Bacterial Communities Associated with the Roots of Typha spp. and Its Relationship in Phytoremediation Processes
Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most i...
Saved in:
Published in | Microorganisms (Basel) Vol. 11; no. 6; p. 1587 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.06.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation. |
---|---|
AbstractList | Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation. Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation.Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation. Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation. Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of species. Then, it describes bacterial communities associated with roots of growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum are the primary colonizers of the rhizosphere and root-endosphere of species growing in contaminated and non-contaminated environments. include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation. |
Author | Hernández-Morales, Alejandro Rosales-Loredo, Stephanie Macías-Pérez, José Roberto Rolón-Cárdenas, Gisela Adelina Martínez-Martínez, Joana Guadalupe Arvizu-Gómez, Jackeline Lizzeta Carranza-Álvarez, Candy Pacheco-Aguilar, Juan Ramiro |
AuthorAffiliation | 1 Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico 3 Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico 2 Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Mexico |
AuthorAffiliation_xml | – name: 3 Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico – name: 1 Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico – name: 2 Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Mexico |
Author_xml | – sequence: 1 givenname: Joana Guadalupe surname: Martínez-Martínez fullname: Martínez-Martínez, Joana Guadalupe – sequence: 2 givenname: Stephanie surname: Rosales-Loredo fullname: Rosales-Loredo, Stephanie – sequence: 3 givenname: Alejandro orcidid: 0000-0002-0412-4946 surname: Hernández-Morales fullname: Hernández-Morales, Alejandro – sequence: 4 givenname: Jackeline Lizzeta orcidid: 0000-0001-7514-6256 surname: Arvizu-Gómez fullname: Arvizu-Gómez, Jackeline Lizzeta – sequence: 5 givenname: Candy surname: Carranza-Álvarez fullname: Carranza-Álvarez, Candy – sequence: 6 givenname: José Roberto surname: Macías-Pérez fullname: Macías-Pérez, José Roberto – sequence: 7 givenname: Gisela Adelina orcidid: 0000-0001-8633-0462 surname: Rolón-Cárdenas fullname: Rolón-Cárdenas, Gisela Adelina – sequence: 8 givenname: Juan Ramiro surname: Pacheco-Aguilar fullname: Pacheco-Aguilar, Juan Ramiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37375088$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rHCEUhoeS0qRp_kIQetObTY86ji4USrL0YyHQENJrUcfJuMzoVJ2W_fc1u2lIQiHeKMfnvJ5zfN9WBz54W1WnGM4oXcLH0ZkYQrxV3qUxYQwNZoK_qo4I8GZBGuAHj86H1UlKGyhrialg-E11SDnlDIQ4qqYLZbKNTg1oFcZx9i47m9B5SsE4lW2L_rjco9xbdB1CTih06GY79QqlaTpDyrdoXaLXdlDZBZ96NyHn0VW_zSHa0bZuF0dXMRibkk3vqtedGpI9ud-Pq59fv9ysvi8uf3xbr84vF4bVJC9oa5kmba10o4B3jSi1392AEhpb1tRd12lNOko0XwrNKDdMU00sZy3oTtPjar3XbYPayCm6UcWtDMrJXaBMT6qYnRmsFGA6AkQ3LSc11loArcVS1ECNbQy2RevzXmuadWnJWJ-jGp6IPr3xrpe34bfEQAE4oUXhw71CDL9mm7IcXTJ2GJS3YU6SQnmNU8bgRZQICg0H1iwL-v4Zuglz9GWshSKlg5pxXqjTx9U_lP3PBAVo9kBxVUrRdg8IBnlnOPl_w5XET88Sjcu7_y5TcMNL6X8BfQTjBw |
CitedBy_id | crossref_primary_10_1016_j_ecohyd_2024_08_002 crossref_primary_10_1016_j_scitotenv_2024_171269 crossref_primary_10_3389_fgene_2023_1276003 crossref_primary_10_1016_j_dwt_2024_100446 crossref_primary_10_4274_imj_galenos_2023_51261 crossref_primary_10_1007_s44154_024_00153_1 crossref_primary_10_1016_j_scitotenv_2024_178147 crossref_primary_10_1016_j_chemosphere_2024_142271 |
Cites_doi | 10.1038/nrmicro3109 10.1111/j.1365-2672.2007.03383.x 10.1016/j.chemosphere.2013.11.071 10.1007/s11356-015-4798-7 10.1007/s11270-007-9545-3 10.21930/rcta.vol12_num2_art:227 10.1080/15226514.2012.670315 10.1016/j.chemosphere.2009.06.047 10.1007/s12275-013-2330-7 10.1016/j.jhazmat.2020.122661 10.1007/s13201-018-0796-5 10.1371/journal.pone.0248398 10.1016/j.jhazmat.2020.123454 10.1016/j.ecoleng.2018.09.008 10.1016/j.funbio.2018.05.001 10.1007/s42398-019-00055-3 10.1016/j.chemosphere.2008.09.079 10.1016/j.chemosphere.2019.125353 10.1007/s00128-013-0962-2 10.1016/j.micres.2021.126811 10.1007/s11356-019-07256-7 10.1016/j.tplants.2006.04.007 10.3109/1040841X.2012.716819 10.3389/fpls.2023.1076876 10.3389/fpls.2018.01473 10.3390/plants11091255 10.3390/biology9070177 10.1111/plb.12485 10.1007/s00299-004-0890-z 10.3390/plants12030429 10.1007/s10980-012-9758-8 10.1016/j.chemosphere.2016.03.120 10.1016/j.ecoenv.2017.05.021 10.1007/978-94-007-2072-5_15 10.1016/j.aquabot.2017.03.005 10.4141/cjps86-051 10.1007/s11356-013-1728-4 10.1038/s41598-018-27279-3 10.3390/plants11111447 10.1016/j.limno.2012.08.012 10.1080/07388551.2019.1675582 10.3390/molecules26061569 10.1029/2018GL077747 10.1016/j.chemosphere.2018.11.021 10.1016/j.scitotenv.2021.147920 10.1080/15226514.2012.716098 10.1007/s42452-020-03583-4 10.4081/pb.2017.6870 10.1016/j.femsle.2005.07.030 10.1002/jobm.201800656 10.1080/15226511003671379 10.1007/s13205-011-0038-0 10.28940/terra.v38i1.430 10.3390/ijms20143412 10.1065/espr2002.11.141.2 10.1080/16226510500327111 10.1002/cssc.200800125 10.1007/s11270-020-04813-6 10.3389/fmicb.2021.758144 10.3389/fmicb.2018.01650 10.1016/j.chemosphere.2019.125018 10.1007/s11356-017-0813-5 10.1080/10643389.2020.1863112 10.1007/BF03326249 10.1016/j.scitotenv.2014.11.039 10.1016/j.chemosphere.2018.09.096 10.1007/s11270-020-4426-0 10.1007/s40710-021-00497-0 10.1007/s11356-018-2039-6 10.1007/s00284-007-9038-z 10.3389/fmicb.2022.1072389 10.1111/jam.14252 10.1016/j.chemosphere.2004.04.011 10.1080/10643380701798272 10.1016/j.envexpbot.2015.05.001 10.3390/plants11151946 10.1007/s13157-017-0885-5 10.1111/gcbb.12214 10.4236/jep.2010.14050 10.1007/s00344-021-10445-9 10.1007/978-981-15-1636-8 10.1016/j.ejar.2013.04.002 10.1007/s13205-014-0206-0 10.2166/wst.2016.313 10.1016/j.ecoleng.2008.05.006 10.1007/s11270-020-04781-x 10.1007/s00244-009-9351-6 10.1038/s41598-018-23322-5 10.1080/15226514.2015.1073671 10.1007/s00253-019-09700-7 10.1080/15226514.2010.495258 10.1007/s10661-018-6705-4 10.3390/ijms23095031 10.1080/15226510802100390 10.3390/en13112905 10.1007/s42770-020-00408-9 10.1038/s41598-017-13463-4 10.1007/978-3-030-41552-5 10.1016/j.chemosphere.2018.05.056 10.3389/fpls.2020.00359 10.3390/su12051927 10.1007/s11270-006-9263-2 10.1007/s00203-018-1493-3 10.1016/S0960-8524(03)00088-9 10.33073/pjm-2014-035 10.1016/j.jhazmat.2006.11.052 10.1016/j.plantsci.2010.08.016 10.20546/ijcmas.2017.606.089 10.1007/s11274-013-1316-2 10.1080/15226514.2021.1926909 10.1016/S0168-1656(00)00270-4 10.1016/j.jenvman.2021.112805 10.1007/s11738-018-2737-1 10.1007/s11368-015-1067-9 10.1007/s13213-012-0491-y 10.3390/plants12030498 10.1016/j.envadv.2022.100203 10.1016/j.cej.2020.125657 10.1016/j.envexpbot.2018.12.006 10.1590/1519-6984.171961 10.1007/s00284-017-1324-9 10.1186/s42269-019-0208-5 10.15446/abc.v25n1.74749 10.1007/s11356-018-2322-6 10.3389/fpls.2013.00374 10.1079/9781845936167.0446 10.1002/9781118287705 10.1016/j.ecoenv.2018.03.001 10.1007/s11274-010-0568-3 10.1023/B:WATE.0000026523.96599.6b 10.3389/fmicb.2017.02538 10.1007/s11356-015-4294-0 10.1007/s10750-015-2538-0 10.1016/j.envpol.2021.117105 10.1007/978-3-642-22081-4 10.3390/plants12040725 10.1007/978-0-387-21510-5 10.1007/s11356-017-8565-9 10.1007/s00284-020-02278-8 10.1007/978-3-030-20732-8 10.1016/j.jenvman.2018.10.012 10.3390/plants12081653 10.1007/s11356-022-18745-7 10.3389/fmicb.2022.815704 10.1139/b83-005 10.1007/978-94-007-3913-0 10.1007/s13205-017-0916-1 10.1007/s11356-018-1861-1 10.1007/s11356-014-3352-3 10.3390/su13147792 10.1007/s11356-016-8135-6 10.1007/s10295-007-0240-6 10.1186/s43141-021-00254-8 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7T7 8FD 8FE 8FH ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/microorganisms11061587 |
DatabaseName | CrossRef PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-2607 |
ExternalDocumentID | oai_doaj_org_article_80cf202b6d7241bb8034898403ce6c1e PMC10300723 37375088 10_3390_microorganisms11061587 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Autonomous University of San Luis Potosí grantid: Fondos Concurrentes de la UASLP (FCR UASLP 210920280) – fundername: Consejo Nacional de Ciencia y Tecnología grantid: Programa Presupuestario F003 (Fondo Sectorial de Investigación para la Educación CB2017-2018), Project number: A1-S-40454 – fundername: Fondos Concurrentes de la UASLP grantid: FCR UASLP 210920280 – fundername: CONACYT, Programa Presupuestario F003 (Formerly Fondo Sectorial de Investigación para la Educación CB2017-2018) grantid: A1-S-40454 – fundername: CONACYT-Mexico grantid: CVU: 1143723; CVU: 1143748 |
GroupedDBID | 53G 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ACPRK AFKRA AFPKN AFRAH AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ GS5 GX1 HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RNS RPM NPM 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c542t-3de5b2d4ab6a07f68913c5420a8b1e564fffbb2f32b798b537c5b3b2e75d0bfb3 |
IEDL.DBID | M48 |
ISSN | 2076-2607 |
IngestDate | Wed Aug 27 01:30:12 EDT 2025 Thu Aug 21 18:38:02 EDT 2025 Fri Jul 11 01:57:17 EDT 2025 Fri Jul 11 03:02:21 EDT 2025 Fri Jul 25 11:59:03 EDT 2025 Thu Apr 03 07:03:00 EDT 2025 Tue Jul 01 01:32:52 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | bacterial diversity Proteobacteria heavy metal tolerance phytoremediation Typha spp |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-3de5b2d4ab6a07f68913c5420a8b1e564fffbb2f32b798b537c5b3b2e75d0bfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-0412-4946 0000-0001-8633-0462 0000-0001-7514-6256 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/microorganisms11061587 |
PMID | 37375088 |
PQID | 2829844577 |
PQPubID | 2032358 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80cf202b6d7241bb8034898403ce6c1e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10300723 proquest_miscellaneous_3040373550 proquest_miscellaneous_2830670569 proquest_journals_2829844577 pubmed_primary_37375088 crossref_primary_10_3390_microorganisms11061587 crossref_citationtrail_10_3390_microorganisms11061587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230615 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230615 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Microorganisms (Basel) |
PublicationTitleAlternate | Microorganisms |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Begum (ref_163) 2018; 40 Nandakumar (ref_4) 2005; 23 Pan (ref_160) 2016; 154 Aksoy (ref_93) 2004; 56 Sesin (ref_50) 2021; 284 Chen (ref_134) 2017; 8 Renu (ref_110) 2022; 12 Grace (ref_52) 1986; 66 Rana (ref_75) 2018; 190 Gao (ref_97) 2018; 200 Ahemad (ref_148) 2015; 5 Saleem (ref_153) 2007; 34 Lominchar (ref_84) 2019; 26 ref_18 ref_17 Li (ref_157) 2019; 59 ref_16 Shahid (ref_136) 2019; 126 ref_15 Zhou (ref_48) 2018; 8 Chen (ref_162) 2017; 7 Hegazy (ref_87) 2011; 8 Glick (ref_152) 2005; 251 Kidd (ref_22) 2007; 16 Zhou (ref_107) 2017; 74 ref_125 Backer (ref_129) 2018; 9 Poschenrieder (ref_27) 2006; 11 Salam (ref_121) 2019; 43 Sinha (ref_141) 2008; 56 (ref_3) 2020; 38 Pokethitiyook (ref_94) 2004; 155 Dimkpa (ref_142) 2008; 74 Klink (ref_71) 2013; 43 Muratova (ref_165) 2015; 22 ref_25 ref_24 Viana (ref_86) 2018; 206 Zakaria (ref_117) 2007; 146 ref_20 Lee (ref_31) 2020; 231 ref_124 Maine (ref_89) 2022; 24 Yang (ref_80) 2020; 27 Yan (ref_34) 2020; 11 ref_29 (ref_78) 2013; 90 ref_26 Llugany (ref_23) 2007; 16 Mufarrege (ref_85) 2015; 22 Mitra (ref_164) 2018; 156 Sricoth (ref_90) 2018; 25 Vidayanti (ref_95) 2017; 8 Asad (ref_138) 2019; 217 Xinxian (ref_140) 2011; 27 Zhang (ref_161) 2013; 15 Gomes (ref_88) 2014; 103 Jha (ref_101) 2007; 103 Bonanno (ref_7) 2017; 143 ref_151 Pietrangelo (ref_65) 2018; 9 Liu (ref_120) 2015; 15 Kotoky (ref_159) 2019; 2 Teng (ref_149) 2019; 231 Taylor (ref_73) 1983; 61 (ref_145) 2017; 10 Viana (ref_81) 2019; 214 Cheng (ref_176) 2003; 10 Were (ref_61) 2021; 8 Rajkumar (ref_144) 2009; 77 (ref_53) 2021; 52 (ref_69) 2008; 10 Klink (ref_79) 2017; 24 (ref_11) 2020; 231 Upatham (ref_91) 2010; 1 Gupta (ref_171) 2018; 8 Reichenauer (ref_14) 2008; 1 Ozdemir (ref_114) 2003; 90 Li (ref_122) 2022; 13 Khanna (ref_128) 2021; 41 Nair (ref_143) 2007; 180 Xu (ref_156) 2019; 103 Marques (ref_19) 2009; 39 Babalola (ref_118) 2016; 18 Sasmaz (ref_9) 2008; 33 Johnson (ref_63) 2021; 790 Sharma (ref_35) 2023; 14 (ref_77) 2011; 13 Chandwani (ref_155) 2022; 29 Vroom (ref_62) 2018; 124 Arroyo (ref_99) 2015; 506–507 Grichko (ref_154) 2000; 81 Pal (ref_58) 2017; 37 Awa (ref_30) 2020; 231 Azizi (ref_76) 2020; 18 Pang (ref_116) 2021; 78 (ref_2) 2018; 9 (ref_166) 2020; 7 Hemes (ref_59) 2018; 45 Kafle (ref_32) 2022; 8 Zhang (ref_44) 2020; 398 Guan (ref_175) 2018; 122 Wang (ref_10) 2016; 74 Chandra (ref_92) 2011; 13 Zaranyika (ref_96) 2017; 7 (ref_147) 2010; 28 ref_173 ref_57 Pan (ref_133) 2017; 24 ref_172 ref_174 Petry (ref_67) 2020; 25 Mitsch (ref_56) 2013; 28 Rathaur (ref_139) 2012; 6 Huth (ref_60) 2015; 7 (ref_137) 2021; 250 Faisal (ref_112) 2005; 7 (ref_70) 2008; 188 Chellaiah (ref_108) 2018; 8 Hejna (ref_5) 2020; 241 ref_169 Patten (ref_131) 2013; 39 ref_68 Ghosh (ref_167) 2021; 3 Oliveira (ref_82) 2018; 78 ref_66 Ahmed (ref_132) 2014; 63 Saha (ref_146) 2016; 23 Shahid (ref_6) 2020; 243 Pandey (ref_111) 2013; 51 He (ref_130) 2020; 40 Barillot (ref_126) 2013; 63 Hadad (ref_83) 2018; 25 Rascio (ref_28) 2011; 180 Saha (ref_64) 2016; 18 Eid (ref_55) 2013; 39 ref_36 Ciotir (ref_51) 2016; 768 ref_33 Zhang (ref_123) 2021; 402 Camelo (ref_150) 2011; 12 Sodhi (ref_119) 2020; 2 Shehzadi (ref_106) 2016; 150 Kavita (ref_113) 2012; 2 Singh (ref_127) 2008; 94 ref_39 Anning (ref_74) 2013; 15 ref_38 Philippot (ref_104) 2013; 11 Bhattacharya (ref_115) 2013; 20 Ashkan (ref_102) 2017; 6 Leitenmaier (ref_21) 2013; 4 Ullah (ref_12) 2015; 117 ref_47 ref_46 Lagos (ref_103) 2015; 15 Wu (ref_105) 2020; 395 ref_45 ref_43 ref_100 Fakhar (ref_109) 2022; 52 ref_42 ref_41 Wu (ref_135) 2018; 25 Tirry (ref_170) 2021; 19 ref_40 Ciotir (ref_54) 2017; 141 ref_1 Hussain (ref_158) 2019; 159 Gabriele (ref_37) 2021; 293 (ref_72) 2009; 57 ref_49 Etim (ref_13) 2012; 2 Li (ref_98) 2013; 29 ref_8 Ajmal (ref_168) 2022; 13 |
References_xml | – volume: 11 start-page: 789 year: 2013 ident: ref_104 article-title: Going Back to the Roots: The Microbial Ecology of the Rhizosphere publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3109 – volume: 103 start-page: 1311 year: 2007 ident: ref_101 article-title: Endophytic Colonization of Typha australis by a Plant Growth-promoting Bacterium Klebsiella oxytoca Strain GR-3 publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2007.03383.x – volume: 103 start-page: 228 year: 2014 ident: ref_88 article-title: Phytoremediation of Water Contaminated with Mercury Using Typha domingensis in Constructed Wetland publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.11.071 – volume: 22 start-page: 16098 year: 2015 ident: ref_165 article-title: Effect of Cadmium Stress and Inoculation with a Heavy-Metal-Resistant Bacterium on the Growth and Enzyme Activity of Sorghum bicolor publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4798-7 – volume: 188 start-page: 297 year: 2008 ident: ref_70 article-title: Accumulation and Distribution of Heavy Metals in Scirpus americanus and Typha latifolia from an Artificial Lagoon in San Luis Potosí, México publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-007-9545-3 – volume: 12 start-page: 159 year: 2011 ident: ref_150 article-title: Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal publication-title: Cienc. Tecnol. Agropecu. doi: 10.21930/rcta.vol12_num2_art:227 – ident: ref_100 – volume: 15 start-page: 51 year: 2013 ident: ref_161 article-title: Colonization and Modulation of Host Growth and Metal Uptake by Endophytic Bacteria of Sedum alfredii publication-title: Int. J. Phytoremed. doi: 10.1080/15226514.2012.670315 – volume: 77 start-page: 153 year: 2009 ident: ref_144 article-title: Endophytic Bacteria and Their Potential to Enhance Heavy Metal Phytoextraction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.06.047 – volume: 51 start-page: 11 year: 2013 ident: ref_111 article-title: Role of Heavy Metal Resistant Ochrobactrum sp. and Bacillus spp. Strains in Bioremediation of a Rice Cultivar and Their PGPR like Activities publication-title: J. Microbiol. doi: 10.1007/s12275-013-2330-7 – ident: ref_16 – volume: 395 start-page: 122661 year: 2020 ident: ref_105 article-title: The Plant-Growth Promoting Bacteria Promote Cadmium Uptake by Inducing a Hormonal Crosstalk and Lateral Root Formation in a Hyperaccumulator Plant Sedum alfredii publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122661 – volume: 8 start-page: 154 year: 2018 ident: ref_108 article-title: Cadmium (Heavy Metals) Bioremediation by Pseudomonas Aeruginosa: A Minireview publication-title: Appl. Water Sci. doi: 10.1007/s13201-018-0796-5 – ident: ref_57 doi: 10.1371/journal.pone.0248398 – volume: 402 start-page: 123454 year: 2021 ident: ref_123 article-title: Distinction between Cr and Other Heavy-Metal-Resistant Bacteria Involved in C/N Cycling in Contaminated Soils of Copper Producing Sites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123454 – volume: 124 start-page: 88 year: 2018 ident: ref_62 article-title: Typha latifolia Paludiculture Effectively Improves Water Quality and Reduces Greenhouse Gas Emissions in Rewetted Peatlands publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2018.09.008 – volume: 122 start-page: 867 year: 2018 ident: ref_175 article-title: Comparison of Fungal Communities among Ten Macrophyte Rhizospheres publication-title: Fungal Biol. doi: 10.1016/j.funbio.2018.05.001 – volume: 2 start-page: 135 year: 2019 ident: ref_159 article-title: Cadmium Resistant Plant Growth Promoting Rhizobacteria Serratia marcescens S2I7 Associated with the Growth Promotion of Rice Plant publication-title: Environ. Sustain. doi: 10.1007/s42398-019-00055-3 – volume: 74 start-page: 19 year: 2008 ident: ref_142 article-title: Involvement of Siderophores in the Reduction of Metal-Induced Inhibition of Auxin Synthesis in Streptomyces spp. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.09.079 – volume: 243 start-page: 125353 year: 2020 ident: ref_6 article-title: Comparing the Performance of Four Macrophytes in Bacterial Assisted Floating Treatment Wetlands for the Removal of Trace Metals (Fe, Mn, Ni, Pb, and Cr) from Polluted River Water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125353 – volume: 90 start-page: 650 year: 2013 ident: ref_78 article-title: Removal and Accumulation of As, Cd and Cr by Typha latifolia publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-013-0962-2 – volume: 250 start-page: 126811 year: 2021 ident: ref_137 article-title: Characterization of Siderophore-Producing Microorganisms Associated to Plants from High-Andean Heavy Metal Polluted Soil from Callejón de Huaylas (Ancash, Perú) publication-title: Microbiol. Res. doi: 10.1016/j.micres.2021.126811 – volume: 27 start-page: 4905 year: 2020 ident: ref_80 article-title: Phytoremediation of Cadmium-Contaminated Wetland Soil with Typha latifolia L. and the Underlying Mechanisms Involved in the Heavy-Metal Uptake and Removal publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-07256-7 – volume: 11 start-page: 288 year: 2006 ident: ref_27 article-title: Can Metals Defend Plants against Biotic Stress? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2006.04.007 – volume: 39 start-page: 395 year: 2013 ident: ref_131 article-title: Activity, Distribution and Function of Indole-3-Acetic Acid Biosynthetic Pathways in Bacteria publication-title: Crit. Rev. Microbiol. doi: 10.3109/1040841X.2012.716819 – volume: 14 start-page: 78 year: 2023 ident: ref_35 article-title: Phytoremediation Technologies and Their Mechanism for Removal of Heavy Metal from Contaminated Soil: An Approach for a Sustainable Environment publication-title: Front. Plant Sci. doi: 10.3389/fpls.2023.1076876 – volume: 9 start-page: 1473 year: 2018 ident: ref_129 article-title: Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01473 – ident: ref_43 doi: 10.3390/plants11091255 – ident: ref_33 doi: 10.3390/biology9070177 – volume: 18 start-page: 938 year: 2016 ident: ref_64 article-title: A Consortium of Non-Rhizobial Endophytic Microbes from Typha angustifolia Functions as Probiotic in Rice and Improves Nitrogen Metabolism publication-title: Plant Biol. doi: 10.1111/plb.12485 – volume: 2 start-page: 120 year: 2012 ident: ref_13 article-title: Phytoremediation and Its Mechanisms: A Review publication-title: Int. J. Environ. Bioenergy – volume: 23 start-page: 744 year: 2005 ident: ref_4 article-title: Agrobacterium-Mediated Transformation of the Wetland Monocot Typha latifolia L. (Broadleaf Cattail) publication-title: Plant Cell Rep. doi: 10.1007/s00299-004-0890-z – ident: ref_41 doi: 10.3390/plants12030429 – volume: 28 start-page: 583 year: 2013 ident: ref_56 article-title: Wetlands, Carbon, and Climate Change publication-title: Landsc. Ecol. doi: 10.1007/s10980-012-9758-8 – volume: 154 start-page: 358 year: 2016 ident: ref_160 article-title: Endophytic Bacterium Sphingomonas SaMR12 Promotes Cadmium Accumulation by Increasing Glutathione Biosynthesis in Sedum alfredii Hance publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.03.120 – volume: 143 start-page: 92 year: 2017 ident: ref_7 article-title: Comparative Analysis of Element Concentrations and Translocation in Three Wetland Congener Plants: Typha domingensis, Typha latifolia and Typha angustifolia publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.05.021 – ident: ref_29 doi: 10.1007/978-94-007-2072-5_15 – volume: 141 start-page: 51 year: 2017 ident: ref_54 article-title: Genetic Characterization of Cattail Species and Hybrids (Typha spp.) in Europe publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2017.03.005 – volume: 66 start-page: 361 year: 1986 ident: ref_52 article-title: The Biology of Canadian Weeds. Typha latifolia L., Typha angustifolia L. and Typha xglauca Godr publication-title: Can. J. Plant Sci. doi: 10.4141/cjps86-051 – volume: 20 start-page: 6628 year: 2013 ident: ref_115 article-title: Evaluation of Acinetobacter sp. B9 for Cr (VI) Resistance and Detoxification with Potential Application in Bioremediation of Heavy-Metals-Rich Industrial Wastewater publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1728-4 – volume: 8 start-page: 8813 year: 2018 ident: ref_48 article-title: Revised Phylogeny and Historical Biogeography of the Cosmopolitan Aquatic Plant Genus Typha (Typhaceae) publication-title: Sci. Rep. doi: 10.1038/s41598-018-27279-3 – ident: ref_124 doi: 10.3390/plants11111447 – volume: 43 start-page: 164 year: 2013 ident: ref_71 article-title: Metal Accumulation and Distribution in the Organs of Typha latifolia L. (Cattail) and Their Potential Use in Bioindication publication-title: Limnologica doi: 10.1016/j.limno.2012.08.012 – volume: 40 start-page: 31 year: 2020 ident: ref_130 article-title: Endophyte-Assisted Phytoremediation: Mechanisms and Current Application Strategies for Soil Mixed Pollutants publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2019.1675582 – ident: ref_172 doi: 10.3390/molecules26061569 – volume: 45 start-page: 6081 year: 2018 ident: ref_59 article-title: A Biogeochemical Compromise: The High Methane Cost of Sequestering Carbon in Restored Wetlands publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077747 – volume: 217 start-page: 925 year: 2019 ident: ref_138 article-title: Integrated Phytobial Heavy Metal Remediation Strategies for a Sustainable Clean Environment—A Review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.021 – volume: 790 start-page: 147920 year: 2021 ident: ref_63 article-title: Repeated Large-Scale Mechanical Treatment of Invasive Typha under Increasing Water Levels Promotes Floating Mat Formation and Wetland Methane Emissions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147920 – volume: 15 start-page: 452 year: 2013 ident: ref_74 article-title: Phytoremediation of Wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in Constructed Wetlands publication-title: Int. J. Phytoremed. doi: 10.1080/15226514.2012.716098 – volume: 2 start-page: 1885 year: 2020 ident: ref_119 article-title: Multi-Metal Resistance and Potential of Alcaligenes sp. MMA for the Removal of Heavy Metals publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03583-4 – volume: 8 start-page: 6870 year: 2017 ident: ref_95 article-title: Phytoremediation of Chromium: Distribution and Speciation of Chromium in Typha angustifolia publication-title: Int. J. Plant Biol. doi: 10.4081/pb.2017.6870 – volume: 251 start-page: 1 year: 2005 ident: ref_152 article-title: Modulation of Plant Ethylene Levels by the Bacterial Enzyme ACC Deaminase publication-title: FEMS Microbiol. Lett. doi: 10.1016/j.femsle.2005.07.030 – volume: 59 start-page: 579 year: 2019 ident: ref_157 article-title: Characterization of Cadmium-Resistant Rhizobacteria and Their Promotion Effects on Brassica napus Growth and Cadmium Uptake publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201800656 – volume: 13 start-page: 538 year: 2011 ident: ref_77 article-title: Lead, Chromium and Manganese Removal by In Vitro Root Cultures of Two Aquatic Macrophytes Species: Typha latifolia L. and Scirpus americanus Pers publication-title: Int. J. Phytoremed. doi: 10.1080/15226511003671379 – volume: 2 start-page: 79 year: 2012 ident: ref_113 article-title: Reduction of Hexavalent Chromium by Ochrobactrum intermedium BCR400 Isolated from a Chromium-Contaminated Soil publication-title: 3 Biotech doi: 10.1007/s13205-011-0038-0 – volume: 7 start-page: 14 year: 2020 ident: ref_166 article-title: Effect of Pseudomonas rhodesiae GRC140 on Cucumis sativus L. Seedlings with and without Cadmium publication-title: J. Nat. Resour. Life Sci. Educ. – volume: 38 start-page: 67 year: 2020 ident: ref_3 article-title: Identification and Isolation of Heavy-Metal Tolerant and Bioaccumulator Bacteria Obtained from El Fraile Mine Tailings, Mexico publication-title: Terra Latinoam. doi: 10.28940/terra.v38i1.430 – ident: ref_38 doi: 10.3390/ijms20143412 – volume: 10 start-page: 256 year: 2003 ident: ref_176 article-title: Effects of Heavy Metals on Plants and Resistance Mechanisms publication-title: Environ. Sci. Pollut. Res. doi: 10.1065/espr2002.11.141.2 – volume: 7 start-page: 271 year: 2005 ident: ref_112 article-title: Beneficial Role of Hydrophytes in Removing Cr(VI) from Wastewater in Association with Chromate-Reducing Bacterial Strains Ochrobactrum intermedium and Brevibacterium publication-title: Int. J. Phytoremed. doi: 10.1080/16226510500327111 – volume: 1 start-page: 708 year: 2008 ident: ref_14 article-title: Phytoremediation of Organic Contaminants in Soil and Groundwater publication-title: ChemSusChem doi: 10.1002/cssc.200800125 – volume: 231 start-page: 437 year: 2020 ident: ref_31 article-title: Phytoremediation Mechanisms in Air Pollution Control: A Review publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-020-04813-6 – volume: 12 start-page: 758144 year: 2022 ident: ref_110 article-title: Deciphering Cadmium (Cd) Tolerance in Newly Isolated Bacterial Strain, Ochrobactrum intermedium BB12, and Its Role in Alleviation of Cd Stress in Spinach Plant (Spinacia oleracea L.) publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.758144 – volume: 9 start-page: 1650 year: 2018 ident: ref_65 article-title: Unraveling the Composition of the Root-Associated Bacterial Microbiota of Phragmites australis and Typha latifolia publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01650 – volume: 241 start-page: 125018 year: 2020 ident: ref_5 article-title: Bioaccumulation of Heavy Metals from Wastewater through a Typha latifolia and Thelypteris palustris Phytoremediation System publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125018 – volume: 25 start-page: 5344 year: 2018 ident: ref_90 article-title: Synergistic Phytoremediation of Wastewater by Two Aquatic Plants (Typha angustifolia and Eichhornia crassipes) and Potential as Biomass Fuel publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0813-5 – volume: 52 start-page: 1868 year: 2022 ident: ref_109 article-title: Heavy Metal Remediation and Resistance Mechanism of Aeromonas, Bacillus, and Pseudomonas: A Review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1863112 – volume: 8 start-page: 639 year: 2011 ident: ref_87 article-title: Phytoremediation of Industrial Wastewater Potentiality by Typha domingensis publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/BF03326249 – volume: 506–507 start-page: 380 year: 2015 ident: ref_99 article-title: Influence of Environmental Variables on the Structure and Composition of Soil Bacterial Communities in Natural and Constructed Wetlands publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.11.039 – volume: 214 start-page: 10 year: 2019 ident: ref_81 article-title: Phytoremediation of Barium-Affected Flooded Soils Using Single and Intercropping Cultivation of Aquatic Macrophytes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.096 – volume: 231 start-page: 47 year: 2020 ident: ref_30 article-title: Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-020-4426-0 – volume: 8 start-page: 553 year: 2021 ident: ref_61 article-title: Carbon Dioxide and Methane Fluxes from Various Vegetation Communities of a Natural Tropical Freshwater Wetland in Different Seasons publication-title: Environ. Process. doi: 10.1007/s40710-021-00497-0 – volume: 25 start-page: 18130 year: 2018 ident: ref_83 article-title: Long-Term Study of Cr, Ni, Zn, and P Distribution in Typha domingensis Growing in a Constructed Wetland publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-2039-6 – volume: 56 start-page: 55 year: 2008 ident: ref_141 article-title: Cadmium–Induced Siderophore Production by a High Cd-Resistant Bacterial Strain Relieved Cd Toxicity in Plants Through Root Colonization publication-title: Curr. Microbiol. doi: 10.1007/s00284-007-9038-z – volume: 13 start-page: 1072389 year: 2022 ident: ref_122 article-title: Structural and Functional Characteristics of Soil Microbial Communities in Response to Different Ecological Risk Levels of Heavy Metals publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.1072389 – volume: 126 start-page: 1708 year: 2019 ident: ref_136 article-title: Serratia sp. CP-13 Augments the Growth of Cadmium (Cd)-Stressed Linum usitatissimum L. by Limited Cd Uptake, Enhanced Nutrient Acquisition and Antioxidative Potential publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14252 – volume: 56 start-page: 685 year: 2004 ident: ref_93 article-title: Accumulation of Heavy Metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) Living in Sultan Marsh (Kayseri, Turkey) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.04.011 – volume: 39 start-page: 622 year: 2009 ident: ref_19 article-title: Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380701798272 – ident: ref_36 – volume: 117 start-page: 28 year: 2015 ident: ref_12 article-title: Phytoremediation of Heavy Metals Assisted by Plant Growth Promoting (PGP) Bacteria: A Review publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.05.001 – ident: ref_47 doi: 10.3390/plants11151946 – volume: 37 start-page: 497 year: 2017 ident: ref_58 article-title: Potential of Wetland Macrophytes to Sequester Carbon and Assessment of Seasonal Carbon Input into the East Kolkata Wetland Ecosystem publication-title: Wetlands doi: 10.1007/s13157-017-0885-5 – volume: 7 start-page: 1092 year: 2015 ident: ref_60 article-title: The Effect of Biomass Harvesting on Greenhouse Gas Emissions from a Rewetted Temperate Fen publication-title: GCB Bioenergy doi: 10.1111/gcbb.12214 – volume: 1 start-page: 431 year: 2010 ident: ref_91 article-title: Phytoextraction of Metal Contaminants by Typha angustifolia: Interaction of Lead and Cadmium in Soil-Water Microcosms publication-title: J. Environ. Prot. doi: 10.4236/jep.2010.14050 – volume: 41 start-page: 2514 year: 2021 ident: ref_128 article-title: Unsnarling Plausible Role of Plant Growth-Promoting Rhizobacteria for Mitigating Cd-Toxicity from Plants: An Environmental Safety Aspect publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-021-10445-9 – ident: ref_173 doi: 10.1007/978-981-15-1636-8 – volume: 39 start-page: 31 year: 2013 ident: ref_55 article-title: Evaluation of Carbon Sequestration Potentiality of Lake Burullus, Egypt to Mitigate Climate Change publication-title: Egypt. J. Aquat. Res. doi: 10.1016/j.ejar.2013.04.002 – volume: 5 start-page: 111 year: 2015 ident: ref_148 article-title: Phosphate-Solubilizing Bacteria-Assisted Phytoremediation of Metalliferous Soils: A Review publication-title: 3 Biotech doi: 10.1007/s13205-014-0206-0 – volume: 10 start-page: 34 year: 2017 ident: ref_145 article-title: Fitorremediación Asistida Por Microorganismos: Enfásis En Bacterias Promotoras Del Crecimiento De Plantas publication-title: Agro Product. – volume: 74 start-page: 1409 year: 2016 ident: ref_10 article-title: An Approach to Biodegradation of Chlorobenzenes: Combination of Typha angustifolia and Bacterial Effects on Hexachlorobenzene Degradation in Water publication-title: Water Sci. Technol. doi: 10.2166/wst.2016.313 – volume: 33 start-page: 278 year: 2008 ident: ref_9 article-title: The Accumulation of Heavy Metals in Typha latifolia L. Grown in a Stream Carrying Secondary Effluent publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2008.05.006 – ident: ref_49 – volume: 231 start-page: 423 year: 2020 ident: ref_11 article-title: Isolation of Cultivable Bacteria Associated with the Root of Typha latifolia in a Constructed Wetland for the Removal of Diclofenac or Naproxen publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-020-04781-x – volume: 57 start-page: 688 year: 2009 ident: ref_72 article-title: Removal and Accumulation of Cadmium and Lead by Typha latifolia Exposed to Single and Mixed Metal Solutions publication-title: Arch. Environ. Contam. Toxicol. doi: 10.1007/s00244-009-9351-6 – volume: 8 start-page: 4860 year: 2018 ident: ref_171 article-title: Potential Applications of Pseudomonas sp. (Strain CPSB21) to Ameliorate Cr6+ Stress and Phytoremediation of Tannery Effluent Contaminated Agricultural Soils publication-title: Sci. Rep. doi: 10.1038/s41598-018-23322-5 – volume: 18 start-page: 200 year: 2016 ident: ref_118 article-title: Effect of Bacterial Inoculation of Strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on Germination, Growth and Heavy Metal (Cd, Cr, and Ni) Uptake of Brassica juncea publication-title: Int. J. Phytoremed. doi: 10.1080/15226514.2015.1073671 – volume: 103 start-page: 3887 year: 2019 ident: ref_156 article-title: Role of Novel Bacterial Raoultella sp. Strain X13 in Plant Growth Promotion and Cadmium Bioremediation in Soil publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09700-7 – volume: 13 start-page: 580 year: 2011 ident: ref_92 article-title: Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from Aqueous Solution Using Phragmites cummunis, Typha angustifolia and Cyperus Esculentus publication-title: Int. J. Phytoremed. doi: 10.1080/15226514.2010.495258 – volume: 190 start-page: 328 year: 2018 ident: ref_75 article-title: Municipal Wastewater Treatment Potential and Metal Accumulation Strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a Constructed Wetland publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6705-4 – ident: ref_46 doi: 10.3390/ijms23095031 – volume: 10 start-page: 359 year: 2008 ident: ref_69 article-title: Identification and Characterization of Sulfur-Oxidizing Bacteria in an Artificial Wetland That Treats Wastewater From a Tannery publication-title: Int. J. Phytoremed. doi: 10.1080/15226510802100390 – ident: ref_39 doi: 10.3390/en13112905 – volume: 52 start-page: 349 year: 2021 ident: ref_53 article-title: Cadmium-Tolerant Endophytic Pseudomonas rhodesiae Strains Isolated from Typha latifolia Modify the Root Architecture of Arabidopsis thaliana Col-0 in Presence and Absence of Cd publication-title: Braz. J. Microbiol. doi: 10.1007/s42770-020-00408-9 – ident: ref_151 – volume: 7 start-page: 13318 year: 2017 ident: ref_162 article-title: Sedum alfredii SaNramp6 Metal Transporter Contributes to Cadmium Accumulation in Transgenic Arabidopsis thaliana publication-title: Sci. Rep. doi: 10.1038/s41598-017-13463-4 – ident: ref_174 doi: 10.1007/978-3-030-41552-5 – volume: 206 start-page: 522 year: 2018 ident: ref_86 article-title: Selection of Plants for Phytoremediation of Barium-Polluted Flooded Soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.056 – volume: 11 start-page: 359 year: 2020 ident: ref_34 article-title: Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00359 – ident: ref_68 doi: 10.3390/su12051927 – volume: 180 start-page: 199 year: 2007 ident: ref_143 article-title: Production and Characterization of Siderophores and Its Application in Arsenic Removal from Contaminated Soil publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-006-9263-2 – ident: ref_8 – volume: 200 start-page: 869 year: 2018 ident: ref_97 article-title: Taxonomic Structure and Function of Seed-Inhabiting Bacterial Microbiota from Common Reed (Phragmites australis) and Narrowleaf Cattail (Typha angustifolia L.) publication-title: Arch. Microbiol. doi: 10.1007/s00203-018-1493-3 – volume: 90 start-page: 71 year: 2003 ident: ref_114 article-title: Heavy Metal Biosorption by Biomass of Ochrobactrum anthropi Producing Exopolysaccharide in Activated Sludge publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(03)00088-9 – volume: 16 start-page: 3 year: 2007 ident: ref_22 article-title: Aplicación de plantas hiperacumuladoras de níquel en la fitoextracción natural: El género Alyssum L. publication-title: Ecosistemas – volume: 3 start-page: 100101 year: 2021 ident: ref_167 article-title: A Potent Cadmium Bioaccumulating Enterobacter Cloacae Strain Displays Phytobeneficial Property in Cd-Exposed Rice Seedlings publication-title: Curr. Res. Microb. Sci. – volume: 63 start-page: 261 year: 2014 ident: ref_132 article-title: Auxins as One of the Factors of Plant Growth Improvement by Plant Growth Promoting Rhizobacteria publication-title: Pol. J. Microbiol. doi: 10.33073/pjm-2014-035 – volume: 146 start-page: 30 year: 2007 ident: ref_117 article-title: Hexavalent Chromium Reduction by Acinetobacter haemolyticus Isolated from Heavy-Metal Contaminated Wastewater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.11.052 – volume: 28 start-page: 61 year: 2010 ident: ref_147 article-title: Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: Una revisión crítica publication-title: Terra Latinoam. – volume: 180 start-page: 169 year: 2011 ident: ref_28 article-title: Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them so Interesting? publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.08.016 – volume: 6 start-page: 756 year: 2017 ident: ref_102 article-title: Isolation, Characterization and Identification of Putative Bacterial Endophytes from Some Plants in Hot Springs, South Dakota publication-title: Int. J. Curr. Microbiol. Appl. Sci. doi: 10.20546/ijcmas.2017.606.089 – ident: ref_66 – volume: 29 start-page: 1499 year: 2013 ident: ref_98 article-title: Comparison of the Diversity of Root-Associated Bacteria in Phragmites australis and Typha angustifolia L. in Artificial Wetlands publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-013-1316-2 – ident: ref_17 – volume: 24 start-page: 66 year: 2022 ident: ref_89 article-title: Cr, Ni, and Zn Removal from Landfill Leachate Using Vertical Flow Wetlands Planted with Typha domingensis and Canna indica publication-title: Int. J. Phytoremed. doi: 10.1080/15226514.2021.1926909 – volume: 81 start-page: 45 year: 2000 ident: ref_154 article-title: Increased Ability of Transgenic Plants Expressing the Bacterial Enzyme ACC Deaminase to Accumulate Cd, Co, Cu, Ni, Pb, and Zn publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(00)00270-4 – volume: 293 start-page: 112805 year: 2021 ident: ref_37 article-title: Phytoremediation of Pyrene-Contaminated Soils: A Critical Review of the Key Factors Affecting the Fate of Pyrene publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112805 – volume: 40 start-page: 170 year: 2018 ident: ref_163 article-title: Shoot Endophytic Plant Growth-Promoting Bacteria Reduce Cadmium Toxicity and Enhance Switchgrass (Panicum virgatum L.) Biomass publication-title: Acta Physiol. Plant doi: 10.1007/s11738-018-2737-1 – volume: 15 start-page: 1191 year: 2015 ident: ref_120 article-title: Plant Growth-Promoting Rhizobacteria Enhance the Growth and Cd Uptake of Sedum plumbizincicola in a Cd-Contaminated Soil publication-title: J. Soils Sediments doi: 10.1007/s11368-015-1067-9 – volume: 63 start-page: 471 year: 2013 ident: ref_126 article-title: A Standardized Method for the Sampling of Rhizosphere and Rhizoplan Soil Bacteria Associated to a Herbaceous Root System publication-title: Ann. Microbiol. doi: 10.1007/s13213-012-0491-y – ident: ref_125 doi: 10.3390/plants12030498 – volume: 8 start-page: 100203 year: 2022 ident: ref_32 article-title: Phytoremediation: Mechanisms, Plant Selection and Enhancement by Natural and Synthetic Agents publication-title: Environ. Adv. doi: 10.1016/j.envadv.2022.100203 – volume: 398 start-page: 125657 year: 2020 ident: ref_44 article-title: Bioremediation of Co-Contaminated Soil with Heavy Metals and Pesticides: Influence Factors, Mechanisms and Evaluation Methods publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125657 – volume: 16 start-page: 4 year: 2007 ident: ref_23 article-title: Hiperacumulación de metales: ¿una ventaja para la planta y para el hombre? publication-title: Ecosistemas – volume: 159 start-page: 23 year: 2019 ident: ref_158 article-title: Individual and Combinatorial Application of Kocuria rhizophila and Citric Acid on Phytoextraction of Multi-Metal Contaminated Soils by Glycine max L. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.12.006 – volume: 78 start-page: 509 year: 2018 ident: ref_82 article-title: Cadmium Tolerance of Typha domingensis Pers. (Typhaceae) as Related to Growth and Leaf Morphophysiology publication-title: Braz. J. Biol. doi: 10.1590/1519-6984.171961 – volume: 74 start-page: 1349 year: 2017 ident: ref_107 article-title: Community Composition and Abundance of Anammox Bacteria in Cattail Rhizosphere Sediments at Three Phenological Stages publication-title: Curr. Microbiol. doi: 10.1007/s00284-017-1324-9 – volume: 94 start-page: 1131 year: 2008 ident: ref_127 article-title: Criteria for Identification and Assessment of Agro-Biodiversity Heritage Sites: Evolving Sustainable Agriculture publication-title: Curr. Sci. – volume: 43 start-page: 163 year: 2019 ident: ref_121 article-title: Mercury Contamination Imposes Structural Shift on the Microbial Community of an Agricultural Soil publication-title: Bull. Natl. Res. Cent. doi: 10.1186/s42269-019-0208-5 – volume: 25 start-page: 5 year: 2020 ident: ref_67 article-title: Removal of Ammoniacal Nitrogen from Municipal Landfill Leachate with Floating Typha domingensis (Typhaceae) publication-title: Acta Biológica Colomb. doi: 10.15446/abc.v25n1.74749 – volume: 25 start-page: 21844 year: 2018 ident: ref_135 article-title: Endophytic Bacterium buttiauxella sp. SaSR13 Improves Plant Growth and Cadmium Accumulation of Hyperaccumulator Sedum alfredii publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-2322-6 – volume: 4 start-page: 374 year: 2013 ident: ref_21 article-title: Compartmentation and Complexation of Metals in Hyperaccumulator Plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00374 – ident: ref_24 doi: 10.1079/9781845936167.0446 – ident: ref_25 doi: 10.1002/9781118287705 – volume: 156 start-page: 183 year: 2018 ident: ref_164 article-title: Bioaccumulation of Cadmium by Enterobacter sp. and Enhancement of Rice Seedling Growth under Cadmium Stress publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.03.001 – volume: 27 start-page: 1197 year: 2011 ident: ref_140 article-title: Isolation and Characterization Endophytic Bacteria from Hyperaccumulator Sedum alfredii Hance and Their Potential to Promote Phytoextraction of Zinc Polluted Soil publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-010-0568-3 – volume: 155 start-page: 159 year: 2004 ident: ref_94 article-title: Removal of Lead from Contaminated Soils by Typha angustifolia publication-title: Water Air Soil Pollut. doi: 10.1023/B:WATE.0000026523.96599.6b – ident: ref_18 – volume: 8 start-page: 2538 year: 2017 ident: ref_134 article-title: The Effects of the Endophytic Bacterium Pseudomonas fluorescens Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Sedum alfredii Hance publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02538 – volume: 23 start-page: 3984 year: 2016 ident: ref_146 article-title: Microbial Siderophores and Their Potential Applications: A Review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4294-0 – volume: 768 start-page: 137 year: 2016 ident: ref_51 article-title: Cryptic Intercontinental Dispersal, Commercial Retailers, and the Genetic Diversity of Native and Non-Native Cattails (Typha spp.) in North America publication-title: Hydrobiologia doi: 10.1007/s10750-015-2538-0 – volume: 284 start-page: 117105 year: 2021 ident: ref_50 article-title: Review of Typha spp. (Cattails) as Toxicity Test Species for the Risk Assessment of Environmental Contaminants on Emergent Macrophytes publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117105 – ident: ref_1 doi: 10.1007/978-3-642-22081-4 – ident: ref_45 doi: 10.3390/plants12040725 – ident: ref_20 doi: 10.1007/978-0-387-21510-5 – volume: 24 start-page: 9350 year: 2017 ident: ref_133 article-title: The Effects of Endophytic Bacterium SaMR12 on Sedum alfredii Hance Metal Ion Uptake and the Expression of Three Transporter Family Genes after Cadmium Exposure publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-017-8565-9 – volume: 78 start-page: 316 year: 2021 ident: ref_116 article-title: Optimization of Growth Conditions of Acinetobacter sp. Cr1 for Removal of Heavy Metal Cr Using Central Composite Design publication-title: Curr. Microbiol. doi: 10.1007/s00284-020-02278-8 – ident: ref_40 doi: 10.1007/978-3-030-20732-8 – volume: 150 start-page: 1261 year: 2016 ident: ref_106 article-title: Ecology of Bacterial Endophytes Associated with Wetland Plants Growing in Textile Effluent for Pollutant-Degradation and Plant Growth-Promotion Potentials publication-title: Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. – volume: 231 start-page: 189 year: 2019 ident: ref_149 article-title: Characterization of Phosphate Solubilizing Bacteria Isolated from Heavy Metal Contaminated Soils and Their Potential for Lead Immobilization publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.10.012 – ident: ref_42 doi: 10.3390/plants12081653 – volume: 29 start-page: 22843 year: 2022 ident: ref_155 article-title: Role of ACC Deaminase Producing Bacteria for Abiotic Stress Management and Sustainable Agriculture Production publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-022-18745-7 – volume: 13 start-page: 815704 year: 2022 ident: ref_168 article-title: Heavy Metal–Resistant Plant Growth–Promoting Citrobacter werkmanii Strain WWN1 and Enterobacter cloacae Strain JWM6 Enhance Wheat (Triticum aestivum L.) Growth by Modulating Physiological Attributes and Some Key Antioxidants Under Multi-Metal Stress publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.815704 – volume: 61 start-page: 63 year: 1983 ident: ref_73 article-title: Uptake and Accumulation of Heavy Metals by Typha latifolia in Wetlands of the Sudbury, Ontario Region publication-title: Can. J. Bot. doi: 10.1139/b83-005 – ident: ref_26 doi: 10.1007/978-94-007-3913-0 – volume: 7 start-page: 286 year: 2017 ident: ref_96 article-title: Uptake of Heavy Metals by Typha capensis from Wetland Sites Polluted by Effluent from Mineral Processing Plants: Implications of Metal–Metal Interactions publication-title: 3 Biotech doi: 10.1007/s13205-017-0916-1 – volume: 26 start-page: 3138 year: 2019 ident: ref_84 article-title: Mercury Species Accumulation and Distribution in Typha domingensis under Real Field Conditions (Almadén, Spain) publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-1861-1 – volume: 22 start-page: 286 year: 2015 ident: ref_85 article-title: The Ability of Typha domingensis to Accumulate and Tolerate High Concentrations of Cr, Ni, and Zn publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3352-3 – volume: 9 start-page: 551 year: 2018 ident: ref_2 article-title: Fitorremediación Con Maíz (Zea mays L.) y Compost de Stevia En Suelos Degradados Por Contaminación Con Metales Pesados publication-title: Sci. Agropecu. – ident: ref_169 doi: 10.3390/su13147792 – ident: ref_15 – volume: 24 start-page: 3843 year: 2017 ident: ref_79 article-title: A Comparison of Trace Metal Bioaccumulation and Distribution in Typha latifolia and Phragmites australis: Implication for Phytoremediation publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-8135-6 – volume: 6 start-page: 253 year: 2012 ident: ref_139 article-title: Isolation and Characterization of Nickel and Cadmium Tolerant Plant Growth Promoting Rhizobacteria from Rhizosphere of Withania somnifera publication-title: J. Biol. Environ. Sci. – volume: 18 start-page: 21 year: 2020 ident: ref_76 article-title: Heavy Metal Bioaccumulation and Distribution in Typha latifolia and Arundo donax: Implication for Phytoremediation publication-title: Casp. J. Environ. Sci. – volume: 34 start-page: 635 year: 2007 ident: ref_153 article-title: Perspective of Plant Growth Promoting Rhizobacteria (PGPR) Containing ACC Deaminase in Stress Agriculture publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-007-0240-6 – volume: 15 start-page: 504 year: 2015 ident: ref_103 article-title: Current Overview on the Study of Bacteria in the Rhizosphere by Modern Molecular Techniques: A Mini-review publication-title: J. Soil Sci. Plant Nutr. – volume: 19 start-page: 149 year: 2021 ident: ref_170 article-title: Improved Chromium Tolerance of Medicago sativa by Plant Growth-Promoting Rhizobacteria (PGPR) publication-title: J. Genet. Eng. Biotechnol. doi: 10.1186/s43141-021-00254-8 |
SSID | ssj0000913851 |
Score | 2.2761126 |
SecondaryResourceType | review_article |
Snippet | Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1587 |
SubjectTerms | Accumulation Aquatic ecosystems Bacteria bacterial diversity Biomass biomass production carbon Carbon sources Ecosystems Environmental impact Explosives heavy metal tolerance Heavy metals Herbicides Hydrocarbons Microorganisms Organic chemicals Organic contaminants Pesticides Phytoremediation Plant growth plant growth-promoting rhizobacteria Plant tissues Pollutants pollution Proteobacteria Review Rhizosphere Roots Sediments Soil contamination Soil water Surface water Typha Typha spp |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA4yILgR31ZHieC23qR5NUtHHEZBEXFgdqWnTbgXnLZM7yzm33tO01vulZHZuE1OaHvy-r7m5DuMvQevZUSgnNfWm1zb1uR19ICcxzlhWm_dpKX37bs9O9dfL8zFXqoviglL8sDJcatSNBEJOtjW4WYDUAqlS4-0RDXBNjLQ6ot73h6ZmtZgLxViiXQlWCGvX11SfFvKlDRejpKYkKE4ur3daBLtvw1p_h0wubcDnT5iD2foyD-mV37M7oXuCbufkknePGXDSRJeRpP51gdppfKd_0PL6Z8rR8DHf_b9duR95MhC1zUfh-EDr7uWf8HSJTpuvRn4puM_1jdIy8N0w4TK-Xy1IIzP2Pnp51-fzvI5n0LeGF1sc9UGA0Wra7C1cNHSCSXViLoEGYzVMUaAIqoCnC_BKNcYUFAEZ1oBEdRzdtT1XXjJODaXttZBISDRVjfeGSitlE5GLUILGTM7v1bNLDZOOS9-V0g6qD-q2_sjY6ul3ZDkNu5scULdtliTXPZUgJbVPIiquwZRxo53nV7Nc3is6Iy51No4fMa7pRpnHx2p1F3or8mGKBeCSP9vG4XrpHKI60TGXqRxtLwtljuCyBkrD0bYwecc1nSb9aQCTvnhhCvUq__hgNfsAVZTno9cmmN2tL26Dm8QbW3h7TSx_gAN7Ctc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagFRIXxJtAQUbiGtaJX8kJsahVQaKqKir1FmViW7sSTQLZHvrvmUm8oYsKXO2x5GRm7G_s8TeMvYNSZQGBclqbUqfKOJ3WoQSMeawV2pXGjlx6X0_M8bn6cqEv4oHbENMqt2viuFC7rqEz8gXd-BVKaWs_9D9SqhpFt6uxhMZdto9LcIHB1_7y8OT0bD5lIdZLxBTT02CJ8f3ikvLcpopJw-WQUUSkKZ_uxq40kvffhjj_TJy8sRMdPWQPIoTkHyedP2J3fPuY3ZuKSl4_Yf1yImBGkfj6gzhT-VYP3nE6e-UI_PhZ120G3gWO0eiq5kPfv-d16_hnbJ2z5Fbrnq9bfrq6xvDcjy9NqJ3HJwZ-eMrOjw6_fTpOY12FtNEq36TSeQ25UzWYWthg6KaSekRdQOa1USEEgDzIHGxZgJa20SAh91Y7AQHkM7bXdq1_wTgOz0ytvERgooxqSquhMFlms6CEd5Awvf2vVRNJx6n2xfcKgw_SR3W7PhK2mMf1E-3Gf0csSW2zNNFmjw0oWUUvrArRhFzkYJxF5AJQCKkKNCshG2-azCfsYKv0KvryUP22vIS9nbvRC-lqpW59d0UyFHohmCz_LiNxvZQW8Z1I2PPJjubZYrslqJywYsfCdj5nt6ddr0Y2cKoTJ2wuX_577q_YffxyquSRZvqA7W1-XvnXiKc28CY6zS-pSiUX priority: 102 providerName: ProQuest |
Title | Bacterial Communities Associated with the Roots of Typha spp. and Its Relationship in Phytoremediation Processes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37375088 https://www.proquest.com/docview/2829844577 https://www.proquest.com/docview/2830670569 https://www.proquest.com/docview/3040373550 https://pubmed.ncbi.nlm.nih.gov/PMC10300723 https://doaj.org/article/80cf202b6d7241bb8034898403ce6c1e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB9qi9IX8bOe1mMFX9Mm2c88iHjSUoWWUjzoW8gmu9xBm8TmCt5_70y-8OSqr7uzuUtmJvv7ZXfnB_DRJiLyCJSDTCUyEKqQQeYTi5xH61AWidJtLb3zC3U2F9-v5fUODHKp_QNstlI70pOa390c_fq5_owJ_4kYJ1L241vautaJIDW3TUQkRxr9CPZwdtKUrOc95G_fzknETavKGCOFDxDO6-7g8D8utQ9PuOaasMzG9NVW-d8GTf_eYfnHlHX6DJ72WJN96YLjOey48gU87tQn1y-hnnWVmtGkPyZCxVXZ4DBXMPpIyxAhsquqWjWs8gxp6yJjTV0fsaws2DdsHbfTLZY1W5bscrFGHu_aIynUzvqzCK55BfPTkx9fz4JegCHIpYhXAS-ctHEhMquyUHtFS5rUE2bGRk4q4b23NvY8tjoxVnKdS8tt7LQsQustfw27ZVW6N8BweKQy4TgiGKFEnmhpjYrQP16ErrATkMNzTfO-OjmJZNykyFLINel210zgeBxXd_U5_jtiRm4bram-dtuAlmmfrqkJcx-HsVWFxiCy1oRcmATJMM-dyiM3gcPB6ekQsyktShshpMbf-DB2Y7rSGkxWuuqebIijIepMHrbh-GLFeEPuOIGDLo7GfzvE4QTMRoRt3M5mT7lctGXDSVAu1DF_--BF38E-3jSpfQSRPITd1d29e4-Ya2WnsDc7ubi8mrbfLKZtSv0G1SEu1A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCY1gnfiUHhFhotUvbVVW1Um8hTmztSjQJJBXaP8VvZGbzoIsKnHq1x5HjGdvf2OP5CHltYhE4AMp-qmLpC5VLP3WxAZ9HaybzWOl1Lr3DuZqeis9n8myL_OzfwmBYZb8mrhfqvMzwjHyMN36REFLr99U3H1mj8Ha1p9BozWLfrn6Ay1a_m30C_b4Jw73dk49Tv2MV8DMpwsbnuZUmzEVqVMq0U3hPhzUsjUxgpRLOOWNCx0Oj48hIrjNpuAmtljkzznD47g2yLTi4MiOyPdmdHx0PpzqYZRMwTPsUmfOYjc8xrq5laKrP6wA9MInxe5d2wTVZwFUI989AzUs7395dcqeDrPRDa2P3yJYt7pObLYnl6gGpJm3CZxDpXptgjlba693mFM96KQBNelyWTU1LR8H7XaS0rqq3NC1yOoPSISpvsazosqBHi1VT4uFl3hoP7Z402PohOb2WEX9ERkVZ2CeEQvNApcJyAEJCiSzW0kQqCHTgBLO58YjsxzXJuiTnyLXxNQFnB_WRXK0Pj4yHdlWb5uO_LSaotkEa03SvC0Ay6WZ9ErHMhSw0KteAlIyJGBcRmDHjmVVZYD2y0ys96daOOvlt6R55NVTDrMernLSw5QXKoKsH4DX-uwyH9ZlrwJPMI49bOxp6C-UaoblHog0L2_idzZpiuVhnH0deOqZD_vTffX9Jbk1PDg-Sg9l8_xm5DaOALCJ-IHfIqPl-YZ8DlmvMi24CUfLluufsL4wwYyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkaCY1gnfiUHhFjaVZfCalVRqbcQJ7Z2JZoEshXav8avYyYvuqjAqVd7HCWe8eQbezwfIS9NLAIHQNlPVSx9oXLppy42EPNozWQeK93U0vs0V4cn4sOpPN0hP_u7MJhW2fvExlHnZYZ75GM88YuEkFqPXZcWsdifvq2--cgghSetPZ1GayJHdvMDwrf6zWwfdP0qDKcHn98f-h3DgJ9JEa59nltpwlykRqVMO4VndtjD0sgEVirhnDMmdDw0Oo6M5DqThpvQapkz4wyH514juxqiIjYiu5OD-eJ42OHBipuAZ9pryZzHbHyGOXYtW1N9VgcYjUnM5bvwR2yIAy5Du38mbV74C05vk1sdfKXvWnu7Q3ZscZdcbwktN_dINWmLP4NId_ME67XS3gZsTnHflwLopMdlua5p6ShEwsuU1lX1mqZFTmfQOmToLVcVXRV0sdysS9zIzFtDot31BlvfJydXMuMPyKgoC_uIUBgeqFRYDqBIKJHFWppIBYEOnGA2Nx6R_bwmWVfwHHk3viYQ-KA-ksv14ZHxMK5qS378d8QE1TZIY8nupgEkk84DJBHLXMhCo3INqMmYiHERgUkznlmVBdYje73Sk86P1Mlvq_fIi6EbPAAe66SFLc9RBsM-ALLx32U4-GquAVsyjzxs7Wh4W2jXCNM9Em1Z2NbnbPcUq2VTiRw56pgO-eN_v_tzcgPWavJxNj96Qm7CJCChiB_IPTJafz-3TwHWrc2zbv1Q8uWql-wvux1nWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+Communities+Associated+with+the+Roots+of+Typha+spp.+and+Its+Relationship+in+Phytoremediation+Processes&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Mart%C3%ADnez-Mart%C3%ADnez%2C+Joana+Guadalupe&rft.au=Rosales-Loredo%2C+Stephanie&rft.au=Hern%C3%A1ndez-Morales%2C+Alejandro&rft.au=Arvizu-G%C3%B3mez%2C+Jackeline+Lizzeta&rft.date=2023-06-15&rft.issn=2076-2607&rft.eissn=2076-2607&rft.volume=11&rft.issue=6&rft_id=info:doi/10.3390%2Fmicroorganisms11061587&rft_id=info%3Apmid%2F37375088&rft.externalDocID=37375088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon |