Reinforcement Learning Signals in the Human Striatum Distinguish Learners from Nonlearners during Reward-Based Decision Making

The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed band...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 27; no. 47; pp. 12860 - 12867
Main Authors Schonberg, Tom, Daw, Nathaniel D, Joel, Daphna, O'Doherty, John P
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 21.11.2007
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance: those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated significantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals, likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence of this type of learning on the functional integrity of the dopaminergic striatal system in humans.
AbstractList The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance: those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated significantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals, likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence of this type of learning on the functional integrity of the dopaminergic striatal system in humans.The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance: those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated significantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals, likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence of this type of learning on the functional integrity of the dopaminergic striatal system in humans.
The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance: those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated significantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals, likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence of this type of learning on the functional integrity of the dopaminergic striatal system in humans.
Author Schonberg, Tom
Joel, Daphna
O'Doherty, John P
Daw, Nathaniel D
Author_xml – sequence: 1
  fullname: Schonberg, Tom
– sequence: 2
  fullname: Daw, Nathaniel D
– sequence: 3
  fullname: Joel, Daphna
– sequence: 4
  fullname: O'Doherty, John P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18032658$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUtFAR3Rb-QuUT4pLFH7GdSAiJbgstWlppl54tx3Y2hsQudsKKC78dr7ZdAZeeLL03M2_e85yAIx-8BeAMozlmhL79fHN5t7pdL67npKx5gcScICSegVnu1gUpET4CM0QEKngpymNwktI3lBEIixfgGFeIEs6qGfi9ss63IWo7WD_CpVXRO7-Ba7fxqk_QeTh2Fl5Ng_JwPUanxmmAFy6NGTW51O0pNibYxjDAm-D7x4KZ4k5qZbcqmuJcJWvghdUuueDhF_U9N1-C520eY189vKfg7uPl18VVsbz9dL34sCw0K8lYMKOZFcaYmjSactpyhElFmGmMrnXVNrzFVcmIJYJp3DQtK4XNdYqrtmYVp6fg_V73fmoGa3TeNape3kc3qPhLBuXkvx3vOrkJPyXngpIaZ4HXDwIx_JhsGuXgkrZ9r7wNU5K8YrTGnDwJJIhmQVFm4Nnflg5eHv8mA97tATqGlKJtpXajGvPxskPXS4zkLgryEAW5i4JEQu6ikOn8P_phwlPEN3ti5zbd1kUr06D6PtvEcrvdEiFLIfP5OaJ_ADRlyjI
CitedBy_id crossref_primary_10_1016_j_bbr_2012_02_006
crossref_primary_10_1016_j_biopsych_2024_06_027
crossref_primary_10_1016_j_neuroimage_2015_11_060
crossref_primary_10_1016_j_neuroimage_2012_04_024
crossref_primary_10_1002_hbm_24345
crossref_primary_10_1111_ejn_12802
crossref_primary_10_1177_2167702614531580
crossref_primary_10_1523_JNEUROSCI_0457_18_2018
crossref_primary_10_3389_fpsyg_2022_924578
crossref_primary_10_1007_s12311_015_0685_5
crossref_primary_10_1038_s41386_021_01108_0
crossref_primary_10_1523_JNEUROSCI_0757_14_2014
crossref_primary_10_1016_j_neuroimage_2011_11_058
crossref_primary_10_1038_nn_3364
crossref_primary_10_1002_ana_21825
crossref_primary_10_1016_j_cognition_2021_104660
crossref_primary_10_3389_fnbeh_2023_1302842
crossref_primary_10_1016_j_nlm_2011_08_006
crossref_primary_10_1177_1073191117714557
crossref_primary_10_1002_hbm_26078
crossref_primary_10_1371_journal_pcbi_1006707
crossref_primary_10_1016_j_neuropsychologia_2011_12_012
crossref_primary_10_1523_JNEUROSCI_2469_09_2009
crossref_primary_10_1523_JNEUROSCI_3086_12_2013
crossref_primary_10_1016_j_ynstr_2021_100412
crossref_primary_10_1007_s10209_025_01198_3
crossref_primary_10_1016_j_jmp_2016_03_007
crossref_primary_10_1523_JNEUROSCI_2701_11_2011
crossref_primary_10_1523_JNEUROSCI_4880_10_2011
crossref_primary_10_1007_s10899_024_10326_2
crossref_primary_10_1109_JPROC_2014_2307022
crossref_primary_10_1016_j_neuron_2011_02_027
crossref_primary_10_1016_j_neuroimage_2015_07_061
crossref_primary_10_22172_cogbio_2013_25_4_007
crossref_primary_10_1016_j_neuron_2010_03_025
crossref_primary_10_1016_j_lmot_2024_102051
crossref_primary_10_1523_JNEUROSCI_6421_10_2011
crossref_primary_10_1016_j_bandc_2020_105657
crossref_primary_10_1038_s41598_020_80593_7
crossref_primary_10_1016_j_neuroimage_2009_06_076
crossref_primary_10_1038_s41467_019_08922_7
crossref_primary_10_1162_jocn_a_00978
crossref_primary_10_3389_fpsyg_2017_00204
crossref_primary_10_1016_j_cobeha_2014_10_004
crossref_primary_10_1152_jn_00260_2015
crossref_primary_10_1017_pen_2018_14
crossref_primary_10_1111_ejn_13803
crossref_primary_10_1016_j_jpsychires_2012_02_014
crossref_primary_10_1111_j_1460_9568_2008_06117_x
crossref_primary_10_3389_fpsyg_2016_00169
crossref_primary_10_3758_s13415_015_0377_0
crossref_primary_10_3758_CABN_9_4_343
crossref_primary_10_1038_s41598_018_35124_w
crossref_primary_10_1016_j_neuron_2018_03_042
crossref_primary_10_1371_journal_pone_0072508
crossref_primary_10_1523_ENEURO_0167_16_2016
crossref_primary_10_1371_journal_pcbi_1002012
crossref_primary_10_1073_pnas_1519829113
crossref_primary_10_3389_fnins_2017_00598
crossref_primary_10_1177_17456916211031926
crossref_primary_10_1162_jocn_2011_21618
crossref_primary_10_1016_j_neuron_2023_09_015
crossref_primary_10_1017_S0954579408000576
crossref_primary_10_1523_JNEUROSCI_6486_10_2011
crossref_primary_10_3389_fncom_2014_00130
crossref_primary_10_1007_s00422_009_0305_x
crossref_primary_10_1016_j_nicl_2020_102193
crossref_primary_10_1016_j_dcn_2016_04_005
crossref_primary_10_1523_JNEUROSCI_3141_14_2014
crossref_primary_10_3389_fnins_2022_889440
crossref_primary_10_1162_jocn_2009_21092
crossref_primary_10_1093_texcom_tgad008
crossref_primary_10_1016_j_neuron_2011_08_024
crossref_primary_10_1523_JNEUROSCI_2277_15_2015
crossref_primary_10_1038_s41467_020_17257_7
crossref_primary_10_1371_journal_pcbi_1003759
crossref_primary_10_1146_annurev_psych_010416_044216
crossref_primary_10_1016_j_neuroscience_2013_07_034
crossref_primary_10_1016_j_neuroimage_2022_119831
crossref_primary_10_1371_journal_pcbi_1005810
crossref_primary_10_1016_j_drugalcdep_2014_03_031
crossref_primary_10_7554_eLife_29718
crossref_primary_10_1016_j_neuropsychologia_2013_07_011
crossref_primary_10_1016_j_nlm_2014_05_002
crossref_primary_10_1016_j_dcn_2019_100668
crossref_primary_10_1002_wcs_1266
crossref_primary_10_1073_pnas_1014938108
crossref_primary_10_1016_j_bpsc_2020_12_015
crossref_primary_10_1016_j_neuroimage_2013_10_069
crossref_primary_10_1007_s42113_024_00198_5
crossref_primary_10_1016_j_nicl_2019_102073
crossref_primary_10_1523_JNEUROSCI_0204_14_2014
crossref_primary_10_1016_j_neuroimage_2012_12_001
crossref_primary_10_1523_JNEUROSCI_2972_11_2011
crossref_primary_10_7554_eLife_79027
crossref_primary_10_3389_fpsyt_2022_1008011
crossref_primary_10_1371_journal_pone_0021575
crossref_primary_10_1016_j_neuroimage_2008_05_032
crossref_primary_10_1016_j_neucom_2013_02_061
crossref_primary_10_1523_JNEUROSCI_2700_16_2017
crossref_primary_10_1038_ncomms10785
crossref_primary_10_1371_journal_pcbi_1007475
crossref_primary_10_1016_j_brainres_2016_06_006
crossref_primary_10_1371_journal_pone_0176205
crossref_primary_10_1016_j_jad_2024_09_066
crossref_primary_10_1007_s11682_017_9786_8
crossref_primary_10_1371_journal_pone_0024390
crossref_primary_10_7554_eLife_26424
crossref_primary_10_1002_hbm_22804
crossref_primary_10_1371_journal_pcbi_1011950
crossref_primary_10_1016_j_jneumeth_2019_01_006
crossref_primary_10_1016_j_heliyon_2024_e32731
crossref_primary_10_1016_j_neuron_2014_08_012
crossref_primary_10_1152_jn_00498_2016
crossref_primary_10_1007_s11031_014_9434_1
crossref_primary_10_1523_JNEUROSCI_0626_12_2012
crossref_primary_10_1016_j_neuroimage_2016_03_064
crossref_primary_10_1371_journal_pbio_2000756
crossref_primary_10_1002_hbm_24184
crossref_primary_10_1016_j_dcn_2015_03_002
crossref_primary_10_1371_journal_pcbi_1008738
crossref_primary_10_1152_jn_00164_2012
crossref_primary_10_1093_cercor_bhr198
crossref_primary_10_1162_jocn_2010_21584
crossref_primary_10_1152_jn_00333_2015
crossref_primary_10_1162_jocn_a_01447
crossref_primary_10_1162_jocn_a_00237
crossref_primary_10_1016_j_cub_2010_08_048
crossref_primary_10_1007_s10802_024_01227_4
crossref_primary_10_1186_s40359_024_01952_x
crossref_primary_10_1523_JNEUROSCI_4467_08_2009
crossref_primary_10_1002_hbm_25948
crossref_primary_10_1002_hbm_24859
crossref_primary_10_5334_jeps_cv
crossref_primary_10_1093_brain_awad162
crossref_primary_10_1523_JNEUROSCI_5498_10_2012
crossref_primary_10_7554_eLife_51260
crossref_primary_10_1038_npp_2016_143
crossref_primary_10_1523_JNEUROSCI_2636_14_2015
crossref_primary_10_1002_hbm_22665
crossref_primary_10_1073_pnas_1407535111
crossref_primary_10_1093_cercor_bhy166
crossref_primary_10_3724_SP_J_1042_2018_01642
crossref_primary_10_1080_17470919_2017_1370010
crossref_primary_10_1111_j_1460_9568_2012_08017_x
crossref_primary_10_1016_j_neuropsychologia_2019_06_002
crossref_primary_10_1038_srep41028
crossref_primary_10_1111_j_1539_6924_2012_01792_x
crossref_primary_10_1152_jn_00393_2013
crossref_primary_10_1097_WNR_0b013e3283383482
crossref_primary_10_3389_fpsyg_2017_01253
crossref_primary_10_3389_fnbeh_2022_763220
crossref_primary_10_1073_pnas_1001709107
crossref_primary_10_1016_j_neuron_2014_09_002
crossref_primary_10_3758_s13415_014_0269_8
crossref_primary_10_1523_JNEUROSCI_3524_09_2009
crossref_primary_10_1016_j_jebo_2018_06_014
crossref_primary_10_1016_j_neuroimage_2017_05_041
crossref_primary_10_1016_j_biopsycho_2014_07_013
crossref_primary_10_1016_j_bbr_2015_11_016
crossref_primary_10_1093_schbul_sbw045
crossref_primary_10_1016_j_nicl_2024_103729
crossref_primary_10_1007_s00213_013_3313_4
crossref_primary_10_1556_2006_2021_00010
crossref_primary_10_1002_eat_20984
crossref_primary_10_1098_rstb_2008_0161
crossref_primary_10_1111_tops_12389
crossref_primary_10_3758_s13415_011_0066_6
crossref_primary_10_1111_j_1460_9568_2012_07990_x
crossref_primary_10_1002_hbm_26323
crossref_primary_10_1038_s41598_023_33008_2
crossref_primary_10_1016_j_biopsych_2017_02_1183
crossref_primary_10_1007_s12662_012_0230_3
crossref_primary_10_1016_j_brainres_2009_07_007
crossref_primary_10_1371_journal_pone_0080683
crossref_primary_10_1038_nn_3842
crossref_primary_10_1523_JNEUROSCI_2978_14_2015
crossref_primary_10_1007_s12311_021_01282_3
crossref_primary_10_3758_s13415_014_0261_3
crossref_primary_10_7554_eLife_65074
crossref_primary_10_1523_JNEUROSCI_2265_08_2008
crossref_primary_10_1016_j_biopsych_2009_12_027
crossref_primary_10_3171_2009_4_FOCUS0975
crossref_primary_10_1016_j_neubiorev_2016_09_002
crossref_primary_10_1111_nyas_13703
crossref_primary_10_1016_j_bbr_2008_09_029
crossref_primary_10_1016_j_cub_2010_04_055
crossref_primary_10_1016_j_jmp_2008_12_005
crossref_primary_10_1073_pnas_0905191106
crossref_primary_10_1093_scan_nsaa040
crossref_primary_10_1111_tops_12138
crossref_primary_10_1016_j_jpsychires_2015_02_014
crossref_primary_10_1152_jn_00784_2009
crossref_primary_10_1038_nn_3832
crossref_primary_10_1016_j_biopsych_2021_01_009
crossref_primary_10_4306_pi_2013_10_3_266
crossref_primary_10_1016_j_cobeha_2015_08_006
crossref_primary_10_1016_j_neuron_2008_11_027
crossref_primary_10_1093_scan_nst095
crossref_primary_10_1371_journal_pone_0119710
crossref_primary_10_1093_brain_awx025
crossref_primary_10_1016_j_biopsych_2009_06_021
crossref_primary_10_1016_j_neuroimage_2009_11_083
crossref_primary_10_3758_s13415_011_0027_0
crossref_primary_10_1016_j_mehy_2012_01_034
crossref_primary_10_1093_schbul_sbq005
crossref_primary_10_1371_journal_pcbi_1004237
crossref_primary_10_1523_JNEUROSCI_4647_10_2011
crossref_primary_10_3758_s13415_015_0338_7
crossref_primary_10_1016_j_euroneuro_2018_07_102
crossref_primary_10_1146_annurev_clinpsy_032816_044957
crossref_primary_10_1111_j_1460_9568_2011_07920_x
crossref_primary_10_1523_JNEUROSCI_6316_10_2011
crossref_primary_10_1007_s10551_016_3058_1
crossref_primary_10_1016_j_neuron_2011_12_025
crossref_primary_10_1016_j_celrep_2018_11_026
crossref_primary_10_1016_j_bpsc_2025_02_014
crossref_primary_10_1038_s42003_025_07561_7
crossref_primary_10_1111_risa_12511
crossref_primary_10_1038_s41598_022_08863_0
crossref_primary_10_1038_s41467_018_04055_5
crossref_primary_10_1016_j_neuroimage_2009_08_011
crossref_primary_10_1523_JNEUROSCI_1859_15_2015
crossref_primary_10_1523_JNEUROSCI_5445_12_2013
crossref_primary_10_1371_journal_pcbi_1003015
crossref_primary_10_1016_j_dcn_2011_07_006
crossref_primary_10_1111_j_1460_9568_2011_07980_x
crossref_primary_10_1016_j_conb_2008_08_003
crossref_primary_10_1016_j_neuropsychologia_2016_05_023
crossref_primary_10_1523_JNEUROSCI_1186_22_2022
crossref_primary_10_1371_journal_pcbi_1003387
crossref_primary_10_1016_j_cognition_2018_11_004
crossref_primary_10_3758_s13415_021_00943_4
crossref_primary_10_1523_JNEUROSCI_4341_08_2009
crossref_primary_10_1016_j_biopsych_2012_01_023
crossref_primary_10_1038_npp_2009_131
crossref_primary_10_3758_s13415_014_0297_4
Cites_doi 10.1162/neco.2006.18.7.1637
10.1006/nimg.2000.0593
10.1016/S0893-6080(02)00047-3
10.1016/S0896-6273(02)00963-7
10.1016/j.conb.2004.10.016
10.1038/nn1743
10.1016/S0896-6273(02)00967-4
10.1521/pedi.1993.7.4.285
10.3758/BF03194383
10.1038/nature05051
10.1901/jeab.2005.110-04
10.1038/nature04766
10.1016/S1474-6670(17)38315-5
10.1016/S0896-6273(03)00154-5
10.1038/nn802
10.1177/1073858404263526
10.1016/j.conb.2006.03.006
10.1126/science.1094285
10.1523/JNEUROSCI.3401-04.2005
10.1016/S0896-6273(03)00169-7
10.1016/S0893-6080(02)00046-1
10.1016/S0896-6273(03)00848-1
10.1037/1040-3590.14.4.485
10.1017/S0140525X00003435
10.1016/j.neuroimage.2005.08.006
10.1016/j.bbr.2004.07.006
10.1098/rsta.2004.1468
10.1016/j.tics.2004.11.005
10.1001/archpsyc.1961.01710120031004
10.1523/JNEUROSCI.16-05-01936.1996
10.1037/1040-3590.4.1.5
10.1002/hbm.20186
10.1073/pnas.0608842104
10.1152/jn.2000.84.6.3072
10.1126/science.275.5306.1593
10.1002/(SICI)1099-0771(199809)11:3<161::AID-BDM296>3.0.CO;2-S
10.1016/S0166-2236(98)01373-3
ContentType Journal Article
Copyright Copyright © 2007 Society for Neuroscience 0270-6474/07/2712860-08$15.00/0 2007
Copyright_xml – notice: Copyright © 2007 Society for Neuroscience 0270-6474/07/2712860-08$15.00/0 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/JNEUROSCI.2496-07.2007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 12867
ExternalDocumentID PMC6673291
18032658
10_1523_JNEUROSCI_2496_07_2007
www27_47_12860
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c542t-5dc5e7ddd92bc363f6012825dbdc9c8fb6f18452e275c1bbf547ec8f318f95863
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:14:32 EDT 2025
Fri Jul 11 12:13:53 EDT 2025
Fri Jul 11 07:30:27 EDT 2025
Mon Jul 21 06:02:39 EDT 2025
Tue Jul 01 02:58:50 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Tue Nov 10 19:50:54 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-5dc5e7ddd92bc363f6012825dbdc9c8fb6f18452e275c1bbf547ec8f318f95863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.jneurosci.org/content/jneuro/27/47/12860.full.pdf
PMID 18032658
PQID 20332974
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6673291
proquest_miscellaneous_68539162
proquest_miscellaneous_20332974
pubmed_primary_18032658
crossref_citationtrail_10_1523_JNEUROSCI_2496_07_2007
crossref_primary_10_1523_JNEUROSCI_2496_07_2007
highwire_smallpub1_www27_47_12860
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-21
PublicationDateYYYYMMDD 2007-11-21
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-21
  day: 21
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2007
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References 2023041303284256000_27.47.12860.29
2023041303284256000_27.47.12860.27
2023041303284256000_27.47.12860.28
2023041303284256000_27.47.12860.14
2023041303284256000_27.47.12860.36
2023041303284256000_27.47.12860.15
2023041303284256000_27.47.12860.37
2023041303284256000_27.47.12860.12
2023041303284256000_27.47.12860.34
2023041303284256000_27.47.12860.13
2023041303284256000_27.47.12860.10
2023041303284256000_27.47.12860.32
Delgado (2023041303284256000_27.47.12860.11) 2000; 84
2023041303284256000_27.47.12860.33
2023041303284256000_27.47.12860.30
2023041303284256000_27.47.12860.31
2023041303284256000_27.47.12860.5
2023041303284256000_27.47.12860.6
2023041303284256000_27.47.12860.3
2023041303284256000_27.47.12860.4
2023041303284256000_27.47.12860.9
2023041303284256000_27.47.12860.7
2023041303284256000_27.47.12860.8
Montague (2023041303284256000_27.47.12860.22) 1996; 16
2023041303284256000_27.47.12860.1
2023041303284256000_27.47.12860.18
2023041303284256000_27.47.12860.2
2023041303284256000_27.47.12860.19
2023041303284256000_27.47.12860.16
2023041303284256000_27.47.12860.38
2023041303284256000_27.47.12860.17
2023041303284256000_27.47.12860.39
2023041303284256000_27.47.12860.25
2023041303284256000_27.47.12860.26
2023041303284256000_27.47.12860.23
2023041303284256000_27.47.12860.24
Stanovich (2023041303284256000_27.47.12860.35) 2003; 31
2023041303284256000_27.47.12860.21
2023041303284256000_27.47.12860.20
2023041303284256000_27.47.12860.40
References_xml – ident: 2023041303284256000_27.47.12860.7
  doi: 10.1162/neco.2006.18.7.1637
– ident: 2023041303284256000_27.47.12860.17
  doi: 10.1006/nimg.2000.0593
– ident: 2023041303284256000_27.47.12860.14
  doi: 10.1016/S0893-6080(02)00047-3
– ident: 2023041303284256000_27.47.12860.10
  doi: 10.1016/S0896-6273(02)00963-7
– ident: 2023041303284256000_27.47.12860.26
  doi: 10.1016/j.conb.2004.10.016
– ident: 2023041303284256000_27.47.12860.23
  doi: 10.1038/nn1743
– ident: 2023041303284256000_27.47.12860.32
  doi: 10.1016/S0896-6273(02)00967-4
– ident: 2023041303284256000_27.47.12860.16
  doi: 10.1521/pedi.1993.7.4.285
– volume: 31
  start-page: 243
  year: 2003
  ident: 2023041303284256000_27.47.12860.35
  article-title: Is probability matching smart? Associations between probabilistic choices and cognitive ability
  publication-title: Mem Cognit
  doi: 10.3758/BF03194383
– ident: 2023041303284256000_27.47.12860.29
  doi: 10.1038/nature05051
– ident: 2023041303284256000_27.47.12860.18
  doi: 10.1901/jeab.2005.110-04
– ident: 2023041303284256000_27.47.12860.8
  doi: 10.1038/nature04766
– ident: 2023041303284256000_27.47.12860.38
  doi: 10.1016/S1474-6670(17)38315-5
– ident: 2023041303284256000_27.47.12860.9
– ident: 2023041303284256000_27.47.12860.20
  doi: 10.1016/S0896-6273(03)00154-5
– ident: 2023041303284256000_27.47.12860.28
  doi: 10.1038/nn802
– ident: 2023041303284256000_27.47.12860.5
– ident: 2023041303284256000_27.47.12860.21
  doi: 10.1177/1073858404263526
– ident: 2023041303284256000_27.47.12860.6
  doi: 10.1016/j.conb.2006.03.006
– ident: 2023041303284256000_27.47.12860.25
  doi: 10.1126/science.1094285
– ident: 2023041303284256000_27.47.12860.1
– ident: 2023041303284256000_27.47.12860.34
  doi: 10.1523/JNEUROSCI.3401-04.2005
– ident: 2023041303284256000_27.47.12860.27
  doi: 10.1016/S0896-6273(03)00169-7
– ident: 2023041303284256000_27.47.12860.37
  doi: 10.1016/S0893-6080(02)00046-1
– ident: 2023041303284256000_27.47.12860.39
  doi: 10.1016/S0896-6273(03)00848-1
– ident: 2023041303284256000_27.47.12860.12
  doi: 10.1037/1040-3590.14.4.485
– ident: 2023041303284256000_27.47.12860.36
  doi: 10.1017/S0140525X00003435
– ident: 2023041303284256000_27.47.12860.40
  doi: 10.1016/j.neuroimage.2005.08.006
– ident: 2023041303284256000_27.47.12860.15
  doi: 10.1016/j.bbr.2004.07.006
– ident: 2023041303284256000_27.47.12860.3
  doi: 10.1098/rsta.2004.1468
– ident: 2023041303284256000_27.47.12860.24
  doi: 10.1016/j.tics.2004.11.005
– ident: 2023041303284256000_27.47.12860.2
  doi: 10.1001/archpsyc.1961.01710120031004
– volume: 16
  start-page: 1936
  year: 1996
  ident: 2023041303284256000_27.47.12860.22
  article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-05-01936.1996
– ident: 2023041303284256000_27.47.12860.4
  doi: 10.1037/1040-3590.4.1.5
– ident: 2023041303284256000_27.47.12860.31
  doi: 10.1002/hbm.20186
– ident: 2023041303284256000_27.47.12860.19
  doi: 10.1073/pnas.0608842104
– volume: 84
  start-page: 3072
  year: 2000
  ident: 2023041303284256000_27.47.12860.11
  article-title: Tracking the hemodynamic responses to reward and punishment in the striatum
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2000.84.6.3072
– ident: 2023041303284256000_27.47.12860.33
  doi: 10.1126/science.275.5306.1593
– ident: 2023041303284256000_27.47.12860.13
  doi: 10.1002/(SICI)1099-0771(199809)11:3<161::AID-BDM296>3.0.CO;2-S
– ident: 2023041303284256000_27.47.12860.30
  doi: 10.1016/S0166-2236(98)01373-3
SSID ssj0007017
Score 2.4106307
Snippet The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12860
SubjectTerms Adult
Corpus Striatum - physiology
Decision Making - physiology
Female
Humans
Learning - physiology
Male
Psychomotor Performance - physiology
Reinforcement (Psychology)
Reward
Title Reinforcement Learning Signals in the Human Striatum Distinguish Learners from Nonlearners during Reward-Based Decision Making
URI http://www.jneurosci.org/cgi/content/abstract/27/47/12860
https://www.ncbi.nlm.nih.gov/pubmed/18032658
https://www.proquest.com/docview/20332974
https://www.proquest.com/docview/68539162
https://pubmed.ncbi.nlm.nih.gov/PMC6673291
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9owFLZQ97KXaVt3YVdPmvaCQsGx4_DY0k1dp6KutFLfosRxChIEtAah7WF_dn9k59jOBcS0rS8RGDuYnA_72P7Odwh5H4dx7PcGypPgbHtcKu4laZZ6vha-0LGfhpblOwpOrvjptbhutX41WEurIumqHzvjSu5iVSgDu2KU7H9YtropFMBrsC9cwcJw_ScbX2ije6rMFl8plXrTGU9vjCqyozDaffox5ucoVnPU20Sq8wqljEwTDOE1USajRT4rC1z44oU2rNojmOuQsWzz8XTOTAqrpl9bR5gZ37ahklkBZ6wmeCp_FFSUskv7SOxG-dqO9biTP9UwFHdrbo8lEhzHy0leTSJI0jleTFAZuGQUd867G3sYEoP5WL2H0SSojrY7aMdCJmGVy21Cn652YzUzh0P95mBuhQYcaK2WpxuaYSK2mQvcPI_v5c5JRBgxi9MRcinHw89dWKEGXk8a2YJmAwDDcm6g1Q974AZbDfot-e7zsyFmVmWosHCPwVoG02x8-VpL2sueSQtd_UIXxg6dONjdBdS5dd-36UyVAte7FkvbnN-GE3X5kDxwCKGHFsqPSEvnj8n-YR4Xi_l3-oEaPrI56NknPzfQTUt0U4duOs0poJsadNMS3bSBblqimyK6aQPd1KKbNtFNS3RTi-4n5OrTx8vhieeyhXhKcFZ4IlVCyzRNByxRfuBnAfpeTKRJqgYqzJIg64dcMM2kUP0kyQSXGsphUssGIgz8p2QvX-T6OaGc9eI4hYpQi3PFwjRTaRaAvyd4EodJm4jysUfKSeljRpdZhEtqsFxUWS5Cy0U9ieleZZscVO2WVkzmry3elVaNbufxbAZG7Efr9ZrJiMvIYLpN3pbmjmBuwAO_ONeL1S3cwQfgSf7nGgF467BAZG3yzMKj7peDWJvIDeBUFVCXfvOTfDox-vQO7y_u3PIluV-PEq_IXvFtpV-D718kb8x_5zfdCwgP
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+Signals+in+the+Human+Striatum+Distinguish+Learners+from+Nonlearners+during+Reward-Based+Decision+Making&rft.jtitle=The+Journal+of+neuroscience&rft.au=Sch%C3%B6nberg%2C+Tom&rft.au=Daw%2C+Nathaniel+D.&rft.au=Joel%2C+Daphna&rft.au=O%27Doherty%2C+John+P.&rft.date=2007-11-21&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=27&rft.issue=47&rft.spage=12860&rft.epage=12867&rft_id=info:doi/10.1523%2FJNEUROSCI.2496-07.2007&rft_id=info%3Apmid%2F18032658&rft.externalDocID=PMC6673291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon