Salt stress under the scalpel – dissecting the genetics of salt tolerance
Summary Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultur...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 97; no. 1; pp. 148 - 163 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0960-7412 1365-313X 1365-313X |
DOI | 10.1111/tpj.14189 |
Cover
Loading…
Abstract | Summary
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield‐related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high‐throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.
Significance Statement
The improvement of salt tolerance in crops is imperative for addressing yield penalties in saline soils and enabling the use of brackish water for irrigation. Major advances in high‐throughput phenotyping, data analysis, sequencing technologies and statistical genetics are empowering investigations into the mechanisms and genetics of salt tolerance, drawing upon an ever‐expanding suite of genetic resources. Bridging the genotype–phenotype gap to gain insights into the mechanisms of salt tolerance in plants is becoming practical. |
---|---|
AbstractList | Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high-throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high-throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants. Summary Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield‐related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high‐throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants. Significance Statement The improvement of salt tolerance in crops is imperative for addressing yield penalties in saline soils and enabling the use of brackish water for irrigation. Major advances in high‐throughput phenotyping, data analysis, sequencing technologies and statistical genetics are empowering investigations into the mechanisms and genetics of salt tolerance, drawing upon an ever‐expanding suite of genetic resources. Bridging the genotype–phenotype gap to gain insights into the mechanisms of salt tolerance in plants is becoming practical. Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield‐related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high‐throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants. Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield‐related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high‐throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants. The improvement of salt tolerance in crops is imperative for addressing yield penalties in saline soils and enabling the use of brackish water for irrigation. Major advances in high‐throughput phenotyping, data analysis, sequencing technologies and statistical genetics are empowering investigations into the mechanisms and genetics of salt tolerance, drawing upon an ever‐expanding suite of genetic resources. Bridging the genotype–phenotype gap to gain insights into the mechanisms of salt tolerance in plants is becoming practical. |
Author | Saade, Stephanie Pailles, Yveline Awlia, Mariam Morton, Mitchell J. L. Al‐Tamimi, Nadia Negrão, Sónia Tester, Mark |
AuthorAffiliation | 1 Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia |
AuthorAffiliation_xml | – name: 1 Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Kingdom of Saudi Arabia |
Author_xml | – sequence: 1 givenname: Mitchell J. L. surname: Morton fullname: Morton, Mitchell J. L. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Mariam surname: Awlia fullname: Awlia, Mariam organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Nadia surname: Al‐Tamimi fullname: Al‐Tamimi, Nadia organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Stephanie surname: Saade fullname: Saade, Stephanie organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Yveline surname: Pailles fullname: Pailles, Yveline organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Sónia surname: Negrão fullname: Negrão, Sónia organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Mark orcidid: 0000-0002-5085-8801 surname: Tester fullname: Tester, Mark email: mark.tester@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30548719$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS3Uik4LC14ARWIDi7S-8U-SDRKq-GsrgUSR2FlOcjP1yGNPbQfUHe_AG_ZJ6ulMK6hAeOPF_c7xuT77ZMd5h4Q8A3oI-Ryl1eIQODTtIzIDJkXJgH3bITPaSlrWHKo9sh_jglKomeSPyR6jgjc1tDNy-kXbVMQUMMZicgOGIl1gEXttV2iL65-_isHEiH0ybn47mqPDZPpY-LGIa3HyFoN2PT4hu6O2EZ9u7wPy9d3b8-MP5dmn9x-P35yVveBVW45NpxuOlMFANR_GmtMcuht4NSBIIXFkY90J2Y4NozAwQC7bQdOqQd1ljB2Q1xvf1dQtcejRpaCtWgWz1OFKeW3UnxNnLtTcf1eyEVSAzAYvtwbBX04Yk1qa2KO12qGfoqqqirYADPj_URC1FAJok9EXD9CFn4LLP5EpKZkEStdvP_89_H3qu0oycLQB-uBjDDiq3iSdjF_vYqwCqtalq1y6ui09K149UNyZ_o3duv8wFq_-DarzzycbxQ3Ks7wR |
CitedBy_id | crossref_primary_10_1007_s11738_022_03485_5 crossref_primary_10_1007_s00425_022_03928_w crossref_primary_10_1007_s13595_021_01107_7 crossref_primary_10_1186_s12870_019_2039_9 crossref_primary_10_1111_tpj_15310 crossref_primary_10_1371_journal_pone_0291833 crossref_primary_10_3389_fpls_2022_804716 crossref_primary_10_3390_plants9050561 crossref_primary_10_3389_fmicb_2019_02791 crossref_primary_10_1007_s11104_023_05951_6 crossref_primary_10_3389_fpls_2022_999058 crossref_primary_10_3390_app14062225 crossref_primary_10_1016_j_envexpbot_2024_105689 crossref_primary_10_1111_ppl_13950 crossref_primary_10_20289_zfdergi_1284786 crossref_primary_10_1111_nph_17211 crossref_primary_10_1007_s10142_019_00707_x crossref_primary_10_1371_journal_pone_0290752 crossref_primary_10_3390_stresses4020017 crossref_primary_10_1038_s41598_025_87100_w crossref_primary_10_1186_s12870_020_02639_2 crossref_primary_10_1186_s12870_023_04509_z crossref_primary_10_15835_nbha49112192 crossref_primary_10_48130_vegres_0024_0032 crossref_primary_10_1007_s11120_023_01032_y crossref_primary_10_1007_s12298_020_00765_7 crossref_primary_10_1016_j_plaphy_2023_108097 crossref_primary_10_3390_plants13131840 crossref_primary_10_1080_15548627_2020_1847797 crossref_primary_10_3389_fpls_2023_1117868 crossref_primary_10_1016_j_sajb_2021_06_002 crossref_primary_10_1073_pnas_2210338119 crossref_primary_10_3390_genes14081564 crossref_primary_10_3389_fpls_2022_1097076 crossref_primary_10_3390_jof10040283 crossref_primary_10_3390_plants8090347 crossref_primary_10_1590_1807_1929_agriambi_v29n2e285670 crossref_primary_10_1016_j_gene_2022_146658 crossref_primary_10_3390_agronomy10121992 crossref_primary_10_3390_genes13071115 crossref_primary_10_1093_jxb_eraa339 crossref_primary_10_1111_pbi_13699 crossref_primary_10_1016_j_sajb_2021_09_023 crossref_primary_10_1186_s12866_021_02313_z crossref_primary_10_3389_fpls_2023_1244743 crossref_primary_10_54112_bbasr_v2024i1_58 crossref_primary_10_1111_jac_12672 crossref_primary_10_1111_tpj_14219 crossref_primary_10_1016_j_envexpbot_2023_105397 crossref_primary_10_1111_nph_19619 crossref_primary_10_1016_S1002_0160_21_60070_X crossref_primary_10_3390_plants9070891 crossref_primary_10_7717_peerj_14624 crossref_primary_10_1016_j_scienta_2022_111437 crossref_primary_10_36610_j_jsab_2020_080200110 crossref_primary_10_1016_j_stress_2024_100597 crossref_primary_10_1186_s12870_022_03907_z crossref_primary_10_1007_s42535_023_00696_0 crossref_primary_10_1007_s00425_020_03366_6 crossref_primary_10_3390_plants10112512 crossref_primary_10_3390_genes12030332 crossref_primary_10_1007_s11368_023_03688_4 crossref_primary_10_1016_j_scienta_2021_110856 crossref_primary_10_3390_agronomy14071526 crossref_primary_10_3389_fpls_2020_588854 crossref_primary_10_1111_ppl_13592 crossref_primary_10_1007_s00344_022_10890_0 crossref_primary_10_3390_agronomy13020595 crossref_primary_10_1016_j_bcab_2023_102892 crossref_primary_10_1093_pcp_pcaa073 crossref_primary_10_3389_fpls_2021_772708 crossref_primary_10_1016_j_cj_2022_06_007 crossref_primary_10_3390_ijms23063325 crossref_primary_10_3390_life13071456 crossref_primary_10_3390_ijms23158519 crossref_primary_10_3390_plants9060733 crossref_primary_10_1007_s11676_022_01479_0 crossref_primary_10_3389_fpls_2021_681367 crossref_primary_10_3389_frai_2020_00028 crossref_primary_10_1111_ppl_13486 crossref_primary_10_3389_fsufs_2022_878013 crossref_primary_10_3389_fpls_2021_665439 crossref_primary_10_3390_biology13120977 crossref_primary_10_47115_bsagriculture_1525082 crossref_primary_10_1111_jipb_13635 crossref_primary_10_3389_fpls_2023_1217193 crossref_primary_10_1016_j_plantsci_2023_111658 crossref_primary_10_3389_fpls_2022_934877 crossref_primary_10_1007_s42976_023_00381_7 crossref_primary_10_1007_s12042_020_09265_0 crossref_primary_10_3390_land13040449 crossref_primary_10_1016_j_scitotenv_2022_160652 crossref_primary_10_3389_fpls_2021_734944 crossref_primary_10_1186_s12870_022_03752_0 crossref_primary_10_3390_ijms222111922 crossref_primary_10_1016_j_envexpbot_2021_104698 crossref_primary_10_48130_TP_2023_0020 crossref_primary_10_3390_w14213369 crossref_primary_10_3389_fpls_2022_985057 crossref_primary_10_3389_fpls_2022_949541 crossref_primary_10_1007_s42976_022_00312_y crossref_primary_10_1080_13102818_2022_2116356 crossref_primary_10_1007_s10725_020_00659_4 crossref_primary_10_3389_fsufs_2022_919885 crossref_primary_10_1016_j_jplph_2022_153708 crossref_primary_10_1111_jipb_13061 crossref_primary_10_1186_s12870_021_02864_3 crossref_primary_10_1007_s00425_023_04149_5 crossref_primary_10_1080_11263504_2024_2384972 crossref_primary_10_3390_ijms222111674 crossref_primary_10_1111_tpj_16369 crossref_primary_10_3389_fpls_2021_794020 crossref_primary_10_32615_bp_2020_075 crossref_primary_10_1016_j_jplph_2020_153352 crossref_primary_10_3390_plants11060795 crossref_primary_10_1111_pce_14703 crossref_primary_10_3390_agronomy12102495 crossref_primary_10_1590_1519_6984_274499 crossref_primary_10_3390_biology12101343 crossref_primary_10_1186_s40066_022_00369_2 crossref_primary_10_3390_cells11223590 crossref_primary_10_3390_plants8110472 crossref_primary_10_1016_j_plaphy_2025_109568 crossref_primary_10_1093_jxb_eraa268 crossref_primary_10_3390_plants10091759 crossref_primary_10_1002_ajb2_1506 crossref_primary_10_3390_ijms23179680 crossref_primary_10_1016_j_plaphy_2024_109175 crossref_primary_10_3390_agronomy12030568 crossref_primary_10_1093_dnares_dsaa022 crossref_primary_10_3389_fpls_2022_871387 crossref_primary_10_3390_ijms24129813 crossref_primary_10_1007_s11427_020_1683_x crossref_primary_10_1007_s00344_020_10231_z crossref_primary_10_3390_antiox12030558 crossref_primary_10_3390_plants10040712 crossref_primary_10_1016_j_jpap_2022_100146 crossref_primary_10_3389_fpls_2020_575314 crossref_primary_10_1007_s11104_024_06918_x crossref_primary_10_3390_ijms232012502 crossref_primary_10_3390_ijms22189957 crossref_primary_10_1111_ppl_14544 crossref_primary_10_1016_j_foohum_2024_100340 crossref_primary_10_3390_ijms24108913 crossref_primary_10_48130_OPR_2023_0021 crossref_primary_10_1038_s41598_024_72614_6 crossref_primary_10_32615_bp_2022_036 crossref_primary_10_3390_plants9060795 crossref_primary_10_3390_agronomy12123084 crossref_primary_10_3390_ijms22042203 crossref_primary_10_1016_j_bbrc_2024_150509 crossref_primary_10_3389_fpls_2021_634311 crossref_primary_10_1007_s00344_024_11601_7 crossref_primary_10_1016_j_chmed_2023_02_006 crossref_primary_10_1016_j_indcrop_2023_116240 crossref_primary_10_1007_s12298_019_00654_8 crossref_primary_10_1016_j_scienta_2022_111150 crossref_primary_10_1128_spectrum_01786_23 crossref_primary_10_1098_rsob_210353 crossref_primary_10_3389_fpls_2019_00217 crossref_primary_10_3390_agriculture12050658 crossref_primary_10_1007_s00344_024_11349_0 crossref_primary_10_3390_f15111905 crossref_primary_10_3390_life12060860 crossref_primary_10_1093_jxb_eraa500 crossref_primary_10_1134_S1021443724604737 crossref_primary_10_1007_s10725_021_00740_6 crossref_primary_10_3390_plants11192525 crossref_primary_10_1007_s00344_021_10424_0 crossref_primary_10_1007_s10343_022_00701_7 crossref_primary_10_3390_biology13090673 crossref_primary_10_3390_jof9030304 crossref_primary_10_1111_pce_14485 crossref_primary_10_1186_s12870_023_04393_7 crossref_primary_10_1016_j_xplc_2023_100740 crossref_primary_10_1093_plphys_kiae559 crossref_primary_10_1186_s12864_021_07922_6 crossref_primary_10_3390_horticulturae10060628 crossref_primary_10_1093_jxb_erad368 crossref_primary_10_1016_j_xplc_2022_100417 crossref_primary_10_1039_D1EN00390A crossref_primary_10_1007_s13205_023_03519_w crossref_primary_10_3390_plants8090307 crossref_primary_10_1007_s40415_021_00702_2 crossref_primary_10_1590_1807_1929_agriambi_v26n11p863_874 crossref_primary_10_3389_fpls_2022_926850 crossref_primary_10_3389_fpls_2022_965745 crossref_primary_10_1111_ejss_13506 crossref_primary_10_3389_fpls_2022_863233 crossref_primary_10_3390_ijms23169456 crossref_primary_10_1016_j_plaphy_2021_08_038 crossref_primary_10_1016_j_plaphy_2024_109034 crossref_primary_10_1016_j_scienta_2024_113368 crossref_primary_10_1186_s12870_021_03336_4 crossref_primary_10_3390_ijms22169009 crossref_primary_10_36610_j_jsab_2020_080200110x crossref_primary_10_1111_ppl_14074 crossref_primary_10_3390_su14159280 crossref_primary_10_7717_peerj_17828 crossref_primary_10_1007_s00299_023_02996_w crossref_primary_10_3390_plants13070979 crossref_primary_10_1371_journal_pone_0236037 crossref_primary_10_3390_agronomy13010025 crossref_primary_10_3390_f14081651 crossref_primary_10_7717_peerj_12133 crossref_primary_10_3390_plants9040526 crossref_primary_10_1146_annurev_arplant_061422_104322 crossref_primary_10_1016_j_stress_2023_100325 crossref_primary_10_2298_GENSR2402305P crossref_primary_10_3389_fpls_2022_843994 crossref_primary_10_3390_plants13111552 crossref_primary_10_1007_s10725_021_00709_5 |
Cites_doi | 10.1111/j.1365-313X.2004.02190.x 10.1007/s13253-010-0046-2 10.2135/cropsci2007.02.0103 10.3835/plantgenome2016.07.0064 10.1016/j.tplants.2007.09.009 10.1038/nature11420 10.1038/ncomms10527 10.1016/j.tplants.2016.02.006 10.1016/j.cj.2014.09.002 10.1038/ng.2314 10.1002/aps3.1031 10.1016/j.ygeno.2017.09.009 10.1007/s001220051343 10.1371/journal.pgen.1000130 10.1038/nclimate2425 10.1007/s10681-014-1250-x 10.1139/g98-163 10.1007/s00122-013-2066-0 10.1016/j.scitotenv.2016.08.014 10.1002/elps.201400038 10.1038/nmeth.1681 10.1071/PP9830109 10.1101/gr.184001 10.1371/journal.pgen.1004982 10.1007/s00122-001-0848-2 10.1111/j.1365-3040.2008.01916.x 10.1186/s12284-016-0087-4 10.1007/s00122-010-1273-1 10.1038/nature21370 10.1007/978-3-540-88351-7_18 10.1038/nature11295 10.5772/66925 10.1016/j.tplants.2015.10.015 10.1007/s001220050900 10.1186/s13007-017-0204-4 10.1071/FP12060 10.1038/ng.2376 10.1093/dnares/9.6.199 10.1016/j.tplants.2013.09.008 10.3389/fpls.2017.02143 10.1007/s12038-012-9227-1 10.1038/ng2088 10.1002/gepi.20353 10.1017/S0016672312000274 10.1016/j.tplants.2017.04.002 10.1073/pnas.202476999 10.1016/j.plantsci.2018.01.018 10.3389/fpls.2017.00652 10.1371/journal.pgen.0030114 10.1371/journal.pgen.0030004 10.1002/pld3.41 10.1016/j.tplants.2011.09.005 10.1016/j.tplants.2017.08.011 10.1105/tpc.113.119982 10.1038/cr.2017.124 10.1371/journal.pone.0066606 10.1007/s11258-008-9482-2 10.1111/pce.12898 10.1038/ng.2310 10.1016/j.tplants.2013.12.002 10.1111/eva.12434 10.1146/annurev.pp.31.060180.001053 10.1016/j.pbi.2015.02.006 10.1023/A:1002968207362 10.1146/annurev.arplant.59.032607.092911 10.3389/fpls.2017.00593 10.1093/aob/mcw191 10.1038/ng.3046 10.1126/sciadv.1500323 10.1071/FP16194 10.3389/fpls.2017.00138 10.1038/nature11119 10.1038/ng.546 10.1016/j.tplants.2005.10.002 10.1093/aob/mcq009 10.1002/fes3.106 10.3389/fpls.2017.00853 10.3390/agronomy3010200 10.1111/1477-8947.12054 10.1186/s12863-015-0218-8 10.1038/srep42839 10.1093/bioinformatics/bts669 10.1111/nph.14702 10.1007/s00122-005-0055-7 10.1046/j.1365-313X.2002.01322.x 10.1371/journal.pone.0094000 10.1111/tpj.13515 10.1186/s12284-017-0181-2 10.1093/molbev/msm077 10.3389/fpls.2014.00770 10.3389/fgene.2014.00349 10.1371/journal.pone.0169860 10.3389/fpls.2018.01402 10.1371/journal.pone.0067280 10.1038/nbt.2979 10.1371/journal.pone.0172515 10.1038/ncomms13342 10.1038/ncomms13390 10.1038/nplants.2017.107 10.1111/tpj.12616 10.3389/fpls.2016.01787 10.1086/519024 10.3389/fpls.2016.01414 10.3390/agriculture8020030 10.1038/ng.548 10.1046/j.1365-2540.2000.00705.x 10.1111/pbi.12145 10.1071/FP09095 10.1046/j.0016-8025.2001.00808.x 10.1104/pp.15.00450 10.1534/genetics.107.080101 10.1186/1746-4811-9-29 10.1371/journal.pbio.0020347 10.1093/jxb/err396 10.1146/annurev.arplant.59.032607.092759 10.1071/FP14226 10.1038/s41477-017-0083-8 10.3389/fpls.2017.00550 10.1071/AR9780897 10.7717/peerj.4088 10.2135/cropsci2016.10.0885 10.1016/j.isprsjprs.2014.03.016 10.3389/fpls.2017.01461 10.1534/genetics.104.035642 10.1126/science.1251788 10.2135/cropsci1981.0011183X002100060033x 10.3389/fpls.2016.00622 10.1371/journal.pgen.1003264 10.1038/nature22011 10.1093/bfgp/elq001 10.1007/s11032-017-0634-8 10.1038/s41598-018-24946-3 10.1016/j.proenv.2015.07.228 10.1007/BF00039203 10.1126/science.277.5329.1063 10.15406/hij.2017.01.00015 10.1038/srep32586 10.3389/fgene.2016.00139 10.1038/s41586-018-0123-1 10.1534/genetics.107.085589 10.1016/j.tplants.2014.11.006 10.1023/B:EUPH.0000040503.48448.97 10.1016/j.ajhg.2008.01.016 10.1071/FP09182 10.1038/nbt.2050 10.1186/s12284-014-0016-3 10.1038/s41598-017-00638-2 10.1186/s13007-015-0072-8 10.1038/nrg3901 10.1093/genetics/165.4.2117 10.5772/33073 10.1007/s00271-012-0382-9 10.1093/aob/mcx148 10.1186/s13007-018-0273-z |
ContentType | Journal Article |
Copyright | 2018 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd 2018 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2018 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd – notice: 2018 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/tpj.14189 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts CrossRef AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
DocumentTitleAlternate | Mitchell J. L. Morton et al |
EISSN | 1365-313X |
EndPage | 163 |
ExternalDocumentID | PMC6850516 30548719 10_1111_tpj_14189 TPJ14189 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology (KAUST) – fundername: ; |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5429-f8ba84e031d0a4df740136bd42de1656ef3f7b569f8301d31e469da028eabbd43 |
IEDL.DBID | 24P |
ISSN | 0960-7412 1365-313X |
IngestDate | Thu Aug 21 18:29:02 EDT 2025 Fri Jul 11 18:29:11 EDT 2025 Fri Jul 11 08:55:22 EDT 2025 Mon Jul 21 01:49:38 EDT 2025 Wed Feb 19 02:32:00 EST 2025 Tue Jul 01 03:57:28 EDT 2025 Thu Apr 24 22:54:59 EDT 2025 Wed Jan 22 16:48:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution 2018 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5429-f8ba84e031d0a4df740136bd42de1656ef3f7b569f8301d31e469da028eabbd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5085-8801 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14189 |
PMID | 30548719 |
PQID | 2166361006 |
PQPubID | 31702 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6850516 proquest_miscellaneous_2220911314 proquest_miscellaneous_2157655108 proquest_journals_2166361006 pubmed_primary_30548719 crossref_citationtrail_10_1111_tpj_14189 crossref_primary_10_1111_tpj_14189 wiley_primary_10_1111_tpj_14189_TPJ14189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2013; 3 2012; 485 2010; 105 2013; 126 1997; 277 2002; 99 2014; 26 1983; 10 1999; 42 2018; 41 2004; 2 2012; 488 2013; 8 2013; 9 2018; 6 2018; 9 2018; 8 2018; 2 2018; 4 1980; 31 2012; 490 2014; 19 2007; 3 2014; 93 1998; 97 2014; 12 2003; 165 2010; 9 2004; 40 2002; 9 2005; 111 1982; 31 2008; 59 2014; 46 2012; 39 1992 2012; 37 2007; 12 2011; 8 1981; 21 2012; 30 2016; 6 2016; 7 2010; 42 2018; 110 2016; 2 2017; 57 2016; 21 2014; 38 2000; 84 2008; 48 2014; 35 2007; 81 2005; 10 2000; 100 2017; 542 2017; 543 2012; 44 2016; 9 2014; 32 2018; 14 2017; 5 2007; 39 2017; 119 2017; 6 2013; 29 2017; 7 2017; 8 2018; 121 2017; 1 2017; 3 2017; 44 2003; 19 2008; 4 2011; 16 2014; 5 2014; 4 1997; 94 2004; 137 2017; 37 2015; 42 2002; 104 1978; 29 2014; 9 2001; 11 2014; 7 2012; 337 2007; 24 2009; 202 2012; 63 2015; 16 2015; 5 2015; 3 2012 2002; 30 2015; 203 2015; 168 2017; 27 2017; 22 2018; 269 2015; 11 2009 2010; 120 2017; 578 2017; 216 2015; 24 2012; 94 2009; 33 2009; 36 2002; 25 2014; 80 2017; 90 2009; 32 2015; 29 2018; 557 2005; 169 2015; 20 2017; 10 2017; 13 2017; 12 2017 2016 2001; 3 2015 2014 2018; 50 2008; 179 2008; 178 2008; 82 2014; 345 e_1_2_10_21_1 e_1_2_10_44_1 Zhao Q. (e_1_2_10_161_1) 2018; 50 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 Jacobsen S.‐E. (e_1_2_10_58_1) 2003; 19 e_1_2_10_51_1 FAO (e_1_2_10_33_1) 2017 Schnable P.S. (e_1_2_10_118_1) 2012; 337 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 Tipping M.E. (e_1_2_10_133_1) 2001; 3 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 Silva R.M.D. (e_1_2_10_122_1) 2017; 12 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 Gulfishan M. (e_1_2_10_49_1) 2016 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 Tsujimoto H. (e_1_2_10_137_1) 2015 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 Pando G.L. (e_1_2_10_102_1) 2017; 1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 7 start-page: 10527 year: 2016 article-title: Genome‐wide association and high‐resolution phenotyping link Oryza sativa panicle traits to numerous trait‐specific QTL clusters publication-title: Nat. Commun. – volume: 7 start-page: 13342 year: 2016 article-title: Salinity tolerance loci revealed in rice using high‐throughput non‐invasive phenotyping publication-title: Nat. Commun. – volume: 9 start-page: 1402 year: 2018 article-title: The genome sequence of the wild tomato provides insights into salinity tolerance publication-title: Front. Plant Sci. – volume: 10 start-page: 40 year: 2017 article-title: Large‐scale deployment of a rice 6 K SNP array for genetics and breeding applications publication-title: Rice – volume: 57 start-page: 1070 year: 2017 article-title: Past and future use of wild relatives in crop breeding publication-title: Crop Sci. – volume: 80 start-page: 136 year: 2014 end-page: 148 article-title: Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole‐genome sequencing publication-title: Plant J. – volume: 5 start-page: 270 year: 2014 article-title: Evaluation of the lasso and the elastic net in genome‐wide association studies (vol 4, 2013) publication-title: Front. Genet. – volume: 488 start-page: 197 year: 2012 end-page: 200 article-title: Water balance of global aquifers revealed by groundwater footprint publication-title: Nature – volume: 7 start-page: 1787 year: 2016 article-title: New insights on plant salt tolerance mechanisms and their potential use for breeding publication-title: Front. Plant Sci. – volume: 31 start-page: 645 year: 1982 end-page: 656 article-title: Reducing the influence of environmental main‐effects on pattern‐analysis of plant‐breeding environments publication-title: Euphytica – volume: 9 start-page: 199 year: 2002 end-page: 207 article-title: Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) publication-title: DNA Res. – volume: 12 start-page: e0169860 year: 2017 article-title: Genome‐wide association study for carcass traits in an experimental Nelore cattle population publication-title: PLoS ONE – volume: 9 start-page: e1003264 year: 2013 article-title: Polygenic modeling with Bayesian sparse linear mixed models publication-title: PLoS Genet. – volume: 8 start-page: 853 year: 2017 article-title: Genome‐wide association mapping of loci associated with plant growth and forage production under salt stress in Alfalfa (Medicago sativa L.) publication-title: Front. Plant Sci. – volume: 97 start-page: 308 year: 1998 end-page: 315 article-title: The use of microsatellite markers for detection of genetic diversity in barley populations publication-title: Theor. Appl. Genet. – volume: 179 start-page: 1045 year: 2008 end-page: 1055 article-title: Bayesian LASSO for quantitative trait loci mapping publication-title: Genetics – volume: 10 year: 2017 article-title: A comprehensive image‐based phenomic analysis reveals the complex genetic architecture of shoot growth dynamics in rice (Oryza sativa) publication-title: Plant Genome – volume: 3 start-page: 17107 year: 2017 article-title: Progress and prospects in plant genome editing publication-title: Nat. Plants – year: 2014 – volume: 32 start-page: 1045 year: 2014 end-page: 1052 article-title: De novo assembly of soybean wild relatives for pan‐genome analysis of diversity and agronomic traits publication-title: Nat. Biotechnol. – volume: 8 start-page: 2143 year: 2017 article-title: Developing a roadmap for improving neglected and underutilized crops: a case study of South Africa publication-title: Front. Plant Sci. – volume: 4 start-page: 23 year: 2018 end-page: 29 article-title: Speed breeding is a powerful tool to accelerate crop research and breeding publication-title: Nat. Plants – volume: 110 start-page: 171 year: 2018 end-page: 179 article-title: Single step genome‐wide association studies based on genotyping by sequence data reveals novel loci for the litter traits of domestic pigs publication-title: Genomics – start-page: 95 year: 2016 end-page: 112 – volume: 30 start-page: 105 year: 2012 end-page: U157 article-title: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes publication-title: Nat. Biotechnol. – volume: 42 start-page: 348 year: 2010 end-page: 354 article-title: Variance component model to account for sample structure in genome‐wide association studies publication-title: Nat. Genet. – volume: 90 start-page: 1007 year: 2017 end-page: 1013 article-title: The pangenome of hexaploid bread wheat publication-title: Plant J. – volume: 44 start-page: 312 year: 2017 end-page: 323 article-title: Distinct growth and physiological responses of Arabidopsis thaliana natural accessions to drought stress and their detection using spectral reflectance and thermal imaging publication-title: Funct. Plant Biol. – volume: 35 start-page: 1921 year: 2014 end-page: 1927 article-title: Genetic diversity of maize germplasm assessed by retrotransposon‐based markers publication-title: Electrophoresis – volume: 16 start-page: 237 year: 2015 end-page: 251 article-title: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability publication-title: Nat. Rev. Genet. – volume: 3 start-page: e114 year: 2007 article-title: Imputation‐based analysis of association studies: candidate regions and quantitative traits publication-title: PLoS Genet. – volume: 37 start-page: 30 year: 2017 article-title: Genome‐wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines publication-title: Mol. Breeding – volume: 4 start-page: e1000130 year: 2008 article-title: Simultaneous analysis of All SNPs in genome‐wide and re‐sequencing association studies publication-title: PLoS Genet. – volume: 40 start-page: 143 year: 2004 end-page: 150 article-title: A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.) publication-title: Plant J. – volume: 1 start-page: 15 year: 2017 end-page: 19 article-title: Development of advanced mutant lines of native grains through radiation‐induced Mutagenesis in Peru publication-title: Hortic. Int. J. – volume: 30 start-page: 511 year: 2012 end-page: 522 article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV) publication-title: Irrig. Sci. – volume: 82 start-page: 859 year: 2008 end-page: 872 article-title: Bayesian meta‐analysis of genetic association studies with different sets of markers publication-title: Am. J. Hum. Genet. – volume: 8 start-page: 1461 year: 2017 article-title: Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes publication-title: Front. Plant Sci. – volume: 44 start-page: 825 year: 2012 end-page: U144 article-title: An efficient multi‐locus mixed‐model approach for genome‐wide association studies in structured populations publication-title: Nat. Genet. – volume: 46 start-page: 1034 year: 2014 end-page: 1038 article-title: The genome of the stress‐tolerant wild tomato species Solanum pennellii publication-title: Nat. Genet. – volume: 5 start-page: e4088 year: 2017 article-title: PlantCV v2: image analysis software for high‐throughput plant phenotyping publication-title: PeerJ – volume: 202 start-page: 285 year: 2009 end-page: 297 article-title: Spatial variations in salinity stress across a coastal landscape using vegetation indices derived from hyperspectral imagery publication-title: Plant Ecol. – volume: 42 start-page: 387 year: 2015 end-page: 396 article-title: Image based phenotyping during winter: a powerful tool to assess wheat genetic variation in growth response to temperature publication-title: Funct. Plant Biol. – volume: 5 start-page: 770 year: 2015 article-title: Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems publication-title: Front. Plant Sci. – volume: 19 start-page: 351 year: 2014 end-page: 360 article-title: Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes publication-title: Trends Plant Sci. – volume: 3 start-page: 46 year: 2015 end-page: 56 article-title: Radiation‐induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.) publication-title: Crop J. – volume: 216 start-page: 682 year: 2017 end-page: 698 article-title: Towards CRISPR/Cas crops ‐ bringing together genomics and genome editing publication-title: New Phytol. – start-page: 133 year: 2012 end-page: 162 – volume: 557 start-page: 651 year: 2018 end-page: 659 article-title: Emerging trends in global freshwater availability publication-title: Nature – volume: 8 start-page: 833 year: 2011 end-page: 835 article-title: FaST linear mixed models for genome‐wide association studies publication-title: Nat. Methods – volume: 24 start-page: 93 year: 2015 end-page: 99 article-title: Lights, camera, action: high‐throughput plant phenotyping is ready for a close‐up publication-title: Curr. Opin. Plant Biol. – volume: 9 start-page: e94000 year: 2014 article-title: Genetic diversity and population structure analysis of european hexaploid bread wheat (Triticum aestivum L.) varieties publication-title: PLoS ONE – volume: 25 start-page: 239 year: 2002 end-page: 250 article-title: Comparative physiology of salt and water stress publication-title: Plant Cell Environ. – volume: 33 start-page: 27 year: 2009 end-page: 37 article-title: Bayesian variable and model selection methods for genetic association studies publication-title: Genet. Epidemiol. – volume: 542 start-page: 307 year: 2017 article-title: The genome of publication-title: Nature – volume: 543 start-page: 346 year: 2017 end-page: 354 article-title: Genomic innovation for crop improvement publication-title: Nature – volume: 8 start-page: e66606 year: 2013 article-title: Genetic diversity and molecular evolution of Chinese waxy maize germplasm publication-title: PLoS ONE – volume: 100 start-page: 713 year: 2000 end-page: 722 article-title: Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) publication-title: Theor. Appl. Genet. – volume: 111 start-page: 1288 year: 2005 end-page: 1299 article-title: Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? publication-title: Theor. Appl. Genet. – year: 1992 – volume: 59 start-page: 89 year: 2008 end-page: 113 article-title: Chlorophyll fluorescence: a probe of photosynthesis in vivo publication-title: Annu. Rev. Plant Biol. – volume: 99 start-page: 12959 year: 2002 end-page: 12962 article-title: Genetic diversity and selection in the maize starch pathway publication-title: Proc. Natl Acad. Sci. USA – volume: 93 start-page: 98 year: 2014 end-page: 111 article-title: Detection of early plant stress responses in hyperspectral images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 84 start-page: 476 year: 2000 end-page: 486 article-title: Genetic diversity of barley landrace accessions (Hordeum vulgare ssp vulgare) conserved for different lengths of time in ex situ gene banks publication-title: Heredity – volume: 4 start-page: 945 year: 2014 end-page: 948 article-title: The global groundwater crisis publication-title: Nat. Clim. Chang. – volume: 11 start-page: 1441 year: 2001 end-page: 1452 article-title: Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential publication-title: Genome Res. – volume: 44 start-page: 821 year: 2012 end-page: 824 article-title: Genome‐wide efficient mixed‐model analysis for association studies publication-title: Nat. Genet. – volume: 121 start-page: 603 year: 2018 end-page: 616 article-title: Wheat genetic resources in the post‐genomics era: promise and challenges publication-title: Ann. Bot. – volume: 10 start-page: 615 year: 2005 end-page: 620 article-title: Developing salt‐tolerant crop plants: challenges and opportunities publication-title: Trends Plant Sci. – volume: 12 start-page: 378 year: 2014 end-page: 386 article-title: Expression of the Arabidopsis vacuolar H plus ‐ pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field publication-title: Plant Biotechnol. J. – volume: 94 start-page: 73 year: 2012 end-page: 83 article-title: Genome‐wide association mapping including phenotypes from relatives without genotypes publication-title: Genet. Res. – volume: 63 start-page: 1075 year: 2012 end-page: 1079 article-title: The potential for underutilized crops to improve security of food production publication-title: J. Exp. Bot. – volume: 6 start-page: e1031 year: 2018 article-title: Raspberry Pi‐powered imaging for plant phenotyping publication-title: Appl. Plant Sci. – volume: 10 start-page: 5 year: 2017 end-page: 24 article-title: Back into the wild‐Apply untapped genetic diversity of wild relatives for crop improvement publication-title: Evol. Appl. – volume: 120 start-page: 1525 year: 2010 end-page: 1534 article-title: Effects of ascertainment bias and marker number on estimations of barley diversity from high‐throughput SNP genotype data publication-title: Theor. Appl. Genet. – volume: 7 start-page: 139 year: 2016 article-title: Comparing analytic methods for longitudinal GWAS and a case‐study evaluating chemotherapy course length in pediatric AML. A report from the children's oncology group publication-title: Front. Genet. – volume: 2 start-page: e347 year: 2004 article-title: Diversifying selection in plant breeding publication-title: PLoS Biol. – volume: 11 start-page: 29 year: 2015 article-title: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses ‐ a review publication-title: Plant Methods – volume: 485 start-page: 635 year: 2012 end-page: 641 article-title: The tomato genome sequence provides insights into fleshy fruit evolution publication-title: Nature – volume: 39 start-page: 878 year: 2012 end-page: 890 article-title: Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis publication-title: Funct. Plant Biol. – volume: 2 start-page: 1 year: 2018 end-page: 8 article-title: High‐fidelity detection of crop biomass quantitative trait loci from low‐cost imaging in the field publication-title: Plant Direct – volume: 31 start-page: 149 year: 1980 end-page: 190 article-title: Mechanisms of salt tolerance in non‐halophytes publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. – volume: 6 start-page: 19 year: 2017 end-page: 25 article-title: Harnessing diversity from ecosystems to crops to genes publication-title: Food Energy Secur. – volume: 8 start-page: 30 year: 2018 article-title: Identification of phenotypic variation and genetic diversity in rice (Oryza sativa L.) mutants publication-title: Agriculture – volume: 105 start-page: 535 year: 2010 end-page: 554 article-title: Genetic diversity and population structure in the tomato‐like nightshades Solanum lycopersicoides and S. sitiens publication-title: Ann. Bot. – volume: 59 start-page: 651 year: 2008 end-page: 681 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. – volume: 8 start-page: 550 year: 2017 article-title: Genomic selection for drought tolerance using genome‐wide SNPs in maize publication-title: Front. Plant Sci. – volume: 9 start-page: 29 year: 2013 article-title: The advantages and limitations of trait analysis with GWAS: a review publication-title: Plant Methods – volume: 6 start-page: 32586 year: 2016 article-title: Yield‐related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley publication-title: Sci. Rep. – volume: 10 start-page: 109 year: 1983 end-page: 117 article-title: Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and F1 hybrids to high salinity publication-title: Aust. J. Plant Physiol. – volume: 8 start-page: 652 year: 2017 article-title: Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape publication-title: Front. Plant Sci. – volume: 16 start-page: 170 year: 2011 end-page: 184 article-title: Identifying QTLs and epistasis in structured plant populations using adaptive mixed LASSO publication-title: J. Agric. Biol. Environ. Stat. – volume: 7 start-page: 1414 year: 2016 article-title: High‐throughput non‐destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana publication-title: Front. Plant Sci. – volume: 9 start-page: 14 year: 2016 article-title: Rice: the first crop genome publication-title: Rice – volume: 44 start-page: 1066 year: 2012 end-page: 1071 article-title: A mixed‐model approach for genome‐wide association studies of correlated traits in structured populations publication-title: Nat. Genet. – volume: 16 start-page: 635 year: 2011 end-page: 644 article-title: Phenomics ‐ technologies to relieve the phenotyping bottleneck publication-title: Trends Plant Sci. – volume: 490 start-page: 254 year: 2012 end-page: 257 article-title: Closing yield gaps through nutrient and water management publication-title: Nature – volume: 20 start-page: 139 year: 2015 end-page: 144 article-title: Physiological phenotyping of plants for crop improvement publication-title: Trends Plant Sci. – volume: 27 start-page: 1327 year: 2017 end-page: 1340 article-title: A high‐quality genome assembly of quinoa provides insights into the molecular basis of salt bladder‐based salinity tolerance and the exceptional nutritional value publication-title: Cell Res. – volume: 203 start-page: 273 year: 2015 end-page: 283 article-title: QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.) publication-title: Euphytica – volume: 12 start-page: 534 year: 2007 end-page: 540 article-title: Salinity tolerance of Arabidopsis: a good model for cereals? publication-title: Trends Plant Sci. – volume: 3 start-page: 211 year: 2001 end-page: 214 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 237 year: 2009 end-page: 249 article-title: Quantifying the three main components of salinity tolerance in cereals publication-title: Plant Cell Environ. – volume: 11 start-page: e1004982 year: 2015 article-title: Genomic selection and association mapping in rice ( ): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines publication-title: PLoS Genet. – volume: 42 start-page: 727 year: 1999 end-page: 734 article-title: Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping publication-title: Genome – volume: 119 start-page: 1 year: 2017 end-page: 11 article-title: Evaluating physiological responses of plants to salinity stress publication-title: Ann. Bot. – volume: 81 start-page: 208 year: 2007 end-page: 227 article-title: A Bayesian measure of the probability of false discovery in genetic epidemiology studies publication-title: Am. J. Hum. Genet. – volume: 8 start-page: e67280 year: 2013 article-title: Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and pedigree data publication-title: PLoS ONE – volume: 169 start-page: 1631 year: 2005 end-page: 1638 article-title: Genetic structure and diversity in Oryza sativa L publication-title: Genetics – volume: 26 start-page: 121 year: 2014 end-page: 135 article-title: Insights into the Maize Pan‐Genome and Pan‐Transcriptome publication-title: Plant Cell – volume: 165 start-page: 2117 year: 2003 end-page: 2128 article-title: Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites publication-title: Genetics – volume: 21 start-page: 943 year: 1981 end-page: 946 article-title: Theoretical aspects of selection for yield in stress and non‐stress environments publication-title: Crop Sci. – volume: 337 start-page: 1040 year: 2012 end-page: 1040 article-title: The B73 maize genome: complexity, diversity, and dynamics (November, pg 1112, 2009) publication-title: Science – volume: 8 start-page: 593 year: 2017 article-title: Genome‐wide association study reveals the genetic architecture underlying salt tolerance‐related traits in rapeseed (Brassica napus L.) publication-title: Front. Plant Sci. – volume: 104 start-page: 845 year: 2002 end-page: 851 article-title: The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin publication-title: Theor. Appl. Genet. – volume: 39 start-page: 906 year: 2007 article-title: A new multipoint method for genome‐wide association studies by imputation of genotypes publication-title: Nat. Genet. – volume: 3 start-page: 200 year: 2013 end-page: 231 article-title: Induced mutations unleash the potentials of plant genetic resources for food and agriculture publication-title: Agronomy – volume: 19 start-page: 52 year: 2014 end-page: 61 article-title: Field high‐throughput phenotyping: the new crop breeding frontier publication-title: Trends Plant Sci. – volume: 21 start-page: 110 year: 2016 end-page: 124 article-title: Machine learning for high‐throughput stress phenotyping in plants publication-title: Trends Plant Sci. – year: 2015 – volume: 9 start-page: 166 year: 2010 end-page: 177 article-title: Genomic selection in plant breeding: from theory to practice publication-title: Brief Funct. Genomics – volume: 30 start-page: 601 year: 2002 end-page: 609 article-title: Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation publication-title: Plant J. – volume: 178 start-page: 1709 year: 2008 end-page: 1723 article-title: Efficient control of population structure in model organism association mapping publication-title: Genetics – volume: 29 start-page: 897 year: 1978 end-page: 912 article-title: Drought resistance in spring wheat cultivars. 1. Grain‐yield responses publication-title: Aust. J. Agric. Res. – volume: 7 start-page: 590 year: 2017 article-title: Performance gains in genome‐wide association studies for longitudinal traits via modeling time‐varied effects publication-title: Sci. Rep. – volume: 16 start-page: 59 year: 2015 article-title: Genome‐wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars publication-title: BMC Genet. – volume: 29 start-page: 206 year: 2013 end-page: 214 article-title: A Lasso multi‐marker mixed model for association mapping with population structure correction publication-title: Bioinformatics – volume: 41 start-page: 919 year: 2018 end-page: 935 article-title: Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat publication-title: Plant Cell Environ. – volume: 22 start-page: 624 year: 2017 end-page: 637 article-title: Emerging avenues for utilization of exotic germplasm publication-title: Trends Plant Sci. – volume: 50 start-page: 279 year: 2018 end-page: 284 article-title: Pan‐genome analysis highlights the extent of genomic variation in cultivated and wild rice publication-title: Nat. Genet. – volume: 19 start-page: 8755 year: 2003 end-page: 9129 article-title: The resistance of Quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors publication-title: Food Rev. Int. – volume: 48 start-page: 617 year: 2008 article-title: Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines publication-title: Crop Sci. – volume: 578 start-page: 90 year: 2017 end-page: 99 article-title: Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance publication-title: Sci. Total Environ. – volume: 38 start-page: 282 year: 2014 end-page: 295 article-title: Economics of salt‐induced land degradation and restoration publication-title: Nat. Resour. Forum – volume: 8 start-page: 1 year: 2017 end-page: 11 article-title: Genetic diversity and population structure of two tomato species from the Galapagos Islands publication-title: Front. Plant Sci. – start-page: 238 year: 2009 end-page: 251 – volume: 3 start-page: e4 year: 2007 article-title: An Arabidopsis example of association mapping in structured samples publication-title: PLoS Genet. – volume: 36 start-page: 970 year: 2009 end-page: 977 article-title: A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography publication-title: Funct. Plant Biol. – volume: 22 start-page: 961 year: 2017 end-page: 975 article-title: Genomic selection in plant breeding: methods, models, and perspectives publication-title: Trends Plant Sci. – volume: 94 start-page: 263 year: 1997 end-page: 272 article-title: Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L) publication-title: Euphytica – volume: 277 start-page: 1063 year: 1997 end-page: 1066 article-title: Seed banks and molecular maps: unlocking genetic potential from the wild publication-title: Science – volume: 137 start-page: 63 year: 2004 end-page: 72 article-title: Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers publication-title: Euphytica – year: 2012 – volume: 36 start-page: 902 year: 2009 end-page: 914 article-title: Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants publication-title: Funct. Plant Biol. – start-page: 111 year: 2017 end-page: 132 – volume: 13 start-page: 54 year: 2017 article-title: Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses publication-title: Plant Methods – volume: 42 start-page: 355 year: 2010 end-page: 360 article-title: Mixed linear model approach adapted for genome‐wide association studies publication-title: Nat. Genet. – volume: 7 start-page: 13390 year: 2016 article-title: The pangenome of an agronomically important crop plant Brassica oleracea publication-title: Nat. Commun. – volume: 2 start-page: e1500323 year: 2016 article-title: Four billion people facing severe water scarcity publication-title: Sci. Adv. – volume: 7 start-page: 42839 year: 2017 article-title: Field‐based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice publication-title: Sci. Rep. – volume: 168 start-page: 1476 year: 2015 end-page: U1697 article-title: Integrating image‐based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice publication-title: Plant Physiol. – volume: 126 start-page: 867 year: 2013 end-page: 887 article-title: Next‐generation phenotyping: requirements and strategies for enhancing our understanding of genotype‐phenotype relationships and its relevance to crop improvement publication-title: Theor. Appl. Genet. – volume: 7 start-page: 16 year: 2014 article-title: Image‐based phenotyping for non‐destructive screening of different salinity tolerance traits in rice publication-title: Rice – volume: 12 start-page: e0172515 year: 2017 article-title: Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.) publication-title: PLoS ONE – volume: 37 start-page: 843 year: 2012 end-page: 855 article-title: Diversity in global maize germplasm: characterization and utilization publication-title: J. Biosci. – volume: 345 start-page: 1251788 year: 2014 article-title: A chromosome‐based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome publication-title: Science – volume: 8 start-page: 6505 year: 2018 article-title: Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome‐wide association analyses publication-title: Sci. Rep. – year: 2017 – volume: 29 start-page: 140 year: 2015 end-page: 141 article-title: The potential for underutilised crops to improve food security in the face of climate change publication-title: Procedia Environ. Sci. – volume: 7 start-page: 622 year: 2016 article-title: The global expansion of quinoa: trends and limits publication-title: Front. Plant Sci. – volume: 269 start-page: 136 year: 2018 end-page: 142 article-title: Review: shaping a sustainable food future by rediscovering long‐forgotten ancient grains publication-title: Plant Sci. – volume: 14 start-page: 6 year: 2018 article-title: The use of plant models in deep learning: an application to leaf counting in rosette plants publication-title: Plant Methods – volume: 24 start-page: 1506 year: 2007 end-page: 1517 article-title: Grinding up wheat: a massive loss of nucleotide diversity since domestication publication-title: Mol. Biol. Evol. – volume: 21 start-page: 365 year: 2016 end-page: 368 article-title: Crop diversity: an unexploited treasure trove for food security publication-title: Trends Plant Sci. – ident: e_1_2_10_19_1 doi: 10.1111/j.1365-313X.2004.02190.x – volume-title: Broadening the Genetic Diversity of Common and Durum Wheat for Abiotic Stress Tolerance Breeding. Advances in Wheat Genetics: From Genome to Field year: 2015 ident: e_1_2_10_137_1 – ident: e_1_2_10_146_1 doi: 10.1007/s13253-010-0046-2 – ident: e_1_2_10_149_1 doi: 10.2135/cropsci2007.02.0103 – ident: e_1_2_10_5_1 – ident: e_1_2_10_21_1 doi: 10.3835/plantgenome2016.07.0064 – ident: e_1_2_10_88_1 doi: 10.1016/j.tplants.2007.09.009 – ident: e_1_2_10_91_1 doi: 10.1038/nature11420 – ident: e_1_2_10_27_1 doi: 10.1038/ncomms10527 – ident: e_1_2_10_79_1 doi: 10.1016/j.tplants.2016.02.006 – ident: e_1_2_10_98_1 doi: 10.1016/j.cj.2014.09.002 – ident: e_1_2_10_119_1 doi: 10.1038/ng.2314 – ident: e_1_2_10_134_1 doi: 10.1002/aps3.1031 – ident: e_1_2_10_152_1 doi: 10.1016/j.ygeno.2017.09.009 – ident: e_1_2_10_24_1 doi: 10.1007/s001220051343 – ident: e_1_2_10_54_1 doi: 10.1371/journal.pgen.1000130 – ident: e_1_2_10_32_1 doi: 10.1038/nclimate2425 – ident: e_1_2_10_28_1 doi: 10.1007/s10681-014-1250-x – ident: e_1_2_10_37_1 doi: 10.1139/g98-163 – volume: 19 start-page: 8755 year: 2003 ident: e_1_2_10_58_1 article-title: The resistance of Quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors publication-title: Food Rev. Int. – ident: e_1_2_10_25_1 doi: 10.1007/s00122-013-2066-0 – ident: e_1_2_10_127_1 doi: 10.1016/j.scitotenv.2016.08.014 – ident: e_1_2_10_68_1 doi: 10.1002/elps.201400038 – ident: e_1_2_10_72_1 doi: 10.1038/nmeth.1681 – ident: e_1_2_10_128_1 doi: 10.1071/PP9830109 – ident: e_1_2_10_131_1 doi: 10.1101/gr.184001 – ident: e_1_2_10_125_1 doi: 10.1371/journal.pgen.1004982 – ident: e_1_2_10_35_1 doi: 10.1007/s00122-001-0848-2 – ident: e_1_2_10_107_1 doi: 10.1111/j.1365-3040.2008.01916.x – ident: e_1_2_10_57_1 doi: 10.1186/s12284-016-0087-4 – ident: e_1_2_10_90_1 doi: 10.1007/s00122-010-1273-1 – ident: e_1_2_10_61_1 doi: 10.1038/nature21370 – ident: e_1_2_10_135_1 doi: 10.1007/978-3-540-88351-7_18 – ident: e_1_2_10_45_1 doi: 10.1038/nature11295 – ident: e_1_2_10_22_1 doi: 10.5772/66925 – ident: e_1_2_10_123_1 doi: 10.1016/j.tplants.2015.10.015 – ident: e_1_2_10_126_1 doi: 10.1007/s001220050900 – ident: e_1_2_10_136_1 doi: 10.1186/s13007-017-0204-4 – ident: e_1_2_10_112_1 doi: 10.1071/FP12060 – ident: e_1_2_10_67_1 doi: 10.1038/ng.2376 – ident: e_1_2_10_84_1 doi: 10.1093/dnares/9.6.199 – ident: e_1_2_10_8_1 doi: 10.1016/j.tplants.2013.09.008 – ident: e_1_2_10_75_1 doi: 10.3389/fpls.2017.02143 – ident: e_1_2_10_105_1 doi: 10.1007/s12038-012-9227-1 – ident: e_1_2_10_77_1 doi: 10.1038/ng2088 – ident: e_1_2_10_39_1 doi: 10.1002/gepi.20353 – ident: e_1_2_10_147_1 doi: 10.1017/S0016672312000274 – ident: e_1_2_10_148_1 doi: 10.1016/j.tplants.2017.04.002 – ident: e_1_2_10_151_1 doi: 10.1073/pnas.202476999 – ident: e_1_2_10_23_1 doi: 10.1016/j.plantsci.2018.01.018 – ident: e_1_2_10_42_1 doi: 10.3389/fpls.2017.00652 – volume: 337 start-page: 1040 year: 2012 ident: e_1_2_10_118_1 article-title: The B73 maize genome: complexity, diversity, and dynamics (November, pg 1112, 2009) publication-title: Science – ident: e_1_2_10_120_1 doi: 10.1371/journal.pgen.0030114 – ident: e_1_2_10_160_1 doi: 10.1371/journal.pgen.0030004 – ident: e_1_2_10_12_1 doi: 10.1002/pld3.41 – ident: e_1_2_10_40_1 doi: 10.1016/j.tplants.2011.09.005 – ident: e_1_2_10_26_1 doi: 10.1016/j.tplants.2017.08.011 – ident: e_1_2_10_53_1 doi: 10.1105/tpc.113.119982 – ident: e_1_2_10_165_1 doi: 10.1038/cr.2017.124 – ident: e_1_2_10_162_1 doi: 10.1371/journal.pone.0066606 – ident: e_1_2_10_94_1 doi: 10.1007/s11258-008-9482-2 – ident: e_1_2_10_100_1 doi: 10.1111/pce.12898 – ident: e_1_2_10_140_1 – ident: e_1_2_10_163_1 doi: 10.1038/ng.2310 – ident: e_1_2_10_2_1 doi: 10.1016/j.tplants.2013.12.002 – ident: e_1_2_10_159_1 doi: 10.1111/eva.12434 – ident: e_1_2_10_47_1 doi: 10.1146/annurev.pp.31.060180.001053 – ident: e_1_2_10_31_1 doi: 10.1016/j.pbi.2015.02.006 – ident: e_1_2_10_76_1 doi: 10.1023/A:1002968207362 – ident: e_1_2_10_93_1 doi: 10.1146/annurev.arplant.59.032607.092911 – ident: e_1_2_10_145_1 doi: 10.3389/fpls.2017.00593 – ident: e_1_2_10_96_1 doi: 10.1093/aob/mcw191 – ident: e_1_2_10_17_1 doi: 10.1038/ng.3046 – ident: e_1_2_10_85_1 doi: 10.1126/sciadv.1500323 – ident: e_1_2_10_65_1 doi: 10.1071/FP16194 – ident: e_1_2_10_101_1 doi: 10.3389/fpls.2017.00138 – ident: e_1_2_10_115_1 doi: 10.1038/nature11119 – ident: e_1_2_10_158_1 doi: 10.1038/ng.546 – ident: e_1_2_10_154_1 doi: 10.1016/j.tplants.2005.10.002 – ident: e_1_2_10_4_1 doi: 10.1093/aob/mcq009 – ident: e_1_2_10_18_1 doi: 10.1002/fes3.106 – ident: e_1_2_10_73_1 doi: 10.3389/fpls.2017.00853 – ident: e_1_2_10_82_1 doi: 10.3390/agronomy3010200 – ident: e_1_2_10_106_1 doi: 10.1111/1477-8947.12054 – ident: e_1_2_10_55_1 doi: 10.1186/s12863-015-0218-8 – ident: e_1_2_10_129_1 doi: 10.1038/srep42839 – ident: e_1_2_10_108_1 doi: 10.1093/bioinformatics/bts669 – ident: e_1_2_10_116_1 doi: 10.1111/nph.14702 – ident: e_1_2_10_69_1 doi: 10.1007/s00122-005-0055-7 – ident: e_1_2_10_86_1 doi: 10.1046/j.1365-313X.2002.01322.x – ident: e_1_2_10_97_1 doi: 10.1371/journal.pone.0094000 – ident: e_1_2_10_89_1 doi: 10.1111/tpj.13515 – ident: e_1_2_10_132_1 doi: 10.1186/s12284-017-0181-2 – ident: e_1_2_10_52_1 doi: 10.1093/molbev/msm077 – ident: e_1_2_10_62_1 doi: 10.3389/fpls.2014.00770 – ident: e_1_2_10_144_1 doi: 10.3389/fgene.2014.00349 – volume: 12 start-page: e0169860 year: 2017 ident: e_1_2_10_122_1 article-title: Genome‐wide association study for carcass traits in an experimental Nelore cattle population publication-title: PLoS ONE doi: 10.1371/journal.pone.0169860 – ident: e_1_2_10_110_1 doi: 10.3389/fpls.2018.01402 – ident: e_1_2_10_70_1 doi: 10.1371/journal.pone.0067280 – ident: e_1_2_10_71_1 doi: 10.1038/nbt.2979 – volume: 50 start-page: 279 year: 2018 ident: e_1_2_10_161_1 article-title: Pan‐genome analysis highlights the extent of genomic variation in cultivated and wild rice publication-title: Nat. Genet. – ident: e_1_2_10_6_1 doi: 10.1371/journal.pone.0172515 – ident: e_1_2_10_7_1 doi: 10.1038/ncomms13342 – ident: e_1_2_10_46_1 doi: 10.1038/ncomms13390 – ident: e_1_2_10_156_1 doi: 10.1038/nplants.2017.107 – ident: e_1_2_10_3_1 doi: 10.1111/tpj.12616 – ident: e_1_2_10_51_1 doi: 10.3389/fpls.2016.01787 – ident: e_1_2_10_143_1 doi: 10.1086/519024 – start-page: 95 volume-title: Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools year: 2016 ident: e_1_2_10_49_1 – ident: e_1_2_10_9_1 doi: 10.3389/fpls.2016.01414 – ident: e_1_2_10_138_1 doi: 10.3390/agriculture8020030 – ident: e_1_2_10_64_1 doi: 10.1038/ng.548 – ident: e_1_2_10_103_1 doi: 10.1046/j.1365-2540.2000.00705.x – ident: e_1_2_10_117_1 doi: 10.1111/pbi.12145 – ident: e_1_2_10_60_1 doi: 10.1071/FP09095 – ident: e_1_2_10_34_1 – ident: e_1_2_10_92_1 doi: 10.1046/j.0016-8025.2001.00808.x – ident: e_1_2_10_20_1 doi: 10.1104/pp.15.00450 – ident: e_1_2_10_63_1 doi: 10.1534/genetics.107.080101 – ident: e_1_2_10_66_1 doi: 10.1186/1746-4811-9-29 – ident: e_1_2_10_83_1 doi: 10.1371/journal.pbio.0020347 – ident: e_1_2_10_81_1 doi: 10.1093/jxb/err396 – ident: e_1_2_10_10_1 doi: 10.1146/annurev.arplant.59.032607.092759 – ident: e_1_2_10_48_1 doi: 10.1071/FP14226 – ident: e_1_2_10_150_1 doi: 10.1038/s41477-017-0083-8 – ident: e_1_2_10_121_1 doi: 10.3389/fpls.2017.00550 – ident: e_1_2_10_36_1 doi: 10.1071/AR9780897 – ident: e_1_2_10_43_1 doi: 10.7717/peerj.4088 – ident: e_1_2_10_29_1 doi: 10.2135/cropsci2016.10.0885 – ident: e_1_2_10_15_1 doi: 10.1016/j.isprsjprs.2014.03.016 – ident: e_1_2_10_30_1 doi: 10.3389/fpls.2017.01461 – ident: e_1_2_10_41_1 doi: 10.1534/genetics.104.035642 – ident: e_1_2_10_80_1 doi: 10.1126/science.1251788 – ident: e_1_2_10_113_1 doi: 10.2135/cropsci1981.0011183X002100060033x – ident: e_1_2_10_14_1 doi: 10.3389/fpls.2016.00622 – ident: e_1_2_10_164_1 doi: 10.1371/journal.pgen.1003264 – ident: e_1_2_10_16_1 doi: 10.1038/nature22011 – ident: e_1_2_10_59_1 doi: 10.1093/bfgp/elq001 – ident: e_1_2_10_157_1 doi: 10.1007/s11032-017-0634-8 – volume: 3 start-page: 211 year: 2001 ident: e_1_2_10_133_1 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – ident: e_1_2_10_95_1 doi: 10.1038/s41598-018-24946-3 – volume-title: The Future of Food and Agriculture ‐ Trends and Challenges year: 2017 ident: e_1_2_10_33_1 – ident: e_1_2_10_78_1 doi: 10.1016/j.proenv.2015.07.228 – ident: e_1_2_10_38_1 doi: 10.1007/BF00039203 – ident: e_1_2_10_130_1 doi: 10.1126/science.277.5329.1063 – volume: 1 start-page: 15 year: 2017 ident: e_1_2_10_102_1 article-title: Development of advanced mutant lines of native grains through radiation‐induced Mutagenesis in Peru publication-title: Hortic. Int. J. doi: 10.15406/hij.2017.01.00015 – ident: e_1_2_10_114_1 doi: 10.1038/srep32586 – ident: e_1_2_10_142_1 doi: 10.3389/fgene.2016.00139 – ident: e_1_2_10_111_1 doi: 10.1038/s41586-018-0123-1 – ident: e_1_2_10_155_1 doi: 10.1534/genetics.107.085589 – ident: e_1_2_10_44_1 doi: 10.1016/j.tplants.2014.11.006 – ident: e_1_2_10_104_1 doi: 10.1023/B:EUPH.0000040503.48448.97 – ident: e_1_2_10_141_1 doi: 10.1016/j.ajhg.2008.01.016 – ident: e_1_2_10_124_1 doi: 10.1071/FP09182 – ident: e_1_2_10_153_1 doi: 10.1038/nbt.2050 – ident: e_1_2_10_50_1 doi: 10.1186/s12284-014-0016-3 – ident: e_1_2_10_99_1 doi: 10.1038/s41598-017-00638-2 – ident: e_1_2_10_56_1 doi: 10.1186/s13007-015-0072-8 – ident: e_1_2_10_87_1 doi: 10.1038/nrg3901 – ident: e_1_2_10_74_1 doi: 10.1093/genetics/165.4.2117 – ident: e_1_2_10_13_1 doi: 10.5772/33073 – ident: e_1_2_10_11_1 doi: 10.1007/s00271-012-0382-9 – ident: e_1_2_10_109_1 doi: 10.1093/aob/mcx148 – ident: e_1_2_10_139_1 doi: 10.1186/s13007-018-0273-z |
SSID | ssj0017364 |
Score | 2.6580734 |
SecondaryResourceType | review_article |
Snippet | Summary
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish... Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 148 |
SubjectTerms | Abiotic stress Agronomy Breaking down Crops Crops, Agricultural - genetics Crops, Agricultural - physiology Domestication Environmental conditions environmental factors freshwater Freshwater resources Gene mapping genes Genetics Genomic analysis Genomics Germplasm Irrigation Mathematical models Molecular biology Phenotype Phenotyping Quantitative trait loci Quantitative Trait Loci - genetics Saline soils Salt Salt Stress Salt tolerance Salt Tolerance - genetics SI Genome to Phenome Statistical analysis Statistical genetics Stress, Physiological translation (genetics) |
Title | Salt stress under the scalpel – dissecting the genetics of salt tolerance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14189 https://www.ncbi.nlm.nih.gov/pubmed/30548719 https://www.proquest.com/docview/2166361006 https://www.proquest.com/docview/2157655108 https://www.proquest.com/docview/2220911314 https://pubmed.ncbi.nlm.nih.gov/PMC6850516 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6-Dl7Et6urRPHgpdC0SbaLJ58siiI-wFtJmwSF0i7bevDmf_Af-kucSbvFxQdSKIVM2mkyk3yTZGYI2RehNOjx6Cmppccl054Sfe1p4XMNiNmvUydcXcvBA794FI9T5HDsC1PHh2gX3FAz3HiNCq6S8ouSV0NUcxb1p8ksutaikAf8pt1C6IV17Cj4oAfTZtCEFcJjPG3VycnoG8L8flDyK4B1M9D5IllooCM9qvt6iUyZfJnMHRcA715XyOWdyipau35Q9AwbUcB2tIQ-GJqMfry9U7f3nuI5Z1cEooMejCUtLC2xclVkBvNsmFXycH52fzLwmkwJXor5pjwbJSriBhRU-4pr69LsyUTzQBsMr2NsaHuJkH0bgULrkBmwirUCbGFUAmThGpnJi9xsEMoSK0XPcoU7dHDBe0UqhLI8BSOc8w45GDdZnDZhxDGbRRaPzQlo3di1bofstaTDOnbGT0TdcbvHjfqUccAACAGw82WH7LbFIPi4m6FyU7wgDZhKgPf86A-aIAA8xEIGbK_XXdlyAgMdGGsMGOhNdHJLgIG3J0vy5ycXgFtGgBsZ8HbgxOH3n4vvby7cw-b_SbfIPICyfr3M0yUz1ejFbAPwqZIdJ-BwP70NPgHyQAAI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5RqFQuCEoLy19d1AOXSHFiO1mJCyDQ8iukLhK3yIlttdIqWbHhwI134A15EmacbMSKFqFcInmcTMYz8Te2Zwbgl4yVpYjHQCujAqG4CbTsm8DIUBhEzGFTOuHySg1uxNmtvJ2D_WksTJMfoltwI8vw_2sycFqQfmXl9ZjsnKf9T7AgVJRQ4YZIXHd7CEncJI_CNwY4b0ZtXiE6x9N1nZ2N3kDMtyclXyNYPwWdLMNSix3ZQTPYKzBny6_w-bBCfPewCue_9ahmTewHo9CwO4bgjk1wEMZ2xJ4fn5jffC_ooLNvQt2hEMYJqxybUOe6GlkqtGG_wc3J8fBoELSlEoKCCk4FLs11KixaqAm1MM7X2VO5EZGxlF_HutgluVR9l6JFm5hbdIuNRnBhdY5k8XeYL6vSrgPjuVMycULTFh1e-FxZSKmdKNALF6IHe1ORZUWbR5zKWYyyqT-B0s28dHuw25GOm-QZ_yLamso9a-1nkkUckRAiu1D14GfXjJpP2xm6tNU90aCvhIAvTN-hiSIERDzmyPZaM5QdJ_inQ2-NIwPJzCB3BJR5e7al_PvHZ-BWKQJHjrzteXX4_8dlw-szf7PxcdIf8GUwvLzILk6vzjdhERFav1nz2YL5-u7ebiMKqvMdr-wvtl0Ciw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLZYWK24INgHDK8NaA9cKjVtkumIE68Rb420IHGr0iYRSKN2xJQDN_4D_5Bfgp12KkbsItRLpTitm9jN5zi2Af7IWFmKeAy0MioQiptAy54JjAyFQcQc1qUTLi7V8bU4vZE3M7A7iYWp80O0G26kGf5_TQo-Mu6NklcjUnOe9L7AHDn7SLwjMWhdCN24zh2FLwxw2YyatEJ0jKftOr0YvUOY7w9KvgWwfgXqL8JCAx3ZXj3XSzBji-_wdb9EePf4A87-6mHF6tAPRpFh9wyxHRvjHIzskL08PTPve8_pnLNvQtGhCMYxKx0bU-eqHFqqs2F_wnX_6OrgOGgqJQQ51ZsKXJLpRFhUUBNqYZwvs6cyIyJjKb2OdbHrZlL1XIIKbWJu0So2GrGF1RmSxb9gtigLuwKMZ07JrhOaPHR44XNlLqV2IkcjXIgO7EyGLM2bNOJUzWKYTswJHN3Uj24HtlvSUZ07419E65NxTxv1GacRRyCEwC5UHdhqm1HwyZuhC1s-EA2aSoj3wuQDmihCPMRjjmwv11PZcoI_OjTWODLQnZrkloASb0-3FHe3PgG3ShA3cuRtx4vD_z8uvRqc-pvVz5P-hm-Dw356fnJ5tgbziM969Y7POsxW9w92AzFQlW16WX8FNYsBvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salt+stress+under+the+scalpel+%E2%80%93+dissecting+the+genetics+of+salt+tolerance&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Morton%2C+Mitchell+J.+L.&rft.au=Awlia%2C+Mariam&rft.au=Al%E2%80%90Tamimi%2C+Nadia&rft.au=Saade%2C+Stephanie&rft.date=2019-01-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=97&rft.issue=1&rft.spage=148&rft.epage=163&rft_id=info:doi/10.1111%2Ftpj.14189&rft.externalDBID=10.1111%252Ftpj.14189&rft.externalDocID=TPJ14189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |