Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design

Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the v...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 40; pp. 1 - 18
Main Authors Wang, Juehan, Jiang, Yulin, Zhu, Ce, Liu, Zheng, Qi, Lin, Ding, Hong, Wang, Jing, Huang, Yong, Li, Yubao, Song, Yueming, Feng, Ganjun, Zhang, Li, Liu, Limin
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.10.2024
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to “cool-down” the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the “mito-engine coolant” could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment. [Display omitted] •Hybrid Mito-Engine: Novel hydrogel with 3D-printed scaffold and ROS-responsive gel.•Energy Metabolism Boost: Enhanced mitochondrial potential for disc repair.•ROS Scavenging: Hydrogel effectively scavenges excessive ROS, aiding cell recovery.•Mechanical Biomimicry: Rigid scaffold and soft hydrogel mimic disc mechanics.•In Vivo Efficacy: Proven system efficacy in nucleus pulposus proliferation.
AbstractList Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin ( ) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by and evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.
Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to “cool-down” the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the “mito-engine coolant” could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment. [Display omitted] •Hybrid Mito-Engine: Novel hydrogel with 3D-printed scaffold and ROS-responsive gel.•Energy Metabolism Boost: Enhanced mitochondrial potential for disc repair.•ROS Scavenging: Hydrogel effectively scavenges excessive ROS, aiding cell recovery.•Mechanical Biomimicry: Rigid scaffold and soft hydrogel mimic disc mechanics.•In Vivo Efficacy: Proven system efficacy in nucleus pulposus proliferation.
Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to “cool-down” the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the “mito-engine coolant” could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.
Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.
Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to “cool-down” the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l -arginine, which could upregulate the Mammalian target of rapamycin ( mTOR ) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the “mito-engine coolant” could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment. Image 1 • Hybrid Mito-Engine : Novel hydrogel with 3D-printed scaffold and ROS-responsive gel. • Energy Metabolism Boost : Enhanced mitochondrial potential for disc repair. • ROS Scavenging : Hydrogel effectively scavenges excessive ROS, aiding cell recovery. • Mechanical Biomimicry : Rigid scaffold and soft hydrogel mimic disc mechanics. • In Vivo Efficacy : Proven system efficacy in nucleus pulposus proliferation.
Author Jiang, Yulin
Ding, Hong
Qi, Lin
Huang, Yong
Zhang, Li
Feng, Ganjun
Wang, Jing
Wang, Juehan
Zhu, Ce
Li, Yubao
Song, Yueming
Liu, Zheng
Liu, Limin
Author_xml – sequence: 1
  givenname: Juehan
  surname: Wang
  fullname: Wang, Juehan
– sequence: 2
  givenname: Yulin
  surname: Jiang
  fullname: Jiang, Yulin
– sequence: 3
  givenname: Ce
  surname: Zhu
  fullname: Zhu, Ce
– sequence: 4
  givenname: Zheng
  surname: Liu
  fullname: Liu, Zheng
– sequence: 5
  givenname: Lin
  surname: Qi
  fullname: Qi, Lin
– sequence: 6
  givenname: Hong
  surname: Ding
  fullname: Ding, Hong
– sequence: 7
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 8
  givenname: Yong
  surname: Huang
  fullname: Huang, Yong
– sequence: 9
  givenname: Yubao
  surname: Li
  fullname: Li, Yubao
– sequence: 10
  givenname: Yueming
  surname: Song
  fullname: Song, Yueming
– sequence: 11
  givenname: Ganjun
  surname: Feng
  fullname: Feng, Ganjun
  email: gjfenghx@163.com
– sequence: 12
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  email: zhangli9111@126.com
– sequence: 13
  givenname: Limin
  surname: Liu
  fullname: Liu, Limin
  email: liulimin_spine@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38873262$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vEzEQtVARLaV_AXzkssH2-mP3gFBV8VGpiAtI3CyvPdk42tjF9gb1yD_HSUrUcoGLPfK8efP8Zp6jkxADIPSKkgUlVL5ZLwYfjS0bUxaMML4gYkE4f4LOGBesoX3__eRBfIoucl4TQqiqB1HP0Gnbdaplkp2hX599iXYVg0veNBBGHwD_9GWFM0zLJsE4T6b4GHCJOEEuMQF2MEKAZAo47EOBtIVUYEhmws5niy1MU8Zbb3AVukOOULzFKQ5zLnh151IcoWIh-zG8QE-XZspwcX-fo28f3n-9-tTcfPl4fXV501jBWWlop9jQKkuZcpQyyqQxSjLac9tT0XLrOmoBlLQtp4N1DsTAASSXg22l4O05uj7wumjW-jb5jUl3Ohqv9w8xjdqkKnMCXQmA90J0PelqbHphOxCst6CWNdVWrncHrtt52ICzEEr9_CPSx5ngV3qMW00plYrznZrX9wwp_pirr3pTnau-mQBxzrolslNCMiEq9OXDZscuf4ZYAeoAsCnmnGB5hFCidxuj1_q4MXq3MZoITfYq3v5VaX3Zj7uq9tN_1F8e6qEObush6Ww9BAvOJ7ClOuv_yfEbDNfl-w
CitedBy_id crossref_primary_10_1021_acsnano_4c14874
crossref_primary_10_1002_smll_202410710
Cites_doi 10.1016/j.joca.2022.10.020
10.1038/s12276-021-00650-7
10.14245/ns.1938296.148
10.1016/j.jmbbm.2021.104703
10.1007/978-981-10-7757-9_7
10.1002/advs.202301440
10.1038/cddis.2012.171
10.1007/s00726-017-2399-0
10.1177/0884533617691250
10.1016/j.celrep.2019.02.037
10.1155/2021/5510663
10.1126/sciadv.aay7608
10.1016/j.actbio.2014.06.034
10.1038/s41427-020-0199-6
10.1016/j.jiec.2017.03.036
10.3945/jn.115.226621
10.1016/j.nantod.2023.101820
10.1039/D0TA09315G
10.1038/s42003-020-01347-9
10.3390/molecules24163005
10.1038/s41387-021-00164-1
10.3390/nu14050961
10.1021/acsami.1c09889
10.1186/s12967-023-04369-z
10.18632/aging.102472
10.1016/j.advms.2018.08.018
10.1016/j.redox.2020.101674
10.1097/01.brs.0000148152.04401.20
10.1016/j.jcis.2022.09.056
10.1016/j.bbamcr.2017.05.007
10.1016/j.neurot.2023.10.002
10.1016/j.biomaterials.2023.122132
10.1038/s41598-022-09348-w
10.1016/j.matdes.2017.01.098
10.1038/s41580-021-00415-0
10.1007/978-1-61779-430-8_1
10.1002/biot.202000160
10.1038/s41598-020-80756-6
10.1021/acs.bioconjchem.3c00105
10.1007/s00441-022-03662-5
10.1016/j.cell.2022.08.018
10.1016/j.msec.2018.11.087
10.1002/jor.21285
10.1007/s00586-013-2855-9
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2024.05.044
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 18
ExternalDocumentID oai_doaj_org_article_41be4955890841ba95c8e529ce7f1be3
PMC11167444
38873262
10_1016_j_bioactmat_2024_05_044
S2452199X2400210X
Genre Journal Article
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ABJCF
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADMLS
ADVLN
AEUPX
AEXQZ
AFKRA
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
HYE
KB.
M41
M7P
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
ROL
RPM
SSZ
AAYXX
CITATION
AACTN
NPM
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c542t-1872b37c127d112126aa762194c91534cd81cee76c341bcdde5b4ee646bc36543
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:26:49 EDT 2025
Thu Aug 21 18:33:40 EDT 2025
Thu Jul 10 21:25:19 EDT 2025
Sat Mar 22 01:33:45 EDT 2025
Thu Apr 24 22:53:48 EDT 2025
Thu Jul 03 08:27:21 EDT 2025
Sat Aug 02 17:11:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Intervertebral disc degeneration
Mitochondrial dysfunction
Polyurethan scaffold
l-arginine
ROS scavenging
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-1872b37c127d112126aa762194c91534cd81cee76c341bcdde5b4ee646bc36543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The two authors contributed equally to the work.
OpenAccessLink https://doaj.org/article/41be4955890841ba95c8e529ce7f1be3
PMID 38873262
PQID 3068756255
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_41be4955890841ba95c8e529ce7f1be3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11167444
proquest_miscellaneous_3068756255
pubmed_primary_38873262
crossref_primary_10_1016_j_bioactmat_2024_05_044
crossref_citationtrail_10_1016_j_bioactmat_2024_05_044
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2024_05_044
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2024
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Neidlinger-Wilke, Galbusera, Pratsinis, Mavrogonatou, Mietsch, Kletsas (bib49) 2014; 23
Zhang, He, Chen, Su, Yan, Zhang (bib39) 2019; 11
Vercellino, Sazanov (bib46) 2022; 23
Yang, Bhujel, Hou, Luo, An, Han (bib8) 2023; 35
Wang, Yang, Hou, Li, Yin, Yang (bib14) 2023
Pagán, Lee, Edwards-Hicks, Moens, Tobin, Busch-Nentwich (bib56) 2022; 185
Chen, Ji, Liu, Zhu, Wang, Yang (bib6) 2023; 21
Zhou, He, Liu, Cheng, Yuan, Mao (bib9) 2024; 37
Nolfi-Donegan, Braganza, Shiva (bib44) 2020; 37
Hou, Dong, Huang, Liao, Lei, Wang (bib27) 2020; 3
Morris, Hamilton-Reeves, Martindale, Sarav, Ochoa Gautier (bib11) 2017; 32
Zhang, Fan, Zhao, Hu, Zhu, Jiao (bib15) 2023; 10
Khatoon, Ahmad (bib34) 2017; 53
Perelman, Wachtel, Cohen, Haupt, Shapiro, Tzur (bib47) 2012; 3
Bai, Zhang, Fan, Xu, Shan, Gao (bib7) 2020; 9
Freitas-Rodríguez, Folgueras, López-Otín (bib40) 2017; 1864
Du, Yang, Zhang, Zhu, Ma, Zhang (bib29) 2019; 96
Sreevidya, Shalini, Kavirajan, Maiyelvaganan, Prakash, Kamala Bharathi (bib23) 2023; 630
Liu, Du, St-Pierre, Bergholt, Autefage, Wang (bib36) 2020; 6
Wang, Wu, Long, Yang, Fu, Hu (bib31) 2021; 13
Du, He, Zhu, Liu, Jiang, Zhuang (bib25) 2021
Acharya, Kumar Bastia, Prasad Sahoo (bib35) 2023
Klemmensen, Borrowman, Pearce, Pyles, Chandra (bib5) 2024; 21
Wang, Lei, Jiang, Yan, Shen, Zhao (bib17) 2023; 49
Zhao, Zhang, Jiang, Li, Jiang, Dai (bib41) 2011; 29
Zhang, Liu, Chen, Wang, Wang, Hu (bib52) 2022; 390
Neupane, Bhuju, Thapa, Bhattarai (bib45) 2019; 10
Masuda, Aota, Muehleman, Imai, Okuma, Thonar (bib19) 2005; 30
Yuan, Shen, Bai, Chua, Wei, Zhou (bib20) 2017; 120
Jiang, Yang, Zheng, Yi, Chen, Li (bib22) 2020; 12
Szefel, Danielak, Kruszewski (bib38) 2019; 64
Jia, Richards, Pollard, Tan, Rodriguez, Visconti (bib16) 2014; 10
Ma, Han, Li, Hu, Gilbreath, Bazer (bib55) 2017; 49
Jiang, Wang, Wu, Qi, Huang, Wang (bib24) 2023
Wang, Wu, Zhang, Zheng, Hu, Guo (bib10) 2023; 298
Morris (bib37) 2016; 146
Tomé (bib13) 2021; 11
Sousa, D'Imprima, Vonck (bib43) 2018; 87
Bouhsina, Decante, Hardel, Rouleau, Abadie, Hamel (bib53) 2022; 12
Szlas, Kurek, Krejpcio (bib12) 2022; 14
Dixon, Warren, Culbert, Mengoni, Wilcox (bib48) 2021; 123
Raut, Das, Liu, Liu, Ramakrishna (bib33) 2020; 15
Chen, Wang, Xia, Wu, Chen, Li (bib18) 2022; 10
Lin, Wang, Song, Xu, Lu, Ma (bib4) 2023; 31
Weichhart (bib54) 2012; 821
Zhao, Zhang, Li, Wang, Ke, Liu (bib26) 2021; 2021
Fu, Bao, Yao, Zhou, Luo, Zhang (bib50) 2021; 11
Warburton, Girdler, Mikhail, Ahn, Cho (bib51) 2020; 17
Zhang, Wang, Hu, Zhang, Dai, Xia (bib32) 2020; 8
Lowman, Hanse, Yang, Ishak Gabra, Tran, Li (bib28) 2019; 26
D'Agostino, Li, Wang (bib42) 2022; 12
Jiang, Shi, Zhou, He, Zhu, Wang (bib21) 2023; 20
Xu, Liu, Hsu (bib30) 2019; 24
Song, Lu, Geng, Feng, Luo, Li (bib3) 2021; 53
Zhang (10.1016/j.bioactmat.2024.05.044_bib39) 2019; 11
Dixon (10.1016/j.bioactmat.2024.05.044_bib48) 2021; 123
Xu (10.1016/j.bioactmat.2024.05.044_bib30) 2019; 24
Sreevidya (10.1016/j.bioactmat.2024.05.044_bib23) 2023; 630
Klemmensen (10.1016/j.bioactmat.2024.05.044_bib5) 2024; 21
Zhou (10.1016/j.bioactmat.2024.05.044_bib9) 2024; 37
Chen (10.1016/j.bioactmat.2024.05.044_bib6) 2023; 21
Lowman (10.1016/j.bioactmat.2024.05.044_bib28) 2019; 26
Zhang (10.1016/j.bioactmat.2024.05.044_bib15) 2023; 10
Yuan (10.1016/j.bioactmat.2024.05.044_bib20) 2017; 120
Khatoon (10.1016/j.bioactmat.2024.05.044_bib34) 2017; 53
Neidlinger-Wilke (10.1016/j.bioactmat.2024.05.044_bib49) 2014; 23
Pagán (10.1016/j.bioactmat.2024.05.044_bib56) 2022; 185
Wang (10.1016/j.bioactmat.2024.05.044_bib10) 2023; 298
Szefel (10.1016/j.bioactmat.2024.05.044_bib38) 2019; 64
Raut (10.1016/j.bioactmat.2024.05.044_bib33) 2020; 15
Neupane (10.1016/j.bioactmat.2024.05.044_bib45) 2019; 10
Zhang (10.1016/j.bioactmat.2024.05.044_bib52) 2022; 390
Vercellino (10.1016/j.bioactmat.2024.05.044_bib46) 2022; 23
Hou (10.1016/j.bioactmat.2024.05.044_bib27) 2020; 3
Bouhsina (10.1016/j.bioactmat.2024.05.044_bib53) 2022; 12
Bai (10.1016/j.bioactmat.2024.05.044_bib7) 2020; 9
Jiang (10.1016/j.bioactmat.2024.05.044_bib21) 2023; 20
Wang (10.1016/j.bioactmat.2024.05.044_bib17) 2023; 49
Warburton (10.1016/j.bioactmat.2024.05.044_bib51) 2020; 17
Ma (10.1016/j.bioactmat.2024.05.044_bib55) 2017; 49
Zhang (10.1016/j.bioactmat.2024.05.044_bib32) 2020; 8
Wang (10.1016/j.bioactmat.2024.05.044_bib14) 2023
Jiang (10.1016/j.bioactmat.2024.05.044_bib22) 2020; 12
Zhao (10.1016/j.bioactmat.2024.05.044_bib26) 2021; 2021
Morris (10.1016/j.bioactmat.2024.05.044_bib11) 2017; 32
Fu (10.1016/j.bioactmat.2024.05.044_bib50) 2021; 11
Yang (10.1016/j.bioactmat.2024.05.044_bib8) 2023; 35
D'Agostino (10.1016/j.bioactmat.2024.05.044_bib42) 2022; 12
Chen (10.1016/j.bioactmat.2024.05.044_bib18) 2022; 10
Du (10.1016/j.bioactmat.2024.05.044_bib29) 2019; 96
Freitas-Rodríguez (10.1016/j.bioactmat.2024.05.044_bib40) 2017; 1864
Du (10.1016/j.bioactmat.2024.05.044_bib25) 2021
Szlas (10.1016/j.bioactmat.2024.05.044_bib12) 2022; 14
Masuda (10.1016/j.bioactmat.2024.05.044_bib19) 2005; 30
Acharya (10.1016/j.bioactmat.2024.05.044_bib35) 2023
Tomé (10.1016/j.bioactmat.2024.05.044_bib13) 2021; 11
Morris (10.1016/j.bioactmat.2024.05.044_bib37) 2016; 146
Liu (10.1016/j.bioactmat.2024.05.044_bib36) 2020; 6
Perelman (10.1016/j.bioactmat.2024.05.044_bib47) 2012; 3
Song (10.1016/j.bioactmat.2024.05.044_bib3) 2021; 53
Jiang (10.1016/j.bioactmat.2024.05.044_bib24) 2023
Wang (10.1016/j.bioactmat.2024.05.044_bib31) 2021; 13
Jia (10.1016/j.bioactmat.2024.05.044_bib16) 2014; 10
Sousa (10.1016/j.bioactmat.2024.05.044_bib43) 2018; 87
Zhao (10.1016/j.bioactmat.2024.05.044_bib41) 2011; 29
Weichhart (10.1016/j.bioactmat.2024.05.044_bib54) 2012; 821
Nolfi-Donegan (10.1016/j.bioactmat.2024.05.044_bib44) 2020; 37
Lin (10.1016/j.bioactmat.2024.05.044_bib4) 2023; 31
40115879 - Bioact Mater. 2024 Sep 28;43:340-341. doi: 10.1016/j.bioactmat.2024.09.034.
References_xml – volume: 12
  start-page: 18
  year: 2020
  ident: bib22
  article-title: Multifunctional load-bearing hybrid hydrogel with combined drug release and photothermal conversion functions
  publication-title: NPG Asia Mater.
– volume: 49
  year: 2023
  ident: bib17
  article-title: Mito-battery: micro-nanohydrogel microspheres for targeted regulation of cellular mitochondrial respiratory chain
  publication-title: Nano Today
– volume: 2021
  year: 2021
  ident: bib26
  article-title: Pegylated recombinant human arginase 1 induces autophagy and apoptosis via the ROS-activated AKT/mTOR pathway in bladder cancer cells
  publication-title: Oxid. Med. Cell. Longev.
– volume: 53
  year: 2017
  ident: bib34
  article-title: A review on conducting polymer reinforced polyurethane composites
  publication-title: J. Ind. Eng. Chem.
– volume: 390
  start-page: 1
  year: 2022
  end-page: 22
  ident: bib52
  article-title: Extracellular matrix in intervertebral disc: basic and translational implications
  publication-title: Cell Tissue Res.
– volume: 49
  start-page: 957
  year: 2017
  end-page: 964
  ident: bib55
  article-title: L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway
  publication-title: Amino Acids
– volume: 1864
  start-page: 2015
  year: 2017
  end-page: 2025
  ident: bib40
  article-title: The role of matrix metalloproteinases in aging: tissue remodeling and beyond
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 14
  year: 2022
  ident: bib12
  article-title: The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism-A review
  publication-title: Nutrients
– volume: 30
  start-page: 5
  year: 2005
  end-page: 14
  ident: bib19
  article-title: A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration
  publication-title: Spine
– volume: 120
  start-page: 317
  year: 2017
  end-page: 327
  ident: bib20
  article-title: 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization
  publication-title: Mater. Des.
– volume: 12
  year: 2022
  ident: bib42
  article-title: High-throughput transcriptomics
  publication-title: Sci. Rep.
– volume: 10
  year: 2023
  ident: bib15
  article-title: Biomimetic and NOS-responsive nanomotor deeply delivery a combination of MSC-EV and mitochondrial ROS scavenger and promote heart repair and regeneration
  publication-title: Adv. Sci.
– volume: 10
  year: 2022
  ident: bib18
  article-title: Treatment outcomes of injectable thermosensitive hydrogel containing bevacizumab in intervertebral disc degeneration
  publication-title: Front. Bioeng. Biotechnol.
– volume: 29
  start-page: 718
  year: 2011
  end-page: 725
  ident: bib41
  article-title: ADAMTS-5 and intervertebral disc degeneration: the results of tissue immunohistochemistry and in vitro cell culture
  publication-title: J. Orthop. Res. : official publication of the Orthopaedic Research Society
– volume: 11
  start-page: 20
  year: 2021
  ident: bib13
  article-title: Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity
  publication-title: Nutr. Diabetes
– volume: 37
  start-page: 51
  year: 2024
  end-page: 71
  ident: bib9
  article-title: Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration
  publication-title: Bioact. Mater.
– volume: 11
  start-page: 772
  year: 2021
  ident: bib50
  article-title: Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth
  publication-title: Sci. Rep.
– volume: 24
  year: 2019
  ident: bib30
  article-title: Hydrogels based on Schiff base linkages for biomedical applications
  publication-title: Molecules
– volume: 35
  year: 2023
  ident: bib8
  article-title: Effective modulation of inflammation and oxidative stress for enhanced regeneration of intervertebral discs using 3D porous hybrid protein nanoscaffold
  publication-title: Adv. Mater.
– volume: 17
  start-page: 101
  year: 2020
  end-page: 110
  ident: bib51
  article-title: Biomaterials in spinal implants: a review
  publication-title: Neurospine
– volume: 12
  start-page: 5398
  year: 2022
  ident: bib53
  article-title: Comparison of MRI T1, T2, and T2* mapping with histology for assessment of intervertebral disc degeneration in an ovine model
  publication-title: Sci. Rep.
– year: 2023
  ident: bib35
  article-title: Fabrication of thermoplastic polyurethane and polypyrrole conducting blends: recent advances and perspectives
  publication-title: Mater. Today: Proc.
– volume: 53
  start-page: 1124
  year: 2021
  end-page: 1133
  ident: bib3
  article-title: Mitochondrial quality control in intervertebral disc degeneration
  publication-title: Exp. Mol. Med.
– volume: 185
  year: 2022
  ident: bib56
  article-title: mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
  publication-title: Cell
– volume: 21
  year: 2024
  ident: bib5
  article-title: Mitochondrial dysfunction in neurodegenerative disorders
  publication-title: Neurotherapeutics
– volume: 146
  year: 2016
  ident: bib37
  article-title: Arginine metabolism revisited
  publication-title: J. Nutr.
– volume: 123
  year: 2021
  ident: bib48
  article-title: Review of in vitro mechanical testing for intervertebral disc injectable biomaterials
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 10
  start-page: 4323
  year: 2014
  end-page: 4331
  ident: bib16
  article-title: Engineering alginate as bioink for bioprinting
  publication-title: Acta Biomater.
– volume: 87
  start-page: 167
  year: 2018
  end-page: 227
  ident: bib43
  article-title: Mitochondrial respiratory chain complexes
  publication-title: Sub-cellular biochemistry
– volume: 20
  start-page: 528
  year: 2023
  end-page: 538
  ident: bib21
  article-title: 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc
  publication-title: Bioact. Mater.
– volume: 31
  start-page: 158
  year: 2023
  end-page: 166
  ident: bib4
  article-title: The role of mitochondrial fission in intervertebral disc degeneration
  publication-title: Osteoarthritis Cartilage
– volume: 26
  year: 2019
  ident: bib28
  article-title: p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake
  publication-title: Cell Rep.
– year: 2023
  ident: bib24
  article-title: Bioinspired construction of annulus fibrosus implants with a negative Poisson’s ratio for intervertebral disc repair and restraining disc herniation
  publication-title: Bioconjugate Chem.
– volume: 9
  year: 2020
  ident: bib7
  article-title: Reactive oxygen species-scavenging scaffold with rapamycin for treatment of intervertebral disk degeneration
  publication-title: Adv. Healthcare Mater.
– year: 2023
  ident: bib14
  article-title: L-Arginine-Loaded gold nanocages ameliorate myocardial ischemia/reperfusion injury by promoting nitric oxide production and maintaining mitochondrial function
  publication-title: Adv. Sci.
– volume: 821
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib54
  article-title: Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life
  publication-title: Methods Mol. Biol.
– year: 2021
  ident: bib25
  article-title: Endowing conductive polyetheretherketone/graphene nanocomposite with bioactive and antibacterial coating through electrophoresis
  publication-title: Macromol. Mater. Eng.
– volume: 3
  start-page: e430
  year: 2012
  end-page: e
  ident: bib47
  article-title: JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry
  publication-title: Cell Death Dis.
– volume: 11
  start-page: 10499
  year: 2019
  end-page: 10512
  ident: bib39
  article-title: Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation
  publication-title: Aging
– volume: 298
  year: 2023
  ident: bib10
  article-title: Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system
  publication-title: Biomaterials
– volume: 37
  year: 2020
  ident: bib44
  article-title: Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement
  publication-title: Redox Biol.
– volume: 21
  start-page: 503
  year: 2023
  ident: bib6
  article-title: Mitochondrial dysfunction: roles in skeletal muscle atrophy
  publication-title: J. Transl. Med.
– volume: 96
  start-page: 522
  year: 2019
  end-page: 529
  ident: bib29
  article-title: Engineering a biomimetic integrated scaffold for intervertebral disc replacement
  publication-title: Mater. Sci. Eng. C
– volume: 23
  start-page: 333
  year: 2014
  end-page: 343
  ident: bib49
  article-title: Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level
  publication-title: Eur. Spine J.
– volume: 32
  start-page: 30S
  year: 2017
  end-page: 47S
  ident: bib11
  article-title: Acquired amino acid deficiencies: a focus on arginine and glutamine
  publication-title: Nutr. Clin. Pract.
– volume: 8
  start-page: 25390
  year: 2020
  end-page: 25401
  ident: bib32
  article-title: Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib45
  article-title: ATP synthase: structure, function and inhibition
– volume: 64
  start-page: 104
  year: 2019
  end-page: 110
  ident: bib38
  article-title: Metabolic pathways of L-arginine and therapeutic consequences in tumors
  publication-title: Adv. Med. Sci.
– volume: 6
  year: 2020
  ident: bib36
  article-title: Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state
  publication-title: Sci. Adv.
– volume: 3
  start-page: 611
  year: 2020
  ident: bib27
  article-title: Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b
  publication-title: Commun. Biol.
– volume: 13
  start-page: 33584
  year: 2021
  end-page: 33599
  ident: bib31
  article-title: Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 141
  year: 2022
  end-page: 161
  ident: bib46
  article-title: The assembly, regulation and function of the mitochondrial respiratory chain
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 15
  year: 2020
  ident: bib33
  article-title: Biocompatibility of biomaterials for tissue regeneration or replacement
  publication-title: Biotechnol. J.
– volume: 630
  start-page: 46
  year: 2023
  end-page: 60
  ident: bib23
  article-title: Investigation of non-covalent interactions in Polypyrrole/Polyaniline/Carbon black ternary complex for enhanced thermoelectric properties via interfacial carrier scattering and π-π stacking
  publication-title: J. Colloid Interface Sci.
– volume: 31
  start-page: 158
  issue: 2
  year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib4
  article-title: The role of mitochondrial fission in intervertebral disc degeneration
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2022.10.020
– volume: 53
  start-page: 1124
  issue: 7
  year: 2021
  ident: 10.1016/j.bioactmat.2024.05.044_bib3
  article-title: Mitochondrial quality control in intervertebral disc degeneration
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-021-00650-7
– volume: 17
  start-page: 101
  issue: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2024.05.044_bib51
  article-title: Biomaterials in spinal implants: a review
  publication-title: Neurospine
  doi: 10.14245/ns.1938296.148
– volume: 123
  year: 2021
  ident: 10.1016/j.bioactmat.2024.05.044_bib48
  article-title: Review of in vitro mechanical testing for intervertebral disc injectable biomaterials
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2021.104703
– volume: 87
  start-page: 167
  year: 2018
  ident: 10.1016/j.bioactmat.2024.05.044_bib43
  article-title: Mitochondrial respiratory chain complexes
  publication-title: Sub-cellular biochemistry
  doi: 10.1007/978-981-10-7757-9_7
– volume: 10
  year: 2022
  ident: 10.1016/j.bioactmat.2024.05.044_bib18
  article-title: Treatment outcomes of injectable thermosensitive hydrogel containing bevacizumab in intervertebral disc degeneration
  publication-title: Front. Bioeng. Biotechnol.
– volume: 10
  issue: 21
  year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib15
  article-title: Biomimetic and NOS-responsive nanomotor deeply delivery a combination of MSC-EV and mitochondrial ROS scavenger and promote heart repair and regeneration
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202301440
– volume: 3
  start-page: e430
  issue: 11
  year: 2012
  ident: 10.1016/j.bioactmat.2024.05.044_bib47
  article-title: JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2012.171
– volume: 49
  start-page: 957
  issue: 5
  year: 2017
  ident: 10.1016/j.bioactmat.2024.05.044_bib55
  article-title: L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway
  publication-title: Amino Acids
  doi: 10.1007/s00726-017-2399-0
– volume: 9
  issue: 3
  year: 2020
  ident: 10.1016/j.bioactmat.2024.05.044_bib7
  article-title: Reactive oxygen species-scavenging scaffold with rapamycin for treatment of intervertebral disk degeneration
  publication-title: Adv. Healthcare Mater.
– volume: 32
  start-page: 30S
  issue: 1S
  year: 2017
  ident: 10.1016/j.bioactmat.2024.05.044_bib11
  article-title: Acquired amino acid deficiencies: a focus on arginine and glutamine
  publication-title: Nutr. Clin. Pract.
  doi: 10.1177/0884533617691250
– volume: 20
  start-page: 528
  year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib21
  article-title: 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc
  publication-title: Bioact. Mater.
– volume: 26
  issue: 11
  year: 2019
  ident: 10.1016/j.bioactmat.2024.05.044_bib28
  article-title: p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.02.037
– volume: 2021
  year: 2021
  ident: 10.1016/j.bioactmat.2024.05.044_bib26
  article-title: Pegylated recombinant human arginase 1 induces autophagy and apoptosis via the ROS-activated AKT/mTOR pathway in bladder cancer cells
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2021/5510663
– volume: 6
  issue: 13
  year: 2020
  ident: 10.1016/j.bioactmat.2024.05.044_bib36
  article-title: Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay7608
– volume: 10
  start-page: 4323
  issue: 10
  year: 2014
  ident: 10.1016/j.bioactmat.2024.05.044_bib16
  article-title: Engineering alginate as bioink for bioprinting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.06.034
– volume: 12
  start-page: 18
  issue: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2024.05.044_bib22
  article-title: Multifunctional load-bearing hybrid hydrogel with combined drug release and photothermal conversion functions
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-020-0199-6
– volume: 53
  year: 2017
  ident: 10.1016/j.bioactmat.2024.05.044_bib34
  article-title: A review on conducting polymer reinforced polyurethane composites
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.03.036
– volume: 146
  issue: 12
  year: 2016
  ident: 10.1016/j.bioactmat.2024.05.044_bib37
  article-title: Arginine metabolism revisited
  publication-title: J. Nutr.
  doi: 10.3945/jn.115.226621
– volume: 37
  start-page: 51
  year: 2024
  ident: 10.1016/j.bioactmat.2024.05.044_bib9
  article-title: Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration
  publication-title: Bioact. Mater.
– volume: 49
  year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib17
  article-title: Mito-battery: micro-nanohydrogel microspheres for targeted regulation of cellular mitochondrial respiratory chain
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2023.101820
– volume: 8
  start-page: 25390
  issue: 47
  year: 2020
  ident: 10.1016/j.bioactmat.2024.05.044_bib32
  article-title: Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA09315G
– volume: 3
  start-page: 611
  issue: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2024.05.044_bib27
  article-title: Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01347-9
– volume: 24
  issue: 16
  year: 2019
  ident: 10.1016/j.bioactmat.2024.05.044_bib30
  article-title: Hydrogels based on Schiff base linkages for biomedical applications
  publication-title: Molecules
  doi: 10.3390/molecules24163005
– volume: 11
  start-page: 20
  issue: 1
  year: 2021
  ident: 10.1016/j.bioactmat.2024.05.044_bib13
  article-title: Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity
  publication-title: Nutr. Diabetes
  doi: 10.1038/s41387-021-00164-1
– volume: 14
  issue: 5
  year: 2022
  ident: 10.1016/j.bioactmat.2024.05.044_bib12
  article-title: The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism-A review
  publication-title: Nutrients
  doi: 10.3390/nu14050961
– volume: 13
  start-page: 33584
  issue: 28
  year: 2021
  ident: 10.1016/j.bioactmat.2024.05.044_bib31
  article-title: Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09889
– volume: 21
  start-page: 503
  issue: 1
  year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib6
  article-title: Mitochondrial dysfunction: roles in skeletal muscle atrophy
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-023-04369-z
– volume: 11
  start-page: 10499
  issue: 22
  year: 2019
  ident: 10.1016/j.bioactmat.2024.05.044_bib39
  article-title: Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation
  publication-title: Aging
  doi: 10.18632/aging.102472
– volume: 64
  start-page: 104
  issue: 1
  year: 2019
  ident: 10.1016/j.bioactmat.2024.05.044_bib38
  article-title: Metabolic pathways of L-arginine and therapeutic consequences in tumors
  publication-title: Adv. Med. Sci.
  doi: 10.1016/j.advms.2018.08.018
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.bioactmat.2024.05.044_bib42
  article-title: High-throughput transcriptomics
  publication-title: Sci. Rep.
– volume: 37
  year: 2020
  ident: 10.1016/j.bioactmat.2024.05.044_bib44
  article-title: Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101674
– year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib35
  article-title: Fabrication of thermoplastic polyurethane and polypyrrole conducting blends: recent advances and perspectives
  publication-title: Mater. Today: Proc.
– volume: 30
  start-page: 5
  issue: 1
  year: 2005
  ident: 10.1016/j.bioactmat.2024.05.044_bib19
  article-title: A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration
  publication-title: Spine
  doi: 10.1097/01.brs.0000148152.04401.20
– volume: 630
  start-page: 46
  year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib23
  article-title: Investigation of non-covalent interactions in Polypyrrole/Polyaniline/Carbon black ternary complex for enhanced thermoelectric properties via interfacial carrier scattering and π-π stacking
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.09.056
– volume: 1864
  start-page: 2015
  issue: 11, Part A
  year: 2017
  ident: 10.1016/j.bioactmat.2024.05.044_bib40
  article-title: The role of matrix metalloproteinases in aging: tissue remodeling and beyond
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2017.05.007
– volume: 21
  issue: 1
  year: 2024
  ident: 10.1016/j.bioactmat.2024.05.044_bib5
  article-title: Mitochondrial dysfunction in neurodegenerative disorders
  publication-title: Neurotherapeutics
  doi: 10.1016/j.neurot.2023.10.002
– volume: 298
  year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib10
  article-title: Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2023.122132
– volume: 12
  start-page: 5398
  issue: 1
  year: 2022
  ident: 10.1016/j.bioactmat.2024.05.044_bib53
  article-title: Comparison of MRI T1, T2, and T2* mapping with histology for assessment of intervertebral disc degeneration in an ovine model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09348-w
– volume: 120
  start-page: 317
  year: 2017
  ident: 10.1016/j.bioactmat.2024.05.044_bib20
  article-title: 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.01.098
– volume: 23
  start-page: 141
  issue: 2
  year: 2022
  ident: 10.1016/j.bioactmat.2024.05.044_bib46
  article-title: The assembly, regulation and function of the mitochondrial respiratory chain
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00415-0
– volume: 821
  start-page: 1
  year: 2012
  ident: 10.1016/j.bioactmat.2024.05.044_bib54
  article-title: Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-430-8_1
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.bioactmat.2024.05.044_bib45
  article-title: ATP synthase: structure, function and inhibition
– volume: 15
  issue: 12
  year: 2020
  ident: 10.1016/j.bioactmat.2024.05.044_bib33
  article-title: Biocompatibility of biomaterials for tissue regeneration or replacement
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.202000160
– volume: 11
  start-page: 772
  issue: 1
  year: 2021
  ident: 10.1016/j.bioactmat.2024.05.044_bib50
  article-title: Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-80756-6
– year: 2021
  ident: 10.1016/j.bioactmat.2024.05.044_bib25
  article-title: Endowing conductive polyetheretherketone/graphene nanocomposite with bioactive and antibacterial coating through electrophoresis
  publication-title: Macromol. Mater. Eng.
– year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib24
  article-title: Bioinspired construction of annulus fibrosus implants with a negative Poisson’s ratio for intervertebral disc repair and restraining disc herniation
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.3c00105
– volume: 390
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.bioactmat.2024.05.044_bib52
  article-title: Extracellular matrix in intervertebral disc: basic and translational implications
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-022-03662-5
– volume: 185
  issue: 20
  year: 2022
  ident: 10.1016/j.bioactmat.2024.05.044_bib56
  article-title: mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
  publication-title: Cell
  doi: 10.1016/j.cell.2022.08.018
– volume: 35
  issue: 41
  year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib8
  article-title: Effective modulation of inflammation and oxidative stress for enhanced regeneration of intervertebral discs using 3D porous hybrid protein nanoscaffold
  publication-title: Adv. Mater.
– volume: 96
  start-page: 522
  year: 2019
  ident: 10.1016/j.bioactmat.2024.05.044_bib29
  article-title: Engineering a biomimetic integrated scaffold for intervertebral disc replacement
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.11.087
– volume: 29
  start-page: 718
  issue: 5
  year: 2011
  ident: 10.1016/j.bioactmat.2024.05.044_bib41
  article-title: ADAMTS-5 and intervertebral disc degeneration: the results of tissue immunohistochemistry and in vitro cell culture
  publication-title: J. Orthop. Res. : official publication of the Orthopaedic Research Society
  doi: 10.1002/jor.21285
– volume: 23
  start-page: 333
  issue: 3
  year: 2014
  ident: 10.1016/j.bioactmat.2024.05.044_bib49
  article-title: Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-013-2855-9
– year: 2023
  ident: 10.1016/j.bioactmat.2024.05.044_bib14
  article-title: L-Arginine-Loaded gold nanocages ameliorate myocardial ischemia/reperfusion injury by promoting nitric oxide production and maintaining mitochondrial function
  publication-title: Adv. Sci.
– reference: 40115879 - Bioact Mater. 2024 Sep 28;43:340-341. doi: 10.1016/j.bioactmat.2024.09.034.
SSID ssj0001700007
Score 2.3272474
Snippet Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Intervertebral disc degeneration
l-arginine
Mitochondrial dysfunction
Polyurethan scaffold
ROS scavenging
Title Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design
URI https://dx.doi.org/10.1016/j.bioactmat.2024.05.044
https://www.ncbi.nlm.nih.gov/pubmed/38873262
https://www.proquest.com/docview/3068756255
https://pubmed.ncbi.nlm.nih.gov/PMC11167444
https://doaj.org/article/41be4955890841ba95c8e529ce7f1be3
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBIF7hURmJa0QefoVbC60qxFYIqNSbZTuTNtUqqbLZSj3yzxnb2dUGDnvhlCixIzsznvkmGX9DyAdWC3AlNCk0UqSM2zzFMAhSC2Ut6yYroPAbnBfn4uyCfb3klzulvnxOWKQHji_uI8stIIjnqsoUnpuKOwW8qBzIBm8Fnk_0eTvB1E0khfHeb5bQZdveuBFxIEaFBQt8nYzN3FFg7Z95pX9R59_Jkzve6PQJeTzBSHoUh_-UPIDuGfm9wOWJ5qyrUatSCEyD1H9opStYNukQy86jIOjY0yGUlAFaw1VgnkbkSduYADmM_m_ykvodu9R_2V_Ru9ZQnJlv6felOTr0dr0a6fV9PfRXgG1DJshzcnF68uvzWTqVWEgdZ8WY5koWtpQuL2SNyCsvhDFoHvOKuQptIXO1ytGNSuHQ21mHtpBbBiCYsK7021JfkIOu7-AVoaEvV6rMQLLGOGsMxo5KqqpRIhcmIWLzprWb-Md9GYyl3iSa3eitiLQXkc64RhElJNt2vI0UHPu7HHtRbpt7Du1wATVLT5ql92lWQj5tFEFPcCTCDHxUu38E7zeqo3HBelmZDvr1SmOMhjEihp08IS-jKm3HWaLJRzxdJETNlGw2kfmdrr0OpOC5_6HGGHv9P6b-hjzyc4lJi2_JwTis4R2Cr9EekodHXxbffuLx-OT8-4_DsO7-APZdNdE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria-engine+with+self-regulation+to+restore+degenerated+intervertebral+disc+cells+via+bioenergetic+robust+hydrogel+design&rft.jtitle=Bioactive+materials&rft.au=Wang%2C+Juehan&rft.au=Jiang%2C+Yulin&rft.au=Zhu%2C+Ce&rft.au=Liu%2C+Zheng&rft.date=2024-10-01&rft.eissn=2452-199X&rft.volume=40&rft.spage=1&rft_id=info:doi/10.1016%2Fj.bioactmat.2024.05.044&rft_id=info%3Apmid%2F38873262&rft.externalDocID=38873262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon