Root hydraulic phenotypes impacting water uptake in drying soils

Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 45; no. 3; pp. 650 - 663
Main Authors Cai, Gaochao, Ahmed, Mutez A., Abdalla, Mohanned, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil–plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil–root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed. Summary statement During soil drying, the drop in soil–plant hydraulic conductance causes a decline in root water uptake, which is impacted by soil and root hydraulic phenotypes. Lower root conductance, longer root length and longer root hairs would allow plants to maintain water uptake at lower soil matric potential.
AbstractList Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil–plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil–root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed. Summary statement During soil drying, the drop in soil–plant hydraulic conductance causes a decline in root water uptake, which is impacted by soil and root hydraulic phenotypes. Lower root conductance, longer root length and longer root hairs would allow plants to maintain water uptake at lower soil matric potential.
Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil–plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil–root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.
Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil–plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil–root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed. During soil drying, the drop in soil–plant hydraulic conductance causes a decline in root water uptake, which is impacted by soil and root hydraulic phenotypes. Lower root conductance, longer root length and longer root hairs would allow plants to maintain water uptake at lower soil matric potential.
Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.
Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.
Author Cai, Gaochao
Abdalla, Mohanned
Ahmed, Mutez A.
Carminati, Andrea
AuthorAffiliation 3 Department of Environmental Systems Science, Physics of Soils and Terrestrial Ecosystems Institute of Terrestrial Ecosystems, ETH Zürich Zurich Switzerland
2 Department of Land, Air and Water Resources University of California Davis Davis California United States
1 Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
AuthorAffiliation_xml – name: 2 Department of Land, Air and Water Resources University of California Davis Davis California United States
– name: 3 Department of Environmental Systems Science, Physics of Soils and Terrestrial Ecosystems Institute of Terrestrial Ecosystems, ETH Zürich Zurich Switzerland
– name: 1 Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
Author_xml – sequence: 1
  givenname: Gaochao
  orcidid: 0000-0003-4484-1146
  surname: Cai
  fullname: Cai, Gaochao
  organization: University of Bayreuth
– sequence: 2
  givenname: Mutez A.
  orcidid: 0000-0002-7402-1571
  surname: Ahmed
  fullname: Ahmed, Mutez A.
  organization: University of California Davis
– sequence: 3
  givenname: Mohanned
  orcidid: 0000-0002-4220-8761
  surname: Abdalla
  fullname: Abdalla, Mohanned
  organization: University of Bayreuth
– sequence: 4
  givenname: Andrea
  orcidid: 0000-0001-7415-0480
  surname: Carminati
  fullname: Carminati, Andrea
  email: andrea.carminati@usys.ethz.ch
  organization: Institute of Terrestrial Ecosystems, ETH Zürich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35037263$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1P3DAQhi1EBQvlwB9AkXqBQ8CfcXypQCuglZBAqJwtx3FY06yd2g4o_x4vC6hFatW5eDR-5tXMvDtg03lnANhH8BjlOBm0OUYUM7EBZohUrCSQwk0wg4jCknOBtsFOjA8Q5gIXW2CbMEg4rsgMnN56n4rF1AY19lYXw8I4n6bBxMIuB6WTdffFk0omFOOQ1E9TWFe0YVqVo7d9_Aw-daqPZu_13QV3F-c_5t_Kq-vL7_Ozq1IzikXJNG0h7xDBta6aRuOG07ajulOM1Yx3WlQ5bQzTHRJQMS4U6Zpao4ojpTQhu-DrWncYm6VptXEpqF4OwS5VmKRXVv754-xC3vtHKUjeVdAscPgqEPyv0cQklzZq0_fKGT9GiasK5bNB9j8ohrxmouYZ_fIBffBjcPkSmSIE47qiKFMHvw__PvWbDxk4WgM6-BiD6d4RBOXKY5k9li8eZ_bkA6ttUsn61d62_1fHk-3N9HdpeTM_X3c8A4_Lt-g
CitedBy_id crossref_primary_10_1111_nph_19762
crossref_primary_10_1093_jxb_erad301
crossref_primary_10_3389_fpls_2025_1549506
crossref_primary_10_1111_nph_70013
crossref_primary_10_1016_j_envexpbot_2024_105998
crossref_primary_10_1080_17429145_2024_2389048
crossref_primary_10_5194_hess_28_1897_2024
crossref_primary_10_1016_j_cj_2023_11_008
crossref_primary_10_1093_aob_mcac147
crossref_primary_10_1007_s10725_024_01265_4
crossref_primary_10_1093_jxb_erad221
crossref_primary_10_1111_pce_14436
crossref_primary_10_1016_j_agwat_2024_108965
crossref_primary_10_1016_j_eja_2024_127393
crossref_primary_10_3389_fpls_2023_1140938
crossref_primary_10_1016_j_jhazmat_2024_135037
crossref_primary_10_1016_j_fcr_2023_108954
crossref_primary_10_1111_ejss_13524
crossref_primary_10_3389_fpls_2025_1515534
crossref_primary_10_3390_su141711063
crossref_primary_10_1093_plphys_kiac229
crossref_primary_10_1051_e3sconf_202338213001
crossref_primary_10_1007_s11104_022_05685_x
crossref_primary_10_1007_s11104_024_06481_5
crossref_primary_10_1093_jxb_erad052
crossref_primary_10_1016_j_plantsci_2022_111448
crossref_primary_10_1038_s43017_023_00514_w
crossref_primary_10_1111_pce_14639
crossref_primary_10_3389_fpls_2022_1097998
crossref_primary_10_3389_fpls_2023_1149760
crossref_primary_10_3390_plants11172256
crossref_primary_10_1007_s00425_025_04635_y
crossref_primary_10_1016_j_rhisph_2024_100980
crossref_primary_10_1111_tpj_15839
crossref_primary_10_3117_plantroot_17_59
crossref_primary_10_1111_pce_15012
crossref_primary_10_1111_pce_15011
crossref_primary_10_3390_ijms23073885
crossref_primary_10_1016_j_catena_2025_108793
crossref_primary_10_1016_j_scitotenv_2024_173824
crossref_primary_10_1093_forsci_fxae008
crossref_primary_10_3389_fpls_2024_1471044
crossref_primary_10_1111_gcb_17222
crossref_primary_10_1016_j_envexpbot_2024_105871
crossref_primary_10_3390_plants12203543
crossref_primary_10_1007_s11104_022_05656_2
crossref_primary_10_1093_jxb_erac114
crossref_primary_10_1016_j_pbi_2023_102405
crossref_primary_10_1016_j_scienta_2024_113758
crossref_primary_10_1093_jxb_erad249
crossref_primary_10_1016_j_geoderma_2024_117061
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1021_acs_est_2c07340
crossref_primary_10_1093_aob_mcae193
crossref_primary_10_1038_s41588_024_01761_3
crossref_primary_10_3390_ijms231810642
crossref_primary_10_3389_feart_2022_987680
crossref_primary_10_3390_plants13233307
crossref_primary_10_1016_j_scitotenv_2023_167524
crossref_primary_10_1007_s11104_022_05818_2
crossref_primary_10_1007_s44307_024_00050_8
crossref_primary_10_3389_fpls_2022_926535
crossref_primary_10_3390_app15063021
crossref_primary_10_1093_jxb_erad312
crossref_primary_10_3389_fpls_2023_1275464
crossref_primary_10_1016_j_nbsj_2024_100130
crossref_primary_10_1007_s10404_023_02696_7
crossref_primary_10_2139_ssrn_4102728
crossref_primary_10_1111_pce_14538
crossref_primary_10_1016_j_jhydrol_2025_132679
crossref_primary_10_1111_pce_14536
crossref_primary_10_5194_bg_21_5495_2024
crossref_primary_10_1016_j_jplph_2022_153827
crossref_primary_10_3389_fpls_2022_953717
crossref_primary_10_5194_bg_20_4625_2023
crossref_primary_10_1111_pce_14269
crossref_primary_10_1007_s11104_024_06626_6
crossref_primary_10_1016_j_agsy_2024_104056
crossref_primary_10_3390_w14223721
Cites_doi 10.1111/nph.15899
10.1093/aob/mcs293
10.1071/AR9890943
10.1111/pce.13675
10.1016/j.tplants.2019.10.015
10.1093/jxb/erq150
10.1046/j.0016-8025.2001.00799.x
10.1093/plphys/kiab271
10.1007/s11104-018-3769-4
10.1371/journal.pone.0185481
10.1007/s004250050368
10.3389/fpls.2013.00442
10.1016/j.fcr.2014.03.017
10.1093/plphys/kiab207
10.1046/j.1469-8137.1997.00620.x
10.1093/jxb/eraa392
10.1104/pp.126.1.352
10.1111/pce.13460
10.1071/FP13330
10.1007/s11104-019-04408-z
10.1111/pce.13722
10.1093/jxb/erx439
10.1093/jxb/43.3.319
10.5194/hess-22-2449-2018
10.3389/fpls.2019.01695
10.1093/jxb/erq077
10.1093/aob/mcaa181
10.1111/j.1469-8137.2011.03834.x
10.1300/J144v03n01_13
10.1111/nph.15351
10.1104/pp.91.2.719
10.1046/j.1365-3040.1998.00287.x
10.1093/jexbot/51.345.823
10.1038/ncomms6365
10.1093/aob/mcr184
10.1111/jipb.12534
10.1093/aob/mcab141
10.1111/pce.13939
10.1111/pce.12933
10.1111/j.1469-8137.1982.tb03391.x
10.1111/j.1744-7909.2005.00043.x
10.1093/jxb/erx252
10.1093/jxb/ers111
10.2136/vzj2008.0147
10.1093/aob/mcab029
10.1111/nph.13112
10.1111/j.1365-3040.2009.02059.x
10.17660/ActaHortic.2020.1300.17
10.1093/jxb/31.1.333
10.1111/nph.17278
10.1104/pp.103.023879
10.1093/jxb/ery183
10.1111/nph.14715
10.1007/s11104-004-7904-z
10.1104/pp.16.00380
10.1080/1343943X.2020.1794915
10.1104/pp.16.00923
10.1111/nph.14059
10.1111/pce.13875
10.1111/j.1365-3040.1993.tb00880.x
10.1111/nph.16177
10.1007/s11104-013-1736-7
10.2135/cropsci2013.05.0303
10.1071/FP15303
10.1007/s11104-015-2639-6
10.1126/science.218.4571.443
10.1111/nph.16542
10.1111/nph.14292
10.1097/00010694-196002000-00001
10.1016/j.advwatres.2018.12.009
10.1111/nph.13354
10.1007/s11104-015-2749-1
10.2136/vzj2007.0115
10.1038/srep12449
10.3389/fpls.2016.01763
10.1071/FP09197
10.2136/vzj2007.0122
10.2134/agronj1983.00021962007500050020x
10.1093/jxb/erq195
10.1111/nph.15330
10.1104/pp.108.134098
10.1007/s00425-002-0766-9
10.1111/j.1469-8137.2005.01543.x
10.1016/j.tplants.2020.04.003
10.1371/journal.pone.0233481
10.1073/pnas.1712381114
10.21273/HORTSCI.51.2.192
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
5PM
DOI 10.1111/pce.14259
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Calcium & Calcified Tissue Abstracts
AGRICOLA
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
DocumentTitleAlternate ROOT HYDRAULIC PHENOTYPES IMPACT WATER UPTAKE
EISSN 1365-3040
EndPage 663
ExternalDocumentID PMC9303794
35037263
10_1111_pce_14259
PCE14259
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  funderid: 02WIL1489
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 403670197
– fundername: ;
  grantid: 403670197
– fundername: ;
  grantid: 02WIL1489
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5429-5c4d07f1328c6bbc2b74df4cfa55857fc96fa5be5cf190a579a3fb8c1671aac33
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Thu Aug 21 18:17:06 EDT 2025
Fri Jul 11 18:31:17 EDT 2025
Fri Jul 11 11:42:06 EDT 2025
Fri Jul 25 10:44:31 EDT 2025
Wed Feb 19 02:26:24 EST 2025
Thu Apr 24 23:07:04 EDT 2025
Tue Jul 01 04:28:46 EDT 2025
Wed Jan 22 16:27:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords soil texture
soil hydraulic conductivity
root hydraulic conductance
drought
leaf water potential
root water uptake
root hairs
root length
Language English
License Attribution-NonCommercial
2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5429-5c4d07f1328c6bbc2b74df4cfa55857fc96fa5be5cf190a579a3fb8c1671aac33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7402-1571
0000-0003-4484-1146
0000-0002-4220-8761
0000-0001-7415-0480
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14259
PMID 35037263
PQID 2633228641
PQPubID 37957
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303794
proquest_miscellaneous_2661040054
proquest_miscellaneous_2620785987
proquest_journals_2633228641
pubmed_primary_35037263
crossref_primary_10_1111_pce_14259
crossref_citationtrail_10_1111_pce_14259
wiley_primary_10_1111_pce_14259_PCE14259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 119
1989; 40
2017; 40
2021; 24
2013; 4
1982; 92
2021; 128
2013; 368
2000; 51
2020; 15
2019; 124
2008; 7
2020; 447
2009; 150
2011; 192
2020; 10
2017; 114
2010; 61
2014; 5
1982; 218
1980; 31
2000
1960; 89
2016; 43
2013; 112
2016; 398
2006; 283
1998; 206
2021; 230
2020; 43
2014; 165
2020; 1300
1992; 43
2014; 54
2012; 63
1997; 135
2010; 33
2015; 5
2010; 37
2021; 44
2016; 407
2021; 229
2017; 68
1983; 75
2008
2020; 225
2019; 224
2002; 215
2016; 51
2021; 186
2015; 207
1964; 24
2021; 187
2015; 205
2014; 41
2018; 22
1998; 21
2019; 221
2001; 126
2003; 132
2018; 69
2017; 216
2005; 47
2002; 25
2016; 7
2011; 108
1993; 16
2019; 42
2017; 59
2021
2020
2005; 168
2020; 71
1989; 91
2018; 431
2017; 12
2016; 212
2020; 25
2009; 8
2001; 3
2016; 171
2016; 172
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Wankmüller F. (e_1_2_8_87_1) 2021
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_13_1
Brooks R. (e_1_2_8_17_1) 1964; 24
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
Ranathunge K. (e_1_2_8_64_1) 2017; 119
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
Ahmed M.A. (e_1_2_8_4_1) 2020
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 25
  start-page: 105
  year: 2020
  end-page: 118
  article-title: Crop improvement from phenotyping roots: highlights reveal expanding opportunities
  publication-title: Trends in Plant Science
– volume: 24
  start-page: 37
  year: 1964
  article-title: HYDRAU uc properties of porous media
  publication-title: Hydrology Papers, Colorado State University
– volume: 7
  start-page: 1079
  year: 2008
  end-page: 1088
  article-title: Use of a three‐dimensional detailed modeling approach for predicting root water uptake
  publication-title: Vadose Zone Journal
– volume: 40
  start-page: 1392
  year: 2017
  end-page: 1408
  article-title: Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley
  publication-title: Plant, Cell & Environment
– volume: 75
  start-page: 818
  year: 1983
  end-page: 820
  article-title: Shrinkage of soybean roots 1
  publication-title: Agronomy Journal
– volume: 7
  start-page: 1763
  year: 2016
  article-title: The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis
  publication-title: Frontiers in Plant Science
– volume: 33
  start-page: 133
  year: 2010
  end-page: 148
  article-title: The distribution and abundance of wheat roots in a dense, structured subsoil–implications for water uptake
  publication-title: Plant, Cell & Environment
– volume: 68
  start-page: 4479
  year: 2017
  end-page: 4496
  article-title: The causes and consequences of leaf hydraulic decline with dehydration
  publication-title: Journal of Experimental Botany
– volume: 212
  start-page: 802
  year: 2016
  end-page: 804
  article-title: Too many partners in root‐shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control?
  publication-title: New Phytologist
– volume: 114
  start-page: 10572
  year: 2017
  end-page: 10577
  article-title: Hydrologic regulation of plant rooting depth
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 171
  start-page: 2008
  year: 2016
  end-page: 2016
  article-title: Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants
  publication-title: Plant Physiology
– volume: 51
  start-page: 823
  year: 2000
  end-page: 828
  article-title: Plant hydraulic conductance measured by the high pressure flow meter in crop plants
  publication-title: Journal of Experimental Botany
– volume: 92
  start-page: 333
  year: 1982
  end-page: 343
  article-title: Root contraction in transpiring plants
  publication-title: New Phytologist
– volume: 108
  start-page: 575
  year: 2011
  end-page: 583
  article-title: Root morphology, hydraulic conductivity and plant water relations of high‐yielding rice grown under aerobic conditions
  publication-title: Annals of Botany
– volume: 212
  start-page: 577
  year: 2016
  end-page: 589
  article-title: Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits
  publication-title: New Phytologist
– year: 2021
  article-title: Stomatal regulation prevents plants from critical water potentials during drought: result of a model linking soil‐plant hydraulics to ABA dynamics
  publication-title: Ecohydrology
– volume: 12
  year: 2017
  article-title: Plant water potential improves prediction of empirical stomatal models
  publication-title: PLoS ONE
– volume: 71
  start-page: 7286
  year: 2020
  end-page: 7300
  article-title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars
  publication-title: Journal of Experimental Botany
– volume: 283
  start-page: 99
  year: 2006
  end-page: 117
  article-title: Water uptake by plant roots: ii—modelling of water transfer in the soil root‐system with explicit account of flow within the root system—comparison with experiments
  publication-title: Plant and Soil
– volume: 3
  start-page: 139
  year: 2001
  end-page: 156
  article-title: Soil‐root interface water potential in sweet corn as affected by organic fertilizer and a microbial inoculant
  publication-title: Journal of Crop Production
– volume: 230
  start-page: 2001
  year: 2021
  end-page: 2010
  article-title: Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants
  publication-title: New Phytologist
– volume: 186
  start-page: 1908
  year: 2021
  end-page: 1918
  article-title: Herb and conifer roots show similar high sensitivity to water deficit
  publication-title: Plant Physiology
– volume: 61
  start-page: 3543
  year: 2010
  end-page: 3551
  article-title: Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying
  publication-title: Journal of Experimental Botany
– year: 2008
– volume: 59
  start-page: 356
  year: 2017
  end-page: 389
  article-title: Plant xylem hydraulics: what we understand, current research, and future challenges
  publication-title: Journal of Integrative Plant Biology
– volume: 447
  start-page: 565
  year: 2020
  end-page: 578
  article-title: Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying
  publication-title: Plant and Soil
– volume: 205
  start-page: 1106
  year: 2015
  end-page: 1116
  article-title: Drought‐induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?
  publication-title: New Phytologist
– volume: 206
  start-page: 7
  year: 1998
  end-page: 19
  article-title: Apoplastic transport across young maize roots: effect of the exodermis
  publication-title: Planta
– volume: 43
  start-page: 319
  year: 1992
  end-page: 326
  article-title: Hydraulic conductances of the soil, the root—soil air gap, and the root: changes for desert succulents in drying soil
  publication-title: Journal of Experimental Botany
– volume: 47
  start-page: 302
  year: 2005
  end-page: 310
  article-title: Changes in root hydraulic conductivity during wheat evolution
  publication-title: Journal of Integrative Plant Biology
– volume: 135
  start-page: 21
  year: 1997
  end-page: 29
  article-title: Root‐soil contact for the desert succulent Agave deserti in wet and drying soil
  publication-title: New Phytologist
– volume: 31
  start-page: 333
  year: 1980
  end-page: 345
  article-title: The transport of water from soil to shoot in wheat seedlings
  publication-title: Journal of Experimental Botany
– volume: 25
  start-page: 251
  year: 2002
  end-page: 263
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant, Cell & Environment
– volume: 43
  start-page: 854
  year: 2020
  end-page: 865
  article-title: Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat
  publication-title: Plant, Cell & Environment
– volume: 229
  start-page: 272
  year: 2021
  end-page: 283
  article-title: Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function
  publication-title: New Phytologist
– volume: 63
  start-page: 3485
  year: 2012
  end-page: 3498
  article-title: Traits and selection strategies to improve root systems and water uptake in water‐limited wheat crops
  publication-title: Journal of Experimental Botany
– volume: 44
  start-page: 49
  year: 2021
  end-page: 67
  article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress
  publication-title: Plant, Cell & Environment
– volume: 187
  start-page: 858
  year: 2021
  end-page: 872
  article-title: Soil textures rather than root hairs dominate water uptake and soil–plant hydraulics under drought
  publication-title: Plant Physiology
– volume: 215
  start-page: 466
  year: 2002
  end-page: 471
  article-title: Xylem embolism and drought‐induced stomatal closure in maize
  publication-title: Planta
– volume: 89
  start-page: 63
  year: 1960
  end-page: 73
  article-title: Dynamic aspects of water availability to plants
  publication-title: Soil Science
– volume: 24
  start-page: 73
  year: 2021
  end-page: 82
  article-title: Accession difference in leaf photosynthesis, root hydraulic conductance and gene expression of root aquaporins under salt stress in barley seedlings
  publication-title: Plant Production Science
– volume: 398
  start-page: 59
  year: 2016
  end-page: 77
  article-title: Measurements of water uptake of maize roots: the key function of lateral roots
  publication-title: Plant and Soil
– volume: 61
  start-page: 2145
  year: 2010
  end-page: 2155
  article-title: Model‐assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils
  publication-title: Journal of Experimental Botany
– volume: 126
  start-page: 352
  year: 2001
  end-page: 362
  article-title: Hydraulic conductance and mercury‐sensitive water transport for roots of opuntia acanthocarpa in relation to soil drying and rewetting
  publication-title: Plant Physiology
– volume: 221
  start-page: 93
  year: 2019
  end-page: 98
  article-title: Speedy stomata, photosynthesis and plant water use efficiency
  publication-title: New Phytologist
– volume: 8
  start-page: 805
  year: 2009
  end-page: 809
  article-title: When roots lose contact
  publication-title: Vadose Zone Journal
– volume: 128
  start-page: 45
  year: 2021
  end-page: 57
  article-title: Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare L.), maize (Zea mays L.), and Lotus japonicus (Gifu)
  publication-title: Annals of Botany
– volume: 15
  year: 2020
  article-title: Aquaporins are main contributors to root hydraulic conductivity in pearl millet [ (L.) R. Br.]
  publication-title: PLoS ONE
– volume: 37
  start-page: 313
  year: 2010
  end-page: 322
  article-title: The utility of phenotypic plasticity of root hair length for phosphorus acquisition
  publication-title: Functional Plant Biology
– volume: 5
  start-page: 5365
  year: 2014
  article-title: Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance
  publication-title: Nature Communications
– volume: 225
  start-page: 126
  year: 2020
  end-page: 134
  article-title: Declining root water transport drives stomatal closure in olive under moderate water stress
  publication-title: New Phytol
– volume: 43
  start-page: 199
  year: 2016
  end-page: 206
  article-title: Enhanced root growth of the brb (bald root barley) mutant in drying soil allows similar shoot physiological responses to soil water deficit as wild‐type plants
  publication-title: Functional Plant Biology
– year: 2000
– volume: 368
  start-page: 649
  year: 2013
  end-page: 667
  article-title: Uptake of water from a Kandosol subsoil. II. Control of water uptake by roots
  publication-title: Plant and Soil
– volume: 407
  start-page: 161
  year: 2016
  end-page: 171
  article-title: Drying of mucilage causes water repellency in the rhizosphere of maize: measurements and modelling
  publication-title: Plant and Soil
– volume: 69
  start-page: 1199
  year: 2018
  end-page: 1206
  article-title: Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize
  publication-title: Journal of Experimental Botany
– volume: 51
  start-page: 192
  year: 2016
  end-page: 196
  article-title: Measuring root hydraulic parameters of container‐grown herbaceous and woody plants using the hydraulic conductance flow meter
  publication-title: HortScience
– volume: 207
  start-page: 14
  year: 2015
  end-page: 27
  article-title: What plant hydraulics can tell us about responses to climate‐change droughts
  publication-title: New Phytologist
– volume: 224
  start-page: 21
  year: 2019
  end-page: 36
  article-title: How do stomata respond to water status?
  publication-title: New Phytologist
– volume: 54
  start-page: 1147
  year: 2014
  end-page: 1152
  article-title: Hydraulic conductance of maize hybrids differing in transpiration response to vapor pressure deficit
  publication-title: Crop Science
– volume: 43
  start-page: 344
  year: 2020
  end-page: 357
  article-title: Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity
  publication-title: Plant, Cell & Environment
– volume: 16
  start-page: 341
  year: 1993
  end-page: 349
  article-title: Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants
  publication-title: Plant, Cell & Environment
– volume: 5
  year: 2015
  article-title: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought‐stressed grapevine
  publication-title: Scientific Reports
– volume: 41
  start-page: 1129
  year: 2014
  end-page: 1137
  article-title: Mucilage exudation facilitates root water uptake in dry soils
  publication-title: Functional Plant Biology
– volume: 7
  start-page: 1027
  year: 2008
  end-page: 1034
  article-title: Water uptake and hydraulics of the root hair rhizosphere
  publication-title: Vadose Zone Journal
– volume: 21
  start-page: 347
  year: 1998
  end-page: 359
  article-title: Limitation of plant water use by rhizosphere and xylem conductance: results from a model
  publication-title: Plant, Cell & Environment
– volume: 132
  start-page: 2166
  year: 2003
  end-page: 2173
  article-title: Stomatal closure during leaf dehydration, correlation with other leaf physiological traits
  publication-title: Plant Physiology
– volume: 69
  start-page: 3255
  year: 2018
  end-page: 3265
  article-title: Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water‐limited grain crops: a critical review
  publication-title: Journal of Experimental Botany
– volume: 218
  start-page: 443
  year: 1982
  end-page: 448
  article-title: Plant productivity and environment
  publication-title: Science
– volume: 128
  start-page: 1
  year: 2021
  end-page: 16
  article-title: Significance of root hairs for plant performance under contrasting field conditions and water deficit
  publication-title: Annals of Botany
– volume: 42
  start-page: 717
  year: 2019
  end-page: 729
  article-title: Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in under water stress: aquaporin activity regulates stomatal conductace
  publication-title: Plant, Cell & Environment
– volume: 216
  start-page: 771
  year: 2017
  end-page: 781
  article-title: Root hairs enable high transpiration rates in drying soils
  publication-title: New Phytologist
– volume: 124
  start-page: 96
  year: 2019
  end-page: 105
  article-title: Measurements and simulation of leaf xylem water potential and root water uptake in heterogeneous soil water contents
  publication-title: Advances in Water Resources
– volume: 91
  start-page: 719
  year: 1989
  end-page: 726
  article-title: Axial and radial hydraulic resistance to roots of maize ( L.) 1
  publication-title: Plant Physiology
– volume: 192
  start-page: 664
  year: 2011
  end-page: 675
  article-title: Root hydraulic conductance and aquaporin abundance respond rapidly to partial root‐zone drying events in a riparian Melaleuca species
  publication-title: New Phytologist
– volume: 4
  start-page: 442
  year: 2013
  article-title: Root traits contributing to plant productivity under drought
  publication-title: Frontiers in Plant Science
– volume: 44
  start-page: 425
  year: 2021
  end-page: 431
  article-title: Stomatal closure of tomato under drought is driven by an increase in soil–root hydraulic resistance
  publication-title: Plant, Cell & Environment
– year: 2020
– volume: 150
  start-page: 348
  year: 2009
  end-page: 364
  article-title: Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots
  publication-title: Plant Physiology
– volume: 40
  start-page: 943
  year: 1989
  end-page: 950
  article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain‐fed environments
  publication-title: Australian Journal of Agricultural Research
– volume: 1300
  start-page: 131
  year: 2020
  end-page: 138
  article-title: Measurement of leaf xylem water potential and transpiration during soil drying using a root pressure chamber system
  publication-title: Acta Horticulturae
– volume: 10
  start-page: 10
  year: 2020
  article-title: Transpiration reduction in maize ( L.) in response to soil drying
  publication-title: Frontiers in Plant Science
– volume: 61
  start-page: 3191
  year: 2010
  end-page: 3198
  article-title: The significance of roots as hydraulic rheostats
  publication-title: Journal of Experimental Botany
– volume: 25
  start-page: 868
  year: 2020
  end-page: 880
  article-title: Soil Rather than xylem vulnerability controls stomatal response to drought
  publication-title: Trends in Plant Science
– volume: 112
  start-page: 347
  year: 2013
  end-page: 357
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
– start-page: mcab141
  year: 2021
  article-title: Stomatal closure during water deficit is controlled by belowground hydraulics
  publication-title: Annals of Botany
– volume: 119
  start-page: 629
  year: 2017
  end-page: 643
  article-title: The composite water and solute transport of barley ( ) roots: effect of suberized barriers
  publication-title: Annals of Botany
– volume: 165
  start-page: 15
  year: 2014
  end-page: 24
  article-title: Root hydraulics: the forgotten side of roots in drought adaptation
  publication-title: Field Crops Research
– volume: 168
  start-page: 275
  year: 2005
  end-page: 292
  article-title: The control of stomata by water balance
  publication-title: New Phytologist
– volume: 22
  start-page: 2449
  year: 2018
  end-page: 2470
  article-title: Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
  publication-title: Hydrology and Earth System Sciences
– volume: 431
  start-page: 417
  year: 2018
  end-page: 431
  article-title: Root‐soil contact dynamics of in sand
  publication-title: Plant and Soil
– volume: 172
  start-page: 1669
  year: 2016
  end-page: 1678
  article-title: Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought
  publication-title: Plant Physiology
– volume: 221
  start-page: 180
  year: 2019
  end-page: 194
  article-title: Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses
  publication-title: New Phytologist
– ident: e_1_2_8_19_1
  doi: 10.1111/nph.15899
– ident: e_1_2_8_55_1
  doi: 10.1093/aob/mcs293
– ident: e_1_2_8_65_1
  doi: 10.1071/AR9890943
– ident: e_1_2_8_52_1
  doi: 10.1111/pce.13675
– ident: e_1_2_8_83_1
  doi: 10.1016/j.tplants.2019.10.015
– ident: e_1_2_8_58_1
  doi: 10.1093/jxb/erq150
– ident: e_1_2_8_74_1
  doi: 10.1046/j.0016-8025.2001.00799.x
– ident: e_1_2_8_23_1
  doi: 10.1093/plphys/kiab271
– ident: e_1_2_8_51_1
  doi: 10.1007/s11104-018-3769-4
– ident: e_1_2_8_11_1
  doi: 10.1371/journal.pone.0185481
– ident: e_1_2_8_95_1
  doi: 10.1007/s004250050368
– ident: e_1_2_8_30_1
  doi: 10.3389/fpls.2013.00442
– ident: e_1_2_8_85_1
  doi: 10.1016/j.fcr.2014.03.017
– ident: e_1_2_8_13_1
  doi: 10.1093/plphys/kiab207
– ident: e_1_2_8_62_1
  doi: 10.1046/j.1469-8137.1997.00620.x
– ident: e_1_2_8_10_1
  doi: 10.1093/jxb/eraa392
– ident: e_1_2_8_57_1
  doi: 10.1104/pp.126.1.352
– ident: e_1_2_8_67_1
  doi: 10.1111/pce.13460
– volume: 119
  start-page: 629
  year: 2017
  ident: e_1_2_8_64_1
  article-title: The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers
  publication-title: Annals of Botany
– ident: e_1_2_8_6_1
  doi: 10.1071/FP13330
– ident: e_1_2_8_21_1
  doi: 10.1007/s11104-019-04408-z
– ident: e_1_2_8_31_1
  doi: 10.1111/pce.13722
– ident: e_1_2_8_9_1
  doi: 10.1093/jxb/erx439
– ident: e_1_2_8_61_1
  doi: 10.1093/jxb/43.3.319
– ident: e_1_2_8_24_1
  doi: 10.5194/hess-22-2449-2018
– ident: e_1_2_8_46_1
  doi: 10.3389/fpls.2019.01695
– ident: e_1_2_8_39_1
  doi: 10.1093/jxb/erq077
– ident: e_1_2_8_56_1
  doi: 10.1093/aob/mcaa181
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1469-8137.2011.03834.x
– volume-title: Advances in understanding plant root water uptake
  year: 2020
  ident: e_1_2_8_4_1
– ident: e_1_2_8_91_1
  doi: 10.1300/J144v03n01_13
– ident: e_1_2_8_53_1
  doi: 10.1111/nph.15351
– ident: e_1_2_8_42_1
  doi: 10.1104/pp.91.2.719
– ident: e_1_2_8_73_1
  doi: 10.1046/j.1365-3040.1998.00287.x
– ident: e_1_2_8_84_1
  doi: 10.1093/jexbot/51.345.823
– ident: e_1_2_8_25_1
  doi: 10.1038/ncomms6365
– ident: e_1_2_8_49_1
  doi: 10.1093/aob/mcr184
– ident: e_1_2_8_86_1
  doi: 10.1111/jipb.12534
– ident: e_1_2_8_2_1
  doi: 10.1093/aob/mcab141
– ident: e_1_2_8_3_1
  doi: 10.1111/pce.13939
– ident: e_1_2_8_70_1
  doi: 10.1111/pce.12933
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1469-8137.1982.tb03391.x
– ident: e_1_2_8_93_1
  doi: 10.1111/j.1744-7909.2005.00043.x
– ident: e_1_2_8_71_1
  doi: 10.1093/jxb/erx252
– ident: e_1_2_8_88_1
  doi: 10.1093/jxb/ers111
– ident: e_1_2_8_28_1
  doi: 10.2136/vzj2008.0147
– ident: e_1_2_8_20_1
  doi: 10.1093/aob/mcab029
– ident: e_1_2_8_69_1
  doi: 10.1111/nph.13112
– ident: e_1_2_8_89_1
  doi: 10.1111/j.1365-3040.2009.02059.x
– ident: e_1_2_8_22_1
  doi: 10.17660/ActaHortic.2020.1300.17
– ident: e_1_2_8_63_1
  doi: 10.1093/jxb/31.1.333
– ident: e_1_2_8_92_1
  doi: 10.1111/nph.17278
– ident: e_1_2_8_16_1
  doi: 10.1104/pp.103.023879
– ident: e_1_2_8_7_1
  doi: 10.1093/jxb/ery183
– ident: e_1_2_8_27_1
  doi: 10.1111/nph.14715
– ident: e_1_2_8_34_1
– ident: e_1_2_8_38_1
  doi: 10.1007/s11104-004-7904-z
– ident: e_1_2_8_59_1
  doi: 10.1104/pp.16.00380
– ident: e_1_2_8_50_1
  doi: 10.1080/1343943X.2020.1794915
– year: 2021
  ident: e_1_2_8_87_1
  article-title: Stomatal regulation prevents plants from critical water potentials during drought: result of a model linking soil‐plant hydraulics to ABA dynamics
  publication-title: Ecohydrology
– ident: e_1_2_8_33_1
  doi: 10.1104/pp.16.00923
– ident: e_1_2_8_76_1
  doi: 10.1111/nph.14059
– ident: e_1_2_8_77_1
  doi: 10.1111/pce.13875
– ident: e_1_2_8_80_1
  doi: 10.1111/j.1365-3040.1993.tb00880.x
– ident: e_1_2_8_66_1
  doi: 10.1111/nph.16177
– ident: e_1_2_8_35_1
  doi: 10.1007/s11104-013-1736-7
– ident: e_1_2_8_78_1
  doi: 10.2135/cropsci2013.05.0303
– ident: e_1_2_8_36_1
  doi: 10.1071/FP15303
– ident: e_1_2_8_8_1
  doi: 10.1007/s11104-015-2639-6
– ident: e_1_2_8_14_1
  doi: 10.1126/science.218.4571.443
– ident: e_1_2_8_32_1
  doi: 10.1111/nph.16542
– ident: e_1_2_8_90_1
– ident: e_1_2_8_79_1
  doi: 10.1111/nph.14292
– ident: e_1_2_8_43_1
  doi: 10.1097/00010694-196002000-00001
– ident: e_1_2_8_45_1
  doi: 10.1016/j.advwatres.2018.12.009
– ident: e_1_2_8_75_1
  doi: 10.1111/nph.13354
– ident: e_1_2_8_5_1
  doi: 10.1007/s11104-015-2749-1
– ident: e_1_2_8_47_1
  doi: 10.2136/vzj2007.0115
– ident: e_1_2_8_82_1
  doi: 10.1038/srep12449
– ident: e_1_2_8_12_1
  doi: 10.3389/fpls.2016.01763
– volume: 24
  start-page: 37
  year: 1964
  ident: e_1_2_8_17_1
  article-title: HYDRAU uc properties of porous media
  publication-title: Hydrology Papers, Colorado State University
– ident: e_1_2_8_94_1
  doi: 10.1071/FP09197
– ident: e_1_2_8_72_1
  doi: 10.2136/vzj2007.0122
– ident: e_1_2_8_81_1
  doi: 10.2134/agronj1983.00021962007500050020x
– ident: e_1_2_8_37_1
  doi: 10.1093/jxb/erq195
– ident: e_1_2_8_54_1
  doi: 10.1111/nph.15330
– ident: e_1_2_8_15_1
  doi: 10.1104/pp.108.134098
– ident: e_1_2_8_29_1
  doi: 10.1007/s00425-002-0766-9
– ident: e_1_2_8_18_1
  doi: 10.1111/j.1469-8137.2005.01543.x
– ident: e_1_2_8_26_1
  doi: 10.1016/j.tplants.2020.04.003
– ident: e_1_2_8_44_1
  doi: 10.1371/journal.pone.0233481
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.1712381114
– ident: e_1_2_8_68_1
– ident: e_1_2_8_48_1
  doi: 10.21273/HORTSCI.51.2.192
SSID ssj0001479
Score 2.6249402
SecondaryResourceType review_article
Snippet Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 650
SubjectTerms Conductance
Crop production
Desiccation
drought
Drying
environment
hydraulic conductivity
Hydraulic properties
Hydraulics
Invited Review
Invited Reviews
leaf water potential
leaves
Moisture content
Phenotype
Phenotypes
Plant Roots - chemistry
Plant Transpiration
Root hairs
root hydraulic conductance
root length
root water uptake
Soil
soil hydraulic conductivity
Soil investigations
Soil properties
Soil texture
Soil water
Soil water potential
Soils
Transpiration
Water - analysis
Water flow
Water potential
Water uptake
Water use
Title Root hydraulic phenotypes impacting water uptake in drying soils
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14259
https://www.ncbi.nlm.nih.gov/pubmed/35037263
https://www.proquest.com/docview/2633228641
https://www.proquest.com/docview/2620785987
https://www.proquest.com/docview/2661040054
https://pubmed.ncbi.nlm.nih.gov/PMC9303794
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MoeCLzqmzuo0oPvjS0aZJ0-KLbmwMQRnDwR6EkqQNu-zSXm5b5PrXe5K0dXdTEelLIKe0-XFyviTnfAfgLZo8tKrUZamLQiZpFkqWm1ALwyUiEON5tj9_SU8v2KdLfrkB78dYGM8PMR24Wc1w67VVcKnaG0q-0BWqOaJ3XH-tr5YFROe_qKNi5nn2rPuiEHk8sApZL57pzXVbdAdg3vWTvIlfnQE6eQzfxl_3fifXB32nDvSPW6yO_9m2LXg0AFPy0c-kJ7BR1dvwwKeqXG3D_cMGYeTqKXw4b5qOXK3KpeznM02sj1hjD3Jb4iMu0RaS74hgl6RfdPK6IrOalEsbTUXaZjZvn8HFyfHXo9NwSMMQapvMKuSalZEwuG3NdKqUpkqw0jBtJMe9hjA6T7GoKq4NogvJRS4TozIdpyKWUifJc9ism7p6AUSXsUqZVtRlAswFPlGiIkONve7UPIB344AUeuAot6ky5sW4V8GeKVzPBPBmEl14Yo7fCe2Oo1oMutkWNE1wFctSFgfweqpGrbJXJbKumt7KUMROPM_E32QQejKLeQPY8RNl-pOER4nADwUg1qbQJGBZvddr6tmVY_fOEVTgIold4WbInxtXnB0du8LLfxd9BQ-pjd9wTnS7sNkt-2oPUVWn9uEeZWf7Tol-Apf-HgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQSXAuXRQAGDQOKSKnGcODkgAX1oSx9CVSv1FmwnVlddJatNomr5TfwV_hNj50GXAuLSA8rFUkaKY8_jsz3-BuA1hjyMqtRWqfNcJmjsCpZoV3EdCkQguuXZPjiMRifs02l4ugTf-rswLT_EsOFmLMP6a2PgZkP6kpVPVY52jvC9S6ncy-cXuGCr3u1u4ey-oXRn-3hz5HY1BVxlKjO5oWKZxzWuwWIVSamo5CzTTGkRInDmWiURNmUeKo2hUoQ8EYGWsfIj7guhzPYnOvwbpoK4YerfOvpJVuWzltnPJExynvgdj5HJGxq6uhj9rkDaq5mZlxGzDXk7d-F7P1htpsv5RlPLDfX1Fx7J_2U078FKh73Jh9ZY7sNSXqzCrbYa53wVbn4sESnPH8D7o7Ksydk8m4lmMlbEpMGVZq-6Iu2lUgz35AJB-ow001qc52RckGxmLoyRqhxPqodwci3_8QiWi7LI14CozJcRU5LaYocJx8cLpKepNie6KnTgba8Bqepo2E01kEnaL8dwJlI7Ew68GkSnLffI74TWezVKO_dTpTQK0FHHEfMdeDm8RsdhToNEkZeNkaEID8Mk5n-TQXTNDKx34HGrmUNPgtALOH7IAb6gs4OAIS5ffFOMzyyBeYK4CeMADoVVyT__XPp5c9s2nvy76Au4PTo-2E_3dw_3nsIdaq6r2JzBdViuZ03-DEFkLZ9b2yXw5brV-wdFnX1M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEB-O8wNfRM-v6qlRFHwptGnStA-CenfLnafHIh7cW03Shltc2mW7y7F_k_-kM2m33HIqvhx9CXSg6SQz80sy-Q3AGwx5GFW5r1IXhULzLNQid6FVTmpEIK7j2f56kh6eis9n8mwLfq3vwnT8EMOGG1mG99dk4LPSXTLyma3QzBG99xmVx9XqAtdr7fujfRzct5yPDr7vHYZ9SYHQUmGmUFpRRsrhEiyzqTGWGyVKJ6zTEnGzcjZPsWkqaR1GSi1VrhNnMhunKtba0u4n-vsbdLhI-WNcjAe3H4uO2I_yJZXK457GiNKGhq5uBr8riPZqYuZlwOwj3uge3O2hKvvYza37sFXVO3CrK1652oGbnxoElqsH8OFb0yzY-aqc6-V0YhlljTW0tduy7g4mRkd2gZh2zpazhf5ZsUnNyjndr2JtM5m2D-H0WrT4CLbrpq6eALNlbFJhDfe1AXOFT5SYyHFHB6BWBvBurbHC9qzlVDxjWqxXL6jcwis3gNeD6Kyj6viT0O5a7UVvrW3B0wT9WpaKOIBXw2u0Mzo80XXVLEmGI5qSeab-JYNgVBAKDuBxN5JDTxIZJQo_FIDaGONBgHi-N9_Uk3PP950jzEC3iarws-HvP1eM9w584-n_i76E2-P9UfHl6OT4GdzhdLnDZ9jtwvZivqyeI-RamBd-qjP4cd229RtC_TsN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+hydraulic+phenotypes+impacting+water+uptake+in+drying+soils&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Cai%2C+Gaochao&rft.au=Ahmed%2C+Mutez+A.&rft.au=Abdalla%2C+Mohanned&rft.au=Carminati%2C+Andrea&rft.date=2022-03-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=45&rft.issue=3&rft.spage=650&rft.epage=663&rft_id=info:doi/10.1111%2Fpce.14259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pce_14259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon