Salt stress under the scalpel – dissecting the genetics of salt tolerance

Summary Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultur...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 97; no. 1; pp. 148 - 163
Main Authors Morton, Mitchell J. L., Awlia, Mariam, Al‐Tamimi, Nadia, Saade, Stephanie, Pailles, Yveline, Negrão, Sónia, Tester, Mark
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0960-7412
1365-313X
1365-313X
DOI10.1111/tpj.14189

Cover

Loading…
Abstract Summary Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield‐related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high‐throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants. Significance Statement The improvement of salt tolerance in crops is imperative for addressing yield penalties in saline soils and enabling the use of brackish water for irrigation. Major advances in high‐throughput phenotyping, data analysis, sequencing technologies and statistical genetics are empowering investigations into the mechanisms and genetics of salt tolerance, drawing upon an ever‐expanding suite of genetic resources. Bridging the genotype–phenotype gap to gain insights into the mechanisms of salt tolerance in plants is becoming practical.
AbstractList Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high-throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high-throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.
Summary Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield‐related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high‐throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants. Significance Statement The improvement of salt tolerance in crops is imperative for addressing yield penalties in saline soils and enabling the use of brackish water for irrigation. Major advances in high‐throughput phenotyping, data analysis, sequencing technologies and statistical genetics are empowering investigations into the mechanisms and genetics of salt tolerance, drawing upon an ever‐expanding suite of genetic resources. Bridging the genotype–phenotype gap to gain insights into the mechanisms of salt tolerance in plants is becoming practical.
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield‐related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high‐throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield‐related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high‐throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants. The improvement of salt tolerance in crops is imperative for addressing yield penalties in saline soils and enabling the use of brackish water for irrigation. Major advances in high‐throughput phenotyping, data analysis, sequencing technologies and statistical genetics are empowering investigations into the mechanisms and genetics of salt tolerance, drawing upon an ever‐expanding suite of genetic resources. Bridging the genotype–phenotype gap to gain insights into the mechanisms of salt tolerance in plants is becoming practical.
Author Saade, Stephanie
Pailles, Yveline
Awlia, Mariam
Morton, Mitchell J. L.
Al‐Tamimi, Nadia
Negrão, Sónia
Tester, Mark
AuthorAffiliation 1 Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia
AuthorAffiliation_xml – name: 1 Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia
Author_xml – sequence: 1
  givenname: Mitchell J. L.
  surname: Morton
  fullname: Morton, Mitchell J. L.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Mariam
  surname: Awlia
  fullname: Awlia, Mariam
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Nadia
  surname: Al‐Tamimi
  fullname: Al‐Tamimi, Nadia
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Stephanie
  surname: Saade
  fullname: Saade, Stephanie
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Yveline
  surname: Pailles
  fullname: Pailles, Yveline
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Sónia
  surname: Negrão
  fullname: Negrão, Sónia
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Mark
  orcidid: 0000-0002-5085-8801
  surname: Tester
  fullname: Tester, Mark
  email: mark.tester@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30548719$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS3Uik4LC14ARWIDi7S-8U-SDRKq-GsrgUSR2FlOcjP1yGNPbQfUHe_AG_ZJ6ulMK6hAeOPF_c7xuT77ZMd5h4Q8A3oI-Ryl1eIQODTtIzIDJkXJgH3bITPaSlrWHKo9sh_jglKomeSPyR6jgjc1tDNy-kXbVMQUMMZicgOGIl1gEXttV2iL65-_isHEiH0ybn47mqPDZPpY-LGIa3HyFoN2PT4hu6O2EZ9u7wPy9d3b8-MP5dmn9x-P35yVveBVW45NpxuOlMFANR_GmtMcuht4NSBIIXFkY90J2Y4NozAwQC7bQdOqQd1ljB2Q1xvf1dQtcejRpaCtWgWz1OFKeW3UnxNnLtTcf1eyEVSAzAYvtwbBX04Yk1qa2KO12qGfoqqqirYADPj_URC1FAJok9EXD9CFn4LLP5EpKZkEStdvP_89_H3qu0oycLQB-uBjDDiq3iSdjF_vYqwCqtalq1y6ui09K149UNyZ_o3duv8wFq_-DarzzycbxQ3Ks7wR
CitedBy_id crossref_primary_10_1007_s11738_022_03485_5
crossref_primary_10_1007_s00425_022_03928_w
crossref_primary_10_1007_s13595_021_01107_7
crossref_primary_10_1186_s12870_019_2039_9
crossref_primary_10_1111_tpj_15310
crossref_primary_10_1371_journal_pone_0291833
crossref_primary_10_3389_fpls_2022_804716
crossref_primary_10_3390_plants9050561
crossref_primary_10_3389_fmicb_2019_02791
crossref_primary_10_1007_s11104_023_05951_6
crossref_primary_10_3389_fpls_2022_999058
crossref_primary_10_3390_app14062225
crossref_primary_10_1016_j_envexpbot_2024_105689
crossref_primary_10_1111_ppl_13950
crossref_primary_10_20289_zfdergi_1284786
crossref_primary_10_1111_nph_17211
crossref_primary_10_1007_s10142_019_00707_x
crossref_primary_10_1371_journal_pone_0290752
crossref_primary_10_3390_stresses4020017
crossref_primary_10_1038_s41598_025_87100_w
crossref_primary_10_1186_s12870_020_02639_2
crossref_primary_10_1186_s12870_023_04509_z
crossref_primary_10_15835_nbha49112192
crossref_primary_10_48130_vegres_0024_0032
crossref_primary_10_1007_s11120_023_01032_y
crossref_primary_10_1007_s12298_020_00765_7
crossref_primary_10_1016_j_plaphy_2023_108097
crossref_primary_10_3390_plants13131840
crossref_primary_10_1080_15548627_2020_1847797
crossref_primary_10_3389_fpls_2023_1117868
crossref_primary_10_1016_j_sajb_2021_06_002
crossref_primary_10_1073_pnas_2210338119
crossref_primary_10_3390_genes14081564
crossref_primary_10_3389_fpls_2022_1097076
crossref_primary_10_3390_jof10040283
crossref_primary_10_3390_plants8090347
crossref_primary_10_1590_1807_1929_agriambi_v29n2e285670
crossref_primary_10_1016_j_gene_2022_146658
crossref_primary_10_3390_agronomy10121992
crossref_primary_10_3390_genes13071115
crossref_primary_10_1093_jxb_eraa339
crossref_primary_10_1111_pbi_13699
crossref_primary_10_1016_j_sajb_2021_09_023
crossref_primary_10_1186_s12866_021_02313_z
crossref_primary_10_3389_fpls_2023_1244743
crossref_primary_10_54112_bbasr_v2024i1_58
crossref_primary_10_1111_jac_12672
crossref_primary_10_1111_tpj_14219
crossref_primary_10_1016_j_envexpbot_2023_105397
crossref_primary_10_1111_nph_19619
crossref_primary_10_1016_S1002_0160_21_60070_X
crossref_primary_10_3390_plants9070891
crossref_primary_10_7717_peerj_14624
crossref_primary_10_1016_j_scienta_2022_111437
crossref_primary_10_36610_j_jsab_2020_080200110
crossref_primary_10_1016_j_stress_2024_100597
crossref_primary_10_1186_s12870_022_03907_z
crossref_primary_10_1007_s42535_023_00696_0
crossref_primary_10_1007_s00425_020_03366_6
crossref_primary_10_3390_plants10112512
crossref_primary_10_3390_genes12030332
crossref_primary_10_1007_s11368_023_03688_4
crossref_primary_10_1016_j_scienta_2021_110856
crossref_primary_10_3390_agronomy14071526
crossref_primary_10_3389_fpls_2020_588854
crossref_primary_10_1111_ppl_13592
crossref_primary_10_1007_s00344_022_10890_0
crossref_primary_10_3390_agronomy13020595
crossref_primary_10_1016_j_bcab_2023_102892
crossref_primary_10_1093_pcp_pcaa073
crossref_primary_10_3389_fpls_2021_772708
crossref_primary_10_1016_j_cj_2022_06_007
crossref_primary_10_3390_ijms23063325
crossref_primary_10_3390_life13071456
crossref_primary_10_3390_ijms23158519
crossref_primary_10_3390_plants9060733
crossref_primary_10_1007_s11676_022_01479_0
crossref_primary_10_3389_fpls_2021_681367
crossref_primary_10_3389_frai_2020_00028
crossref_primary_10_1111_ppl_13486
crossref_primary_10_3389_fsufs_2022_878013
crossref_primary_10_3389_fpls_2021_665439
crossref_primary_10_3390_biology13120977
crossref_primary_10_47115_bsagriculture_1525082
crossref_primary_10_1111_jipb_13635
crossref_primary_10_3389_fpls_2023_1217193
crossref_primary_10_1016_j_plantsci_2023_111658
crossref_primary_10_3389_fpls_2022_934877
crossref_primary_10_1007_s42976_023_00381_7
crossref_primary_10_1007_s12042_020_09265_0
crossref_primary_10_3390_land13040449
crossref_primary_10_1016_j_scitotenv_2022_160652
crossref_primary_10_3389_fpls_2021_734944
crossref_primary_10_1186_s12870_022_03752_0
crossref_primary_10_3390_ijms222111922
crossref_primary_10_1016_j_envexpbot_2021_104698
crossref_primary_10_48130_TP_2023_0020
crossref_primary_10_3390_w14213369
crossref_primary_10_3389_fpls_2022_985057
crossref_primary_10_3389_fpls_2022_949541
crossref_primary_10_1007_s42976_022_00312_y
crossref_primary_10_1080_13102818_2022_2116356
crossref_primary_10_1007_s10725_020_00659_4
crossref_primary_10_3389_fsufs_2022_919885
crossref_primary_10_1016_j_jplph_2022_153708
crossref_primary_10_1111_jipb_13061
crossref_primary_10_1186_s12870_021_02864_3
crossref_primary_10_1007_s00425_023_04149_5
crossref_primary_10_1080_11263504_2024_2384972
crossref_primary_10_3390_ijms222111674
crossref_primary_10_1111_tpj_16369
crossref_primary_10_3389_fpls_2021_794020
crossref_primary_10_32615_bp_2020_075
crossref_primary_10_1016_j_jplph_2020_153352
crossref_primary_10_3390_plants11060795
crossref_primary_10_1111_pce_14703
crossref_primary_10_3390_agronomy12102495
crossref_primary_10_1590_1519_6984_274499
crossref_primary_10_3390_biology12101343
crossref_primary_10_1186_s40066_022_00369_2
crossref_primary_10_3390_cells11223590
crossref_primary_10_3390_plants8110472
crossref_primary_10_1016_j_plaphy_2025_109568
crossref_primary_10_1093_jxb_eraa268
crossref_primary_10_3390_plants10091759
crossref_primary_10_1002_ajb2_1506
crossref_primary_10_3390_ijms23179680
crossref_primary_10_1016_j_plaphy_2024_109175
crossref_primary_10_3390_agronomy12030568
crossref_primary_10_1093_dnares_dsaa022
crossref_primary_10_3389_fpls_2022_871387
crossref_primary_10_3390_ijms24129813
crossref_primary_10_1007_s11427_020_1683_x
crossref_primary_10_1007_s00344_020_10231_z
crossref_primary_10_3390_antiox12030558
crossref_primary_10_3390_plants10040712
crossref_primary_10_1016_j_jpap_2022_100146
crossref_primary_10_3389_fpls_2020_575314
crossref_primary_10_1007_s11104_024_06918_x
crossref_primary_10_3390_ijms232012502
crossref_primary_10_3390_ijms22189957
crossref_primary_10_1111_ppl_14544
crossref_primary_10_1016_j_foohum_2024_100340
crossref_primary_10_3390_ijms24108913
crossref_primary_10_48130_OPR_2023_0021
crossref_primary_10_1038_s41598_024_72614_6
crossref_primary_10_32615_bp_2022_036
crossref_primary_10_3390_plants9060795
crossref_primary_10_3390_agronomy12123084
crossref_primary_10_3390_ijms22042203
crossref_primary_10_1016_j_bbrc_2024_150509
crossref_primary_10_3389_fpls_2021_634311
crossref_primary_10_1007_s00344_024_11601_7
crossref_primary_10_1016_j_chmed_2023_02_006
crossref_primary_10_1016_j_indcrop_2023_116240
crossref_primary_10_1007_s12298_019_00654_8
crossref_primary_10_1016_j_scienta_2022_111150
crossref_primary_10_1128_spectrum_01786_23
crossref_primary_10_1098_rsob_210353
crossref_primary_10_3389_fpls_2019_00217
crossref_primary_10_3390_agriculture12050658
crossref_primary_10_1007_s00344_024_11349_0
crossref_primary_10_3390_f15111905
crossref_primary_10_3390_life12060860
crossref_primary_10_1093_jxb_eraa500
crossref_primary_10_1134_S1021443724604737
crossref_primary_10_1007_s10725_021_00740_6
crossref_primary_10_3390_plants11192525
crossref_primary_10_1007_s00344_021_10424_0
crossref_primary_10_1007_s10343_022_00701_7
crossref_primary_10_3390_biology13090673
crossref_primary_10_3390_jof9030304
crossref_primary_10_1111_pce_14485
crossref_primary_10_1186_s12870_023_04393_7
crossref_primary_10_1016_j_xplc_2023_100740
crossref_primary_10_1093_plphys_kiae559
crossref_primary_10_1186_s12864_021_07922_6
crossref_primary_10_3390_horticulturae10060628
crossref_primary_10_1093_jxb_erad368
crossref_primary_10_1016_j_xplc_2022_100417
crossref_primary_10_1039_D1EN00390A
crossref_primary_10_1007_s13205_023_03519_w
crossref_primary_10_3390_plants8090307
crossref_primary_10_1007_s40415_021_00702_2
crossref_primary_10_1590_1807_1929_agriambi_v26n11p863_874
crossref_primary_10_3389_fpls_2022_926850
crossref_primary_10_3389_fpls_2022_965745
crossref_primary_10_1111_ejss_13506
crossref_primary_10_3389_fpls_2022_863233
crossref_primary_10_3390_ijms23169456
crossref_primary_10_1016_j_plaphy_2021_08_038
crossref_primary_10_1016_j_plaphy_2024_109034
crossref_primary_10_1016_j_scienta_2024_113368
crossref_primary_10_1186_s12870_021_03336_4
crossref_primary_10_3390_ijms22169009
crossref_primary_10_36610_j_jsab_2020_080200110x
crossref_primary_10_1111_ppl_14074
crossref_primary_10_3390_su14159280
crossref_primary_10_7717_peerj_17828
crossref_primary_10_1007_s00299_023_02996_w
crossref_primary_10_3390_plants13070979
crossref_primary_10_1371_journal_pone_0236037
crossref_primary_10_3390_agronomy13010025
crossref_primary_10_3390_f14081651
crossref_primary_10_7717_peerj_12133
crossref_primary_10_3390_plants9040526
crossref_primary_10_1146_annurev_arplant_061422_104322
crossref_primary_10_1016_j_stress_2023_100325
crossref_primary_10_2298_GENSR2402305P
crossref_primary_10_3389_fpls_2022_843994
crossref_primary_10_3390_plants13111552
crossref_primary_10_1007_s10725_021_00709_5
Cites_doi 10.1111/j.1365-313X.2004.02190.x
10.1007/s13253-010-0046-2
10.2135/cropsci2007.02.0103
10.3835/plantgenome2016.07.0064
10.1016/j.tplants.2007.09.009
10.1038/nature11420
10.1038/ncomms10527
10.1016/j.tplants.2016.02.006
10.1016/j.cj.2014.09.002
10.1038/ng.2314
10.1002/aps3.1031
10.1016/j.ygeno.2017.09.009
10.1007/s001220051343
10.1371/journal.pgen.1000130
10.1038/nclimate2425
10.1007/s10681-014-1250-x
10.1139/g98-163
10.1007/s00122-013-2066-0
10.1016/j.scitotenv.2016.08.014
10.1002/elps.201400038
10.1038/nmeth.1681
10.1071/PP9830109
10.1101/gr.184001
10.1371/journal.pgen.1004982
10.1007/s00122-001-0848-2
10.1111/j.1365-3040.2008.01916.x
10.1186/s12284-016-0087-4
10.1007/s00122-010-1273-1
10.1038/nature21370
10.1007/978-3-540-88351-7_18
10.1038/nature11295
10.5772/66925
10.1016/j.tplants.2015.10.015
10.1007/s001220050900
10.1186/s13007-017-0204-4
10.1071/FP12060
10.1038/ng.2376
10.1093/dnares/9.6.199
10.1016/j.tplants.2013.09.008
10.3389/fpls.2017.02143
10.1007/s12038-012-9227-1
10.1038/ng2088
10.1002/gepi.20353
10.1017/S0016672312000274
10.1016/j.tplants.2017.04.002
10.1073/pnas.202476999
10.1016/j.plantsci.2018.01.018
10.3389/fpls.2017.00652
10.1371/journal.pgen.0030114
10.1371/journal.pgen.0030004
10.1002/pld3.41
10.1016/j.tplants.2011.09.005
10.1016/j.tplants.2017.08.011
10.1105/tpc.113.119982
10.1038/cr.2017.124
10.1371/journal.pone.0066606
10.1007/s11258-008-9482-2
10.1111/pce.12898
10.1038/ng.2310
10.1016/j.tplants.2013.12.002
10.1111/eva.12434
10.1146/annurev.pp.31.060180.001053
10.1016/j.pbi.2015.02.006
10.1023/A:1002968207362
10.1146/annurev.arplant.59.032607.092911
10.3389/fpls.2017.00593
10.1093/aob/mcw191
10.1038/ng.3046
10.1126/sciadv.1500323
10.1071/FP16194
10.3389/fpls.2017.00138
10.1038/nature11119
10.1038/ng.546
10.1016/j.tplants.2005.10.002
10.1093/aob/mcq009
10.1002/fes3.106
10.3389/fpls.2017.00853
10.3390/agronomy3010200
10.1111/1477-8947.12054
10.1186/s12863-015-0218-8
10.1038/srep42839
10.1093/bioinformatics/bts669
10.1111/nph.14702
10.1007/s00122-005-0055-7
10.1046/j.1365-313X.2002.01322.x
10.1371/journal.pone.0094000
10.1111/tpj.13515
10.1186/s12284-017-0181-2
10.1093/molbev/msm077
10.3389/fpls.2014.00770
10.3389/fgene.2014.00349
10.1371/journal.pone.0169860
10.3389/fpls.2018.01402
10.1371/journal.pone.0067280
10.1038/nbt.2979
10.1371/journal.pone.0172515
10.1038/ncomms13342
10.1038/ncomms13390
10.1038/nplants.2017.107
10.1111/tpj.12616
10.3389/fpls.2016.01787
10.1086/519024
10.3389/fpls.2016.01414
10.3390/agriculture8020030
10.1038/ng.548
10.1046/j.1365-2540.2000.00705.x
10.1111/pbi.12145
10.1071/FP09095
10.1046/j.0016-8025.2001.00808.x
10.1104/pp.15.00450
10.1534/genetics.107.080101
10.1186/1746-4811-9-29
10.1371/journal.pbio.0020347
10.1093/jxb/err396
10.1146/annurev.arplant.59.032607.092759
10.1071/FP14226
10.1038/s41477-017-0083-8
10.3389/fpls.2017.00550
10.1071/AR9780897
10.7717/peerj.4088
10.2135/cropsci2016.10.0885
10.1016/j.isprsjprs.2014.03.016
10.3389/fpls.2017.01461
10.1534/genetics.104.035642
10.1126/science.1251788
10.2135/cropsci1981.0011183X002100060033x
10.3389/fpls.2016.00622
10.1371/journal.pgen.1003264
10.1038/nature22011
10.1093/bfgp/elq001
10.1007/s11032-017-0634-8
10.1038/s41598-018-24946-3
10.1016/j.proenv.2015.07.228
10.1007/BF00039203
10.1126/science.277.5329.1063
10.15406/hij.2017.01.00015
10.1038/srep32586
10.3389/fgene.2016.00139
10.1038/s41586-018-0123-1
10.1534/genetics.107.085589
10.1016/j.tplants.2014.11.006
10.1023/B:EUPH.0000040503.48448.97
10.1016/j.ajhg.2008.01.016
10.1071/FP09182
10.1038/nbt.2050
10.1186/s12284-014-0016-3
10.1038/s41598-017-00638-2
10.1186/s13007-015-0072-8
10.1038/nrg3901
10.1093/genetics/165.4.2117
10.5772/33073
10.1007/s00271-012-0382-9
10.1093/aob/mcx148
10.1186/s13007-018-0273-z
ContentType Journal Article
Copyright 2018 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd
2018 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2018 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd
– notice: 2018 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/tpj.14189
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
CrossRef
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Mitchell J. L. Morton et al
EISSN 1365-313X
EndPage 163
ExternalDocumentID PMC6850516
30548719
10_1111_tpj_14189
TPJ14189
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: King Abdullah University of Science and Technology (KAUST)
– fundername: ;
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5429-f8ba84e031d0a4df740136bd42de1656ef3f7b569f8301d31e469da028eabbd43
IEDL.DBID 24P
ISSN 0960-7412
1365-313X
IngestDate Thu Aug 21 18:29:02 EDT 2025
Fri Jul 11 18:29:11 EDT 2025
Fri Jul 11 08:55:22 EDT 2025
Mon Jul 21 01:49:38 EDT 2025
Wed Feb 19 02:32:00 EST 2025
Tue Jul 01 03:57:28 EDT 2025
Thu Apr 24 22:54:59 EDT 2025
Wed Jan 22 16:48:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
2018 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5429-f8ba84e031d0a4df740136bd42de1656ef3f7b569f8301d31e469da028eabbd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5085-8801
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14189
PMID 30548719
PQID 2166361006
PQPubID 31702
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6850516
proquest_miscellaneous_2220911314
proquest_miscellaneous_2157655108
proquest_journals_2166361006
pubmed_primary_30548719
crossref_citationtrail_10_1111_tpj_14189
crossref_primary_10_1111_tpj_14189
wiley_primary_10_1111_tpj_14189_TPJ14189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2019
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2013; 3
2012; 485
2010; 105
2013; 126
1997; 277
2002; 99
2014; 26
1983; 10
1999; 42
2018; 41
2004; 2
2012; 488
2013; 8
2013; 9
2018; 6
2018; 9
2018; 8
2018; 2
2018; 4
1980; 31
2012; 490
2014; 19
2007; 3
2014; 93
1998; 97
2014; 12
2003; 165
2010; 9
2004; 40
2002; 9
2005; 111
1982; 31
2008; 59
2014; 46
2012; 39
1992
2012; 37
2007; 12
2011; 8
1981; 21
2012; 30
2016; 6
2016; 7
2010; 42
2018; 110
2016; 2
2017; 57
2016; 21
2014; 38
2000; 84
2008; 48
2014; 35
2007; 81
2005; 10
2000; 100
2017; 542
2017; 543
2012; 44
2016; 9
2014; 32
2018; 14
2017; 5
2007; 39
2017; 119
2017; 6
2013; 29
2017; 7
2017; 8
2018; 121
2017; 1
2017; 3
2017; 44
2003; 19
2008; 4
2011; 16
2014; 5
2014; 4
1997; 94
2004; 137
2017; 37
2015; 42
2002; 104
1978; 29
2014; 9
2001; 11
2014; 7
2012; 337
2007; 24
2009; 202
2012; 63
2015; 16
2015; 5
2015; 3
2012
2002; 30
2015; 203
2015; 168
2017; 27
2017; 22
2018; 269
2015; 11
2009
2010; 120
2017; 578
2017; 216
2015; 24
2012; 94
2009; 33
2009; 36
2002; 25
2014; 80
2017; 90
2009; 32
2015; 29
2018; 557
2005; 169
2015; 20
2017; 10
2017; 13
2017; 12
2017
2016
2001; 3
2015
2014
2018; 50
2008; 179
2008; 178
2008; 82
2014; 345
e_1_2_10_21_1
e_1_2_10_44_1
Zhao Q. (e_1_2_10_161_1) 2018; 50
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_158_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
Jacobsen S.‐E. (e_1_2_10_58_1) 2003; 19
e_1_2_10_51_1
FAO (e_1_2_10_33_1) 2017
Schnable P.S. (e_1_2_10_118_1) 2012; 337
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
Tipping M.E. (e_1_2_10_133_1) 2001; 3
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
Silva R.M.D. (e_1_2_10_122_1) 2017; 12
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
Gulfishan M. (e_1_2_10_49_1) 2016
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
Tsujimoto H. (e_1_2_10_137_1) 2015
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
Pando G.L. (e_1_2_10_102_1) 2017; 1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_160_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_164_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_157_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 7
  start-page: 10527
  year: 2016
  article-title: Genome‐wide association and high‐resolution phenotyping link Oryza sativa panicle traits to numerous trait‐specific QTL clusters
  publication-title: Nat. Commun.
– volume: 7
  start-page: 13342
  year: 2016
  article-title: Salinity tolerance loci revealed in rice using high‐throughput non‐invasive phenotyping
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1402
  year: 2018
  article-title: The genome sequence of the wild tomato provides insights into salinity tolerance
  publication-title: Front. Plant Sci.
– volume: 10
  start-page: 40
  year: 2017
  article-title: Large‐scale deployment of a rice 6 K SNP array for genetics and breeding applications
  publication-title: Rice
– volume: 57
  start-page: 1070
  year: 2017
  article-title: Past and future use of wild relatives in crop breeding
  publication-title: Crop Sci.
– volume: 80
  start-page: 136
  year: 2014
  end-page: 148
  article-title: Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole‐genome sequencing
  publication-title: Plant J.
– volume: 5
  start-page: 270
  year: 2014
  article-title: Evaluation of the lasso and the elastic net in genome‐wide association studies (vol 4, 2013)
  publication-title: Front. Genet.
– volume: 488
  start-page: 197
  year: 2012
  end-page: 200
  article-title: Water balance of global aquifers revealed by groundwater footprint
  publication-title: Nature
– volume: 7
  start-page: 1787
  year: 2016
  article-title: New insights on plant salt tolerance mechanisms and their potential use for breeding
  publication-title: Front. Plant Sci.
– volume: 31
  start-page: 645
  year: 1982
  end-page: 656
  article-title: Reducing the influence of environmental main‐effects on pattern‐analysis of plant‐breeding environments
  publication-title: Euphytica
– volume: 9
  start-page: 199
  year: 2002
  end-page: 207
  article-title: Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.)
  publication-title: DNA Res.
– volume: 12
  start-page: e0169860
  year: 2017
  article-title: Genome‐wide association study for carcass traits in an experimental Nelore cattle population
  publication-title: PLoS ONE
– volume: 9
  start-page: e1003264
  year: 2013
  article-title: Polygenic modeling with Bayesian sparse linear mixed models
  publication-title: PLoS Genet.
– volume: 8
  start-page: 853
  year: 2017
  article-title: Genome‐wide association mapping of loci associated with plant growth and forage production under salt stress in Alfalfa (Medicago sativa L.)
  publication-title: Front. Plant Sci.
– volume: 97
  start-page: 308
  year: 1998
  end-page: 315
  article-title: The use of microsatellite markers for detection of genetic diversity in barley populations
  publication-title: Theor. Appl. Genet.
– volume: 179
  start-page: 1045
  year: 2008
  end-page: 1055
  article-title: Bayesian LASSO for quantitative trait loci mapping
  publication-title: Genetics
– volume: 10
  year: 2017
  article-title: A comprehensive image‐based phenomic analysis reveals the complex genetic architecture of shoot growth dynamics in rice (Oryza sativa)
  publication-title: Plant Genome
– volume: 3
  start-page: 17107
  year: 2017
  article-title: Progress and prospects in plant genome editing
  publication-title: Nat. Plants
– year: 2014
– volume: 32
  start-page: 1045
  year: 2014
  end-page: 1052
  article-title: De novo assembly of soybean wild relatives for pan‐genome analysis of diversity and agronomic traits
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 2143
  year: 2017
  article-title: Developing a roadmap for improving neglected and underutilized crops: a case study of South Africa
  publication-title: Front. Plant Sci.
– volume: 4
  start-page: 23
  year: 2018
  end-page: 29
  article-title: Speed breeding is a powerful tool to accelerate crop research and breeding
  publication-title: Nat. Plants
– volume: 110
  start-page: 171
  year: 2018
  end-page: 179
  article-title: Single step genome‐wide association studies based on genotyping by sequence data reveals novel loci for the litter traits of domestic pigs
  publication-title: Genomics
– start-page: 95
  year: 2016
  end-page: 112
– volume: 30
  start-page: 105
  year: 2012
  end-page: U157
  article-title: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes
  publication-title: Nat. Biotechnol.
– volume: 42
  start-page: 348
  year: 2010
  end-page: 354
  article-title: Variance component model to account for sample structure in genome‐wide association studies
  publication-title: Nat. Genet.
– volume: 90
  start-page: 1007
  year: 2017
  end-page: 1013
  article-title: The pangenome of hexaploid bread wheat
  publication-title: Plant J.
– volume: 44
  start-page: 312
  year: 2017
  end-page: 323
  article-title: Distinct growth and physiological responses of Arabidopsis thaliana natural accessions to drought stress and their detection using spectral reflectance and thermal imaging
  publication-title: Funct. Plant Biol.
– volume: 35
  start-page: 1921
  year: 2014
  end-page: 1927
  article-title: Genetic diversity of maize germplasm assessed by retrotransposon‐based markers
  publication-title: Electrophoresis
– volume: 16
  start-page: 237
  year: 2015
  end-page: 251
  article-title: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability
  publication-title: Nat. Rev. Genet.
– volume: 3
  start-page: e114
  year: 2007
  article-title: Imputation‐based analysis of association studies: candidate regions and quantitative traits
  publication-title: PLoS Genet.
– volume: 37
  start-page: 30
  year: 2017
  article-title: Genome‐wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines
  publication-title: Mol. Breeding
– volume: 4
  start-page: e1000130
  year: 2008
  article-title: Simultaneous analysis of All SNPs in genome‐wide and re‐sequencing association studies
  publication-title: PLoS Genet.
– volume: 40
  start-page: 143
  year: 2004
  end-page: 150
  article-title: A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.)
  publication-title: Plant J.
– volume: 1
  start-page: 15
  year: 2017
  end-page: 19
  article-title: Development of advanced mutant lines of native grains through radiation‐induced Mutagenesis in Peru
  publication-title: Hortic. Int. J.
– volume: 30
  start-page: 511
  year: 2012
  end-page: 522
  article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV)
  publication-title: Irrig. Sci.
– volume: 82
  start-page: 859
  year: 2008
  end-page: 872
  article-title: Bayesian meta‐analysis of genetic association studies with different sets of markers
  publication-title: Am. J. Hum. Genet.
– volume: 8
  start-page: 1461
  year: 2017
  article-title: Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes
  publication-title: Front. Plant Sci.
– volume: 44
  start-page: 825
  year: 2012
  end-page: U144
  article-title: An efficient multi‐locus mixed‐model approach for genome‐wide association studies in structured populations
  publication-title: Nat. Genet.
– volume: 46
  start-page: 1034
  year: 2014
  end-page: 1038
  article-title: The genome of the stress‐tolerant wild tomato species Solanum pennellii
  publication-title: Nat. Genet.
– volume: 5
  start-page: e4088
  year: 2017
  article-title: PlantCV v2: image analysis software for high‐throughput plant phenotyping
  publication-title: PeerJ
– volume: 202
  start-page: 285
  year: 2009
  end-page: 297
  article-title: Spatial variations in salinity stress across a coastal landscape using vegetation indices derived from hyperspectral imagery
  publication-title: Plant Ecol.
– volume: 42
  start-page: 387
  year: 2015
  end-page: 396
  article-title: Image based phenotyping during winter: a powerful tool to assess wheat genetic variation in growth response to temperature
  publication-title: Funct. Plant Biol.
– volume: 5
  start-page: 770
  year: 2015
  article-title: Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems
  publication-title: Front. Plant Sci.
– volume: 19
  start-page: 351
  year: 2014
  end-page: 360
  article-title: Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes
  publication-title: Trends Plant Sci.
– volume: 3
  start-page: 46
  year: 2015
  end-page: 56
  article-title: Radiation‐induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.)
  publication-title: Crop J.
– volume: 216
  start-page: 682
  year: 2017
  end-page: 698
  article-title: Towards CRISPR/Cas crops ‐ bringing together genomics and genome editing
  publication-title: New Phytol.
– start-page: 133
  year: 2012
  end-page: 162
– volume: 557
  start-page: 651
  year: 2018
  end-page: 659
  article-title: Emerging trends in global freshwater availability
  publication-title: Nature
– volume: 8
  start-page: 833
  year: 2011
  end-page: 835
  article-title: FaST linear mixed models for genome‐wide association studies
  publication-title: Nat. Methods
– volume: 24
  start-page: 93
  year: 2015
  end-page: 99
  article-title: Lights, camera, action: high‐throughput plant phenotyping is ready for a close‐up
  publication-title: Curr. Opin. Plant Biol.
– volume: 9
  start-page: e94000
  year: 2014
  article-title: Genetic diversity and population structure analysis of european hexaploid bread wheat (Triticum aestivum L.) varieties
  publication-title: PLoS ONE
– volume: 25
  start-page: 239
  year: 2002
  end-page: 250
  article-title: Comparative physiology of salt and water stress
  publication-title: Plant Cell Environ.
– volume: 33
  start-page: 27
  year: 2009
  end-page: 37
  article-title: Bayesian variable and model selection methods for genetic association studies
  publication-title: Genet. Epidemiol.
– volume: 542
  start-page: 307
  year: 2017
  article-title: The genome of
  publication-title: Nature
– volume: 543
  start-page: 346
  year: 2017
  end-page: 354
  article-title: Genomic innovation for crop improvement
  publication-title: Nature
– volume: 8
  start-page: e66606
  year: 2013
  article-title: Genetic diversity and molecular evolution of Chinese waxy maize germplasm
  publication-title: PLoS ONE
– volume: 100
  start-page: 713
  year: 2000
  end-page: 722
  article-title: Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.)
  publication-title: Theor. Appl. Genet.
– volume: 111
  start-page: 1288
  year: 2005
  end-page: 1299
  article-title: Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers?
  publication-title: Theor. Appl. Genet.
– year: 1992
– volume: 59
  start-page: 89
  year: 2008
  end-page: 113
  article-title: Chlorophyll fluorescence: a probe of photosynthesis in vivo
  publication-title: Annu. Rev. Plant Biol.
– volume: 99
  start-page: 12959
  year: 2002
  end-page: 12962
  article-title: Genetic diversity and selection in the maize starch pathway
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 93
  start-page: 98
  year: 2014
  end-page: 111
  article-title: Detection of early plant stress responses in hyperspectral images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 84
  start-page: 476
  year: 2000
  end-page: 486
  article-title: Genetic diversity of barley landrace accessions (Hordeum vulgare ssp vulgare) conserved for different lengths of time in ex situ gene banks
  publication-title: Heredity
– volume: 4
  start-page: 945
  year: 2014
  end-page: 948
  article-title: The global groundwater crisis
  publication-title: Nat. Clim. Chang.
– volume: 11
  start-page: 1441
  year: 2001
  end-page: 1452
  article-title: Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential
  publication-title: Genome Res.
– volume: 44
  start-page: 821
  year: 2012
  end-page: 824
  article-title: Genome‐wide efficient mixed‐model analysis for association studies
  publication-title: Nat. Genet.
– volume: 121
  start-page: 603
  year: 2018
  end-page: 616
  article-title: Wheat genetic resources in the post‐genomics era: promise and challenges
  publication-title: Ann. Bot.
– volume: 10
  start-page: 615
  year: 2005
  end-page: 620
  article-title: Developing salt‐tolerant crop plants: challenges and opportunities
  publication-title: Trends Plant Sci.
– volume: 12
  start-page: 378
  year: 2014
  end-page: 386
  article-title: Expression of the Arabidopsis vacuolar H plus ‐ pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field
  publication-title: Plant Biotechnol. J.
– volume: 94
  start-page: 73
  year: 2012
  end-page: 83
  article-title: Genome‐wide association mapping including phenotypes from relatives without genotypes
  publication-title: Genet. Res.
– volume: 63
  start-page: 1075
  year: 2012
  end-page: 1079
  article-title: The potential for underutilized crops to improve security of food production
  publication-title: J. Exp. Bot.
– volume: 6
  start-page: e1031
  year: 2018
  article-title: Raspberry Pi‐powered imaging for plant phenotyping
  publication-title: Appl. Plant Sci.
– volume: 10
  start-page: 5
  year: 2017
  end-page: 24
  article-title: Back into the wild‐Apply untapped genetic diversity of wild relatives for crop improvement
  publication-title: Evol. Appl.
– volume: 120
  start-page: 1525
  year: 2010
  end-page: 1534
  article-title: Effects of ascertainment bias and marker number on estimations of barley diversity from high‐throughput SNP genotype data
  publication-title: Theor. Appl. Genet.
– volume: 7
  start-page: 139
  year: 2016
  article-title: Comparing analytic methods for longitudinal GWAS and a case‐study evaluating chemotherapy course length in pediatric AML. A report from the children's oncology group
  publication-title: Front. Genet.
– volume: 2
  start-page: e347
  year: 2004
  article-title: Diversifying selection in plant breeding
  publication-title: PLoS Biol.
– volume: 11
  start-page: 29
  year: 2015
  article-title: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses ‐ a review
  publication-title: Plant Methods
– volume: 485
  start-page: 635
  year: 2012
  end-page: 641
  article-title: The tomato genome sequence provides insights into fleshy fruit evolution
  publication-title: Nature
– volume: 39
  start-page: 878
  year: 2012
  end-page: 890
  article-title: Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis
  publication-title: Funct. Plant Biol.
– volume: 2
  start-page: 1
  year: 2018
  end-page: 8
  article-title: High‐fidelity detection of crop biomass quantitative trait loci from low‐cost imaging in the field
  publication-title: Plant Direct
– volume: 31
  start-page: 149
  year: 1980
  end-page: 190
  article-title: Mechanisms of salt tolerance in non‐halophytes
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
– volume: 6
  start-page: 19
  year: 2017
  end-page: 25
  article-title: Harnessing diversity from ecosystems to crops to genes
  publication-title: Food Energy Secur.
– volume: 8
  start-page: 30
  year: 2018
  article-title: Identification of phenotypic variation and genetic diversity in rice (Oryza sativa L.) mutants
  publication-title: Agriculture
– volume: 105
  start-page: 535
  year: 2010
  end-page: 554
  article-title: Genetic diversity and population structure in the tomato‐like nightshades Solanum lycopersicoides and S. sitiens
  publication-title: Ann. Bot.
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
– volume: 8
  start-page: 550
  year: 2017
  article-title: Genomic selection for drought tolerance using genome‐wide SNPs in maize
  publication-title: Front. Plant Sci.
– volume: 9
  start-page: 29
  year: 2013
  article-title: The advantages and limitations of trait analysis with GWAS: a review
  publication-title: Plant Methods
– volume: 6
  start-page: 32586
  year: 2016
  article-title: Yield‐related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley
  publication-title: Sci. Rep.
– volume: 10
  start-page: 109
  year: 1983
  end-page: 117
  article-title: Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and F1 hybrids to high salinity
  publication-title: Aust. J. Plant Physiol.
– volume: 8
  start-page: 652
  year: 2017
  article-title: Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape
  publication-title: Front. Plant Sci.
– volume: 16
  start-page: 170
  year: 2011
  end-page: 184
  article-title: Identifying QTLs and epistasis in structured plant populations using adaptive mixed LASSO
  publication-title: J. Agric. Biol. Environ. Stat.
– volume: 7
  start-page: 1414
  year: 2016
  article-title: High‐throughput non‐destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
– volume: 9
  start-page: 14
  year: 2016
  article-title: Rice: the first crop genome
  publication-title: Rice
– volume: 44
  start-page: 1066
  year: 2012
  end-page: 1071
  article-title: A mixed‐model approach for genome‐wide association studies of correlated traits in structured populations
  publication-title: Nat. Genet.
– volume: 16
  start-page: 635
  year: 2011
  end-page: 644
  article-title: Phenomics ‐ technologies to relieve the phenotyping bottleneck
  publication-title: Trends Plant Sci.
– volume: 490
  start-page: 254
  year: 2012
  end-page: 257
  article-title: Closing yield gaps through nutrient and water management
  publication-title: Nature
– volume: 20
  start-page: 139
  year: 2015
  end-page: 144
  article-title: Physiological phenotyping of plants for crop improvement
  publication-title: Trends Plant Sci.
– volume: 27
  start-page: 1327
  year: 2017
  end-page: 1340
  article-title: A high‐quality genome assembly of quinoa provides insights into the molecular basis of salt bladder‐based salinity tolerance and the exceptional nutritional value
  publication-title: Cell Res.
– volume: 203
  start-page: 273
  year: 2015
  end-page: 283
  article-title: QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.)
  publication-title: Euphytica
– volume: 12
  start-page: 534
  year: 2007
  end-page: 540
  article-title: Salinity tolerance of Arabidopsis: a good model for cereals?
  publication-title: Trends Plant Sci.
– volume: 3
  start-page: 211
  year: 2001
  end-page: 214
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 237
  year: 2009
  end-page: 249
  article-title: Quantifying the three main components of salinity tolerance in cereals
  publication-title: Plant Cell Environ.
– volume: 11
  start-page: e1004982
  year: 2015
  article-title: Genomic selection and association mapping in rice ( ): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines
  publication-title: PLoS Genet.
– volume: 42
  start-page: 727
  year: 1999
  end-page: 734
  article-title: Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping
  publication-title: Genome
– volume: 119
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Evaluating physiological responses of plants to salinity stress
  publication-title: Ann. Bot.
– volume: 81
  start-page: 208
  year: 2007
  end-page: 227
  article-title: A Bayesian measure of the probability of false discovery in genetic epidemiology studies
  publication-title: Am. J. Hum. Genet.
– volume: 8
  start-page: e67280
  year: 2013
  article-title: Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and pedigree data
  publication-title: PLoS ONE
– volume: 169
  start-page: 1631
  year: 2005
  end-page: 1638
  article-title: Genetic structure and diversity in Oryza sativa L
  publication-title: Genetics
– volume: 26
  start-page: 121
  year: 2014
  end-page: 135
  article-title: Insights into the Maize Pan‐Genome and Pan‐Transcriptome
  publication-title: Plant Cell
– volume: 165
  start-page: 2117
  year: 2003
  end-page: 2128
  article-title: Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites
  publication-title: Genetics
– volume: 21
  start-page: 943
  year: 1981
  end-page: 946
  article-title: Theoretical aspects of selection for yield in stress and non‐stress environments
  publication-title: Crop Sci.
– volume: 337
  start-page: 1040
  year: 2012
  end-page: 1040
  article-title: The B73 maize genome: complexity, diversity, and dynamics (November, pg 1112, 2009)
  publication-title: Science
– volume: 8
  start-page: 593
  year: 2017
  article-title: Genome‐wide association study reveals the genetic architecture underlying salt tolerance‐related traits in rapeseed (Brassica napus L.)
  publication-title: Front. Plant Sci.
– volume: 104
  start-page: 845
  year: 2002
  end-page: 851
  article-title: The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin
  publication-title: Theor. Appl. Genet.
– volume: 39
  start-page: 906
  year: 2007
  article-title: A new multipoint method for genome‐wide association studies by imputation of genotypes
  publication-title: Nat. Genet.
– volume: 3
  start-page: 200
  year: 2013
  end-page: 231
  article-title: Induced mutations unleash the potentials of plant genetic resources for food and agriculture
  publication-title: Agronomy
– volume: 19
  start-page: 52
  year: 2014
  end-page: 61
  article-title: Field high‐throughput phenotyping: the new crop breeding frontier
  publication-title: Trends Plant Sci.
– volume: 21
  start-page: 110
  year: 2016
  end-page: 124
  article-title: Machine learning for high‐throughput stress phenotyping in plants
  publication-title: Trends Plant Sci.
– year: 2015
– volume: 9
  start-page: 166
  year: 2010
  end-page: 177
  article-title: Genomic selection in plant breeding: from theory to practice
  publication-title: Brief Funct. Genomics
– volume: 30
  start-page: 601
  year: 2002
  end-page: 609
  article-title: Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation
  publication-title: Plant J.
– volume: 178
  start-page: 1709
  year: 2008
  end-page: 1723
  article-title: Efficient control of population structure in model organism association mapping
  publication-title: Genetics
– volume: 29
  start-page: 897
  year: 1978
  end-page: 912
  article-title: Drought resistance in spring wheat cultivars. 1. Grain‐yield responses
  publication-title: Aust. J. Agric. Res.
– volume: 7
  start-page: 590
  year: 2017
  article-title: Performance gains in genome‐wide association studies for longitudinal traits via modeling time‐varied effects
  publication-title: Sci. Rep.
– volume: 16
  start-page: 59
  year: 2015
  article-title: Genome‐wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars
  publication-title: BMC Genet.
– volume: 29
  start-page: 206
  year: 2013
  end-page: 214
  article-title: A Lasso multi‐marker mixed model for association mapping with population structure correction
  publication-title: Bioinformatics
– volume: 41
  start-page: 919
  year: 2018
  end-page: 935
  article-title: Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat
  publication-title: Plant Cell Environ.
– volume: 22
  start-page: 624
  year: 2017
  end-page: 637
  article-title: Emerging avenues for utilization of exotic germplasm
  publication-title: Trends Plant Sci.
– volume: 50
  start-page: 279
  year: 2018
  end-page: 284
  article-title: Pan‐genome analysis highlights the extent of genomic variation in cultivated and wild rice
  publication-title: Nat. Genet.
– volume: 19
  start-page: 8755
  year: 2003
  end-page: 9129
  article-title: The resistance of Quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors
  publication-title: Food Rev. Int.
– volume: 48
  start-page: 617
  year: 2008
  article-title: Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines
  publication-title: Crop Sci.
– volume: 578
  start-page: 90
  year: 2017
  end-page: 99
  article-title: Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance
  publication-title: Sci. Total Environ.
– volume: 38
  start-page: 282
  year: 2014
  end-page: 295
  article-title: Economics of salt‐induced land degradation and restoration
  publication-title: Nat. Resour. Forum
– volume: 8
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Genetic diversity and population structure of two tomato species from the Galapagos Islands
  publication-title: Front. Plant Sci.
– start-page: 238
  year: 2009
  end-page: 251
– volume: 3
  start-page: e4
  year: 2007
  article-title: An Arabidopsis example of association mapping in structured samples
  publication-title: PLoS Genet.
– volume: 36
  start-page: 970
  year: 2009
  end-page: 977
  article-title: A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography
  publication-title: Funct. Plant Biol.
– volume: 22
  start-page: 961
  year: 2017
  end-page: 975
  article-title: Genomic selection in plant breeding: methods, models, and perspectives
  publication-title: Trends Plant Sci.
– volume: 94
  start-page: 263
  year: 1997
  end-page: 272
  article-title: Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L)
  publication-title: Euphytica
– volume: 277
  start-page: 1063
  year: 1997
  end-page: 1066
  article-title: Seed banks and molecular maps: unlocking genetic potential from the wild
  publication-title: Science
– volume: 137
  start-page: 63
  year: 2004
  end-page: 72
  article-title: Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers
  publication-title: Euphytica
– year: 2012
– volume: 36
  start-page: 902
  year: 2009
  end-page: 914
  article-title: Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants
  publication-title: Funct. Plant Biol.
– start-page: 111
  year: 2017
  end-page: 132
– volume: 13
  start-page: 54
  year: 2017
  article-title: Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses
  publication-title: Plant Methods
– volume: 42
  start-page: 355
  year: 2010
  end-page: 360
  article-title: Mixed linear model approach adapted for genome‐wide association studies
  publication-title: Nat. Genet.
– volume: 7
  start-page: 13390
  year: 2016
  article-title: The pangenome of an agronomically important crop plant Brassica oleracea
  publication-title: Nat. Commun.
– volume: 2
  start-page: e1500323
  year: 2016
  article-title: Four billion people facing severe water scarcity
  publication-title: Sci. Adv.
– volume: 7
  start-page: 42839
  year: 2017
  article-title: Field‐based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice
  publication-title: Sci. Rep.
– volume: 168
  start-page: 1476
  year: 2015
  end-page: U1697
  article-title: Integrating image‐based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice
  publication-title: Plant Physiol.
– volume: 126
  start-page: 867
  year: 2013
  end-page: 887
  article-title: Next‐generation phenotyping: requirements and strategies for enhancing our understanding of genotype‐phenotype relationships and its relevance to crop improvement
  publication-title: Theor. Appl. Genet.
– volume: 7
  start-page: 16
  year: 2014
  article-title: Image‐based phenotyping for non‐destructive screening of different salinity tolerance traits in rice
  publication-title: Rice
– volume: 12
  start-page: e0172515
  year: 2017
  article-title: Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.)
  publication-title: PLoS ONE
– volume: 37
  start-page: 843
  year: 2012
  end-page: 855
  article-title: Diversity in global maize germplasm: characterization and utilization
  publication-title: J. Biosci.
– volume: 345
  start-page: 1251788
  year: 2014
  article-title: A chromosome‐based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome
  publication-title: Science
– volume: 8
  start-page: 6505
  year: 2018
  article-title: Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome‐wide association analyses
  publication-title: Sci. Rep.
– year: 2017
– volume: 29
  start-page: 140
  year: 2015
  end-page: 141
  article-title: The potential for underutilised crops to improve food security in the face of climate change
  publication-title: Procedia Environ. Sci.
– volume: 7
  start-page: 622
  year: 2016
  article-title: The global expansion of quinoa: trends and limits
  publication-title: Front. Plant Sci.
– volume: 269
  start-page: 136
  year: 2018
  end-page: 142
  article-title: Review: shaping a sustainable food future by rediscovering long‐forgotten ancient grains
  publication-title: Plant Sci.
– volume: 14
  start-page: 6
  year: 2018
  article-title: The use of plant models in deep learning: an application to leaf counting in rosette plants
  publication-title: Plant Methods
– volume: 24
  start-page: 1506
  year: 2007
  end-page: 1517
  article-title: Grinding up wheat: a massive loss of nucleotide diversity since domestication
  publication-title: Mol. Biol. Evol.
– volume: 21
  start-page: 365
  year: 2016
  end-page: 368
  article-title: Crop diversity: an unexploited treasure trove for food security
  publication-title: Trends Plant Sci.
– ident: e_1_2_10_19_1
  doi: 10.1111/j.1365-313X.2004.02190.x
– volume-title: Broadening the Genetic Diversity of Common and Durum Wheat for Abiotic Stress Tolerance Breeding. Advances in Wheat Genetics: From Genome to Field
  year: 2015
  ident: e_1_2_10_137_1
– ident: e_1_2_10_146_1
  doi: 10.1007/s13253-010-0046-2
– ident: e_1_2_10_149_1
  doi: 10.2135/cropsci2007.02.0103
– ident: e_1_2_10_5_1
– ident: e_1_2_10_21_1
  doi: 10.3835/plantgenome2016.07.0064
– ident: e_1_2_10_88_1
  doi: 10.1016/j.tplants.2007.09.009
– ident: e_1_2_10_91_1
  doi: 10.1038/nature11420
– ident: e_1_2_10_27_1
  doi: 10.1038/ncomms10527
– ident: e_1_2_10_79_1
  doi: 10.1016/j.tplants.2016.02.006
– ident: e_1_2_10_98_1
  doi: 10.1016/j.cj.2014.09.002
– ident: e_1_2_10_119_1
  doi: 10.1038/ng.2314
– ident: e_1_2_10_134_1
  doi: 10.1002/aps3.1031
– ident: e_1_2_10_152_1
  doi: 10.1016/j.ygeno.2017.09.009
– ident: e_1_2_10_24_1
  doi: 10.1007/s001220051343
– ident: e_1_2_10_54_1
  doi: 10.1371/journal.pgen.1000130
– ident: e_1_2_10_32_1
  doi: 10.1038/nclimate2425
– ident: e_1_2_10_28_1
  doi: 10.1007/s10681-014-1250-x
– ident: e_1_2_10_37_1
  doi: 10.1139/g98-163
– volume: 19
  start-page: 8755
  year: 2003
  ident: e_1_2_10_58_1
  article-title: The resistance of Quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors
  publication-title: Food Rev. Int.
– ident: e_1_2_10_25_1
  doi: 10.1007/s00122-013-2066-0
– ident: e_1_2_10_127_1
  doi: 10.1016/j.scitotenv.2016.08.014
– ident: e_1_2_10_68_1
  doi: 10.1002/elps.201400038
– ident: e_1_2_10_72_1
  doi: 10.1038/nmeth.1681
– ident: e_1_2_10_128_1
  doi: 10.1071/PP9830109
– ident: e_1_2_10_131_1
  doi: 10.1101/gr.184001
– ident: e_1_2_10_125_1
  doi: 10.1371/journal.pgen.1004982
– ident: e_1_2_10_35_1
  doi: 10.1007/s00122-001-0848-2
– ident: e_1_2_10_107_1
  doi: 10.1111/j.1365-3040.2008.01916.x
– ident: e_1_2_10_57_1
  doi: 10.1186/s12284-016-0087-4
– ident: e_1_2_10_90_1
  doi: 10.1007/s00122-010-1273-1
– ident: e_1_2_10_61_1
  doi: 10.1038/nature21370
– ident: e_1_2_10_135_1
  doi: 10.1007/978-3-540-88351-7_18
– ident: e_1_2_10_45_1
  doi: 10.1038/nature11295
– ident: e_1_2_10_22_1
  doi: 10.5772/66925
– ident: e_1_2_10_123_1
  doi: 10.1016/j.tplants.2015.10.015
– ident: e_1_2_10_126_1
  doi: 10.1007/s001220050900
– ident: e_1_2_10_136_1
  doi: 10.1186/s13007-017-0204-4
– ident: e_1_2_10_112_1
  doi: 10.1071/FP12060
– ident: e_1_2_10_67_1
  doi: 10.1038/ng.2376
– ident: e_1_2_10_84_1
  doi: 10.1093/dnares/9.6.199
– ident: e_1_2_10_8_1
  doi: 10.1016/j.tplants.2013.09.008
– ident: e_1_2_10_75_1
  doi: 10.3389/fpls.2017.02143
– ident: e_1_2_10_105_1
  doi: 10.1007/s12038-012-9227-1
– ident: e_1_2_10_77_1
  doi: 10.1038/ng2088
– ident: e_1_2_10_39_1
  doi: 10.1002/gepi.20353
– ident: e_1_2_10_147_1
  doi: 10.1017/S0016672312000274
– ident: e_1_2_10_148_1
  doi: 10.1016/j.tplants.2017.04.002
– ident: e_1_2_10_151_1
  doi: 10.1073/pnas.202476999
– ident: e_1_2_10_23_1
  doi: 10.1016/j.plantsci.2018.01.018
– ident: e_1_2_10_42_1
  doi: 10.3389/fpls.2017.00652
– volume: 337
  start-page: 1040
  year: 2012
  ident: e_1_2_10_118_1
  article-title: The B73 maize genome: complexity, diversity, and dynamics (November, pg 1112, 2009)
  publication-title: Science
– ident: e_1_2_10_120_1
  doi: 10.1371/journal.pgen.0030114
– ident: e_1_2_10_160_1
  doi: 10.1371/journal.pgen.0030004
– ident: e_1_2_10_12_1
  doi: 10.1002/pld3.41
– ident: e_1_2_10_40_1
  doi: 10.1016/j.tplants.2011.09.005
– ident: e_1_2_10_26_1
  doi: 10.1016/j.tplants.2017.08.011
– ident: e_1_2_10_53_1
  doi: 10.1105/tpc.113.119982
– ident: e_1_2_10_165_1
  doi: 10.1038/cr.2017.124
– ident: e_1_2_10_162_1
  doi: 10.1371/journal.pone.0066606
– ident: e_1_2_10_94_1
  doi: 10.1007/s11258-008-9482-2
– ident: e_1_2_10_100_1
  doi: 10.1111/pce.12898
– ident: e_1_2_10_140_1
– ident: e_1_2_10_163_1
  doi: 10.1038/ng.2310
– ident: e_1_2_10_2_1
  doi: 10.1016/j.tplants.2013.12.002
– ident: e_1_2_10_159_1
  doi: 10.1111/eva.12434
– ident: e_1_2_10_47_1
  doi: 10.1146/annurev.pp.31.060180.001053
– ident: e_1_2_10_31_1
  doi: 10.1016/j.pbi.2015.02.006
– ident: e_1_2_10_76_1
  doi: 10.1023/A:1002968207362
– ident: e_1_2_10_93_1
  doi: 10.1146/annurev.arplant.59.032607.092911
– ident: e_1_2_10_145_1
  doi: 10.3389/fpls.2017.00593
– ident: e_1_2_10_96_1
  doi: 10.1093/aob/mcw191
– ident: e_1_2_10_17_1
  doi: 10.1038/ng.3046
– ident: e_1_2_10_85_1
  doi: 10.1126/sciadv.1500323
– ident: e_1_2_10_65_1
  doi: 10.1071/FP16194
– ident: e_1_2_10_101_1
  doi: 10.3389/fpls.2017.00138
– ident: e_1_2_10_115_1
  doi: 10.1038/nature11119
– ident: e_1_2_10_158_1
  doi: 10.1038/ng.546
– ident: e_1_2_10_154_1
  doi: 10.1016/j.tplants.2005.10.002
– ident: e_1_2_10_4_1
  doi: 10.1093/aob/mcq009
– ident: e_1_2_10_18_1
  doi: 10.1002/fes3.106
– ident: e_1_2_10_73_1
  doi: 10.3389/fpls.2017.00853
– ident: e_1_2_10_82_1
  doi: 10.3390/agronomy3010200
– ident: e_1_2_10_106_1
  doi: 10.1111/1477-8947.12054
– ident: e_1_2_10_55_1
  doi: 10.1186/s12863-015-0218-8
– ident: e_1_2_10_129_1
  doi: 10.1038/srep42839
– ident: e_1_2_10_108_1
  doi: 10.1093/bioinformatics/bts669
– ident: e_1_2_10_116_1
  doi: 10.1111/nph.14702
– ident: e_1_2_10_69_1
  doi: 10.1007/s00122-005-0055-7
– ident: e_1_2_10_86_1
  doi: 10.1046/j.1365-313X.2002.01322.x
– ident: e_1_2_10_97_1
  doi: 10.1371/journal.pone.0094000
– ident: e_1_2_10_89_1
  doi: 10.1111/tpj.13515
– ident: e_1_2_10_132_1
  doi: 10.1186/s12284-017-0181-2
– ident: e_1_2_10_52_1
  doi: 10.1093/molbev/msm077
– ident: e_1_2_10_62_1
  doi: 10.3389/fpls.2014.00770
– ident: e_1_2_10_144_1
  doi: 10.3389/fgene.2014.00349
– volume: 12
  start-page: e0169860
  year: 2017
  ident: e_1_2_10_122_1
  article-title: Genome‐wide association study for carcass traits in an experimental Nelore cattle population
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169860
– ident: e_1_2_10_110_1
  doi: 10.3389/fpls.2018.01402
– ident: e_1_2_10_70_1
  doi: 10.1371/journal.pone.0067280
– ident: e_1_2_10_71_1
  doi: 10.1038/nbt.2979
– volume: 50
  start-page: 279
  year: 2018
  ident: e_1_2_10_161_1
  article-title: Pan‐genome analysis highlights the extent of genomic variation in cultivated and wild rice
  publication-title: Nat. Genet.
– ident: e_1_2_10_6_1
  doi: 10.1371/journal.pone.0172515
– ident: e_1_2_10_7_1
  doi: 10.1038/ncomms13342
– ident: e_1_2_10_46_1
  doi: 10.1038/ncomms13390
– ident: e_1_2_10_156_1
  doi: 10.1038/nplants.2017.107
– ident: e_1_2_10_3_1
  doi: 10.1111/tpj.12616
– ident: e_1_2_10_51_1
  doi: 10.3389/fpls.2016.01787
– ident: e_1_2_10_143_1
  doi: 10.1086/519024
– start-page: 95
  volume-title: Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools
  year: 2016
  ident: e_1_2_10_49_1
– ident: e_1_2_10_9_1
  doi: 10.3389/fpls.2016.01414
– ident: e_1_2_10_138_1
  doi: 10.3390/agriculture8020030
– ident: e_1_2_10_64_1
  doi: 10.1038/ng.548
– ident: e_1_2_10_103_1
  doi: 10.1046/j.1365-2540.2000.00705.x
– ident: e_1_2_10_117_1
  doi: 10.1111/pbi.12145
– ident: e_1_2_10_60_1
  doi: 10.1071/FP09095
– ident: e_1_2_10_34_1
– ident: e_1_2_10_92_1
  doi: 10.1046/j.0016-8025.2001.00808.x
– ident: e_1_2_10_20_1
  doi: 10.1104/pp.15.00450
– ident: e_1_2_10_63_1
  doi: 10.1534/genetics.107.080101
– ident: e_1_2_10_66_1
  doi: 10.1186/1746-4811-9-29
– ident: e_1_2_10_83_1
  doi: 10.1371/journal.pbio.0020347
– ident: e_1_2_10_81_1
  doi: 10.1093/jxb/err396
– ident: e_1_2_10_10_1
  doi: 10.1146/annurev.arplant.59.032607.092759
– ident: e_1_2_10_48_1
  doi: 10.1071/FP14226
– ident: e_1_2_10_150_1
  doi: 10.1038/s41477-017-0083-8
– ident: e_1_2_10_121_1
  doi: 10.3389/fpls.2017.00550
– ident: e_1_2_10_36_1
  doi: 10.1071/AR9780897
– ident: e_1_2_10_43_1
  doi: 10.7717/peerj.4088
– ident: e_1_2_10_29_1
  doi: 10.2135/cropsci2016.10.0885
– ident: e_1_2_10_15_1
  doi: 10.1016/j.isprsjprs.2014.03.016
– ident: e_1_2_10_30_1
  doi: 10.3389/fpls.2017.01461
– ident: e_1_2_10_41_1
  doi: 10.1534/genetics.104.035642
– ident: e_1_2_10_80_1
  doi: 10.1126/science.1251788
– ident: e_1_2_10_113_1
  doi: 10.2135/cropsci1981.0011183X002100060033x
– ident: e_1_2_10_14_1
  doi: 10.3389/fpls.2016.00622
– ident: e_1_2_10_164_1
  doi: 10.1371/journal.pgen.1003264
– ident: e_1_2_10_16_1
  doi: 10.1038/nature22011
– ident: e_1_2_10_59_1
  doi: 10.1093/bfgp/elq001
– ident: e_1_2_10_157_1
  doi: 10.1007/s11032-017-0634-8
– volume: 3
  start-page: 211
  year: 2001
  ident: e_1_2_10_133_1
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_10_95_1
  doi: 10.1038/s41598-018-24946-3
– volume-title: The Future of Food and Agriculture ‐ Trends and Challenges
  year: 2017
  ident: e_1_2_10_33_1
– ident: e_1_2_10_78_1
  doi: 10.1016/j.proenv.2015.07.228
– ident: e_1_2_10_38_1
  doi: 10.1007/BF00039203
– ident: e_1_2_10_130_1
  doi: 10.1126/science.277.5329.1063
– volume: 1
  start-page: 15
  year: 2017
  ident: e_1_2_10_102_1
  article-title: Development of advanced mutant lines of native grains through radiation‐induced Mutagenesis in Peru
  publication-title: Hortic. Int. J.
  doi: 10.15406/hij.2017.01.00015
– ident: e_1_2_10_114_1
  doi: 10.1038/srep32586
– ident: e_1_2_10_142_1
  doi: 10.3389/fgene.2016.00139
– ident: e_1_2_10_111_1
  doi: 10.1038/s41586-018-0123-1
– ident: e_1_2_10_155_1
  doi: 10.1534/genetics.107.085589
– ident: e_1_2_10_44_1
  doi: 10.1016/j.tplants.2014.11.006
– ident: e_1_2_10_104_1
  doi: 10.1023/B:EUPH.0000040503.48448.97
– ident: e_1_2_10_141_1
  doi: 10.1016/j.ajhg.2008.01.016
– ident: e_1_2_10_124_1
  doi: 10.1071/FP09182
– ident: e_1_2_10_153_1
  doi: 10.1038/nbt.2050
– ident: e_1_2_10_50_1
  doi: 10.1186/s12284-014-0016-3
– ident: e_1_2_10_99_1
  doi: 10.1038/s41598-017-00638-2
– ident: e_1_2_10_56_1
  doi: 10.1186/s13007-015-0072-8
– ident: e_1_2_10_87_1
  doi: 10.1038/nrg3901
– ident: e_1_2_10_74_1
  doi: 10.1093/genetics/165.4.2117
– ident: e_1_2_10_13_1
  doi: 10.5772/33073
– ident: e_1_2_10_11_1
  doi: 10.1007/s00271-012-0382-9
– ident: e_1_2_10_109_1
  doi: 10.1093/aob/mcx148
– ident: e_1_2_10_139_1
  doi: 10.1186/s13007-018-0273-z
SSID ssj0017364
Score 2.6580734
SecondaryResourceType review_article
Snippet Summary Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish...
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 148
SubjectTerms Abiotic stress
Agronomy
Breaking down
Crops
Crops, Agricultural - genetics
Crops, Agricultural - physiology
Domestication
Environmental conditions
environmental factors
freshwater
Freshwater resources
Gene mapping
genes
Genetics
Genomic analysis
Genomics
Germplasm
Irrigation
Mathematical models
Molecular biology
Phenotype
Phenotyping
Quantitative trait loci
Quantitative Trait Loci - genetics
Saline soils
Salt
Salt Stress
Salt tolerance
Salt Tolerance - genetics
SI Genome to Phenome
Statistical analysis
Statistical genetics
Stress, Physiological
translation (genetics)
Title Salt stress under the scalpel – dissecting the genetics of salt tolerance
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14189
https://www.ncbi.nlm.nih.gov/pubmed/30548719
https://www.proquest.com/docview/2166361006
https://www.proquest.com/docview/2157655108
https://www.proquest.com/docview/2220911314
https://pubmed.ncbi.nlm.nih.gov/PMC6850516
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6-Dl7Et6urRPHgpdC0SbaLJ58siiI-wFtJmwSF0i7bevDmf_Af-kucSbvFxQdSKIVM2mkyk3yTZGYI2RehNOjx6Cmppccl054Sfe1p4XMNiNmvUydcXcvBA794FI9T5HDsC1PHh2gX3FAz3HiNCq6S8ouSV0NUcxb1p8ksutaikAf8pt1C6IV17Cj4oAfTZtCEFcJjPG3VycnoG8L8flDyK4B1M9D5IllooCM9qvt6iUyZfJnMHRcA715XyOWdyipau35Q9AwbUcB2tIQ-GJqMfry9U7f3nuI5Z1cEooMejCUtLC2xclVkBvNsmFXycH52fzLwmkwJXor5pjwbJSriBhRU-4pr69LsyUTzQBsMr2NsaHuJkH0bgULrkBmwirUCbGFUAmThGpnJi9xsEMoSK0XPcoU7dHDBe0UqhLI8BSOc8w45GDdZnDZhxDGbRRaPzQlo3di1bofstaTDOnbGT0TdcbvHjfqUccAACAGw82WH7LbFIPi4m6FyU7wgDZhKgPf86A-aIAA8xEIGbK_XXdlyAgMdGGsMGOhNdHJLgIG3J0vy5ycXgFtGgBsZ8HbgxOH3n4vvby7cw-b_SbfIPICyfr3M0yUz1ejFbAPwqZIdJ-BwP70NPgHyQAAI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5RqFQuCEoLy19d1AOXSHFiO1mJCyDQ8iukLhK3yIlttdIqWbHhwI134A15EmacbMSKFqFcInmcTMYz8Te2Zwbgl4yVpYjHQCujAqG4CbTsm8DIUBhEzGFTOuHySg1uxNmtvJ2D_WksTJMfoltwI8vw_2sycFqQfmXl9ZjsnKf9T7AgVJRQ4YZIXHd7CEncJI_CNwY4b0ZtXiE6x9N1nZ2N3kDMtyclXyNYPwWdLMNSix3ZQTPYKzBny6_w-bBCfPewCue_9ahmTewHo9CwO4bgjk1wEMZ2xJ4fn5jffC_ooLNvQt2hEMYJqxybUOe6GlkqtGG_wc3J8fBoELSlEoKCCk4FLs11KixaqAm1MM7X2VO5EZGxlF_HutgluVR9l6JFm5hbdIuNRnBhdY5k8XeYL6vSrgPjuVMycULTFh1e-FxZSKmdKNALF6IHe1ORZUWbR5zKWYyyqT-B0s28dHuw25GOm-QZ_yLamso9a-1nkkUckRAiu1D14GfXjJpP2xm6tNU90aCvhIAvTN-hiSIERDzmyPZaM5QdJ_inQ2-NIwPJzCB3BJR5e7al_PvHZ-BWKQJHjrzteXX4_8dlw-szf7PxcdIf8GUwvLzILk6vzjdhERFav1nz2YL5-u7ebiMKqvMdr-wvtl0Ciw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLZYWK24INgHDK8NaA9cKjVtkumIE68Rb420IHGr0iYRSKN2xJQDN_4D_5Bfgp12KkbsItRLpTitm9jN5zi2Af7IWFmKeAy0MioQiptAy54JjAyFQcQc1qUTLi7V8bU4vZE3M7A7iYWp80O0G26kGf5_TQo-Mu6NklcjUnOe9L7AHDn7SLwjMWhdCN24zh2FLwxw2YyatEJ0jKftOr0YvUOY7w9KvgWwfgXqL8JCAx3ZXj3XSzBji-_wdb9EePf4A87-6mHF6tAPRpFh9wyxHRvjHIzskL08PTPve8_pnLNvQtGhCMYxKx0bU-eqHFqqs2F_wnX_6OrgOGgqJQQ51ZsKXJLpRFhUUBNqYZwvs6cyIyJjKb2OdbHrZlL1XIIKbWJu0So2GrGF1RmSxb9gtigLuwKMZ07JrhOaPHR44XNlLqV2IkcjXIgO7EyGLM2bNOJUzWKYTswJHN3Uj24HtlvSUZ07419E65NxTxv1GacRRyCEwC5UHdhqm1HwyZuhC1s-EA2aSoj3wuQDmihCPMRjjmwv11PZcoI_OjTWODLQnZrkloASb0-3FHe3PgG3ShA3cuRtx4vD_z8uvRqc-pvVz5P-hm-Dw356fnJ5tgbziM969Y7POsxW9w92AzFQlW16WX8FNYsBvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salt+stress+under+the+scalpel+%E2%80%93+dissecting+the+genetics+of+salt+tolerance&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Morton%2C+Mitchell+J.+L.&rft.au=Awlia%2C+Mariam&rft.au=Al%E2%80%90Tamimi%2C+Nadia&rft.au=Saade%2C+Stephanie&rft.date=2019-01-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=97&rft.issue=1&rft.spage=148&rft.epage=163&rft_id=info:doi/10.1111%2Ftpj.14189&rft.externalDBID=10.1111%252Ftpj.14189&rft.externalDocID=TPJ14189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon