Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design
Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the v...
Saved in:
Published in | Bioactive materials Vol. 40; pp. 1 - 18 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.10.2024
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to “cool-down” the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the “mito-engine coolant” could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.
[Display omitted]
•Hybrid Mito-Engine: Novel hydrogel with 3D-printed scaffold and ROS-responsive gel.•Energy Metabolism Boost: Enhanced mitochondrial potential for disc repair.•ROS Scavenging: Hydrogel effectively scavenges excessive ROS, aiding cell recovery.•Mechanical Biomimicry: Rigid scaffold and soft hydrogel mimic disc mechanics.•In Vivo Efficacy: Proven system efficacy in nucleus pulposus proliferation. |
---|---|
AbstractList | Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (
) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by
and
evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments
revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment. Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to “cool-down” the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the “mito-engine coolant” could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment. [Display omitted] •Hybrid Mito-Engine: Novel hydrogel with 3D-printed scaffold and ROS-responsive gel.•Energy Metabolism Boost: Enhanced mitochondrial potential for disc repair.•ROS Scavenging: Hydrogel effectively scavenges excessive ROS, aiding cell recovery.•Mechanical Biomimicry: Rigid scaffold and soft hydrogel mimic disc mechanics.•In Vivo Efficacy: Proven system efficacy in nucleus pulposus proliferation. Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to “cool-down” the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the “mito-engine coolant” could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment. Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment. Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to “cool-down” the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l -arginine, which could upregulate the Mammalian target of rapamycin ( mTOR ) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the “mito-engine coolant” could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment. Image 1 • Hybrid Mito-Engine : Novel hydrogel with 3D-printed scaffold and ROS-responsive gel. • Energy Metabolism Boost : Enhanced mitochondrial potential for disc repair. • ROS Scavenging : Hydrogel effectively scavenges excessive ROS, aiding cell recovery. • Mechanical Biomimicry : Rigid scaffold and soft hydrogel mimic disc mechanics. • In Vivo Efficacy : Proven system efficacy in nucleus pulposus proliferation. |
Author | Jiang, Yulin Ding, Hong Qi, Lin Huang, Yong Zhang, Li Feng, Ganjun Wang, Jing Wang, Juehan Zhu, Ce Li, Yubao Song, Yueming Liu, Zheng Liu, Limin |
Author_xml | – sequence: 1 givenname: Juehan surname: Wang fullname: Wang, Juehan – sequence: 2 givenname: Yulin surname: Jiang fullname: Jiang, Yulin – sequence: 3 givenname: Ce surname: Zhu fullname: Zhu, Ce – sequence: 4 givenname: Zheng surname: Liu fullname: Liu, Zheng – sequence: 5 givenname: Lin surname: Qi fullname: Qi, Lin – sequence: 6 givenname: Hong surname: Ding fullname: Ding, Hong – sequence: 7 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 8 givenname: Yong surname: Huang fullname: Huang, Yong – sequence: 9 givenname: Yubao surname: Li fullname: Li, Yubao – sequence: 10 givenname: Yueming surname: Song fullname: Song, Yueming – sequence: 11 givenname: Ganjun surname: Feng fullname: Feng, Ganjun email: gjfenghx@163.com – sequence: 12 givenname: Li surname: Zhang fullname: Zhang, Li email: zhangli9111@126.com – sequence: 13 givenname: Limin surname: Liu fullname: Liu, Limin email: liulimin_spine@163.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38873262$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1vEzEQtVARLaV_AXzkssH2-mP3gFBV8VGpiAtI3CyvPdk42tjF9gb1yD_HSUrUcoGLPfK8efP8Zp6jkxADIPSKkgUlVL5ZLwYfjS0bUxaMML4gYkE4f4LOGBesoX3__eRBfIoucl4TQqiqB1HP0Gnbdaplkp2hX599iXYVg0veNBBGHwD_9GWFM0zLJsE4T6b4GHCJOEEuMQF2MEKAZAo47EOBtIVUYEhmws5niy1MU8Zbb3AVukOOULzFKQ5zLnh151IcoWIh-zG8QE-XZspwcX-fo28f3n-9-tTcfPl4fXV501jBWWlop9jQKkuZcpQyyqQxSjLac9tT0XLrOmoBlLQtp4N1DsTAASSXg22l4O05uj7wumjW-jb5jUl3Ohqv9w8xjdqkKnMCXQmA90J0PelqbHphOxCst6CWNdVWrncHrtt52ICzEEr9_CPSx5ngV3qMW00plYrznZrX9wwp_pirr3pTnau-mQBxzrolslNCMiEq9OXDZscuf4ZYAeoAsCnmnGB5hFCidxuj1_q4MXq3MZoITfYq3v5VaX3Zj7uq9tN_1F8e6qEObush6Ww9BAvOJ7ClOuv_yfEbDNfl-w |
CitedBy_id | crossref_primary_10_1021_acsnano_4c14874 crossref_primary_10_1002_smll_202410710 |
Cites_doi | 10.1016/j.joca.2022.10.020 10.1038/s12276-021-00650-7 10.14245/ns.1938296.148 10.1016/j.jmbbm.2021.104703 10.1007/978-981-10-7757-9_7 10.1002/advs.202301440 10.1038/cddis.2012.171 10.1007/s00726-017-2399-0 10.1177/0884533617691250 10.1016/j.celrep.2019.02.037 10.1155/2021/5510663 10.1126/sciadv.aay7608 10.1016/j.actbio.2014.06.034 10.1038/s41427-020-0199-6 10.1016/j.jiec.2017.03.036 10.3945/jn.115.226621 10.1016/j.nantod.2023.101820 10.1039/D0TA09315G 10.1038/s42003-020-01347-9 10.3390/molecules24163005 10.1038/s41387-021-00164-1 10.3390/nu14050961 10.1021/acsami.1c09889 10.1186/s12967-023-04369-z 10.18632/aging.102472 10.1016/j.advms.2018.08.018 10.1016/j.redox.2020.101674 10.1097/01.brs.0000148152.04401.20 10.1016/j.jcis.2022.09.056 10.1016/j.bbamcr.2017.05.007 10.1016/j.neurot.2023.10.002 10.1016/j.biomaterials.2023.122132 10.1038/s41598-022-09348-w 10.1016/j.matdes.2017.01.098 10.1038/s41580-021-00415-0 10.1007/978-1-61779-430-8_1 10.1002/biot.202000160 10.1038/s41598-020-80756-6 10.1021/acs.bioconjchem.3c00105 10.1007/s00441-022-03662-5 10.1016/j.cell.2022.08.018 10.1016/j.msec.2018.11.087 10.1002/jor.21285 10.1007/s00586-013-2855-9 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2024.05.044 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_41be4955890841ba95c8e529ce7f1be3 PMC11167444 38873262 10_1016_j_bioactmat_2024_05_044 S2452199X2400210X |
Genre | Journal Article |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ABJCF ABMAC ACGFS ACVFH ADBBV ADCNI ADMLS ADVLN AEUPX AEXQZ AFKRA AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ HYE KB. M41 M7P M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB ROL RPM SSZ AAYXX CITATION AACTN NPM 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c542t-1872b37c127d112126aa762194c91534cd81cee76c341bcdde5b4ee646bc36543 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:26:49 EDT 2025 Thu Aug 21 18:33:40 EDT 2025 Thu Jul 10 21:25:19 EDT 2025 Sat Mar 22 01:33:45 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Thu Jul 03 08:27:21 EDT 2025 Sat Aug 02 17:11:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Intervertebral disc degeneration Mitochondrial dysfunction Polyurethan scaffold l-arginine ROS scavenging |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-1872b37c127d112126aa762194c91534cd81cee76c341bcdde5b4ee646bc36543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The two authors contributed equally to the work. |
OpenAccessLink | https://doaj.org/article/41be4955890841ba95c8e529ce7f1be3 |
PMID | 38873262 |
PQID | 3068756255 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_41be4955890841ba95c8e529ce7f1be3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11167444 proquest_miscellaneous_3068756255 pubmed_primary_38873262 crossref_primary_10_1016_j_bioactmat_2024_05_044 crossref_citationtrail_10_1016_j_bioactmat_2024_05_044 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2024_05_044 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2024 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Neidlinger-Wilke, Galbusera, Pratsinis, Mavrogonatou, Mietsch, Kletsas (bib49) 2014; 23 Zhang, He, Chen, Su, Yan, Zhang (bib39) 2019; 11 Vercellino, Sazanov (bib46) 2022; 23 Yang, Bhujel, Hou, Luo, An, Han (bib8) 2023; 35 Wang, Yang, Hou, Li, Yin, Yang (bib14) 2023 Pagán, Lee, Edwards-Hicks, Moens, Tobin, Busch-Nentwich (bib56) 2022; 185 Chen, Ji, Liu, Zhu, Wang, Yang (bib6) 2023; 21 Zhou, He, Liu, Cheng, Yuan, Mao (bib9) 2024; 37 Nolfi-Donegan, Braganza, Shiva (bib44) 2020; 37 Hou, Dong, Huang, Liao, Lei, Wang (bib27) 2020; 3 Morris, Hamilton-Reeves, Martindale, Sarav, Ochoa Gautier (bib11) 2017; 32 Zhang, Fan, Zhao, Hu, Zhu, Jiao (bib15) 2023; 10 Khatoon, Ahmad (bib34) 2017; 53 Perelman, Wachtel, Cohen, Haupt, Shapiro, Tzur (bib47) 2012; 3 Bai, Zhang, Fan, Xu, Shan, Gao (bib7) 2020; 9 Freitas-Rodríguez, Folgueras, López-Otín (bib40) 2017; 1864 Du, Yang, Zhang, Zhu, Ma, Zhang (bib29) 2019; 96 Sreevidya, Shalini, Kavirajan, Maiyelvaganan, Prakash, Kamala Bharathi (bib23) 2023; 630 Liu, Du, St-Pierre, Bergholt, Autefage, Wang (bib36) 2020; 6 Wang, Wu, Long, Yang, Fu, Hu (bib31) 2021; 13 Du, He, Zhu, Liu, Jiang, Zhuang (bib25) 2021 Acharya, Kumar Bastia, Prasad Sahoo (bib35) 2023 Klemmensen, Borrowman, Pearce, Pyles, Chandra (bib5) 2024; 21 Wang, Lei, Jiang, Yan, Shen, Zhao (bib17) 2023; 49 Zhao, Zhang, Jiang, Li, Jiang, Dai (bib41) 2011; 29 Zhang, Liu, Chen, Wang, Wang, Hu (bib52) 2022; 390 Neupane, Bhuju, Thapa, Bhattarai (bib45) 2019; 10 Masuda, Aota, Muehleman, Imai, Okuma, Thonar (bib19) 2005; 30 Yuan, Shen, Bai, Chua, Wei, Zhou (bib20) 2017; 120 Jiang, Yang, Zheng, Yi, Chen, Li (bib22) 2020; 12 Szefel, Danielak, Kruszewski (bib38) 2019; 64 Jia, Richards, Pollard, Tan, Rodriguez, Visconti (bib16) 2014; 10 Ma, Han, Li, Hu, Gilbreath, Bazer (bib55) 2017; 49 Jiang, Wang, Wu, Qi, Huang, Wang (bib24) 2023 Wang, Wu, Zhang, Zheng, Hu, Guo (bib10) 2023; 298 Morris (bib37) 2016; 146 Tomé (bib13) 2021; 11 Sousa, D'Imprima, Vonck (bib43) 2018; 87 Bouhsina, Decante, Hardel, Rouleau, Abadie, Hamel (bib53) 2022; 12 Szlas, Kurek, Krejpcio (bib12) 2022; 14 Dixon, Warren, Culbert, Mengoni, Wilcox (bib48) 2021; 123 Raut, Das, Liu, Liu, Ramakrishna (bib33) 2020; 15 Chen, Wang, Xia, Wu, Chen, Li (bib18) 2022; 10 Lin, Wang, Song, Xu, Lu, Ma (bib4) 2023; 31 Weichhart (bib54) 2012; 821 Zhao, Zhang, Li, Wang, Ke, Liu (bib26) 2021; 2021 Fu, Bao, Yao, Zhou, Luo, Zhang (bib50) 2021; 11 Warburton, Girdler, Mikhail, Ahn, Cho (bib51) 2020; 17 Zhang, Wang, Hu, Zhang, Dai, Xia (bib32) 2020; 8 Lowman, Hanse, Yang, Ishak Gabra, Tran, Li (bib28) 2019; 26 D'Agostino, Li, Wang (bib42) 2022; 12 Jiang, Shi, Zhou, He, Zhu, Wang (bib21) 2023; 20 Xu, Liu, Hsu (bib30) 2019; 24 Song, Lu, Geng, Feng, Luo, Li (bib3) 2021; 53 Zhang (10.1016/j.bioactmat.2024.05.044_bib39) 2019; 11 Dixon (10.1016/j.bioactmat.2024.05.044_bib48) 2021; 123 Xu (10.1016/j.bioactmat.2024.05.044_bib30) 2019; 24 Sreevidya (10.1016/j.bioactmat.2024.05.044_bib23) 2023; 630 Klemmensen (10.1016/j.bioactmat.2024.05.044_bib5) 2024; 21 Zhou (10.1016/j.bioactmat.2024.05.044_bib9) 2024; 37 Chen (10.1016/j.bioactmat.2024.05.044_bib6) 2023; 21 Lowman (10.1016/j.bioactmat.2024.05.044_bib28) 2019; 26 Zhang (10.1016/j.bioactmat.2024.05.044_bib15) 2023; 10 Yuan (10.1016/j.bioactmat.2024.05.044_bib20) 2017; 120 Khatoon (10.1016/j.bioactmat.2024.05.044_bib34) 2017; 53 Neidlinger-Wilke (10.1016/j.bioactmat.2024.05.044_bib49) 2014; 23 Pagán (10.1016/j.bioactmat.2024.05.044_bib56) 2022; 185 Wang (10.1016/j.bioactmat.2024.05.044_bib10) 2023; 298 Szefel (10.1016/j.bioactmat.2024.05.044_bib38) 2019; 64 Raut (10.1016/j.bioactmat.2024.05.044_bib33) 2020; 15 Neupane (10.1016/j.bioactmat.2024.05.044_bib45) 2019; 10 Zhang (10.1016/j.bioactmat.2024.05.044_bib52) 2022; 390 Vercellino (10.1016/j.bioactmat.2024.05.044_bib46) 2022; 23 Hou (10.1016/j.bioactmat.2024.05.044_bib27) 2020; 3 Bouhsina (10.1016/j.bioactmat.2024.05.044_bib53) 2022; 12 Bai (10.1016/j.bioactmat.2024.05.044_bib7) 2020; 9 Jiang (10.1016/j.bioactmat.2024.05.044_bib21) 2023; 20 Wang (10.1016/j.bioactmat.2024.05.044_bib17) 2023; 49 Warburton (10.1016/j.bioactmat.2024.05.044_bib51) 2020; 17 Ma (10.1016/j.bioactmat.2024.05.044_bib55) 2017; 49 Zhang (10.1016/j.bioactmat.2024.05.044_bib32) 2020; 8 Wang (10.1016/j.bioactmat.2024.05.044_bib14) 2023 Jiang (10.1016/j.bioactmat.2024.05.044_bib22) 2020; 12 Zhao (10.1016/j.bioactmat.2024.05.044_bib26) 2021; 2021 Morris (10.1016/j.bioactmat.2024.05.044_bib11) 2017; 32 Fu (10.1016/j.bioactmat.2024.05.044_bib50) 2021; 11 Yang (10.1016/j.bioactmat.2024.05.044_bib8) 2023; 35 D'Agostino (10.1016/j.bioactmat.2024.05.044_bib42) 2022; 12 Chen (10.1016/j.bioactmat.2024.05.044_bib18) 2022; 10 Du (10.1016/j.bioactmat.2024.05.044_bib29) 2019; 96 Freitas-Rodríguez (10.1016/j.bioactmat.2024.05.044_bib40) 2017; 1864 Du (10.1016/j.bioactmat.2024.05.044_bib25) 2021 Szlas (10.1016/j.bioactmat.2024.05.044_bib12) 2022; 14 Masuda (10.1016/j.bioactmat.2024.05.044_bib19) 2005; 30 Acharya (10.1016/j.bioactmat.2024.05.044_bib35) 2023 Tomé (10.1016/j.bioactmat.2024.05.044_bib13) 2021; 11 Morris (10.1016/j.bioactmat.2024.05.044_bib37) 2016; 146 Liu (10.1016/j.bioactmat.2024.05.044_bib36) 2020; 6 Perelman (10.1016/j.bioactmat.2024.05.044_bib47) 2012; 3 Song (10.1016/j.bioactmat.2024.05.044_bib3) 2021; 53 Jiang (10.1016/j.bioactmat.2024.05.044_bib24) 2023 Wang (10.1016/j.bioactmat.2024.05.044_bib31) 2021; 13 Jia (10.1016/j.bioactmat.2024.05.044_bib16) 2014; 10 Sousa (10.1016/j.bioactmat.2024.05.044_bib43) 2018; 87 Zhao (10.1016/j.bioactmat.2024.05.044_bib41) 2011; 29 Weichhart (10.1016/j.bioactmat.2024.05.044_bib54) 2012; 821 Nolfi-Donegan (10.1016/j.bioactmat.2024.05.044_bib44) 2020; 37 Lin (10.1016/j.bioactmat.2024.05.044_bib4) 2023; 31 40115879 - Bioact Mater. 2024 Sep 28;43:340-341. doi: 10.1016/j.bioactmat.2024.09.034. |
