Recruitment of the NineTeen Complex to the activated spliceosome requires AtPRMT5

Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in amultitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal gro...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 19; pp. 5447 - 5452
Main Authors Deng, Xian, Lu, Tiancong, Wang, Lulu, Gu, Lianfeng, Sun, Jing, Kong, Xiangfeng, Liu, Chunyan, Cao, Xiaofeng
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in amultitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal growth and development in multiple species; however, the underlying molecular mechanism remains largely unknown. A genetic screen for suppressors of an Arabidopsis symmetric arginine dimethyltransferase mutant, atprmt5, identified two gain-of-function alleles of pre-mRNA processing factor 8 gene (prp8-8 and prp8-9), the highly conserved core component of the U5 small nuclear ribonucleoprotein (snRNP) and the spliceosome. These two atprmt5 prp8 double mutants showed suppression of the developmental and splicing alterations of atprmt5 mutants. In atprmt5 mutants, the NineTeen complex failed to be assembled into the U5 snRNP to form an activated spliceosome; this phenotype was restored in the atprmt5 prp8-8 double mutants. We also found that loss of symmetric arginine dimethylation of Sm proteins prevents recruitment of the NineTeen complex and initiation of spliceosome activation. Together, our findings demonstrate that symmetric arginine dimethylation has important functions in spliceosome assembly and activation, and uncover a key molecular mechanism for arginine methylation in pre-mRNA splicing that impacts diverse developmental processes.
AbstractList Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in a multitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal growth and development in multiple species; however, the underlying molecular mechanism remains largely unknown. A genetic screen for suppressors of an Arabidopsis symmetric arginine dimethyltransferase mutant, atprmt5, identified two gain-of-function alleles of pre-mRNA processing factor 8 gene (prp8-8 and prp8-9), the highly conserved core component of the U5 small nuclear ribonucleoprotein (snRNP) and the spliceosome. These two atprmt5 prp8 double mutants showed suppression of the developmental and splicing alterations of atprmt5 mutants. In atprmt5 mutants, the NineTeen complex failed to be assembled into the U5 snRNP to form an activated spliceosome; this phenotype was restored in the atprmt5 prp8-8 double mutants. We also found that loss of symmetric arginine dimethylation of Sm proteins prevents recruitment of the NineTeen complex and initiation of spliceosome activation. Together, our findings demonstrate that symmetric arginine dimethylation has important functions in spliceosome assembly and activation, and uncover a key molecular mechanism for arginine methylation in pre-mRNA splicing that impacts diverse developmental processes.
Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in amultitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal growth and development in multiple species; however, the underlying molecular mechanism remains largely unknown. A genetic screen for suppressors of an Arabidopsis symmetric arginine dimethyltransferase mutant, atprmt5, identified two gain-of-function alleles of pre-mRNA processing factor 8 gene (prp8-8 and prp8-9), the highly conserved core component of the U5 small nuclear ribonucleoprotein (snRNP) and the spliceosome. These two atprmt5 prp8 double mutants showed suppression of the developmental and splicing alterations of atprmt5 mutants. In atprmt5 mutants, the NineTeen complex failed to be assembled into the U5 snRNP to form an activated spliceosome; this phenotype was restored in the atprmt5 prp8-8 double mutants. We also found that loss of symmetric arginine dimethylation of Sm proteins prevents recruitment of the NineTeen complex and initiation of spliceosome activation. Together, our findings demonstrate that symmetric arginine dimethylation has important functions in spliceosome assembly and activation, and uncover a key molecular mechanism for arginine methylation in pre-mRNA splicing that impacts diverse developmental processes.
Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in a multitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal growth and development in multiple species; however, the underlying molecular mechanism remains largely unknown. A genetic screen for suppressors of an Arabidopsis symmetric arginine dimethyltransferase mutant, atprmt5, identified two gain-of-function alleles of pre-mRNA processing factor 8 gene (prp8-8 and prp8-9), the highly conserved core component of the U5 small nuclear ribonucleoprotein (snRNP) and the spliceosome. These two atprmt5 prp8 double mutants showed suppression of the developmental and splicing alterations of atprmt5 mutants. In atprmt5 mutants, the NineTeen complex failed to be assembled into the U5 snRNP to form an activated spliceosome; this phenotype was restored in the atprmt5 prp8-8 double mutants. We also found that loss of symmetric arginine dimethylation of Sm proteins prevents recruitment of the NineTeen complex and initiation of spliceosome activation. Together, our findings demonstrate that symmetric arginine dimethylation has important functions in spliceosome assembly and activation, and uncover a key molecular mechanism for arginine methylation in pre-mRNA splicing that impacts diverse developmental processes.Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in a multitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal growth and development in multiple species; however, the underlying molecular mechanism remains largely unknown. A genetic screen for suppressors of an Arabidopsis symmetric arginine dimethyltransferase mutant, atprmt5, identified two gain-of-function alleles of pre-mRNA processing factor 8 gene (prp8-8 and prp8-9), the highly conserved core component of the U5 small nuclear ribonucleoprotein (snRNP) and the spliceosome. These two atprmt5 prp8 double mutants showed suppression of the developmental and splicing alterations of atprmt5 mutants. In atprmt5 mutants, the NineTeen complex failed to be assembled into the U5 snRNP to form an activated spliceosome; this phenotype was restored in the atprmt5 prp8-8 double mutants. We also found that loss of symmetric arginine dimethylation of Sm proteins prevents recruitment of the NineTeen complex and initiation of spliceosome activation. Together, our findings demonstrate that symmetric arginine dimethylation has important functions in spliceosome assembly and activation, and uncover a key molecular mechanism for arginine methylation in pre-mRNA splicing that impacts diverse developmental processes.
Protein arginine methyltransferase 5 (PRMT5) is involved in various developmental processes by globally regulating pre-mRNA splicing of diverse genes, but the underlying mechanism remains elusive. Here we demonstrate for the first time, to our knowledge, that Arabidopsis PRMT5 promotes the recruitment of the NineTeen Complex and splicing factors in the catalytic reactions to the spliceosome, thus promoting global pre-mRNA splicing. Our findings uncover a key molecular mechanism for PRMT5 in the regulation of pre-mRNA splicing, which fills a major gap in understanding of the role for PRMT5 in spliceosome assembly. Due to the conservation of PRMT5 in plants and animals, our finding is likely a fundamental molecular mechanism applicable to all eukaryotes, thereby shedding light on PRMT5 functions and spliceosome activation in animals. Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in a multitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal growth and development in multiple species; however, the underlying molecular mechanism remains largely unknown. A genetic screen for suppressors of an Arabidopsis symmetric arginine dimethyltransferase mutant, atprmt5 , identified two gain-of-function alleles of pre-mRNA processing factor 8 gene ( prp8-8 and prp8-9 ), the highly conserved core component of the U5 small nuclear ribonucleoprotein (snRNP) and the spliceosome. These two atprmt5 prp8 double mutants showed suppression of the developmental and splicing alterations of atprmt5 mutants. In atprmt5 mutants, the NineTeen complex failed to be assembled into the U5 snRNP to form an activated spliceosome; this phenotype was restored in the atprmt5 prp8-8 double mutants. We also found that loss of symmetric arginine dimethylation of Sm proteins prevents recruitment of the NineTeen complex and initiation of spliceosome activation. Together, our findings demonstrate that symmetric arginine dimethylation has important functions in spliceosome assembly and activation, and uncover a key molecular mechanism for arginine methylation in pre-mRNA splicing that impacts diverse developmental processes.
Author Kong, Xiangfeng
Cao, Xiaofeng
Lu, Tiancong
Gu, Lianfeng
Deng, Xian
Wang, Lulu
Sun, Jing
Liu, Chunyan
Author_xml – sequence: 1
  givenname: Xian
  surname: Deng
  fullname: Deng, Xian
  organization: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 2
  givenname: Tiancong
  surname: Lu
  fullname: Lu, Tiancong
  organization: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 3
  givenname: Lulu
  surname: Wang
  fullname: Wang, Lulu
  organization: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 4
  givenname: Lianfeng
  surname: Gu
  fullname: Gu, Lianfeng
  organization: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 5
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
  organization: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 6
  givenname: Xiangfeng
  surname: Kong
  fullname: Kong, Xiangfeng
  organization: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 7
  givenname: Chunyan
  surname: Liu
  fullname: Liu, Chunyan
  organization: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 8
  givenname: Xiaofeng
  surname: Cao
  fullname: Cao, Xiaofeng
  organization: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27114555$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFNStQJDZs0vptZ4NUjXhUKgWqYW15nBvqURKntlPBv8fD9EG7gJUl-ztH597jA7Q3hhEQeknwEcGKHU-jTUdEUMqFJoQ9QQuCG1JL3uA9tMCYqlpzyvfRQUobjHEjNH6G9qkihAshFujbBbg4-zzAmKvQVfkSqnM_wgpgrJZhmHr4WeXw59667K9thrZKU-8dhBQGqCJczT5Cqk7y14vPK_EcPe1sn-DFzXmIvn94v1p-qs--fDxdnpzVTnCaa7pmHAS1lsCadVwJ4NA67rDQSra4dS0Tbaspl1RYrRqLeStZp1shWENdxw7Ru53vNK-HIi0DRNubKfrBxl8mWG8evoz-0vwI14ZrqTlvisHbG4MYrmZI2Qw-Oeh7O0KYkyEaa6kk1fT_qNJaMKXoFn3zCN2EOY5lE4VqqMS8IbJQr_8Of5f6tpgCHO8AF0NKEbo7hGCzrd5sqzf31ReFeKRwPtvsw3Z63_9D92qn26Qc4n0SyWX5LYL9BoeZvEw
CitedBy_id crossref_primary_10_1093_plphys_kiad193
crossref_primary_10_1111_nph_16113
crossref_primary_10_1093_plphys_kiac221
crossref_primary_10_1111_php_12680
crossref_primary_10_1080_15476286_2021_1899491
crossref_primary_10_3390_ijms25189937
crossref_primary_10_1016_j_chom_2024_07_014
crossref_primary_10_1016_j_pbi_2016_11_003
crossref_primary_10_1111_nph_18692
crossref_primary_10_3389_fpls_2021_765003
crossref_primary_10_1093_pnasnexus_pgad348
crossref_primary_10_1186_s12870_019_2018_1
crossref_primary_10_1093_jxb_erx419
crossref_primary_10_1007_s11427_022_2193_3
crossref_primary_10_1080_14789450_2017_1275573
crossref_primary_10_1111_plb_13676
crossref_primary_10_3390_plants13192771
crossref_primary_10_3390_ijms22105110
crossref_primary_10_1186_s12870_017_1010_x
crossref_primary_10_3390_ijms23147568
crossref_primary_10_1016_j_phrs_2021_105865
crossref_primary_10_1111_tpj_14780
crossref_primary_10_1016_j_celrep_2023_112685
crossref_primary_10_1111_jipb_13430
crossref_primary_10_3389_fcell_2021_725301
crossref_primary_10_1073_pnas_2317408121
crossref_primary_10_1093_pcp_pcz068
crossref_primary_10_1042_EBC20200029
crossref_primary_10_1093_plphys_kiac271
crossref_primary_10_1016_j_pbi_2022_102294
crossref_primary_10_1093_nar_gkac338
crossref_primary_10_1111_nph_19236
crossref_primary_10_1242_dev_186742
crossref_primary_10_1111_mpp_13228
crossref_primary_10_1073_pnas_2417253122
crossref_primary_10_1073_pnas_2008283117
crossref_primary_10_1038_s41477_020_0688_1
crossref_primary_10_1094_MPMI_01_19_0007_R
crossref_primary_10_26508_lsa_202201492
crossref_primary_10_1002_yea_3653
crossref_primary_10_1080_13543776_2019_1567711
crossref_primary_10_1038_s41467_024_49571_9
crossref_primary_10_1111_jipb_13885
crossref_primary_10_1093_nar_gkaa1082
crossref_primary_10_3390_proteomes5030016
Cites_doi 10.1111/j.1365-313X.2010.04277.x
10.1016/0092-8674(87)90588-5
10.1016/j.molcel.2008.12.013
10.1038/nmeth.1491
10.1016/j.febslet.2008.03.009
10.1016/j.cell.2008.09.020
10.1186/gb-2009-10-3-r25
10.1101/gad.606110
10.1126/science.aac7629
10.1016/j.jgg.2012.04.001
10.1093/bioinformatics/btp120
10.1038/nature09470
10.1016/S1097-2765(01)00180-0
10.1101/gad.17311211
10.1016/j.bbamcr.2013.05.023
10.1104/pp.107.099531
10.1017/S135583820101442X
10.1093/emboj/cdf585
10.1261/rna.2220705
10.1371/journal.pgen.1000514
10.1038/nrm3742
10.1186/gb-2004-5-12-r102
10.1073/pnas.1009669107
10.1534/genetics.115.176438
10.1128/MCB.21.24.8289-8300.2001
10.1073/pnas.1106946108
10.1016/j.cell.2009.02.009
10.1074/jbc.M111.311852
10.1038/ncb1413
10.1146/annurev.arplant.043008.091939
10.1186/s12864-015-1399-2
10.3389/fpls.2012.00009
10.1038/nrm3213
10.1007/s00018-015-1847-9
10.1101/pdb.prot4594
10.1146/annurev.ge.20.120186.003323
10.1016/j.molcel.2014.03.026
10.1038/emboj.2010.295
10.1101/gad.219899.113
10.1093/nar/gkr1171
10.1080/15384101.2015.1033595
10.1242/dev.120.11.3235
10.1016/j.cell.2008.03.031
10.1105/tpc.110.081356
10.1038/nature11843
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences May 10, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences May 10, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1522458113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic
Ecology Abstracts

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Recruitment of NTC to spliceosome requires AtPRMT5
EISSN 1091-6490
EndPage 5452
ExternalDocumentID PMC4868449
4072948991
27114555
10_1073_pnas_1522458113
26469585
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31370770
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31200900
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31330020
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31210103901
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c542t-2b34e52aa1eb3f475e4edc4c05876d0dcd35dd824625a879a04d63f8d55392cf3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:06:20 EDT 2025
Fri Jul 11 01:56:04 EDT 2025
Fri Jul 11 14:10:41 EDT 2025
Mon Jun 30 07:49:18 EDT 2025
Mon Jul 21 05:54:24 EDT 2025
Tue Jul 01 03:19:14 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Sun Aug 24 12:10:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords arginine methylation
AtPRMT5
Prp19C/NTC
pre-mRNA splicing
protein arginine methyltransferase
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-2b34e52aa1eb3f475e4edc4c05876d0dcd35dd824625a879a04d63f8d55392cf3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1X.D., T.L., and L.W. contributed equally to this work.
Edited by Caroline Dean, John Innes Centre, Norwich, United Kingdom, and approved March 30, 2016 (received for review November 15, 2015)
Author contributions: X.D., T.L., L.W., C.L., and X.C. designed research; X.D., T.L., L.W., X.K., and C.L. performed research; X.D., L.G., J.S., C.L., and X.C. analyzed data; and X.D. and X.C. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/113/19/5447.full.pdf
PMID 27114555
PQID 1792604916
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4868449
proquest_miscellaneous_1808676282
proquest_miscellaneous_1788537722
proquest_journals_1792604916
pubmed_primary_27114555
crossref_primary_10_1073_pnas_1522458113
crossref_citationtrail_10_1073_pnas_1522458113
jstor_primary_26469585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-10
PublicationDateYYYYMMDD 2016-05-10
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Langmead B (e_1_3_4_45_2) 2009; 10
Chanarat S (e_1_3_4_21_2) 2013; 1833
Weber G (e_1_3_4_36_2) 2010; 29
Neuenkirchen N (e_1_3_4_19_2) 2008; 582
Chari A (e_1_3_4_34_2) 2008; 135
Schwartz BW (e_1_3_4_24_2) 1994; 120
Koncz C (e_1_3_4_31_2) 2012; 3
Zhang Z (e_1_3_4_13_2) 2011; 23
Meister G (e_1_3_4_18_2) 2002; 21
Lossky M (e_1_3_4_26_2) 1987; 51
Matera AG (e_1_3_4_22_2) 2014; 15
Brahms H (e_1_3_4_16_2) 2001; 7
Trapnell C (e_1_3_4_44_2) 2009; 25
Stopa N (e_1_3_4_41_2) 2015; 72
e_1_3_4_43_2
Marquardt S (e_1_3_4_25_2) 2014; 54
Levin JZ (e_1_3_4_42_2) 2010; 7
Friesen WJ (e_1_3_4_17_2) 2001; 21
Sun L (e_1_3_4_1_2) 2011; 108
Yan C (e_1_3_4_29_2) 2015; 349
Grainger RJ (e_1_3_4_27_2) 2005; 11
Tee WW (e_1_3_4_8_2) 2010; 24
Deng X (e_1_3_4_11_2) 2010; 107
Hou X (e_1_3_4_23_2) 2010; 63
Zhang Z (e_1_3_4_39_2) 2008; 133
Ancelin K (e_1_3_4_7_2) 2006; 8
Yang M (e_1_3_4_5_2) 2009; 5
Liu C (e_1_3_4_3_2) 2010; 61
Valadkhan S (e_1_3_4_38_2) 2011; 25
Ratovitski T (e_1_3_4_40_2) 2015; 14
Sanchez SE (e_1_3_4_10_2) 2010; 468
Zhang D (e_1_3_4_35_2) 2001; 7
Hernando CE (e_1_3_4_12_2) 2015; 16
Gao X (e_1_3_4_20_2) 2012; 287
Sasaki T (e_1_3_4_28_2) 2015; 200
Wang J (e_1_3_4_37_2) 2012; 40
Wrighton KH (e_1_3_4_6_2) 2011; 12
Galej WP (e_1_3_4_30_2) 2013; 493
Wahl MC (e_1_3_4_15_2) 2009; 136
Ahmad A (e_1_3_4_2_2) 2012; 39
Green MR (e_1_3_4_14_2) 1986; 20
Bezzi M (e_1_3_4_33_2) 2013; 27
Pei Y (e_1_3_4_9_2) 2007; 144
Wang BB (e_1_3_4_32_2) 2004; 5
Bedford MT (e_1_3_4_4_2) 2009; 33
27217555 - Proc Natl Acad Sci U S A. 2016 May 31;113(22):E3186
References_xml – volume: 63
  start-page: 880
  year: 2010
  ident: e_1_3_4_23_2
  article-title: A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04277.x
– volume: 51
  start-page: 1019
  year: 1987
  ident: e_1_3_4_26_2
  article-title: Identification of a yeast snRNP protein and detection of snRNP-snRNP interactions
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90588-5
– volume: 33
  start-page: 1
  year: 2009
  ident: e_1_3_4_4_2
  article-title: Protein arginine methylation in mammals: Who, what, and why
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.12.013
– volume: 7
  start-page: 709
  year: 2010
  ident: e_1_3_4_42_2
  article-title: Comprehensive comparative analysis of strand-specific RNA sequencing methods
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1491
– volume: 582
  start-page: 1997
  year: 2008
  ident: e_1_3_4_19_2
  article-title: Deciphering the assembly pathway of Sm-class U snRNPs
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2008.03.009
– volume: 135
  start-page: 497
  year: 2008
  ident: e_1_3_4_34_2
  article-title: An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.020
– volume: 10
  start-page: R25
  year: 2009
  ident: e_1_3_4_45_2
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 24
  start-page: 2772
  year: 2010
  ident: e_1_3_4_8_2
  article-title: Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency
  publication-title: Genes Dev
  doi: 10.1101/gad.606110
– volume: 349
  start-page: 1182
  year: 2015
  ident: e_1_3_4_29_2
  article-title: Structure of a yeast spliceosome at 3.6-angstrom resolution
  publication-title: Science
  doi: 10.1126/science.aac7629
– volume: 39
  start-page: 195
  year: 2012
  ident: e_1_3_4_2_2
  article-title: Plant PRMTs broaden the scope of arginine methylation
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2012.04.001
– volume: 25
  start-page: 1105
  year: 2009
  ident: e_1_3_4_44_2
  article-title: TopHat: Discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 468
  start-page: 112
  year: 2010
  ident: e_1_3_4_10_2
  article-title: A methyl transferase links the circadian clock to the regulation of alternative splicing
  publication-title: Nature
  doi: 10.1038/nature09470
– volume: 7
  start-page: 319
  year: 2001
  ident: e_1_3_4_35_2
  article-title: A biochemical function for the Sm complex
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(01)00180-0
– volume: 25
  start-page: 1563
  year: 2011
  ident: e_1_3_4_38_2
  article-title: A snRNP’s ordered path to maturity
  publication-title: Genes Dev
  doi: 10.1101/gad.17311211
– volume: 1833
  start-page: 2126
  year: 2013
  ident: e_1_3_4_21_2
  article-title: Splicing and beyond: The many faces of the Prp19 complex
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2013.05.023
– volume: 144
  start-page: 1913
  year: 2007
  ident: e_1_3_4_9_2
  article-title: Mutations in the Type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.099531
– volume: 7
  start-page: 1531
  year: 2001
  ident: e_1_3_4_16_2
  article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein
  publication-title: RNA
  doi: 10.1017/S135583820101442X
– volume: 21
  start-page: 5853
  year: 2002
  ident: e_1_3_4_18_2
  article-title: Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs
  publication-title: EMBO J
  doi: 10.1093/emboj/cdf585
– volume: 11
  start-page: 533
  year: 2005
  ident: e_1_3_4_27_2
  article-title: Prp8 protein: At the heart of the spliceosome
  publication-title: RNA
  doi: 10.1261/rna.2220705
– volume: 5
  start-page: e1000514
  year: 2009
  ident: e_1_3_4_5_2
  article-title: Caenorhabditis elegans protein arginine methyltransferase PRMT-5 negatively regulates DNA damage-induced apoptosis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000514
– volume: 15
  start-page: 108
  year: 2014
  ident: e_1_3_4_22_2
  article-title: A day in the life of the spliceosome
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3742
– volume: 5
  start-page: R102
  year: 2004
  ident: e_1_3_4_32_2
  article-title: The ASRG database: Identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-12-r102
– volume: 107
  start-page: 19114
  year: 2010
  ident: e_1_3_4_11_2
  article-title: Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1009669107
– volume: 200
  start-page: 523
  year: 2015
  ident: e_1_3_4_28_2
  article-title: An Rtf2 domain-containing protein influences pre-mRNA splicing and is essential for embryonic development in Arabidopsis thaliana
  publication-title: Genetics
  doi: 10.1534/genetics.115.176438
– volume: 21
  start-page: 8289
  year: 2001
  ident: e_1_3_4_17_2
  article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.24.8289-8300.2001
– volume: 108
  start-page: 20538
  year: 2011
  ident: e_1_3_4_1_2
  article-title: Structural insights into protein arginine symmetric dimethylation by PRMT5
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1106946108
– volume: 136
  start-page: 701
  year: 2009
  ident: e_1_3_4_15_2
  article-title: The spliceosome: Design principles of a dynamic RNP machine
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.009
– volume: 287
  start-page: 18130
  year: 2012
  ident: e_1_3_4_20_2
  article-title: Tudor staphylococcal nuclease (Tudor-SN) participates in small ribonucleoprotein (snRNP) assembly via interacting with symmetrically dimethylated Sm proteins
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.311852
– volume: 8
  start-page: 623
  year: 2006
  ident: e_1_3_4_7_2
  article-title: Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1413
– volume: 61
  start-page: 395
  year: 2010
  ident: e_1_3_4_3_2
  article-title: Histone methylation in higher plants
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.043008.091939
– volume: 16
  start-page: 192
  year: 2015
  ident: e_1_3_4_12_2
  article-title: Genome wide comparative analysis of the effects of PRMT5 and PRMT4/CARM1 arginine methyltransferases on the Arabidopsis thaliana transcriptome
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1399-2
– volume: 3
  start-page: 9
  year: 2012
  ident: e_1_3_4_31_2
  article-title: The spliceosome-activating complex: Molecular mechanisms underlying the function of a pleiotropic regulator
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2012.00009
– volume: 12
  start-page: 689
  year: 2011
  ident: e_1_3_4_6_2
  article-title: Cell signalling: PRMT5 restricts ERK activity
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3213
– volume: 72
  start-page: 2041
  year: 2015
  ident: e_1_3_4_41_2
  article-title: The PRMT5 arginine methyltransferase: Many roles in development, cancer and beyond
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-015-1847-9
– ident: e_1_3_4_43_2
  doi: 10.1101/pdb.prot4594
– volume: 20
  start-page: 671
  year: 1986
  ident: e_1_3_4_14_2
  article-title: Pre-mRNA splicing
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.ge.20.120186.003323
– volume: 54
  start-page: 156
  year: 2014
  ident: e_1_3_4_25_2
  article-title: Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.03.026
– volume: 29
  start-page: 4172
  year: 2010
  ident: e_1_3_4_36_2
  article-title: Functional organization of the Sm core in the crystal structure of human U1 snRNP
  publication-title: EMBO J
  doi: 10.1038/emboj.2010.295
– volume: 27
  start-page: 1903
  year: 2013
  ident: e_1_3_4_33_2
  article-title: Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery
  publication-title: Genes Dev
  doi: 10.1101/gad.219899.113
– volume: 40
  start-page: D1055
  year: 2012
  ident: e_1_3_4_37_2
  article-title: SpliceDisease database: Linking RNA splicing and disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1171
– volume: 14
  start-page: 1716
  year: 2015
  ident: e_1_3_4_40_2
  article-title: PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington’s disease (HD)
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1033595
– volume: 120
  start-page: 3235
  year: 1994
  ident: e_1_3_4_24_2
  article-title: Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis
  publication-title: Development
  doi: 10.1242/dev.120.11.3235
– volume: 133
  start-page: 585
  year: 2008
  ident: e_1_3_4_39_2
  article-title: SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.031
– volume: 23
  start-page: 396
  year: 2011
  ident: e_1_3_4_13_2
  article-title: Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.081356
– volume: 493
  start-page: 638
  year: 2013
  ident: e_1_3_4_30_2
  article-title: Crystal structure of Prp8 reveals active site cavity of the spliceosome
  publication-title: Nature
  doi: 10.1038/nature11843
– reference: 27217555 - Proc Natl Acad Sci U S A. 2016 May 31;113(22):E3186
SSID ssj0009580
Score 2.4143753
Snippet Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in amultitude of biological processes in eukaryotes....
Protein arginine methyltransferase 5 (PRMT5) is involved in various developmental processes by globally regulating pre-mRNA splicing of diverse genes, but the...
Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in a multitude of biological processes in eukaryotes....
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5447
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Biological Sciences
Eukaryotes
Flowers & plants
Genes
Genotype & phenotype
Methylation
Mutants
Mutation
Protein-Arginine N-Methyltransferases - genetics
Proteins
RNA Precursors - genetics
RNA Splicing - genetics
Saccharomyces cerevisiae Proteins - genetics
Spliceosomes - genetics
Title Recruitment of the NineTeen Complex to the activated spliceosome requires AtPRMT5
URI https://www.jstor.org/stable/26469585
https://www.ncbi.nlm.nih.gov/pubmed/27114555
https://www.proquest.com/docview/1792604916
https://www.proquest.com/docview/1788537722
https://www.proquest.com/docview/1808676282
https://pubmed.ncbi.nlm.nih.gov/PMC4868449
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pj5QwFG50vXgxu-rq6Gpq4mHNhHGAlpbjRHezMbPjaJiEGylQ4iYjmAWM8a_3lbbArKNZvRBSHk3D-3h8r7wfCL1mrsxzsHtOQGjqEJbmTih819HVncA_EEwlOF-ugosN-RDTeAgb67JLmnSW_dybV_I_WoUx0KvKkv0HzfaTwgCcg37hCBqG4610rDhfe9XY__ldvCKwxkgFXqkXfSt_WG6p8he-C0Uva_XHWlZ19VV1TFGBwLKeLpr158uIjqnquv-01f3kdudwMeShGONQT53pejV0NX4vtRGJR_BbthodALTKfDC7rXwtuWy3bR8N1Or9AlEW0kianQk3cLqipiNjClwEMKDbgc7knjFrgXU6qoVaODKolOiCnL9ZejBNqj1xKWrVwskjlNtZdmpqrz4m55vlMonO4uguuueBM9GlhMfuqDQz1zUrzMpsASjmv70x_Q530eGr-xyTm_G1I8ISHaIHxtPACw2bI3RHlg_RkVUXPjUFx988Qp9GOMJVgUHV2OIIGxzhpurGexzhEY6wxRE2OHqMNudn0bsLx7TacDJKvMbxUp9I6gnhytQvCKOSwPJJNqfwtczneZb7NM-5R8BdFpyFYk7ywC94TikQ7Kzwj9FBWZXyKcJwR6HEsyAsCC0ycMAF9aQshO9LwvgEzexDTDJTh161Q9kmXTwE8xP11JPhqU_QaX_DN12C5c-ix51Wejmg-wHol07QiVVTYl5guI-F4M0TcJAm6FV_Gcyr-mcmSlm1SoYDoQXUeH-R4XMeAKngIPNEa35YAHNVKwBYANvBRC-gyrvvXimvvnRl3gkPOCHhs1us7Tm6P7yAJ-iguW7lCyDLTfqyw_ovbsy_UQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recruitment+of+the+NineTeen+Complex+to+the+activated+spliceosome+requires+AtPRMT5&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Deng%2C+Xian&rft.au=Lu%2C+Tiancong&rft.au=Wang%2C+Lulu&rft.au=Gu%2C+Lianfeng&rft.date=2016-05-10&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=113&rft.issue=19&rft.spage=5447&rft_id=info:doi/10.1073%2Fpnas.1522458113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon