Designing plots for precise estimation of forest attributes in landscapes and forests of varying heterogeneity
Models of relationships among forest inventory sampling efficiency and cluster plot configuration variables inform decisions by inventory planners. However, relationships vary under different spatial heterogeneity scenarios. To improve understanding of how spatial patterns of forests affect these re...
Saved in:
Published in | Canadian journal of forest research Vol. 51; no. 10; pp. 1569 - 1578 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
NRC Research Press
01.10.2021
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
ISSN | 0045-5067 1208-6037 1208-6037 |
DOI | 10.1139/cjfr-2020-0508 |
Cover
Abstract | Models of relationships among forest inventory sampling efficiency and cluster plot configuration variables inform decisions by inventory planners. However, relationships vary under different spatial heterogeneity scenarios. To improve understanding of how spatial patterns of forests affect these relationships, we implemented a factorial experiment by simulating forest pattern at both the landscape and stand scales. We sampled these simulated forests with a variety of cluster plot configurations, calculated coefficient of variation (CV) of trees per hectare for each replicate, and tested the relationships among CV and the heterogeneity and cluster plot configuration factors within a linear mixed model framework. Both landscape- and stand-scale pattern aggregation had a significant relationship with CV. Changing cluster plot configuration factors did little to change the overall CV when using larger subplots but had some important effects when using smaller subplots. These impacts were stronger in the more uniform landscapes. Results were opposite for stand-scale heterogeneity; changing plot configuration in areas with aggregated patterns had a stronger impact than it did in areas with more uniform patterns. Results of this study reveal the importance of accounting for spatial pattern at multiple scales when making cluster configuration choices if the goal is statistical efficiency. |
---|---|
AbstractList | Models of relationships among forest inventory sampling efficiency and cluster plot configuration variables inform decisions by inventory planners. However, relationships vary under different spatial heterogeneity scenarios. To improve understanding of how spatial patterns of forests affect these relationships, we implemented a factorial experiment by simulating forest pattern at both the landscape and stand scales. We sampled these simulated forests with a variety of cluster plot configurations, calculated coefficient of variation (CV) of trees per hectare for each replicate, and tested the relationships among CV and the heterogeneity and cluster plot configuration factors within a linear mixed model framework. Both landscape- and stand-scale pattern aggregation had a significant relationship with CV. Changing cluster plot configuration factors did little to change the overall CV when using larger subplots but had some important effects when using smaller subplots. These impacts were stronger in the more uniform landscapes. Results were opposite for stand-scale heterogeneity; changing plot configuration in areas with aggregated patterns had a stronger impact than it did in areas with more uniform patterns. Results of this study reveal the importance of accounting for spatial pattern at multiple scales when making cluster configuration choices if the goal is statistical efficiency. Key words: cluster plot design, forest inventory design optimization, forest inventory efficiency, forest pattern simulation, forest sampling simulation. Les modeles qui relient l'efficacite d'echantillonnage de l'inventaire forestier et les variables de configuration des grappes de parcelles eclairent les decisions des planificateurs d'inventaire. Cependant, ces relations varient en fonction des differents scenarios d'heterogeneite spatiale. Afin d'ameliorer la comprehension de la facon dont les patrons spatiaux des forets influencent ces relations, nous avons mis en oeuvre une experience factorielle en simulant les patrons forestiers aux echelles du paysage et du peuplement. Nous avons echantillonne ces forets simulees avec une variete de configurations de grappes de parcelles, calcule le coefficient de variation (CV) du nombre d'arbres a l'hectare pour chaque repetition, et teste les relations entre le CV et les facteurs d'heterogeneite spatiale et de configuration des grappes de parcelles, dans un cadre de modele lineaire mixte. Les patrons d'agregation spatiale avaient une relation significative avec le CV, tant a l'echelle du paysage que du peuplement. La modification des facteurs de configuration des grappes de parcelles n'a pas change le CV global lors de l'utilisation de sous-parcelles plus grandes, mais a eu des effets importants lors de l'utilisation de sous-parcelles plus petites. Ces effets etaient plus importants dans les paysages plus uniformes. Les resultats etaient a l'oppose pour l'heterogeneite a l'echelle du peuplement; la modification de la configuration des parcelles dans les zones avec des patrons agreges a eu un impact plus marque que dans les zones avec des patrons plus uniformes. Les resultats de cette etude revelent l'importance de tenir compte du patron spatial a plusieurs echelles lors des choix de configuration des grappes si l'objectif est l'efficacite statistique. [Traduit par la Redaction] Mots-cles: configuration des grappes de parcelles, optimisation de la conception de l'inventaire forestier, efficacite de l'inventaire forestier, simulation de patrons forestiers, simulation d'echantillonnage forestier. Models of relationships among forest inventory sampling efficiency and cluster plot configuration variables inform decisions by inventory planners. However, relationships vary under different spatial heterogeneity scenarios. To improve understanding of how spatial patterns of forests affect these relationships, we implemented a factorial experiment by simulating forest pattern at both the landscape and stand scales. We sampled these simulated forests with a variety of cluster plot configurations, calculated coefficient of variation (CV) of trees per hectare for each replicate, and tested the relationships among CV and the heterogeneity and cluster plot configuration factors within a linear mixed model framework. Both landscape- and stand-scale pattern aggregation had a significant relationship with CV. Changing cluster plot configuration factors did little to change the overall CV when using larger subplots but had some important effects when using smaller subplots. These impacts were stronger in the more uniform landscapes. Results were opposite for stand-scale heterogeneity; changing plot configuration in areas with aggregated patterns had a stronger impact than it did in areas with more uniform patterns. Results of this study reveal the importance of accounting for spatial pattern at multiple scales when making cluster configuration choices if the goal is statistical efficiency. |
Abstract_FL | Les modèles qui relient l’efficacité d’échantillonnage de l’inventaire forestier et les variables de configuration des grappes de parcelles éclairent les décisions des planificateurs d’inventaire. Cependant, ces relations varient en fonction des différents scénarios d’hétérogénéité spatiale. Afin d’améliorer la compréhension de la façon dont les patrons spatiaux des forêts influencent ces relations, nous avons mis en œuvre une expérience factorielle en simulant les patrons forestiers aux échelles du paysage et du peuplement. Nous avons échantillonné ces forêts simulées avec une variété de configurations de grappes de parcelles, calculé le coefficient de variation (CV) du nombre d’arbres à l’hectare pour chaque répétition, et testé les relations entre le CV et les facteurs d’hétérogénéité spatiale et de configuration des grappes de parcelles, dans un cadre de modèle linéaire mixte. Les patrons d’agrégation spatiale avaient une relation significative avec le CV, tant à l’échelle du paysage que du peuplement. La modification des facteurs de configuration des grappes de parcelles n’a pas changé le CV global lors de l’utilisation de sous-parcelles plus grandes, mais a eu des effets importants lors de l’utilisation de sous-parcelles plus petites. Ces effets étaient plus importants dans les paysages plus uniformes. Les résultats étaient à l’opposé pour l’hétérogénéité à l’échelle du peuplement; la modification de la configuration des parcelles dans les zones avec des patrons agrégés a eu un impact plus marqué que dans les zones avec des patrons plus uniformes. Les résultats de cette étude révèlent l’importance de tenir compte du patron spatial à plusieurs échelles lors des choix de configuration des grappes si l’objectif est l’efficacité statistique. [Traduit par la Rédaction] |
Audience | Academic |
Author | Lister, Andrew J Leites, Laura P |
Author_xml | – sequence: 1 givenname: Andrew J surname: Lister fullname: Lister, Andrew J organization: USDA Forest Service, Northern Research Station, Forest Inventory and Analysis, 3460 Industrial Drive, York, PA 17402, USA – sequence: 2 givenname: Laura P surname: Leites fullname: Leites, Laura P organization: Department of Ecosystem Science and Management, Penn State University, 312 Forest Resources Building, University Park, PA 16802, USA |
BookMark | eNqVks9vFCEUx4mpidvq1fNEL3qY-oCBYY5NtbVJo4k_zoQyMGUzC1NgjPvfy7iNdc0aYzgAj8_35fvC9xgd-eANQs8xnGJMuzd6bWNNgEANDMQjtMIERM2BtkdoBdCwmgFvn6DjlNYAQDmFFfJvTXKDd36opjHkVNkQqyka7ZKpTMpuo7ILvgp2eSmFSuUc3c2cTaqcr0bl-6TVVG7ldM-kBf-m4nZpe2uyiWEw3ri8fYoeWzUm8-x-P0FfL959OX9fX3-8vDo_u641a0iuie2Jblnft1hYjBvOe-htS_SN6DraM66tpbwBzDuhCicMZkIoRoXAIDSnJ-jVru8Uw91cLMmNS9qMxa4Jc5KEl_FFIygp6Ms_0HWYoy_uJGECQLREdA_UoEYjnbchR6WXpvKMCyAdg44Vqj5ALbNHNZbfsq6U9_gXB3g9uTv5O3R6ACqrNxunD3Z9vScoTDbf86DmlOTV50__wX7YZ5sdq2NIKRortcs_41EMuVFikEsQ5RJEuQRRLkF88P9LNsUSq7j9uwDvBD7qEiejor79l-YHWjDuvw |
CitedBy_id | crossref_primary_10_1016_j_apgeog_2023_103045 crossref_primary_10_1088_1748_9326_ada8c4 |
Cites_doi | 10.18637/jss.v012.i06 10.1007/978-1-4612-0529-6_13 10.1017/S0021859600050516 10.1139/x04-079 10.1093/njaf/9.1.3 10.1007/BF02738616 10.1007/978-90-481-3233-1_2 10.1080/21580103.2014.968222 10.5849/forsci.14-197 10.1016/0378-1127(90)90087-R 10.1007/978-1-4939-6374-4_6 10.1214/ss/1009212674 10.1016/j.foreco.2018.07.052 10.18637/jss.v067.i01 10.1016/j.rse.2009.12.013 10.1139/cjfr-2013-0490 10.3733/hilg.v38n02p133 10.1641/0006-3568(2002)052[0411:FFOTCU]2.0.CO;2 10.1139/cjfr-30-5-688 10.1093/forestry/cpw038 10.1007/978-90-481-3233-1 10.1016/j.rse.2015.07.002 10.1016/0378-1127(87)90076-4 10.1201/b19708 10.1139/x03-044 10.1126/sciadv.1500052 10.1201/b17198 10.3390/f8100393 10.1093/forestscience/26.2.251 10.1139/cjfr-28-10-1429 10.1016/j.ecolmodel.2018.03.012 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 NRC Research Press 2021 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2021 NRC Research Press – notice: 2021 Published by NRC Research Press |
DBID | AAYXX CITATION ISN ISR 7SN 7SS 7T7 8FD C1K FR3 P64 RC3 U9A 7S9 L.6 |
DOI | 10.1139/cjfr-2020-0508 |
DatabaseName | CrossRef Gale In Context: Canada Gale In Context: Science Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Career and Technical Education (Alumni Edition) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1208-6037 |
EndPage | 1578 |
ExternalDocumentID | A680295095 10_1139_cjfr_2020_0508 cjfr-2020-0508 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 08R 0R 29B 2XV 3V. 4.4 4P2 5GY 5RP 7RQ 7X2 7XC 88I 8AF 8FE 8FG 8FH 8FQ 8G5 AAYJJ ABDBF ABFLS ABJCF ABPTK ABUWG ACGFS ACGOD ACIWK ACPRK AENEX AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC B4K BCR BCU BEC BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CAG COF CS3 D8U DWQXO EAD EAP EAS EBC EBD EBS ECC EDH EJD EMK EPL ESX GNUQQ GUQSH HCIFZ HZ I-F IAO ICQ IEA IEP IFM IOF IPNFZ IRD ISN ISR ITC ITF ITG ITH L6V LK5 M0K M2O M2P M2Q M3C M3G M7R M7S MV1 N95 NMEPN NRXXU NYCZX N~3 O9- OVD P2P PADUT PATMY PCBAR PEA PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS PV9 PYCSY QF4 QM4 QN7 QO4 QRP RIG RRCRK RRP RZL SJFOW TEORI TUS U5U UQL VH1 Y6R ZCG 00T 0R~ 6J9 AAHBH AAYXX ABJNI ACGFO ACUHS AEGXH AEUYN AI. AIAGR APEBS CCPQU CITATION ECGQY HZ~ ONR PHGZM PHGZT PQGLB VQG XOL YV5 ZY4 7SN 7SS 7T7 8FD C1K FR3 P64 RC3 U9A 7S9 L.6 |
ID | FETCH-LOGICAL-c542t-2fd2c75dd718f11466d0df72cb8993d56cff36401698a75d8e1588a5388108c63 |
ISSN | 0045-5067 1208-6037 |
IngestDate | Fri Jul 11 09:23:35 EDT 2025 Sat Aug 16 17:41:54 EDT 2025 Wed Mar 19 01:55:57 EDT 2025 Fri Mar 14 03:16:59 EDT 2025 Tue Jun 10 15:34:13 EDT 2025 Sat Mar 08 18:38:32 EST 2025 Wed Mar 05 05:30:03 EST 2025 Wed Mar 05 05:39:06 EST 2025 Thu Apr 24 23:10:23 EDT 2025 Thu Aug 14 00:08:09 EDT 2025 Sat Oct 09 09:26:14 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-2fd2c75dd718f11466d0df72cb8993d56cff36401698a75d8e1588a5388108c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2580087289 |
PQPubID | 47747 |
PageCount | 10 |
ParticipantIDs | gale_infotraccpiq_680295095 gale_incontextgauss_ISR_A680295095 crossref_citationtrail_10_1139_cjfr_2020_0508 proquest_miscellaneous_2636384832 gale_infotracmisc_A680295095 gale_infotracacademiconefile_A680295095 gale_incontextgauss_ISN_A680295095 nrcresearch_primary_10_1139_cjfr_2020_0508 proquest_journals_2580087289 gale_infotracgeneralonefile_A680295095 crossref_primary_10_1139_cjfr_2020_0508 |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 |
PublicationPlace_xml | – name: 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 – name: Ottawa |
PublicationTitle | Canadian journal of forest research |
PublicationYear | 2021 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg40/ref40 refg18/ref18 refg20/ref20 refg22/ref22 refg36/ref36 refg45/ref45 refg31/ref31 refg9/ref9 refg11/ref11 refg25/ref25 refg29/ref29 refg43/ref43 refg34/ref34 refg26/ref26 refg14/ref14 refg8/ref8 refg2/ref2 refg23/ref23 refg37/ref37 refg19/ref19 refg21/ref21 refg7/ref7 refg4/ref4 refg10/ref10 refg12/ref12 refg1/ref1 refg28/ref28 refg41/ref41 refg32/ref32 refg35/ref35 refg3/ref3 Pebesma E.J. (refg27/ref27) 2005; 5 refg42/ref42 refg24/ref24 refg16/ref16 refg33/ref33 |
References_xml | – ident: refg45/ref45 doi: 10.18637/jss.v012.i06 – ident: refg7/ref7 doi: 10.1007/978-1-4612-0529-6_13 – ident: refg33/ref33 doi: 10.1017/S0021859600050516 – ident: refg29/ref29 doi: 10.1139/x04-079 – volume: 5 start-page: 9 issue: 2 year: 2005 ident: refg27/ref27 publication-title: R News, – ident: refg31/ref31 doi: 10.1093/njaf/9.1.3 – ident: refg16/ref16 doi: 10.1007/BF02738616 – ident: refg26/ref26 – ident: refg18/ref18 doi: 10.1007/978-90-481-3233-1_2 – ident: refg41/ref41 doi: 10.1080/21580103.2014.968222 – ident: refg14/ref14 doi: 10.5849/forsci.14-197 – ident: refg23/ref23 doi: 10.1016/0378-1127(90)90087-R – ident: refg8/ref8 doi: 10.1007/978-1-4939-6374-4_6 – ident: refg34/ref34 doi: 10.1214/ss/1009212674 – ident: refg20/ref20 – ident: refg28/ref28 doi: 10.1016/j.foreco.2018.07.052 – ident: refg3/ref3 doi: 10.18637/jss.v067.i01 – ident: refg24/ref24 doi: 10.1016/j.rse.2009.12.013 – ident: refg37/ref37 doi: 10.1139/cjfr-2013-0490 – ident: refg1/ref1 doi: 10.3733/hilg.v38n02p133 – ident: refg12/ref12 doi: 10.1641/0006-3568(2002)052[0411:FFOTCU]2.0.CO;2 – ident: refg42/ref42 doi: 10.1139/cjfr-30-5-688 – ident: refg22/ref22 doi: 10.1093/forestry/cpw038 – ident: refg36/ref36 doi: 10.1007/978-90-481-3233-1 – ident: refg25/ref25 doi: 10.1016/j.rse.2015.07.002 – ident: refg32/ref32 doi: 10.1016/0378-1127(87)90076-4 – ident: refg2/ref2 doi: 10.1201/b19708 – ident: refg21/ref21 doi: 10.1139/x03-044 – ident: refg11/ref11 doi: 10.1126/sciadv.1500052 – ident: refg40/ref40 doi: 10.1201/b17198 – ident: refg4/ref4 – ident: refg9/ref9 doi: 10.3390/f8100393 – ident: refg43/ref43 doi: 10.1093/forestscience/26.2.251 – ident: refg10/ref10 doi: 10.1139/cjfr-28-10-1429 – ident: refg19/ref19 doi: 10.1016/j.ecolmodel.2018.03.012 – ident: refg35/ref35 |
SSID | ssj0003630 |
Score | 2.3528101 |
Snippet | Models of relationships among forest inventory sampling efficiency and cluster plot configuration variables inform decisions by inventory planners. However,... |
SourceID | proquest gale crossref nrcresearch |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1569 |
SubjectTerms | cluster plot design Clusters Coefficient of variation configuration des grappes de parcelles Configurations Distribution efficacité de l’inventaire forestier Environmental aspects Factorial experiments forest inventory forest inventory design optimization forest inventory efficiency forest pattern simulation forest sampling simulation Forests Forests and forestry Heterogeneity Landscape landscapes optimisation de la conception de l’inventaire forestier simulation de patrons forestiers simulation d’échantillonnage forestier Spatial heterogeneity spatial variation statistical models Trees |
Title | Designing plots for precise estimation of forest attributes in landscapes and forests of varying heterogeneity |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2020-0508 https://www.proquest.com/docview/2580087289 https://www.proquest.com/docview/2636384832 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiF4QHyKsoIMQkyiykidjzqP-6Da0NhDt0l7ixwnHkUjGW2KBH89d7aT1KITg5cosk9xevfr-Rzf_UzI26xgoZIi9zKhmBeOBfjBuFDeSIpEJUEB7gG_Q34-iQ_Pw08X0UWvp1aylpZ1tiN_ra0r-R-rQhvYFatk_8Gy7UOhAe7BvnAFC8P1VjY-0OkXup78qqo1swIW_eNBGUNkz_jWxoPQAw1DUZsDrnQW1lCX-WIClOFpNjI6teOHmOvypy-YLFPB-MWsdvZ_W1KDFeYJO4alD2o_Mx_PmsM_TPJktxF1DE81Xgqrs4UtNbOfINioTWazGRrT_TZP0Mkc0R43jLzIN0duNB7XUsxaZPkr_hNWk8l6xx4gL6r8quaAAIb79z7vprBm2_7odOo2GmbfmPssgcgoukM22XiM2_mbu3sHe5N2zg7iwBYrmbe19J4w6gd3TCd8sZP4_XIuG93-MaXrOOXsIXlgFxh016DlEekV5WNyd6JtM__5hJQtaKgGDQWzUQsa2oGGVooag9IONHRW0g40FO6szALFLWioA5qn5Hzy8Wz_0LOHbngyClntMZUzOY7yHIIWhSXrce7nasxkBivzII9iqVQQh0jiwwXI8WIUcS5g3uQjn8s4eEY2yqosnhMKwWCeccVyNhahyFgS5zwKs5ApmFbCgveJ1-gylZaRHg9GuUr1yjRIUtR9irpPUfd9st3KXxsulhsl36BpUiQ4KTGD6lIsF4v06PQk7cBwo9DUEdq2QqqCd5PCVq3AL0TiNEdyy5GU17Pv6UrvO6f30pDKr3vMwBEEby-d7vcraPurGgYNGFPrDhYpizjyUDKe9MnrthuHwXTLsqiWIBPDH4KHMNu_uI2Stsi9zi0MyEY9XxYvIVavs1f2j_YblfzucA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+plots+for+precise+estimation+of+forest+attributes+in+landscapes+and+forests+of+varying+heterogeneity&rft.jtitle=Canadian+journal+of+forest+research&rft.au=Lister%2C+Andrew+J&rft.au=Leites%2C+Laura+P&rft.date=2021-10-01&rft.pub=NRC+Research+Press&rft.issn=0045-5067&rft.volume=51&rft.issue=10&rft.spage=1569&rft_id=info:doi/10.1139%2Fcjfr-2020-0508&rft.externalDBID=ISR&rft.externalDocID=A680295095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-5067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-5067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-5067&client=summon |