References_xml | – volume: 12 start-page: 18 year: 2020 ident: bib22 article-title: Multifunctional load-bearing hybrid hydrogel with combined drug release and photothermal conversion functions publication-title: NPG Asia Mater. – volume: 49 year: 2023 ident: bib17 article-title: Mito-battery: micro-nanohydrogel microspheres for targeted regulation of cellular mitochondrial respiratory chain publication-title: Nano Today – volume: 2021 year: 2021 ident: bib26 article-title: Pegylated recombinant human arginase 1 induces autophagy and apoptosis via the ROS-activated AKT/mTOR pathway in bladder cancer cells publication-title: Oxid. Med. Cell. Longev. – volume: 53 year: 2017 ident: bib34 article-title: A review on conducting polymer reinforced polyurethane composites publication-title: J. Ind. Eng. Chem. – volume: 390 start-page: 1 year: 2022 end-page: 22 ident: bib52 article-title: Extracellular matrix in intervertebral disc: basic and translational implications publication-title: Cell Tissue Res. – volume: 49 start-page: 957 year: 2017 end-page: 964 ident: bib55 article-title: L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway publication-title: Amino Acids – volume: 1864 start-page: 2015 year: 2017 end-page: 2025 ident: bib40 article-title: The role of matrix metalloproteinases in aging: tissue remodeling and beyond publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 14 year: 2022 ident: bib12 article-title: The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism-A review publication-title: Nutrients – volume: 30 start-page: 5 year: 2005 end-page: 14 ident: bib19 article-title: A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration publication-title: Spine – volume: 120 start-page: 317 year: 2017 end-page: 327 ident: bib20 article-title: 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization publication-title: Mater. Des. – volume: 12 year: 2022 ident: bib42 article-title: High-throughput transcriptomics publication-title: Sci. Rep. – volume: 10 year: 2023 ident: bib15 article-title: Biomimetic and NOS-responsive nanomotor deeply delivery a combination of MSC-EV and mitochondrial ROS scavenger and promote heart repair and regeneration publication-title: Adv. Sci. – volume: 10 year: 2022 ident: bib18 article-title: Treatment outcomes of injectable thermosensitive hydrogel containing bevacizumab in intervertebral disc degeneration publication-title: Front. Bioeng. Biotechnol. – volume: 29 start-page: 718 year: 2011 end-page: 725 ident: bib41 article-title: ADAMTS-5 and intervertebral disc degeneration: the results of tissue immunohistochemistry and in vitro cell culture publication-title: J. Orthop. Res. : official publication of the Orthopaedic Research Society – volume: 11 start-page: 20 year: 2021 ident: bib13 article-title: Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity publication-title: Nutr. Diabetes – volume: 37 start-page: 51 year: 2024 end-page: 71 ident: bib9 article-title: Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration publication-title: Bioact. Mater. – volume: 11 start-page: 772 year: 2021 ident: bib50 article-title: Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth publication-title: Sci. Rep. – volume: 24 year: 2019 ident: bib30 article-title: Hydrogels based on Schiff base linkages for biomedical applications publication-title: Molecules – volume: 35 year: 2023 ident: bib8 article-title: Effective modulation of inflammation and oxidative stress for enhanced regeneration of intervertebral discs using 3D porous hybrid protein nanoscaffold publication-title: Adv. Mater. – volume: 17 start-page: 101 year: 2020 end-page: 110 ident: bib51 article-title: Biomaterials in spinal implants: a review publication-title: Neurospine – volume: 12 start-page: 5398 year: 2022 ident: bib53 article-title: Comparison of MRI T1, T2, and T2* mapping with histology for assessment of intervertebral disc degeneration in an ovine model publication-title: Sci. Rep. – year: 2023 ident: bib35 article-title: Fabrication of thermoplastic polyurethane and polypyrrole conducting blends: recent advances and perspectives publication-title: Mater. Today: Proc. – volume: 53 start-page: 1124 year: 2021 end-page: 1133 ident: bib3 article-title: Mitochondrial quality control in intervertebral disc degeneration publication-title: Exp. Mol. Med. – volume: 185 year: 2022 ident: bib56 article-title: mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity publication-title: Cell – volume: 21 year: 2024 ident: bib5 article-title: Mitochondrial dysfunction in neurodegenerative disorders publication-title: Neurotherapeutics – volume: 146 year: 2016 ident: bib37 article-title: Arginine metabolism revisited publication-title: J. Nutr. – volume: 123 year: 2021 ident: bib48 article-title: Review of in vitro mechanical testing for intervertebral disc injectable biomaterials publication-title: J. Mech. Behav. Biomed. Mater. – volume: 10 start-page: 4323 year: 2014 end-page: 4331 ident: bib16 article-title: Engineering alginate as bioink for bioprinting publication-title: Acta Biomater. – volume: 87 start-page: 167 year: 2018 end-page: 227 ident: bib43 article-title: Mitochondrial respiratory chain complexes publication-title: Sub-cellular biochemistry – volume: 20 start-page: 528 year: 2023 end-page: 538 ident: bib21 article-title: 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc publication-title: Bioact. Mater. – volume: 31 start-page: 158 year: 2023 end-page: 166 ident: bib4 article-title: The role of mitochondrial fission in intervertebral disc degeneration publication-title: Osteoarthritis Cartilage – volume: 26 year: 2019 ident: bib28 article-title: p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake publication-title: Cell Rep. – year: 2023 ident: bib24 article-title: Bioinspired construction of annulus fibrosus implants with a negative Poisson’s ratio for intervertebral disc repair and restraining disc herniation publication-title: Bioconjugate Chem. – volume: 9 year: 2020 ident: bib7 article-title: Reactive oxygen species-scavenging scaffold with rapamycin for treatment of intervertebral disk degeneration publication-title: Adv. Healthcare Mater. – year: 2023 ident: bib14 article-title: L-Arginine-Loaded gold nanocages ameliorate myocardial ischemia/reperfusion injury by promoting nitric oxide production and maintaining mitochondrial function publication-title: Adv. Sci. – volume: 821 start-page: 1 year: 2012 end-page: 14 ident: bib54 article-title: Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life publication-title: Methods Mol. Biol. – year: 2021 ident: bib25 article-title: Endowing conductive polyetheretherketone/graphene nanocomposite with bioactive and antibacterial coating through electrophoresis publication-title: Macromol. Mater. Eng. – volume: 3 start-page: e430 year: 2012 end-page: e ident: bib47 article-title: JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry publication-title: Cell Death Dis. – volume: 11 start-page: 10499 year: 2019 end-page: 10512 ident: bib39 article-title: Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation publication-title: Aging – volume: 298 year: 2023 ident: bib10 article-title: Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system publication-title: Biomaterials – volume: 37 year: 2020 ident: bib44 article-title: Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement publication-title: Redox Biol. – volume: 21 start-page: 503 year: 2023 ident: bib6 article-title: Mitochondrial dysfunction: roles in skeletal muscle atrophy publication-title: J. Transl. Med. – volume: 96 start-page: 522 year: 2019 end-page: 529 ident: bib29 article-title: Engineering a biomimetic integrated scaffold for intervertebral disc replacement publication-title: Mater. Sci. Eng. C – volume: 23 start-page: 333 year: 2014 end-page: 343 ident: bib49 article-title: Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level publication-title: Eur. Spine J. – volume: 32 start-page: 30S year: 2017 end-page: 47S ident: bib11 article-title: Acquired amino acid deficiencies: a focus on arginine and glutamine publication-title: Nutr. Clin. Pract. – volume: 8 start-page: 25390 year: 2020 end-page: 25401 ident: bib32 article-title: Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels publication-title: J. Mater. Chem. – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: bib45 article-title: ATP synthase: structure, function and inhibition – volume: 64 start-page: 104 year: 2019 end-page: 110 ident: bib38 article-title: Metabolic pathways of L-arginine and therapeutic consequences in tumors publication-title: Adv. Med. Sci. – volume: 6 year: 2020 ident: bib36 article-title: Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state publication-title: Sci. Adv. – volume: 3 start-page: 611 year: 2020 ident: bib27 article-title: Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b publication-title: Commun. Biol. – volume: 13 start-page: 33584 year: 2021 end-page: 33599 ident: bib31 article-title: Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 141 year: 2022 end-page: 161 ident: bib46 article-title: The assembly, regulation and function of the mitochondrial respiratory chain publication-title: Nat. Rev. Mol. Cell Biol. – volume: 15 year: 2020 ident: bib33 article-title: Biocompatibility of biomaterials for tissue regeneration or replacement publication-title: Biotechnol. J. – volume: 630 start-page: 46 year: 2023 end-page: 60 ident: bib23 article-title: Investigation of non-covalent interactions in Polypyrrole/Polyaniline/Carbon black ternary complex for enhanced thermoelectric properties via interfacial carrier scattering and π-π stacking publication-title: J. Colloid Interface Sci. – volume: 31 start-page: 158 issue: 2 year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib4 article-title: The role of mitochondrial fission in intervertebral disc degeneration publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2022.10.020 – volume: 53 start-page: 1124 issue: 7 year: 2021 ident: 10.1016/j.bioactmat.2024.05.044_bib3 article-title: Mitochondrial quality control in intervertebral disc degeneration publication-title: Exp. Mol. Med. doi: 10.1038/s12276-021-00650-7 – volume: 17 start-page: 101 issue: 1 year: 2020 ident: 10.1016/j.bioactmat.2024.05.044_bib51 article-title: Biomaterials in spinal implants: a review publication-title: Neurospine doi: 10.14245/ns.1938296.148 – volume: 123 year: 2021 ident: 10.1016/j.bioactmat.2024.05.044_bib48 article-title: Review of in vitro mechanical testing for intervertebral disc injectable biomaterials publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2021.104703 – volume: 87 start-page: 167 year: 2018 ident: 10.1016/j.bioactmat.2024.05.044_bib43 article-title: Mitochondrial respiratory chain complexes publication-title: Sub-cellular biochemistry doi: 10.1007/978-981-10-7757-9_7 – volume: 10 year: 2022 ident: 10.1016/j.bioactmat.2024.05.044_bib18 article-title: Treatment outcomes of injectable thermosensitive hydrogel containing bevacizumab in intervertebral disc degeneration publication-title: Front. Bioeng. Biotechnol. – volume: 10 issue: 21 year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib15 article-title: Biomimetic and NOS-responsive nanomotor deeply delivery a combination of MSC-EV and mitochondrial ROS scavenger and promote heart repair and regeneration publication-title: Adv. Sci. doi: 10.1002/advs.202301440 – volume: 3 start-page: e430 issue: 11 year: 2012 ident: 10.1016/j.bioactmat.2024.05.044_bib47 article-title: JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry publication-title: Cell Death Dis. doi: 10.1038/cddis.2012.171 – volume: 49 start-page: 957 issue: 5 year: 2017 ident: 10.1016/j.bioactmat.2024.05.044_bib55 article-title: L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway publication-title: Amino Acids doi: 10.1007/s00726-017-2399-0 – volume: 9 issue: 3 year: 2020 ident: 10.1016/j.bioactmat.2024.05.044_bib7 article-title: Reactive oxygen species-scavenging scaffold with rapamycin for treatment of intervertebral disk degeneration publication-title: Adv. Healthcare Mater. – volume: 32 start-page: 30S issue: 1S year: 2017 ident: 10.1016/j.bioactmat.2024.05.044_bib11 article-title: Acquired amino acid deficiencies: a focus on arginine and glutamine publication-title: Nutr. Clin. Pract. doi: 10.1177/0884533617691250 – volume: 20 start-page: 528 year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib21 article-title: 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc publication-title: Bioact. Mater. – volume: 26 issue: 11 year: 2019 ident: 10.1016/j.bioactmat.2024.05.044_bib28 article-title: p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.02.037 – volume: 2021 year: 2021 ident: 10.1016/j.bioactmat.2024.05.044_bib26 article-title: Pegylated recombinant human arginase 1 induces autophagy and apoptosis via the ROS-activated AKT/mTOR pathway in bladder cancer cells publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2021/5510663 – volume: 6 issue: 13 year: 2020 ident: 10.1016/j.bioactmat.2024.05.044_bib36 article-title: Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state publication-title: Sci. Adv. doi: 10.1126/sciadv.aay7608 – volume: 10 start-page: 4323 issue: 10 year: 2014 ident: 10.1016/j.bioactmat.2024.05.044_bib16 article-title: Engineering alginate as bioink for bioprinting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.06.034 – volume: 12 start-page: 18 issue: 1 year: 2020 ident: 10.1016/j.bioactmat.2024.05.044_bib22 article-title: Multifunctional load-bearing hybrid hydrogel with combined drug release and photothermal conversion functions publication-title: NPG Asia Mater. doi: 10.1038/s41427-020-0199-6 – volume: 53 year: 2017 ident: 10.1016/j.bioactmat.2024.05.044_bib34 article-title: A review on conducting polymer reinforced polyurethane composites publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.03.036 – volume: 146 issue: 12 year: 2016 ident: 10.1016/j.bioactmat.2024.05.044_bib37 article-title: Arginine metabolism revisited publication-title: J. Nutr. doi: 10.3945/jn.115.226621 – volume: 37 start-page: 51 year: 2024 ident: 10.1016/j.bioactmat.2024.05.044_bib9 article-title: Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration publication-title: Bioact. Mater. – volume: 49 year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib17 article-title: Mito-battery: micro-nanohydrogel microspheres for targeted regulation of cellular mitochondrial respiratory chain publication-title: Nano Today doi: 10.1016/j.nantod.2023.101820 – volume: 8 start-page: 25390 issue: 47 year: 2020 ident: 10.1016/j.bioactmat.2024.05.044_bib32 article-title: Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels publication-title: J. Mater. Chem. doi: 10.1039/D0TA09315G – volume: 3 start-page: 611 issue: 1 year: 2020 ident: 10.1016/j.bioactmat.2024.05.044_bib27 article-title: Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b publication-title: Commun. Biol. doi: 10.1038/s42003-020-01347-9 – volume: 24 issue: 16 year: 2019 ident: 10.1016/j.bioactmat.2024.05.044_bib30 article-title: Hydrogels based on Schiff base linkages for biomedical applications publication-title: Molecules doi: 10.3390/molecules24163005 – volume: 11 start-page: 20 issue: 1 year: 2021 ident: 10.1016/j.bioactmat.2024.05.044_bib13 article-title: Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity publication-title: Nutr. Diabetes doi: 10.1038/s41387-021-00164-1 – volume: 14 issue: 5 year: 2022 ident: 10.1016/j.bioactmat.2024.05.044_bib12 article-title: The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism-A review publication-title: Nutrients doi: 10.3390/nu14050961 – volume: 13 start-page: 33584 issue: 28 year: 2021 ident: 10.1016/j.bioactmat.2024.05.044_bib31 article-title: Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09889 – volume: 21 start-page: 503 issue: 1 year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib6 article-title: Mitochondrial dysfunction: roles in skeletal muscle atrophy publication-title: J. Transl. Med. doi: 10.1186/s12967-023-04369-z – volume: 11 start-page: 10499 issue: 22 year: 2019 ident: 10.1016/j.bioactmat.2024.05.044_bib39 article-title: Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation publication-title: Aging doi: 10.18632/aging.102472 – volume: 64 start-page: 104 issue: 1 year: 2019 ident: 10.1016/j.bioactmat.2024.05.044_bib38 article-title: Metabolic pathways of L-arginine and therapeutic consequences in tumors publication-title: Adv. Med. Sci. doi: 10.1016/j.advms.2018.08.018 – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.bioactmat.2024.05.044_bib42 article-title: High-throughput transcriptomics publication-title: Sci. Rep. – volume: 37 year: 2020 ident: 10.1016/j.bioactmat.2024.05.044_bib44 article-title: Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101674 – year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib35 article-title: Fabrication of thermoplastic polyurethane and polypyrrole conducting blends: recent advances and perspectives publication-title: Mater. Today: Proc. – volume: 30 start-page: 5 issue: 1 year: 2005 ident: 10.1016/j.bioactmat.2024.05.044_bib19 article-title: A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration publication-title: Spine doi: 10.1097/01.brs.0000148152.04401.20 – volume: 630 start-page: 46 year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib23 article-title: Investigation of non-covalent interactions in Polypyrrole/Polyaniline/Carbon black ternary complex for enhanced thermoelectric properties via interfacial carrier scattering and π-π stacking publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.09.056 – volume: 1864 start-page: 2015 issue: 11, Part A year: 2017 ident: 10.1016/j.bioactmat.2024.05.044_bib40 article-title: The role of matrix metalloproteinases in aging: tissue remodeling and beyond publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2017.05.007 – volume: 21 issue: 1 year: 2024 ident: 10.1016/j.bioactmat.2024.05.044_bib5 article-title: Mitochondrial dysfunction in neurodegenerative disorders publication-title: Neurotherapeutics doi: 10.1016/j.neurot.2023.10.002 – volume: 298 year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib10 article-title: Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system publication-title: Biomaterials doi: 10.1016/j.biomaterials.2023.122132 – volume: 12 start-page: 5398 issue: 1 year: 2022 ident: 10.1016/j.bioactmat.2024.05.044_bib53 article-title: Comparison of MRI T1, T2, and T2* mapping with histology for assessment of intervertebral disc degeneration in an ovine model publication-title: Sci. Rep. doi: 10.1038/s41598-022-09348-w – volume: 120 start-page: 317 year: 2017 ident: 10.1016/j.bioactmat.2024.05.044_bib20 article-title: 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.01.098 – volume: 23 start-page: 141 issue: 2 year: 2022 ident: 10.1016/j.bioactmat.2024.05.044_bib46 article-title: The assembly, regulation and function of the mitochondrial respiratory chain publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00415-0 – volume: 821 start-page: 1 year: 2012 ident: 10.1016/j.bioactmat.2024.05.044_bib54 article-title: Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-430-8_1 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.bioactmat.2024.05.044_bib45 article-title: ATP synthase: structure, function and inhibition – volume: 15 issue: 12 year: 2020 ident: 10.1016/j.bioactmat.2024.05.044_bib33 article-title: Biocompatibility of biomaterials for tissue regeneration or replacement publication-title: Biotechnol. J. doi: 10.1002/biot.202000160 – volume: 11 start-page: 772 issue: 1 year: 2021 ident: 10.1016/j.bioactmat.2024.05.044_bib50 article-title: Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth publication-title: Sci. Rep. doi: 10.1038/s41598-020-80756-6 – year: 2021 ident: 10.1016/j.bioactmat.2024.05.044_bib25 article-title: Endowing conductive polyetheretherketone/graphene nanocomposite with bioactive and antibacterial coating through electrophoresis publication-title: Macromol. Mater. Eng. – year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib24 article-title: Bioinspired construction of annulus fibrosus implants with a negative Poisson’s ratio for intervertebral disc repair and restraining disc herniation publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.3c00105 – volume: 390 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.bioactmat.2024.05.044_bib52 article-title: Extracellular matrix in intervertebral disc: basic and translational implications publication-title: Cell Tissue Res. doi: 10.1007/s00441-022-03662-5 – volume: 185 issue: 20 year: 2022 ident: 10.1016/j.bioactmat.2024.05.044_bib56 article-title: mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity publication-title: Cell doi: 10.1016/j.cell.2022.08.018 – volume: 35 issue: 41 year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib8 article-title: Effective modulation of inflammation and oxidative stress for enhanced regeneration of intervertebral discs using 3D porous hybrid protein nanoscaffold publication-title: Adv. Mater. – volume: 96 start-page: 522 year: 2019 ident: 10.1016/j.bioactmat.2024.05.044_bib29 article-title: Engineering a biomimetic integrated scaffold for intervertebral disc replacement publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.11.087 – volume: 29 start-page: 718 issue: 5 year: 2011 ident: 10.1016/j.bioactmat.2024.05.044_bib41 article-title: ADAMTS-5 and intervertebral disc degeneration: the results of tissue immunohistochemistry and in vitro cell culture publication-title: J. Orthop. Res. : official publication of the Orthopaedic Research Society doi: 10.1002/jor.21285 – volume: 23 start-page: 333 issue: 3 year: 2014 ident: 10.1016/j.bioactmat.2024.05.044_bib49 article-title: Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level publication-title: Eur. Spine J. doi: 10.1007/s00586-013-2855-9 – year: 2023 ident: 10.1016/j.bioactmat.2024.05.044_bib14 article-title: L-Arginine-Loaded gold nanocages ameliorate myocardial ischemia/reperfusion injury by promoting nitric oxide production and maintaining mitochondrial function publication-title: Adv. Sci. – reference: 40115879 - Bioact Mater. 2024 Sep 28;43:340-341. doi: 10.1016/j.bioactmat.2024.09.034. |
SSID | ssj0001700007 |
Score | 2.3272474 |
Snippet | Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Intervertebral disc degeneration l-arginine Mitochondrial dysfunction Polyurethan scaffold ROS scavenging |
Title | Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design |
URI | https://dx.doi.org/10.1016/j.bioactmat.2024.05.044 https://www.ncbi.nlm.nih.gov/pubmed/38873262 https://www.proquest.com/docview/3068756255 https://pubmed.ncbi.nlm.nih.gov/PMC11167444 https://doaj.org/article/41be4955890841ba95c8e529ce7f1be3 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBIF7hURmJa0QefoVbC60qxFYIqNSbZTuTNtUqqbLZSj3yzxnb2dUGDnvhlCixIzsznvkmGX9DyAdWC3AlNCk0UqSM2zzFMAhSC2Ut6yYroPAbnBfn4uyCfb3klzulvnxOWKQHji_uI8stIIjnqsoUnpuKOwW8qBzIBm8Fnk_0eTvB1E0khfHeb5bQZdveuBFxIEaFBQt8nYzN3FFg7Z95pX9R59_Jkzve6PQJeTzBSHoUh_-UPIDuGfm9wOWJ5qyrUatSCEyD1H9opStYNukQy86jIOjY0yGUlAFaw1VgnkbkSduYADmM_m_ykvodu9R_2V_Ru9ZQnJlv6felOTr0dr0a6fV9PfRXgG1DJshzcnF68uvzWTqVWEgdZ8WY5koWtpQuL2SNyCsvhDFoHvOKuQptIXO1ytGNSuHQ21mHtpBbBiCYsK7021JfkIOu7-AVoaEvV6rMQLLGOGsMxo5KqqpRIhcmIWLzprWb-Md9GYyl3iSa3eitiLQXkc64RhElJNt2vI0UHPu7HHtRbpt7Du1wATVLT5ql92lWQj5tFEFPcCTCDHxUu38E7zeqo3HBelmZDvr1SmOMhjEihp08IS-jKm3HWaLJRzxdJETNlGw2kfmdrr0OpOC5_6HGGHv9P6b-hjzyc4lJi2_JwTis4R2Cr9EekodHXxbffuLx-OT8-4_DsO7-APZdNdE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria-engine+with+self-regulation+to+restore+degenerated+intervertebral+disc+cells+via+bioenergetic+robust+hydrogel+design&rft.jtitle=Bioactive+materials&rft.au=Wang%2C+Juehan&rft.au=Jiang%2C+Yulin&rft.au=Zhu%2C+Ce&rft.au=Liu%2C+Zheng&rft.date=2024-10-01&rft.eissn=2452-199X&rft.volume=40&rft.spage=1&rft_id=info:doi/10.1016%2Fj.bioactmat.2024.05.044&rft_id=info%3Apmid%2F38873262&rft.externalDocID=38873262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |