_103218 crossref_primary_10_1093_femsec_fiz080 crossref_primary_10_1016_j_tplants_2020_09_005 crossref_primary_10_1098_rstb_2019_0590 crossref_primary_10_1016_j_scitotenv_2022_154002 crossref_primary_10_3390_jof7100788 crossref_primary_10_1002_ldr_3679 crossref_primary_10_1002_ldr_4525 crossref_primary_10_1016_j_biotechadv_2020_107614 crossref_primary_10_1002_ldr_3439 crossref_primary_10_1016_j_scitotenv_2025_179151 crossref_primary_10_1016_j_geoderma_2021_114999 crossref_primary_10_3389_fmicb_2023_1218205 crossref_primary_10_1016_j_scitotenv_2020_139572 crossref_primary_10_1016_j_jenvman_2025_124551 crossref_primary_10_1016_j_agee_2024_108915 crossref_primary_10_1016_j_cell_2018_10_020 crossref_primary_10_1128_AEM_01765_18 crossref_primary_10_3390_microorganisms9122456 crossref_primary_10_3390_nano14080681 crossref_primary_10_1007_s00253_021_11550_1 crossref_primary_10_1128_mBio_02776_19 crossref_primary_10_1016_j_xplc_2024_100930 crossref_primary_10_1038_s41396_022_01232_9 crossref_primary_10_1111_1462_2920_15563 crossref_primary_10_1016_j_apsoil_2019_07_019 crossref_primary_10_1016_j_scitotenv_2024_175995 crossref_primary_10_3389_fmicb_2020_01545 crossref_primary_10_1038_s41598_019_53342_8 crossref_primary_10_1016_j_jhazmat_2024_135242 crossref_primary_10_1016_j_apsoil_2024_105515 crossref_primary_10_1016_j_biortech_2021_125687 crossref_primary_10_5194_bg_17_3045_2020 crossref_primary_10_1038_s41598_019_46538_5 crossref_primary_10_1016_j_scitotenv_2022_156241 crossref_primary_10_1186_s40793_022_00418_0 crossref_primary_10_3390_molecules27154786 crossref_primary_10_1016_j_scitotenv_2023_166500 crossref_primary_10_1016_j_copbio_2021_05_010 crossref_primary_10_3389_fpls_2022_1045147 crossref_primary_10_1016_j_jhazmat_2022_128364 crossref_primary_10_1128_spectrum_05333_22 crossref_primary_10_1007_s00294_021_01199_8 crossref_primary_10_3390_microorganisms11030754 crossref_primary_10_1021_acs_est_0c04592 crossref_primary_10_1093_femsec_fiad019 crossref_primary_10_3390_ijms222413677 crossref_primary_10_1111_ejss_13530 crossref_primary_10_1128_msystems_00307_24 crossref_primary_10_1016_j_envres_2023_117865 crossref_primary_10_1093_femsec_fiz040 crossref_primary_10_1146_annurev_bioeng_082120_022836 crossref_primary_10_2139_ssrn_4100198 crossref_primary_10_1073_pnas_1912130117 crossref_primary_10_1038_s41396_022_01308_6 crossref_primary_10_1039_D1EN00077B crossref_primary_10_1146_annurev_phyto_021622_100127 crossref_primary_10_3389_fpls_2022_1005711 crossref_primary_10_1186_s12866_024_03450_x crossref_primary_10_1016_j_jhazmat_2024_134587 crossref_primary_10_1039_D1LC00705J crossref_primary_10_1093_femsec_fiab085 crossref_primary_10_1111_1365_2435_13562 crossref_primary_10_1016_j_pbi_2023_102351 crossref_primary_10_3389_fmicb_2022_783371 crossref_primary_10_1111_ppl_13873 crossref_primary_10_1016_j_chemosphere_2022_135463 crossref_primary_10_1111_1758_2229_12760 crossref_primary_10_1016_j_csbj_2022_09_004 crossref_primary_10_3389_fmicb_2021_644046 crossref_primary_10_1016_j_envexpbot_2022_104933 crossref_primary_10_3390_land14020223 crossref_primary_10_1002_sae2_12031 crossref_primary_10_1016_j_still_2022_105525 crossref_primary_10_1128_msystems_01129_24 crossref_primary_10_3390_microorganisms10030660 crossref_primary_10_3390_microorganisms9112228 crossref_primary_10_1016_j_scitotenv_2023_165239 crossref_primary_10_1021_acs_est_3c04593 crossref_primary_10_1007_s42832_022_0132_8 crossref_primary_10_1016_j_scitotenv_2023_165476 crossref_primary_10_3389_fmicb_2019_00585 crossref_primary_10_1007_s00253_024_13143_0 crossref_primary_10_1093_femsmc_xtad001 crossref_primary_10_1186_s40793_023_00502_z crossref_primary_10_3389_fpls_2019_01313 crossref_primary_10_1016_j_apsoil_2023_105023 crossref_primary_10_1128_spectrum_03310_22 crossref_primary_10_3389_fmicb_2019_02727 crossref_primary_10_3390_microorganisms11112783 crossref_primary_10_1016_j_envint_2023_107986 crossref_primary_10_1371_journal_pone_0234537 crossref_primary_10_7717_peerj_7445 crossref_primary_10_1073_pnas_2021965118 crossref_primary_10_1016_j_foreco_2019_117817 crossref_primary_10_1002_ecy_4312 crossref_primary_10_1128_AEM_02135_19 crossref_primary_10_1128_msystems_00060_22 crossref_primary_10_1128_spectrum_05051_22 crossref_primary_10_1111_nph_18289 crossref_primary_10_1016_j_jes_2022_05_036 crossref_primary_10_1021_acs_est_1c08832 crossref_primary_10_1093_jxb_ery438 crossref_primary_10_3389_fmicb_2023_1127958 crossref_primary_10_1016_j_jenvman_2023_117247 crossref_primary_10_1094_PBIOMES_02_20_0020_R crossref_primary_10_1016_j_apsoil_2023_105258 crossref_primary_10_1016_j_apsoil_2024_105797 crossref_primary_10_1016_j_apsoil_2024_105796 crossref_primary_10_3389_fmicb_2024_1461254 crossref_primary_10_1094_PBIOMES_06_21_0041_R crossref_primary_10_1016_j_jhazmat_2025_137924 crossref_primary_10_1016_j_jia_2024_07_004 crossref_primary_10_1186_s40168_024_01886_x crossref_primary_10_1007_s10265_021_01258_8 crossref_primary_10_1128_mbio_02584_21 crossref_primary_10_1007_s00299_018_2341_2 crossref_primary_10_1111_jipb_13226 crossref_primary_10_1111_1365_2435_14685 crossref_primary_10_17221_350_2024_PSE crossref_primary_10_3389_fpls_2020_01028 crossref_primary_10_3389_fmicb_2020_00491 crossref_primary_10_1007_s11104_024_07183_8 crossref_primary_10_1094_PHYTO_07_20_0315_R crossref_primary_10_1016_j_cub_2023_06_057 crossref_primary_10_3389_fagro_2022_896307 crossref_primary_10_3390_agronomy13112782 crossref_primary_10_1007_s00248_021_01688_w crossref_primary_10_1093_treephys_tpae059 crossref_primary_10_1016_j_geoderma_2022_116235 crossref_primary_10_1016_j_soilbio_2020_108019 crossref_primary_10_1371_journal_pone_0313948 crossref_primary_10_1016_j_apsoil_2024_105805 crossref_primary_10_1016_j_envpol_2021_116909 crossref_primary_10_1111_nph_19086 crossref_primary_10_1007_s11104_020_04545_w crossref_primary_10_1038_s41467_024_47159_x crossref_primary_10_1016_j_jhazmat_2019_04_048 crossref_primary_10_1080_15592324_2022_2068834 crossref_primary_10_1111_jeb_13426 crossref_primary_10_1016_j_soilbio_2020_108013 crossref_primary_10_1016_j_jhazmat_2018_10_041 crossref_primary_10_1093_ismeco_ycae073 crossref_primary_10_1016_j_ecoenv_2021_112270 crossref_primary_10_1021_acs_est_4c10242 crossref_primary_10_3390_f14102070 crossref_primary_10_1021_acs_est_2c00005 crossref_primary_10_1007_s00203_022_02934_6 crossref_primary_10_1016_j_resenv_2021_100035 crossref_primary_10_1007_s11104_023_06461_1 crossref_primary_10_1038_s41564_018_0139_1 crossref_primary_10_3390_agronomy10111623 crossref_primary_10_1186_s12302_023_00823_3 crossref_primary_10_1007_s00203_022_02812_1 crossref_primary_10_1016_j_apsoil_2024_105817 crossref_primary_10_1007_s00344_023_11075_z crossref_primary_10_1016_j_scitotenv_2023_163536 crossref_primary_10_1016_j_soilbio_2024_109578 crossref_primary_10_1016_j_eehl_2024_03_001 crossref_primary_10_1016_j_jare_2019_03_005 crossref_primary_10_3390_microorganisms10071380 crossref_primary_10_1016_j_syapm_2020_126106 crossref_primary_10_1016_j_jare_2019_03_004 crossref_primary_10_1016_j_soilbio_2021_108301 crossref_primary_10_1128_spectrum_01059_23 crossref_primary_10_1186_s40168_024_01888_9 crossref_primary_10_1186_s12284_021_00486_9 crossref_primary_10_1186_s12866_024_03210_x crossref_primary_10_1111_jipb_13881 crossref_primary_10_1186_s12866_021_02092_7 crossref_primary_10_1016_j_ecoenv_2024_116016 crossref_primary_10_1128_msystems_00418_22 crossref_primary_10_1128_spectrum_02787_21 crossref_primary_10_1021_acs_jafc_3c08885 crossref_primary_10_3390_agronomy13071803 crossref_primary_10_3389_fmicb_2024_1473099 crossref_primary_10_3390_d15010046 crossref_primary_10_1016_j_cej_2024_154125 crossref_primary_10_1002_agj2_20538 crossref_primary_10_1016_j_soilbio_2023_109280 crossref_primary_10_1038_s41564_019_0449_y crossref_primary_10_1186_s40168_023_01727_3 crossref_primary_10_3390_ijms26062592 crossref_primary_10_1007_s00284_022_03083_1 crossref_primary_10_3389_fpls_2022_1064058 crossref_primary_10_1128_mBio_03509_20 crossref_primary_10_1021_acs_jafc_4c02761 crossref_primary_10_1111_nph_19051 crossref_primary_10_3389_fsufs_2022_1054113 crossref_primary_10_1371_journal_pone_0290853 crossref_primary_10_3390_microorganisms11020326 crossref_primary_10_1002_ppp3_10181 crossref_primary_10_1016_j_tplants_2020_07_006 crossref_primary_10_1094_MPMI_04_19_0115_CR crossref_primary_10_1021_acs_est_3c07882 crossref_primary_10_1007_s11104_022_05808_4 crossref_primary_10_1016_j_catena_2023_107000 crossref_primary_10_1016_j_tim_2024_02_003 crossref_primary_10_1094_PBIOMES_6_1 crossref_primary_10_1016_j_soilbio_2020_108023 crossref_primary_10_1016_j_soilbio_2024_109357 crossref_primary_10_1007_s42832_024_0268_9 crossref_primary_10_1016_j_mib_2023_102269 crossref_primary_10_3389_fmicb_2021_625752 crossref_primary_10_1016_j_agee_2023_108848 crossref_primary_10_1039_C9EN00137A crossref_primary_10_1038_s41477_020_00830_9 crossref_primary_10_1073_pnas_2310134120 crossref_primary_10_1186_s40793_023_00471_3 crossref_primary_10_1007_s11104_023_06472_y crossref_primary_10_1016_j_apsoil_2022_104592 crossref_primary_10_1186_s12284_023_00651_2 crossref_primary_10_3389_fmicb_2019_01937 crossref_primary_10_1007_s11104_020_04663_5 crossref_primary_10_12677_IJE_2021_102034 crossref_primary_10_1360_TB_2021_0579 crossref_primary_10_1016_j_scitotenv_2019_03_284 crossref_primary_10_1016_j_geoderma_2024_116833 crossref_primary_10_3390_ijms22136655 crossref_primary_10_1016_j_scitotenv_2022_154583 crossref_primary_10_1038_s41467_023_37164_x crossref_primary_10_3389_fmicb_2020_00747 crossref_primary_10_3390_genes14020392 crossref_primary_10_3389_fmicb_2020_594890 crossref_primary_10_1016_j_micres_2020_126690 crossref_primary_10_2139_ssrn_4162285 crossref_primary_10_1128_mSphere_00412_21 crossref_primary_10_1016_j_ijhydene_2020_08_051 crossref_primary_10_1016_j_molp_2023_03_009 crossref_primary_10_1016_j_apsoil_2021_104080 crossref_primary_10_1007_s44246_024_00149_6 crossref_primary_10_1016_j_scitotenv_2022_155665 crossref_primary_10_1186_s40793_023_00484_y crossref_primary_10_1007_s11104_019_04312_6 crossref_primary_10_1016_j_envpol_2019_03_079 crossref_primary_10_3389_fpls_2024_1396754 crossref_primary_10_1007_s11104_024_06649_z crossref_primary_10_1007_s11104_019_04127_5 crossref_primary_10_1016_j_molp_2022_09_007 crossref_primary_10_1016_j_soilbio_2021_108345 crossref_primary_10_1007_s00374_020_01527_z crossref_primary_10_3389_frmbi_2023_1157681 crossref_primary_10_1016_j_jhazmat_2024_134618 crossref_primary_10_1016_j_geoderma_2021_115082 crossref_primary_10_3389_fmicb_2022_916488 crossref_primary_10_1016_j_mib_2022_102153 crossref_primary_10_1038_s41396_019_0537_2 crossref_primary_10_1094_PBIOMES_08_24_0081_R crossref_primary_10_1007_s11104_022_05380_x crossref_primary_10_3389_fmicb_2021_645784 crossref_primary_10_3390_agriculture14101854 crossref_primary_10_1016_j_apsoil_2024_105823 crossref_primary_10_1016_j_apsoil_2025_105906 crossref_primary_10_1016_j_apsoil_2020_103710 crossref_primary_10_3390_agronomy11112177 crossref_primary_10_1371_journal_pone_0246919 crossref_primary_10_3390_plants14030479 crossref_primary_10_1128_msystems_00315_23 crossref_primary_10_1007_s11356_022_21329_0 crossref_primary_10_1042_BCJ20210793 crossref_primary_10_1016_j_sajb_2020_07_038 crossref_primary_10_1128_spectrum_02418_22 crossref_primary_10_3389_fmicb_2022_846332 crossref_primary_10_1093_femsec_fiae052 crossref_primary_10_1016_j_mib_2019_09_008 crossref_primary_10_1016_j_copbio_2021_06_016 crossref_primary_10_1007_s11104_020_04576_3 crossref_primary_10_3389_fmicb_2020_560406 crossref_primary_10_1007_s00344_024_11237_7 crossref_primary_10_3390_jof10030226 crossref_primary_10_1016_j_tim_2024_03_005 crossref_primary_10_1038_s41396_021_00993_z crossref_primary_10_1094_PBIOMES_05_19_0026_R crossref_primary_10_3390_microorganisms11081936 crossref_primary_10_1016_j_soilbio_2023_109016 crossref_primary_10_1094_PBIOMES_4_2 crossref_primary_10_1016_j_soilbio_2023_109259 crossref_primary_10_1094_PBIOMES_4_1 crossref_primary_10_1016_j_soilbio_2024_109317 crossref_primary_10_1094_PBIOMES_4_4 crossref_primary_10_17221_250_2024_PSE crossref_primary_10_1094_PBIOMES_4_3 crossref_primary_10_1007_s13205_022_03115_4 crossref_primary_10_1016_j_soilbio_2023_109256 crossref_primary_10_1016_j_soilbio_2023_109253 crossref_primary_10_1111_1462_2920_15647 crossref_primary_10_3390_biology11030346 crossref_primary_10_1094_PBIOMES_02_23_0011_R crossref_primary_10_1021_acs_est_4c05291 crossref_primary_10_3390_agronomy14061118 crossref_primary_10_1016_j_ecolind_2021_107981 crossref_primary_10_1080_17429145_2024_2323991 crossref_primary_10_1021_acs_jafc_3c02912 crossref_primary_10_3389_fmicb_2022_912701 crossref_primary_10_1016_j_mib_2019_07_003 crossref_primary_10_1093_hr_uhac270 crossref_primary_10_1093_hr_uhae213 crossref_primary_10_1021_acschembio_1c00267 crossref_primary_10_1016_j_scitotenv_2025_178524 crossref_primary_10_1007_s11104_021_04845_9 crossref_primary_10_1016_j_biortech_2024_132034 crossref_primary_10_1016_j_jes_2021_08_021 crossref_primary_10_3389_fmicb_2020_02042 crossref_primary_10_1016_j_fcr_2024_109641 crossref_primary_10_1016_j_indcrop_2024_119164 crossref_primary_10_1038_s43705_023_00217_9 crossref_primary_10_1093_jxb_erac202 crossref_primary_10_1128_msphere_00484_20 crossref_primary_10_1007_s11104_022_05532_z crossref_primary_10_3390_f15030515 crossref_primary_10_1080_10643389_2023_2267939 crossref_primary_10_1007_s11356_023_25957_y crossref_primary_10_1021_acs_est_3c10423 crossref_primary_10_3389_fpls_2021_621276 crossref_primary_10_7554_eLife_94558 crossref_primary_10_3390_microorganisms10010158 crossref_primary_10_1016_j_apsoil_2021_104274 crossref_primary_10_1111_jam_15686 crossref_primary_10_3389_fpls_2022_1041561 crossref_primary_10_1094_PBIOMES_01_19_0006_W crossref_primary_10_1016_j_xplc_2024_101139 crossref_primary_10_7717_peerj_11373 crossref_primary_10_7717_peerj_14404 crossref_primary_10_1264_jsme2_ME20112 crossref_primary_10_1007_s11104_024_07026_6 crossref_primary_10_1002_saj2_20569 crossref_primary_10_1007_s00253_021_11283_1 crossref_primary_10_3390_plants13121686 crossref_primary_10_1016_j_cub_2020_08_007 crossref_primary_10_1007_s42729_023_01272_w crossref_primary_10_1021_acs_est_0c03767 crossref_primary_10_1094_MPMI_03_19_0059_R crossref_primary_10_1016_j_envpol_2022_119046 crossref_primary_10_1016_j_soilbio_2021_108391 crossref_primary_10_1016_j_catena_2024_107953 crossref_primary_10_1016_j_soilbio_2021_108390 crossref_primary_10_1111_nph_18816 crossref_primary_10_1038_s41598_024_52070_y crossref_primary_10_3389_fpls_2022_938865 crossref_primary_10_1016_j_agee_2025_109505 crossref_primary_10_1038_s41598_022_20293_6 crossref_primary_10_3390_f12111579 crossref_primary_10_1016_j_isci_2023_107910 crossref_primary_10_3390_microorganisms9010092 crossref_primary_10_1128_spectrum_00236_24 crossref_primary_10_1016_j_soilbio_2024_109516 crossref_primary_10_1038_s41467_024_52449_5 crossref_primary_10_1038_s41579_020_0412_1 crossref_primary_10_1111_1365_2745_13630 crossref_primary_10_1016_j_soilbio_2023_109215 crossref_primary_10_3390_ijms25115785 crossref_primary_10_1021_acs_jafc_2c08017 crossref_primary_10_1016_j_apsoil_2021_104294 crossref_primary_10_1021_acs_est_2c06167 crossref_primary_10_1016_j_rhisph_2020_100228 crossref_primary_10_3390_f15040594 crossref_primary_10_1016_j_scitotenv_2024_174911 crossref_primary_10_3390_ecologies5030024 crossref_primary_10_3390_plants12030630 crossref_primary_10_3390_ijms25147786 crossref_primary_10_1093_jxb_erac491 crossref_primary_10_1038_s43705_023_00335_4 crossref_primary_10_1016_j_scitotenv_2023_165916 crossref_primary_10_1016_j_scitotenv_2019_134560 crossref_primary_10_1007_s11104_024_07048_0 crossref_primary_10_3389_fsufs_2024_1387728 crossref_primary_10_1186_s12866_020_01913_5 crossref_primary_10_1126_science_aau6389 crossref_primary_10_1016_j_apsoil_2021_104224 crossref_primary_10_1111_1462_2920_15815 crossref_primary_10_1038_s41396_020_00781_1 crossref_primary_10_1111_jam_15652 crossref_primary_10_1016_j_scitotenv_2021_151105 crossref_primary_10_1016_j_cub_2023_06_010 crossref_primary_10_1016_j_mib_2023_102283 crossref_primary_10_1007_s42773_023_00278_y crossref_primary_10_1016_j_jwpe_2025_107219 crossref_primary_10_7554_eLife_70164 crossref_primary_10_1007_s13205_025_04243_3 crossref_primary_10_1016_j_apsoil_2023_104860 crossref_primary_10_1111_nph_17774 crossref_primary_10_2139_ssrn_4155112 crossref_primary_10_3389_fmicb_2023_1187982 crossref_primary_10_3389_fpls_2023_1136418 crossref_primary_10_1111_pce_14247 crossref_primary_10_3389_fpls_2022_840343 crossref_primary_10_3390_microorganisms9050970 crossref_primary_10_3389_fpls_2020_589416 crossref_primary_10_3389_fpls_2021_753812 crossref_primary_10_1080_07352689_2022_2031728 crossref_primary_10_1007_s00253_023_12519_y crossref_primary_10_1128_AEM_02863_19 crossref_primary_10_1007_s11104_021_05170_x crossref_primary_10_1016_j_jenvman_2024_123534 crossref_primary_10_1016_j_envres_2023_117162 crossref_primary_10_1016_j_scitotenv_2019_01_297 crossref_primary_10_1016_j_chemosphere_2019_125414 crossref_primary_10_1016_j_indcrop_2025_120687 crossref_primary_10_3389_fmicb_2020_00925 crossref_primary_10_7717_peerj_14683 crossref_primary_10_3390_w16243706 crossref_primary_10_1016_j_agee_2024_109409 crossref_primary_10_1186_s40168_024_01933_7 crossref_primary_10_3390_pathogens8020078 crossref_primary_10_1016_j_copbio_2024_103150 crossref_primary_10_1016_j_foreco_2023_121030 crossref_primary_10_1016_j_scitotenv_2022_155801 crossref_primary_10_1016_j_isci_2021_102918 crossref_primary_10_1186_s13007_022_00856_4 crossref_primary_10_3389_fmicb_2021_782621 crossref_primary_10_1007_s11104_020_04739_2 crossref_primary_10_1016_j_apsoil_2022_104545 crossref_primary_10_1016_j_scitotenv_2019_134551 crossref_primary_10_1038_s41598_022_16408_8 crossref_primary_10_1007_s42729_023_01165_y crossref_primary_10_1111_pce_15311 crossref_primary_10_1016_j_isci_2022_105243 crossref_primary_10_1080_03650340_2020_1839058 crossref_primary_10_1016_j_scitotenv_2022_154705 crossref_primary_10_3390_agronomy10101456 crossref_primary_10_3390_ijms22010318 |
Cites_doi | 10.1038/ismej.2013.196 10.1093/nar/gkh435 10.1038/nmicrobiol.2016.160 10.1146/annurev-arplant-050312-120106 10.1073/pnas.1218984110 10.1016/j.cell.2006.02.008 10.1016/j.tplants.2013.11.006 10.1111/j.1574-6941.2011.01150.x 10.1046/j.1462-2920.1999.00054.x 10.1126/scisignal.aaa8271 10.1093/nar/gkl925 10.1186/1471-2105-11-395 10.1890/15-0882.1 10.1055/s-2001-12905 10.1038/srep13438 10.1016/j.copbio.2015.03.015 10.1139/m64-025 10.1007/s11104-009-0042-x 10.3389/fmicb.2014.00144 10.1038/ncomms9289 10.1093/nar/gkt1178 10.1038/nature11237 10.1074/jbc.M112.433300 10.1146/annurev.phyto.39.1.461 10.1007/s00344-013-9398-5 10.1016/S0038-0717(97)00124-7 10.1111/j.1462-2920.2006.01028.x 10.1104/pp.83.1.33 10.1002/jms.1777 10.1016/j.jasms.2010.04.003 10.1016/j.comnet.2012.01.021 10.1146/annurev.arplant.57.032905.105159 10.1097/01.ftd.0000179845.53213.39 10.1038/nature11336 10.1590/S1415-475738420150053 10.3389/fmicb.2015.00277 10.18637/jss.v018.i02 10.3389/fpls.2013.00272 10.1126/science.aaa8764 10.3390/genes2041017 10.1104/pp.109.141291 10.1139/cjb-2013-0225 10.1104/pp.102.019661 10.1534/genetics.107.086405 10.1016/j.chom.2015.01.011 10.1371/journal.pgen.1000808 10.1371/journal.pone.0055731 10.1023/A:1004356007312 10.1007/BF00011685 10.1111/j.1365-3040.2009.01926.x 10.1093/jxb/err430 10.1073/pnas.1302837110 10.1111/1758-2229.12152 10.1093/nar/gkh340 10.1007/s11306-007-0082-2 10.1111/j.1365-2958.2009.06790.x 10.1186/1471-2229-11-121 10.1371/journal.pone.0009490 10.1128/mBio.00656-16 10.1111/j.1399-3054.1962.tb08052.x 10.1038/ismej.2008.103 10.3389/fpls.2013.00509 10.1016/S1360-1385(02)00029-8 10.1186/gb-2011-12-10-r106 10.1111/j.1399-3054.1981.tb08516.x/full 10.1016/B978-0-12-520920-5.50016-X 10.1128/AEM.65.6.2685-2690.1999 10.1007/978-81-322-2616-1 10.1007/978-94-017-1570-6_23 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Apr 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Apr 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) University of California, Berkeley, CA (United States) |
CorporateAuthor_xml | – name: University of California, Berkeley, CA (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC OIOZB OTOTI |
DOI | 10.1038/s41564-018-0129-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological science database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Environmental Sciences |
EISSN | 2058-5276 |
EndPage | 480 |
ExternalDocumentID | 1471041 oai_HAL_hal_02000374v1 29556109 10_1038_s41564_018_0129_3 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AFBBN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- ODYON R9- RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA ATHPR CITATION PHGZM PHGZT ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PQGLB AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 1XC OIOZB OTOTI |
ID | FETCH-LOGICAL-c542t-5fb265af1aed5ffb668d3d08073ebd3e9a6799d2220830db3aa68f765690132d3 |
IEDL.DBID | BENPR |
ISSN | 2058-5276 |
IngestDate | Mon Nov 25 02:38:33 EST 2024 Fri May 09 12:16:31 EDT 2025 Fri Jul 11 07:53:07 EDT 2025 Sat Aug 23 12:26:38 EDT 2025 Mon Jul 21 06:09:37 EDT 2025 Thu Apr 24 22:50:47 EDT 2025 Tue Jul 01 00:55:51 EDT 2025 Fri Feb 21 02:38:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-5fb265af1aed5ffb668d3d08073ebd3e9a6799d2220830db3aa68f765690132d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231; SC0010570; SC0016247; SC0014079; 659910 European Union (EU) USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division |
ORCID | 0000-0002-8238-6757 0000-0002-8453-8435 0000-0001-8404-3259 0000-0003-0677-8529 0000-0002-2060-6611 0000000284538435 0000000282386757 0000000184043259 0000000306778529 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1471041 |
PMID | 29556109 |
PQID | 2137527930 |
PQPubID | 2069616 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1471041 hal_primary_oai_HAL_hal_02000374v1 proquest_miscellaneous_2015837235 proquest_journals_2137527930 pubmed_primary_29556109 crossref_citationtrail_10_1038_s41564_018_0129_3 crossref_primary_10_1038_s41564_018_0129_3 springer_journals_10_1038_s41564_018_0129_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature microbiology |
PublicationTitleAbbrev | Nat Microbiol |
PublicationTitleAlternate | Nat Microbiol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Huang (CR28) 2014; 92 Souza, de Ambrosini, Passaglia (CR35) 2015; 38 Lynch, Whipps (CR17) 1990; 129 Lu, Rosencrantz, Liesack, Conrad (CR10) 2006; 8 Schreiter (CR12) 2014; 5 Beauregard, Chai, Vlamakis, Losick, Kolter (CR29) 2013; 110 Cai (CR30) 2009; 73 CR38 Silva, Northen (CR31) 2015; 34 Lundberg (CR9) 2012; 488 Horai (CR71) 2010; 45 CR75 CR74 CR73 Iannucci, Fragasso, Platani, Papa (CR23) 2013; 4 Yuan (CR54) 2015; 5 Jones (CR22) 1998; 205 Nunes da Rocha (CR57) 2015; 6 Corral-Lugo, Daddaoua, Ortega, Espinosa-Urgel, Krell (CR27) 2016; 9 Bulgarelli (CR11) 2015; 17 Bulgarelli (CR5) 2012; 488 Blakley, Simpson (CR53) 1964; 10 Bowen, Northen (CR69) 2010; 21 Lambers, Mougel, Jaillard, Hinsinger (CR36) 2009; 321 CR47 CR46 CR45 CR44 Nuccio (CR56) 2016; 97 Pilet, Saugy (CR49) 1987; 83 Bais, Weir, Perry, Gilroy, Vivanco (CR20) 2006; 57 Shi (CR2) 2015; 6 Lombard, Golaconda Ramulu, Drula, Coutinho, Henrissat (CR62) 2014; 42 Hiltner (CR1) 1904; 98 Lugtenberg, Kravchenko, Simons (CR51) 1999; 1 Pini, Galardini, Bazzicalupo, Mengoni (CR13) 2011; 2 Salerno (CR40) 2003; 8 Chaparro (CR4) 2013; 8 Lemoine (CR43) 2013; 4 Jaeger, Lindow, Miller, Clark, Firestone (CR41) 1999; 65 DeAngelis (CR8) 2009; 3 Hassan, Mathesius (CR26) 2012; 63 Vieira-Silva, Rocha (CR60) 2010; 6 Ren, Chen, Paulsen (CR64) 2007; 35 Ramachandran, East, Karunakaran, Downie, Poole (CR50) 2011; 12 Badri, Vivanco (CR18) 2009; 32 Lebeis (CR16) 2015; 349 McGinnis, Madden (CR58) 2004; 32 Peiffer (CR7) 2013; 110 Chaparro, Badri, Vivanco (CR3) 2013; 8 Chisholm, Coaker, Day, Staskawicz (CR34) 2006; 124 Roller, Stoddard, Schmidt (CR37) 2016; 1 Subramanian (CR61) 2008; 178 Mevik, Wehrens (CR76) 2007; 18 Yin, Li, Li (CR63) 2012; 56 Price, Dehal, Arkin (CR65) 2010; 5 Baetz, Martinoia (CR19) 2014; 19 Bulgarelli, Schlaeppi, Spaepen, van Themaat, Schulze-Lefert (CR25) 2013; 64 Lowe-Power (CR55) 2016; 7 Pluskal, Castillo, Villar-Briones, Orešič (CR68) 2010; 11 Walker, Bais, Grotewold, Vivanco (CR39) 2003; 132 Edgar (CR59) 2004; 32 Murashige, Skoog (CR66) 1962; 15 Sumner (CR72) 2007; 3 CR24 Mao, Li, Smyth, Yannarell, Mackie (CR33) 2014; 6 Smith (CR70) 2005; 27 Mueller-Roeber, Balazadeh (CR48) 2013; 33 Badri, Chaparro, Zhang, Shen, Vivanco (CR14) 2013; 288 Aulakh, Wassmann, Bueno, Kreuzwieser, Rennenberg (CR21) 2001; 3 Shi (CR15) 2011; 77 Baran (CR32) 2015; 6 Vargas, Mandawe, Kenerley (CR42) 2009; 151 Grayston, Wang, Campbell, Edwards (CR6) 1998; 30 Lugtenberg, Dekkers, Bloemberg (CR52) 2001; 39 Khorassani (CR67) 2011; 11 EE Nuccio (129_CR56) 2016; 97 D Bulgarelli (129_CR25) 2013; 64 S Subramanian (129_CR61) 2008; 178 U Baetz (129_CR19) 2014; 19 T Pluskal (129_CR68) 2010; 11 DS Lundberg (129_CR9) 2012; 488 R Baran (129_CR32) 2015; 6 R Khorassani (129_CR67) 2011; 11 BJ Lugtenberg (129_CR52) 2001; 39 U Nunes da Rocha (129_CR57) 2015; 6 129_CR38 A Iannucci (129_CR23) 2013; 4 HP Bais (129_CR20) 2006; 57 PE Pilet (129_CR49) 1987; 83 CA Smith (129_CR70) 2005; 27 JM Chaparro (129_CR4) 2013; 8 S McGinnis (129_CR58) 2004; 32 A Corral-Lugo (129_CR27) 2016; 9 S Shi (129_CR2) 2015; 6 129_CR75 129_CR74 129_CR73 JA Peiffer (129_CR7) 2013; 110 S Hassan (129_CR26) 2012; 63 PB Beauregard (129_CR29) 2013; 110 JM Lynch (129_CR17) 1990; 129 Y Mao (129_CR33) 2014; 6 C Yin (129_CR63) 2012; 56 Y Lu (129_CR10) 2006; 8 T Cai (129_CR30) 2009; 73 H Lambers (129_CR36) 2009; 321 WA Vargas (129_CR42) 2009; 151 Q Ren (129_CR64) 2007; 35 MS Aulakh (129_CR21) 2001; 3 TS Walker (129_CR39) 2003; 132 S Schreiter (129_CR12) 2014; 5 JM Chaparro (129_CR3) 2013; 8 C Jaeger (129_CR41) 1999; 65 V Lombard (129_CR62) 2014; 42 H Horai (129_CR71) 2010; 45 129_CR24 S Shi (129_CR15) 2011; 77 J Yuan (129_CR54) 2015; 5 SJ Grayston (129_CR6) 1998; 30 R Souza (129_CR35) 2015; 38 BP Bowen (129_CR69) 2010; 21 G Salerno (129_CR40) 2003; 8 ST Chisholm (129_CR34) 2006; 124 D Bulgarelli (129_CR5) 2012; 488 TM Lowe-Power (129_CR55) 2016; 7 D Bulgarelli (129_CR11) 2015; 17 MN Price (129_CR65) 2010; 5 BRK Roller (129_CR37) 2016; 1 DV Badri (129_CR14) 2013; 288 SL Lebeis (129_CR16) 2015; 349 L Hiltner (129_CR1) 1904; 98 RC Edgar (129_CR59) 2004; 32 KM DeAngelis (129_CR8) 2009; 3 DL Jones (129_CR22) 1998; 205 BJJ Lugtenberg (129_CR51) 1999; 1 B Mueller-Roeber (129_CR48) 2013; 33 T Murashige (129_CR66) 1962; 15 LP Silva (129_CR31) 2015; 34 VK Ramachandran (129_CR50) 2011; 12 BH Mevik (129_CR76) 2007; 18 R Lemoine (129_CR43) 2013; 4 F Pini (129_CR13) 2011; 2 DV Badri (129_CR18) 2009; 32 ER Blakley (129_CR53) 1964; 10 129_CR47 129_CR46 129_CR45 129_CR44 XF Huang (129_CR28) 2014; 92 LW Sumner (129_CR72) 2007; 3 S Vieira-Silva (129_CR60) 2010; 6 29588539 - Nat Microbiol. 2018 Apr;3(4):396-397 |
References_xml | – ident: CR45 – volume: 8 start-page: 790 year: 2013 end-page: 803 ident: CR3 article-title: Rhizosphere microbiome assemblage is affected by plant development publication-title: ISME J. doi: 10.1038/ismej.2013.196 – volume: 32 start-page: W20 year: 2004 end-page: W25 ident: CR58 article-title: BLAST: at the core of a powerful and diverse set of sequence analysis tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh435 – volume: 1 start-page: 16160 year: 2016 ident: CR37 article-title: Exploiting rRNA operon copy number to investigate bacterial reproductive strategies publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.160 – ident: CR74 – volume: 64 start-page: 807 year: 2013 end-page: 838 ident: CR25 article-title: Structure and functions of the bacterial microbiota of plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120106 – volume: 110 start-page: E1621 year: 2013 end-page: E1630 ident: CR29 article-title: biofilm induction by plant polysaccharides publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1218984110 – volume: 124 start-page: 803 year: 2006 end-page: 814 ident: CR34 article-title: Host–microbe interactions: shaping the evolution of the plant immune response publication-title: Cell doi: 10.1016/j.cell.2006.02.008 – volume: 19 start-page: 90 year: 2014 end-page: 98 ident: CR19 article-title: Root exudates: the hidden part of plant defense publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.11.006 – volume: 77 start-page: 600 year: 2011 end-page: 610 ident: CR15 article-title: Effects of selected root exudate components on soil bacterial communities publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01150.x – volume: 1 start-page: 439 year: 1999 end-page: 446 ident: CR51 publication-title: Environ. Microbiol. doi: 10.1046/j.1462-2920.1999.00054.x – volume: 9 start-page: ra1 year: 2016 ident: CR27 article-title: Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator publication-title: Sci. Signal. doi: 10.1126/scisignal.aaa8271 – volume: 35 start-page: D274 year: 2007 end-page: D279 ident: CR64 article-title: TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl925 – volume: 98 start-page: 59 year: 1904 end-page: 78 ident: CR1 article-title: Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache publication-title: Arb. DLG – volume: 11 year: 2010 ident: CR68 article-title: MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-395 – ident: CR46 – volume: 97 start-page: 1307 year: 2016 end-page: 1318 ident: CR56 article-title: Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass publication-title: Ecology doi: 10.1890/15-0882.1 – ident: CR75 – volume: 3 start-page: 139 year: 2001 end-page: 148 ident: CR21 article-title: Characterization of root exudates at different growth stages of ten rice ( L.) cultivars publication-title: Plant Biol. doi: 10.1055/s-2001-12905 – volume: 5 start-page: 13438 year: 2015 ident: CR54 article-title: Organic acids from root exudates of banana help root colonization of PGPR strain NJN-6 publication-title: Sci. Rep. doi: 10.1038/srep13438 – volume: 34 start-page: 209 year: 2015 end-page: 216 ident: CR31 article-title: Exometabolomics and MSI: deconstructing how cells interact to transform their small molecule environment publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.03.015 – volume: 10 start-page: 175 year: 1964 end-page: 185 ident: CR53 article-title: The microbial metabolism of cinnamic acid publication-title: Can. J. Microbiol. doi: 10.1139/m64-025 – volume: 321 start-page: 83 year: 2009 end-page: 115 ident: CR36 article-title: Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective publication-title: Plant Soil doi: 10.1007/s11104-009-0042-x – volume: 5 start-page: 144 year: 2014 ident: CR12 article-title: Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00144 – volume: 6 year: 2015 ident: CR32 article-title: Exometabolite niche partitioning among sympatric soil bacteria publication-title: Nat. Commun. doi: 10.1038/ncomms9289 – volume: 65 start-page: 2685 year: 1999 end-page: 2690 ident: CR41 article-title: Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan publication-title: Appl. Environ. Microbiol. – volume: 42 start-page: D490 year: 2014 end-page: D495 ident: CR62 article-title: The carbohydrate-active enzymes database (CAZy) in 2013 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1178 – volume: 488 start-page: 86 year: 2012 end-page: 90 ident: CR9 article-title: Defining the core root microbiome publication-title: Nature doi: 10.1038/nature11237 – volume: 288 start-page: 4502 year: 2013 end-page: 4512 ident: CR14 article-title: Application of natural blends of phytochemicals derived from the root exudates of to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.433300 – volume: 39 start-page: 461 year: 2001 end-page: 490 ident: CR52 article-title: Molecular determinants of rhizosphere colonization by publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.39.1.461 – volume: 33 start-page: 21 year: 2013 end-page: 33 ident: CR48 article-title: Auxin and its role in plant senescence publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-013-9398-5 – volume: 30 start-page: 369 year: 1998 end-page: 378 ident: CR6 article-title: Selective influence of plant species on microbial diversity in the rhizosphere publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(97)00124-7 – volume: 8 start-page: 1351 year: 2006 end-page: 1360 ident: CR10 article-title: Structure and activity of bacterial community inhabiting rice roots and the rhizosphere publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01028.x – volume: 83 start-page: 33 year: 1987 end-page: 38 ident: CR49 article-title: Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination publication-title: Plant Physiol. doi: 10.1104/pp.83.1.33 – volume: 45 start-page: 703 year: 2010 end-page: 714 ident: CR71 article-title: MassBank: a public repository for sharing mass spectral data for life sciences publication-title: J. Mass Spectrom. doi: 10.1002/jms.1777 – ident: CR47 – volume: 21 start-page: 1471 year: 2010 end-page: 1476 ident: CR69 article-title: Dealing with the unknown: metabolomics and metabolite atlases publication-title: J. Am. Soc. Mass. Spectrom. doi: 10.1016/j.jasms.2010.04.003 – volume: 56 start-page: 1814 year: 2012 end-page: 1825 ident: CR63 article-title: Network traffic classification via HMM under the guidance of syntactic structure publication-title: Comput. Netw. doi: 10.1016/j.comnet.2012.01.021 – volume: 57 start-page: 233 year: 2006 end-page: 266 ident: CR20 article-title: The role of root exudates in rhizosphere interactions with plants and other organisms publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 27 start-page: 747 year: 2005 end-page: 751 ident: CR70 article-title: METLIN: a metabolite mass spectral database publication-title: Ther. Drug. Monit. doi: 10.1097/01.ftd.0000179845.53213.39 – volume: 488 start-page: 91 year: 2012 end-page: 95 ident: CR5 article-title: Revealing structure and assembly cues for root-inhabiting bacterial microbiota publication-title: Nature doi: 10.1038/nature11336 – volume: 38 start-page: 401 year: 2015 end-page: 419 ident: CR35 article-title: Plant growth-promoting bacteria as inoculants in agricultural soils publication-title: Genet. Mol. Biol. doi: 10.1590/S1415-475738420150053 – volume: 6 start-page: 277 year: 2015 ident: CR57 article-title: Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00277 – volume: 18 start-page: 1 year: 2007 end-page: 23 ident: CR76 article-title: The plsPackage: principal component and partial least squares regression in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v018.i02 – volume: 4 start-page: 272 year: 2013 ident: CR43 article-title: Source-to-sink transport of sugar and regulation by environmental factors publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00272 – volume: 349 start-page: 860 year: 2015 end-page: 864 ident: CR16 article-title: Plant microbiome. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa publication-title: Science doi: 10.1126/science.aaa8764 – volume: 2 start-page: 1017 year: 2011 end-page: 1032 ident: CR13 article-title: Plant–bacteria association and symbiosis: are there common genomic traits in Alphaproteobacteria? publication-title: Genes (Basel) doi: 10.3390/genes2041017 – volume: 151 start-page: 792 year: 2009 end-page: 808 ident: CR42 article-title: Plant-derived sucrose is a key element in the symbiotic association between and maize plants publication-title: Plant Physiol. doi: 10.1104/pp.109.141291 – volume: 92 start-page: 267 year: 2014 end-page: 275 ident: CR28 article-title: Rhizosphere interactions: root exudates, microbes, and microbial communities 1 publication-title: Botany doi: 10.1139/cjb-2013-0225 – volume: 132 start-page: 44 year: 2003 end-page: 51 ident: CR39 article-title: Root exudation and rhizosphere biology publication-title: Plant Physiol. doi: 10.1104/pp.102.019661 – volume: 178 start-page: 2429 year: 2008 end-page: 2432 ident: CR61 article-title: Nearly neutrality and the evolution of codon usage bias in eukaryotic genomes publication-title: Genetics doi: 10.1534/genetics.107.086405 – volume: 17 start-page: 392 year: 2015 end-page: 403 ident: CR11 article-title: Structure and function of the bacterial root microbiota in wild and domesticated barley publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.01.011 – volume: 6 start-page: e1000808 year: 2010 ident: CR60 article-title: The systemic imprint of growth and its uses in ecological (meta)genomics publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000808 – volume: 8 start-page: e55731 year: 2013 ident: CR4 article-title: Root exudation of phytochemicals in follows specific patterns that are developmentally programmed and correlate with soil microbial functions publication-title: PLoS ONE doi: 10.1371/journal.pone.0055731 – volume: 205 start-page: 25 year: 1998 end-page: 44 ident: CR22 article-title: Organic acids in rhizosphere—a critical review publication-title: Plant Soil doi: 10.1023/A:1004356007312 – ident: CR44 – volume: 129 start-page: 1 year: 1990 end-page: 10 ident: CR17 article-title: Substrate flow in the rhizosphere publication-title: Plant Soil doi: 10.1007/BF00011685 – volume: 32 start-page: 666 year: 2009 end-page: 681 ident: CR18 article-title: Regulation and function of root exudates publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.01926.x – volume: 63 start-page: 3429 year: 2012 end-page: 3444 ident: CR26 article-title: The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions publication-title: J. Exp. Bot. doi: 10.1093/jxb/err430 – ident: CR73 – ident: CR38 – volume: 110 start-page: 6548 year: 2013 end-page: 6553 ident: CR7 article-title: Diversity and heritability of the maize rhizosphere microbiome under field conditions publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1302837110 – volume: 6 start-page: 293 year: 2014 end-page: 306 ident: CR33 article-title: Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass ( L.) through root exudates publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12152 – volume: 32 start-page: 1792 year: 2004 end-page: 1797 ident: CR59 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 – volume: 3 start-page: 211 year: 2007 end-page: 221 ident: CR72 article-title: Proposed minimum reporting standards for chemical analysis publication-title: Metabolomics doi: 10.1007/s11306-007-0082-2 – volume: 73 start-page: 507 year: 2009 end-page: 517 ident: CR30 article-title: Host legume-exuded antimetabolites optimize the symbiotic rhizosphere publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2009.06790.x – volume: 11 year: 2011 ident: CR67 article-title: Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus publication-title: BMC Plant. Biol. doi: 10.1186/1471-2229-11-121 – volume: 5 start-page: e9490 year: 2010 ident: CR65 article-title: FastTree 2—approximately maximum-likelihood trees for large alignments publication-title: PLoS ONE doi: 10.1371/journal.pone.0009490 – volume: 7 start-page: e00656-16 year: 2016 ident: CR55 article-title: Degradation of the plant defense signal salicylic acid protects from toxicity and enhances virulence on tobacco publication-title: mBio doi: 10.1128/mBio.00656-16 – volume: 15 start-page: 473 year: 1962 end-page: 497 ident: CR66 article-title: A revised medium for rapid growth and bio assays with tobacco tissue cultures publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 3 start-page: 168 year: 2009 end-page: 178 ident: CR8 article-title: Selective progressive response of soil microbial community to wild oat roots publication-title: ISME J. doi: 10.1038/ismej.2008.103 – ident: CR24 – volume: 4 start-page: 509 year: 2013 ident: CR23 article-title: Plant growth and phenolic compounds in the rhizosphere soil of wild oat ( L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00509 – volume: 6 start-page: e00746 year: 2015 ident: CR2 article-title: Successional trajectories of rhizosphere bacterial communities over consecutive seasons publication-title: mBio – volume: 8 start-page: 63 year: 2003 end-page: 69 ident: CR40 article-title: Origin of sucrose metabolism in higher plants: when, how and why? publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)00029-8 – volume: 12 year: 2011 ident: CR50 article-title: Adaptation of to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics publication-title: Genome Biol. doi: 10.1186/gb-2011-12-10-r106 – volume: 9 start-page: ra1 year: 2016 ident: 129_CR27 publication-title: Sci. Signal. doi: 10.1126/scisignal.aaa8271 – volume: 488 start-page: 91 year: 2012 ident: 129_CR5 publication-title: Nature doi: 10.1038/nature11336 – volume: 3 start-page: 211 year: 2007 ident: 129_CR72 publication-title: Metabolomics doi: 10.1007/s11306-007-0082-2 – volume: 321 start-page: 83 year: 2009 ident: 129_CR36 publication-title: Plant Soil doi: 10.1007/s11104-009-0042-x – volume: 288 start-page: 4502 year: 2013 ident: 129_CR14 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.433300 – volume: 5 start-page: e9490 year: 2010 ident: 129_CR65 publication-title: PLoS ONE doi: 10.1371/journal.pone.0009490 – volume: 4 start-page: 509 year: 2013 ident: 129_CR23 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00509 – volume: 3 start-page: 139 year: 2001 ident: 129_CR21 publication-title: Plant Biol. doi: 10.1055/s-2001-12905 – volume: 129 start-page: 1 year: 1990 ident: 129_CR17 publication-title: Plant Soil doi: 10.1007/BF00011685 – volume: 205 start-page: 25 year: 1998 ident: 129_CR22 publication-title: Plant Soil doi: 10.1023/A:1004356007312 – ident: 129_CR74 – volume: 5 start-page: 144 year: 2014 ident: 129_CR12 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00144 – volume: 92 start-page: 267 year: 2014 ident: 129_CR28 publication-title: Botany doi: 10.1139/cjb-2013-0225 – volume: 110 start-page: E1621 year: 2013 ident: 129_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1218984110 – volume: 5 start-page: 13438 year: 2015 ident: 129_CR54 publication-title: Sci. Rep. doi: 10.1038/srep13438 – volume: 19 start-page: 90 year: 2014 ident: 129_CR19 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.11.006 – volume: 56 start-page: 1814 year: 2012 ident: 129_CR63 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2012.01.021 – volume: 98 start-page: 59 year: 1904 ident: 129_CR1 publication-title: Arb. DLG – ident: 129_CR47 doi: 10.1111/j.1399-3054.1981.tb08516.x/full – volume: 178 start-page: 2429 year: 2008 ident: 129_CR61 publication-title: Genetics doi: 10.1534/genetics.107.086405 – volume: 8 start-page: e55731 year: 2013 ident: 129_CR4 publication-title: PLoS ONE doi: 10.1371/journal.pone.0055731 – volume: 151 start-page: 792 year: 2009 ident: 129_CR42 publication-title: Plant Physiol. doi: 10.1104/pp.109.141291 – volume: 39 start-page: 461 year: 2001 ident: 129_CR52 publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.39.1.461 – volume: 6 start-page: e00746 year: 2015 ident: 129_CR2 publication-title: mBio – volume: 32 start-page: W20 year: 2004 ident: 129_CR58 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh435 – volume: 73 start-page: 507 year: 2009 ident: 129_CR30 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2009.06790.x – volume: 57 start-page: 233 year: 2006 ident: 129_CR20 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 27 start-page: 747 year: 2005 ident: 129_CR70 publication-title: Ther. Drug. Monit. doi: 10.1097/01.ftd.0000179845.53213.39 – volume: 30 start-page: 369 year: 1998 ident: 129_CR6 publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(97)00124-7 – volume: 8 start-page: 1351 year: 2006 ident: 129_CR10 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01028.x – volume: 8 start-page: 790 year: 2013 ident: 129_CR3 publication-title: ISME J. doi: 10.1038/ismej.2013.196 – volume: 132 start-page: 44 year: 2003 ident: 129_CR39 publication-title: Plant Physiol. doi: 10.1104/pp.102.019661 – ident: 129_CR73 – volume: 21 start-page: 1471 year: 2010 ident: 129_CR69 publication-title: J. Am. Soc. Mass. Spectrom. doi: 10.1016/j.jasms.2010.04.003 – volume: 2 start-page: 1017 year: 2011 ident: 129_CR13 publication-title: Genes (Basel) doi: 10.3390/genes2041017 – volume: 11 year: 2010 ident: 129_CR68 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-395 – volume: 3 start-page: 168 year: 2009 ident: 129_CR8 publication-title: ISME J. doi: 10.1038/ismej.2008.103 – volume: 7 start-page: e00656-16 year: 2016 ident: 129_CR55 publication-title: mBio doi: 10.1128/mBio.00656-16 – volume: 32 start-page: 1792 year: 2004 ident: 129_CR59 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 – volume: 42 start-page: D490 year: 2014 ident: 129_CR62 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1178 – volume: 1 start-page: 16160 year: 2016 ident: 129_CR37 publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.160 – ident: 129_CR46 doi: 10.1016/B978-0-12-520920-5.50016-X – volume: 1 start-page: 439 year: 1999 ident: 129_CR51 publication-title: Environ. Microbiol. doi: 10.1046/j.1462-2920.1999.00054.x – volume: 77 start-page: 600 year: 2011 ident: 129_CR15 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01150.x – ident: 129_CR44 – volume: 15 start-page: 473 year: 1962 ident: 129_CR66 publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 33 start-page: 21 year: 2013 ident: 129_CR48 publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-013-9398-5 – volume: 65 start-page: 2685 year: 1999 ident: 129_CR41 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.6.2685-2690.1999 – volume: 11 year: 2011 ident: 129_CR67 publication-title: BMC Plant. Biol. doi: 10.1186/1471-2229-11-121 – ident: 129_CR45 doi: 10.1007/978-81-322-2616-1 – volume: 12 year: 2011 ident: 129_CR50 publication-title: Genome Biol. doi: 10.1186/gb-2011-12-10-r106 – ident: 129_CR38 – volume: 64 start-page: 807 year: 2013 ident: 129_CR25 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120106 – ident: 129_CR24 doi: 10.1007/978-94-017-1570-6_23 – volume: 45 start-page: 703 year: 2010 ident: 129_CR71 publication-title: J. Mass Spectrom. doi: 10.1002/jms.1777 – volume: 17 start-page: 392 year: 2015 ident: 129_CR11 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.01.011 – volume: 124 start-page: 803 year: 2006 ident: 129_CR34 publication-title: Cell doi: 10.1016/j.cell.2006.02.008 – volume: 38 start-page: 401 year: 2015 ident: 129_CR35 publication-title: Genet. Mol. Biol. doi: 10.1590/S1415-475738420150053 – volume: 83 start-page: 33 year: 1987 ident: 129_CR49 publication-title: Plant Physiol. doi: 10.1104/pp.83.1.33 – volume: 10 start-page: 175 year: 1964 ident: 129_CR53 publication-title: Can. J. Microbiol. doi: 10.1139/m64-025 – volume: 6 start-page: 293 year: 2014 ident: 129_CR33 publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12152 – volume: 4 start-page: 272 year: 2013 ident: 129_CR43 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00272 – volume: 32 start-page: 666 year: 2009 ident: 129_CR18 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.01926.x – volume: 18 start-page: 1 year: 2007 ident: 129_CR76 publication-title: J. Stat. Softw. doi: 10.18637/jss.v018.i02 – volume: 8 start-page: 63 year: 2003 ident: 129_CR40 publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)00029-8 – volume: 34 start-page: 209 year: 2015 ident: 129_CR31 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.03.015 – volume: 97 start-page: 1307 year: 2016 ident: 129_CR56 publication-title: Ecology doi: 10.1890/15-0882.1 – volume: 6 year: 2015 ident: 129_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms9289 – volume: 6 start-page: e1000808 year: 2010 ident: 129_CR60 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000808 – ident: 129_CR75 – volume: 35 start-page: D274 year: 2007 ident: 129_CR64 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl925 – volume: 488 start-page: 86 year: 2012 ident: 129_CR9 publication-title: Nature doi: 10.1038/nature11237 – volume: 110 start-page: 6548 year: 2013 ident: 129_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1302837110 – volume: 349 start-page: 860 year: 2015 ident: 129_CR16 publication-title: Science doi: 10.1126/science.aaa8764 – volume: 63 start-page: 3429 year: 2012 ident: 129_CR26 publication-title: J. Exp. Bot. doi: 10.1093/jxb/err430 – volume: 6 start-page: 277 year: 2015 ident: 129_CR57 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00277 – reference: 29588539 - Nat Microbiol. 2018 Apr;3(4):396-397 |
SSID | ssj0001626686 |
Score | 2.612159 |
Snippet | Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions... |
SourceID | osti hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 470 |
SubjectTerms | 45 45/22 45/23 45/77 631/326/171 631/326/2565 631/326/2565/855 631/449/2676/2678 631/92/320 Actinobacteria - isolation & purification Actinobacteria - metabolism Avena - metabolism Avena - microbiology BASIC BIOLOGICAL SCIENCES Biomedical and Life Sciences Cinnamates - metabolism ENVIRONMENTAL SCIENCES Exudates Firmicutes - isolation & purification Firmicutes - metabolism Genomics Host Microbial Interactions - physiology Indoleacetic Acids - metabolism Indoles Infectious Diseases Life Sciences Medical Microbiology Microbiology Microbiology and Parasitology Microbiomes Microbiota - physiology Microorganisms Niacin - metabolism Organic acids Parasitology Plant Roots - metabolism Plant Roots - microbiology Proteobacteria - isolation & purification Proteobacteria - metabolism Reproductive fitness Rhizosphere Rhizosphere microorganisms Salicylic Acid - metabolism Shikimic Acid - metabolism Soil Microbiology Soil microorganisms Substrate preferences Virology |
Title | Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly |
URI | https://link.springer.com/article/10.1038/s41564-018-0129-3 https://www.ncbi.nlm.nih.gov/pubmed/29556109 https://www.proquest.com/docview/2137527930 https://www.proquest.com/docview/2015837235 https://hal.science/hal-02000374 https://www.osti.gov/servlets/purl/1471041 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RrZC4IN6EFmQQJ1DUxM7DPqECrVYIKoSo1Jtlx7Zaqc0um2zVHvjvzOS1IKDXjWNlM-PxN57J9wG8JtYrp7yJ86pMYsy_itgKm8VSmWAkyTFa-hr5y1ExP84-neQnw4FbM7RVjjGxC9RuUdEZ-R5PRZlz9Kbk3fJHTKpRVF0dJDS2YBtDsJQz2H5_cPT12-aUBfF6IYuxnCnkXkMZCzVeUA8XV7H4Y0PaOqV2yNkCl9e_IOdf5dJuFzq8B3cH-Mj2e3vfh1u-fgC3e0HJ64fw82MvMM8QD7fMX60pn2fVKOrGTO3YxVnHvYSzNBg0OnJatpzURhrmVhgA2bLj3awbdlazFfXlNcQ_4H-7u-o_LWlx1qbxF_b8-hEcHx58_zCPB4GFuMoz3sZ5sLzITUiNd3kIFl-VEw4xZCm8dcIrU5RKOYQQCNQSZ4UxhQwlQkBFJRonHsOsXtT-KTBuQyZEEXDDUxkvg6lSGTIjcYZUOGkjSMa3rKuBfZxEMM51VwUXUveG0WgYTYbRIoI30y3LnnrjpsGv0HTTOCLNnu9_1vRbwnuWncs0gh2yrEZwQQy5FbUSVS1mPwizMry6OxpcDwu50Ru3i-DldBmNRnUVU_vFGscgpMI8n4s8gie9o0wPwhXpjyYqgrej52wm_--_eXbzo-zAHd45MPnxLsza1do_R2zU2hfDAvgFW1ALwA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21WyG4IL4JLWAQXEBRs3biOAeECm21pdsKoVbqzbVjR1Rqs8smC-yBv8RvZCbZ7IKA3npNnFGSGY_feMbzAF5Q1yuXeRMmeRqFGH_J0AobhyozhVFEx2jpNPLBoRwcxx9OkpMV-NmdhaGyys4nNo7ajXLaI9_kfZEmHK0pejv-EhJrFGVXOwqN1iz2_ewbhmzVm71t1O9Lznd3jt4PwjmrQJgnMa_DpLBcJqboG--SorBSKiccAqdUeOuEz4xMs8zhuonoJHJWGCNVkSLuySgv4QTKXYW1WMiI92Dt3c7hx0_LXR2MD6SSXfpUqM2KIiQq9KCaMZ6F4o8FcPUzlV_2Rjid_wVx_0rPNqve7i24OYerbKu1r9uw4ss7cK0lsJzdhR_bLaE9Q_xdM_99SvsHLO9I5JgpHbs4a3o9oZQKnVTTDJeNF-wmFXMTdLhs3PT5LCt2VrIJ1QFW1O_A__Z03h5lqVFqVfkLez67B8dX8uvvQ68clf4hMG6LWAhZ4AKbxTwtTN5XRWwUSugLp2wAUfeXdT7vdk6kG-e6yboLpVvFaFSMJsVoEcCrxSPjttXHZYOfo-oW46hJ92BrqOlaxNuuPl_7AayTZjWCGerIm1PpUl5jtIWwLsa7G53C9dxxVHpp5gE8W9xGpVEex5R-NMUxCOGUSLlIAnjQGsriRXhGfKdRFsDrznKWwv_7NY8uf5WncH1wdDDUw73D_XW4wRtjJpvegF49mfrHiMtq-2Q-GRicXvX8-wVzFUht |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+root+exudate+chemistry+and+microbial+substrate+preferences+drive+patterns+in+rhizosphere+microbial+community+assembly&rft.jtitle=Nature+microbiology&rft.au=Zhalnina%2C+Kateryna&rft.au=Louie%2C+Katherine+B&rft.au=Zhao%2C+Hao&rft.au=Mansoori%2C+Nasim&rft.date=2018-04-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-5276&rft.volume=3&rft.issue=4&rft.spage=470&rft.epage=480&rft_id=info:doi/10.1038%2Fs41564-018-0129-3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |