Root hydraulic phenotypes impacting water uptake in drying soils
Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact...
Saved in:
Published in | Plant, cell and environment Vol. 45; no. 3; pp. 650 - 663 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil–plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil–root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.
Summary statement
During soil drying, the drop in soil–plant hydraulic conductance causes a decline in root water uptake, which is impacted by soil and root hydraulic phenotypes. Lower root conductance, longer root length and longer root hairs would allow plants to maintain water uptake at lower soil matric potential. |
---|---|
AbstractList | Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil–plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil–root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.
Summary statement
During soil drying, the drop in soil–plant hydraulic conductance causes a decline in root water uptake, which is impacted by soil and root hydraulic phenotypes. Lower root conductance, longer root length and longer root hairs would allow plants to maintain water uptake at lower soil matric potential. Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil–plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil–root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed. Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil–plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil–root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (−6 to −1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed. During soil drying, the drop in soil–plant hydraulic conductance causes a decline in root water uptake, which is impacted by soil and root hydraulic phenotypes. Lower root conductance, longer root length and longer root hairs would allow plants to maintain water uptake at lower soil matric potential. Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed. Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed. |
Author | Cai, Gaochao Abdalla, Mohanned Ahmed, Mutez A. Carminati, Andrea |
AuthorAffiliation | 3 Department of Environmental Systems Science, Physics of Soils and Terrestrial Ecosystems Institute of Terrestrial Ecosystems, ETH Zürich Zurich Switzerland 2 Department of Land, Air and Water Resources University of California Davis Davis California United States 1 Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany |
AuthorAffiliation_xml | – name: 2 Department of Land, Air and Water Resources University of California Davis Davis California United States – name: 3 Department of Environmental Systems Science, Physics of Soils and Terrestrial Ecosystems Institute of Terrestrial Ecosystems, ETH Zürich Zurich Switzerland – name: 1 Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany |
Author_xml | – sequence: 1 givenname: Gaochao orcidid: 0000-0003-4484-1146 surname: Cai fullname: Cai, Gaochao organization: University of Bayreuth – sequence: 2 givenname: Mutez A. orcidid: 0000-0002-7402-1571 surname: Ahmed fullname: Ahmed, Mutez A. organization: University of California Davis – sequence: 3 givenname: Mohanned orcidid: 0000-0002-4220-8761 surname: Abdalla fullname: Abdalla, Mohanned organization: University of Bayreuth – sequence: 4 givenname: Andrea orcidid: 0000-0001-7415-0480 surname: Carminati fullname: Carminati, Andrea email: andrea.carminati@usys.ethz.ch organization: Institute of Terrestrial Ecosystems, ETH Zürich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35037263$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1P3DAQhi1EBQvlwB9AkXqBQ8CfcXypQCuglZBAqJwtx3FY06yd2g4o_x4vC6hFatW5eDR-5tXMvDtg03lnANhH8BjlOBm0OUYUM7EBZohUrCSQwk0wg4jCknOBtsFOjA8Q5gIXW2CbMEg4rsgMnN56n4rF1AY19lYXw8I4n6bBxMIuB6WTdffFk0omFOOQ1E9TWFe0YVqVo7d9_Aw-daqPZu_13QV3F-c_5t_Kq-vL7_Ozq1IzikXJNG0h7xDBta6aRuOG07ajulOM1Yx3WlQ5bQzTHRJQMS4U6Zpao4ojpTQhu-DrWncYm6VptXEpqF4OwS5VmKRXVv754-xC3vtHKUjeVdAscPgqEPyv0cQklzZq0_fKGT9GiasK5bNB9j8ohrxmouYZ_fIBffBjcPkSmSIE47qiKFMHvw__PvWbDxk4WgM6-BiD6d4RBOXKY5k9li8eZ_bkA6ttUsn61d62_1fHk-3N9HdpeTM_X3c8A4_Lt-g |
CitedBy_id | crossref_primary_10_1111_nph_19762 crossref_primary_10_1093_jxb_erad301 crossref_primary_10_3389_fpls_2025_1549506 crossref_primary_10_1111_nph_70013 crossref_primary_10_1016_j_envexpbot_2024_105998 crossref_primary_10_1080_17429145_2024_2389048 crossref_primary_10_5194_hess_28_1897_2024 crossref_primary_10_1016_j_cj_2023_11_008 crossref_primary_10_1093_aob_mcac147 crossref_primary_10_1007_s10725_024_01265_4 crossref_primary_10_1093_jxb_erad221 crossref_primary_10_1111_pce_14436 crossref_primary_10_1016_j_agwat_2024_108965 crossref_primary_10_1016_j_eja_2024_127393 crossref_primary_10_3389_fpls_2023_1140938 crossref_primary_10_1016_j_jhazmat_2024_135037 crossref_primary_10_1016_j_fcr_2023_108954 crossref_primary_10_1111_ejss_13524 crossref_primary_10_3389_fpls_2025_1515534 crossref_primary_10_3390_su141711063 crossref_primary_10_1093_plphys_kiac229 crossref_primary_10_1051_e3sconf_202338213001 crossref_primary_10_1007_s11104_022_05685_x crossref_primary_10_1007_s11104_024_06481_5 crossref_primary_10_1093_jxb_erad052 crossref_primary_10_1016_j_plantsci_2022_111448 crossref_primary_10_1038_s43017_023_00514_w crossref_primary_10_1111_pce_14639 crossref_primary_10_3389_fpls_2022_1097998 crossref_primary_10_3389_fpls_2023_1149760 crossref_primary_10_3390_plants11172256 crossref_primary_10_1007_s00425_025_04635_y crossref_primary_10_1016_j_rhisph_2024_100980 crossref_primary_10_1111_tpj_15839 crossref_primary_10_3117_plantroot_17_59 crossref_primary_10_1111_pce_15012 crossref_primary_10_1111_pce_15011 crossref_primary_10_3390_ijms23073885 crossref_primary_10_1016_j_catena_2025_108793 crossref_primary_10_1016_j_scitotenv_2024_173824 crossref_primary_10_1093_forsci_fxae008 crossref_primary_10_3389_fpls_2024_1471044 crossref_primary_10_1111_gcb_17222 crossref_primary_10_1016_j_envexpbot_2024_105871 crossref_primary_10_3390_plants12203543 crossref_primary_10_1007_s11104_022_05656_2 crossref_primary_10_1093_jxb_erac114 crossref_primary_10_1016_j_pbi_2023_102405 crossref_primary_10_1016_j_scienta_2024_113758 crossref_primary_10_1093_jxb_erad249 crossref_primary_10_1016_j_geoderma_2024_117061 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1021_acs_est_2c07340 crossref_primary_10_1093_aob_mcae193 crossref_primary_10_1038_s41588_024_01761_3 crossref_primary_10_3390_ijms231810642 crossref_primary_10_3389_feart_2022_987680 crossref_primary_10_3390_plants13233307 crossref_primary_10_1016_j_scitotenv_2023_167524 crossref_primary_10_1007_s11104_022_05818_2 crossref_primary_10_1007_s44307_024_00050_8 crossref_primary_10_3389_fpls_2022_926535 crossref_primary_10_3390_app15063021 crossref_primary_10_1093_jxb_erad312 crossref_primary_10_3389_fpls_2023_1275464 crossref_primary_10_1016_j_nbsj_2024_100130 crossref_primary_10_1007_s10404_023_02696_7 crossref_primary_10_2139_ssrn_4102728 crossref_primary_10_1111_pce_14538 crossref_primary_10_1016_j_jhydrol_2025_132679 crossref_primary_10_1111_pce_14536 crossref_primary_10_5194_bg_21_5495_2024 crossref_primary_10_1016_j_jplph_2022_153827 crossref_primary_10_3389_fpls_2022_953717 crossref_primary_10_5194_bg_20_4625_2023 crossref_primary_10_1111_pce_14269 crossref_primary_10_1007_s11104_024_06626_6 crossref_primary_10_1016_j_agsy_2024_104056 crossref_primary_10_3390_w14223721 |
Cites_doi | 10.1111/nph.15899 10.1093/aob/mcs293 10.1071/AR9890943 10.1111/pce.13675 10.1016/j.tplants.2019.10.015 10.1093/jxb/erq150 10.1046/j.0016-8025.2001.00799.x 10.1093/plphys/kiab271 10.1007/s11104-018-3769-4 10.1371/journal.pone.0185481 10.1007/s004250050368 10.3389/fpls.2013.00442 10.1016/j.fcr.2014.03.017 10.1093/plphys/kiab207 10.1046/j.1469-8137.1997.00620.x 10.1093/jxb/eraa392 10.1104/pp.126.1.352 10.1111/pce.13460 10.1071/FP13330 10.1007/s11104-019-04408-z 10.1111/pce.13722 10.1093/jxb/erx439 10.1093/jxb/43.3.319 10.5194/hess-22-2449-2018 10.3389/fpls.2019.01695 10.1093/jxb/erq077 10.1093/aob/mcaa181 10.1111/j.1469-8137.2011.03834.x 10.1300/J144v03n01_13 10.1111/nph.15351 10.1104/pp.91.2.719 10.1046/j.1365-3040.1998.00287.x 10.1093/jexbot/51.345.823 10.1038/ncomms6365 10.1093/aob/mcr184 10.1111/jipb.12534 10.1093/aob/mcab141 10.1111/pce.13939 10.1111/pce.12933 10.1111/j.1469-8137.1982.tb03391.x 10.1111/j.1744-7909.2005.00043.x 10.1093/jxb/erx252 10.1093/jxb/ers111 10.2136/vzj2008.0147 10.1093/aob/mcab029 10.1111/nph.13112 10.1111/j.1365-3040.2009.02059.x 10.17660/ActaHortic.2020.1300.17 10.1093/jxb/31.1.333 10.1111/nph.17278 10.1104/pp.103.023879 10.1093/jxb/ery183 10.1111/nph.14715 10.1007/s11104-004-7904-z 10.1104/pp.16.00380 10.1080/1343943X.2020.1794915 10.1104/pp.16.00923 10.1111/nph.14059 10.1111/pce.13875 10.1111/j.1365-3040.1993.tb00880.x 10.1111/nph.16177 10.1007/s11104-013-1736-7 10.2135/cropsci2013.05.0303 10.1071/FP15303 10.1007/s11104-015-2639-6 10.1126/science.218.4571.443 10.1111/nph.16542 10.1111/nph.14292 10.1097/00010694-196002000-00001 10.1016/j.advwatres.2018.12.009 10.1111/nph.13354 10.1007/s11104-015-2749-1 10.2136/vzj2007.0115 10.1038/srep12449 10.3389/fpls.2016.01763 10.1071/FP09197 10.2136/vzj2007.0122 10.2134/agronj1983.00021962007500050020x 10.1093/jxb/erq195 10.1111/nph.15330 10.1104/pp.108.134098 10.1007/s00425-002-0766-9 10.1111/j.1469-8137.2005.01543.x 10.1016/j.tplants.2020.04.003 10.1371/journal.pone.0233481 10.1073/pnas.1712381114 10.21273/HORTSCI.51.2.192 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 5PM |
DOI | 10.1111/pce.14259 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts AGRICOLA CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
DocumentTitleAlternate | ROOT HYDRAULIC PHENOTYPES IMPACT WATER UPTAKE |
EISSN | 1365-3040 |
EndPage | 663 |
ExternalDocumentID | PMC9303794 35037263 10_1111_pce_14259 PCE14259 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung funderid: 02WIL1489 – fundername: Deutsche Forschungsgemeinschaft funderid: 403670197 – fundername: ; grantid: 403670197 – fundername: ; grantid: 02WIL1489 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5429-5c4d07f1328c6bbc2b74df4cfa55857fc96fa5be5cf190a579a3fb8c1671aac33 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Thu Aug 21 18:17:06 EDT 2025 Fri Jul 11 18:31:17 EDT 2025 Fri Jul 11 11:42:06 EDT 2025 Fri Jul 25 10:44:31 EDT 2025 Wed Feb 19 02:26:24 EST 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jul 01 04:28:46 EDT 2025 Wed Jan 22 16:27:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | soil texture soil hydraulic conductivity root hydraulic conductance drought leaf water potential root water uptake root hairs root length |
Language | English |
License | Attribution-NonCommercial 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5429-5c4d07f1328c6bbc2b74df4cfa55857fc96fa5be5cf190a579a3fb8c1671aac33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7402-1571 0000-0003-4484-1146 0000-0002-4220-8761 0000-0001-7415-0480 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14259 |
PMID | 35037263 |
PQID | 2633228641 |
PQPubID | 37957 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303794 proquest_miscellaneous_2661040054 proquest_miscellaneous_2620785987 proquest_journals_2633228641 pubmed_primary_35037263 crossref_primary_10_1111_pce_14259 crossref_citationtrail_10_1111_pce_14259 wiley_primary_10_1111_pce_14259_PCE14259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 119 1989; 40 2017; 40 2021; 24 2013; 4 1982; 92 2021; 128 2013; 368 2000; 51 2020; 15 2019; 124 2008; 7 2020; 447 2009; 150 2011; 192 2020; 10 2017; 114 2010; 61 2014; 5 1982; 218 1980; 31 2000 1960; 89 2016; 43 2013; 112 2016; 398 2006; 283 1998; 206 2021; 230 2020; 43 2014; 165 2020; 1300 1992; 43 2014; 54 2012; 63 1997; 135 2010; 33 2015; 5 2010; 37 2021; 44 2016; 407 2021; 229 2017; 68 1983; 75 2008 2020; 225 2019; 224 2002; 215 2016; 51 2021; 186 2015; 207 1964; 24 2021; 187 2015; 205 2014; 41 2018; 22 1998; 21 2019; 221 2001; 126 2003; 132 2018; 69 2017; 216 2005; 47 2002; 25 2016; 7 2011; 108 1993; 16 2019; 42 2017; 59 2021 2020 2005; 168 2020; 71 1989; 91 2018; 431 2017; 12 2016; 212 2020; 25 2009; 8 2001; 3 2016; 171 2016; 172 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Wankmüller F. (e_1_2_8_87_1) 2021 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_13_1 Brooks R. (e_1_2_8_17_1) 1964; 24 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_95_1 Ranathunge K. (e_1_2_8_64_1) 2017; 119 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 Ahmed M.A. (e_1_2_8_4_1) 2020 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 25 start-page: 105 year: 2020 end-page: 118 article-title: Crop improvement from phenotyping roots: highlights reveal expanding opportunities publication-title: Trends in Plant Science – volume: 24 start-page: 37 year: 1964 article-title: HYDRAU uc properties of porous media publication-title: Hydrology Papers, Colorado State University – volume: 7 start-page: 1079 year: 2008 end-page: 1088 article-title: Use of a three‐dimensional detailed modeling approach for predicting root water uptake publication-title: Vadose Zone Journal – volume: 40 start-page: 1392 year: 2017 end-page: 1408 article-title: Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley publication-title: Plant, Cell & Environment – volume: 75 start-page: 818 year: 1983 end-page: 820 article-title: Shrinkage of soybean roots 1 publication-title: Agronomy Journal – volume: 7 start-page: 1763 year: 2016 article-title: The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis publication-title: Frontiers in Plant Science – volume: 33 start-page: 133 year: 2010 end-page: 148 article-title: The distribution and abundance of wheat roots in a dense, structured subsoil–implications for water uptake publication-title: Plant, Cell & Environment – volume: 68 start-page: 4479 year: 2017 end-page: 4496 article-title: The causes and consequences of leaf hydraulic decline with dehydration publication-title: Journal of Experimental Botany – volume: 212 start-page: 802 year: 2016 end-page: 804 article-title: Too many partners in root‐shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control? publication-title: New Phytologist – volume: 114 start-page: 10572 year: 2017 end-page: 10577 article-title: Hydrologic regulation of plant rooting depth publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 171 start-page: 2008 year: 2016 end-page: 2016 article-title: Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants publication-title: Plant Physiology – volume: 51 start-page: 823 year: 2000 end-page: 828 article-title: Plant hydraulic conductance measured by the high pressure flow meter in crop plants publication-title: Journal of Experimental Botany – volume: 92 start-page: 333 year: 1982 end-page: 343 article-title: Root contraction in transpiring plants publication-title: New Phytologist – volume: 108 start-page: 575 year: 2011 end-page: 583 article-title: Root morphology, hydraulic conductivity and plant water relations of high‐yielding rice grown under aerobic conditions publication-title: Annals of Botany – volume: 212 start-page: 577 year: 2016 end-page: 589 article-title: Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits publication-title: New Phytologist – year: 2021 article-title: Stomatal regulation prevents plants from critical water potentials during drought: result of a model linking soil‐plant hydraulics to ABA dynamics publication-title: Ecohydrology – volume: 12 year: 2017 article-title: Plant water potential improves prediction of empirical stomatal models publication-title: PLoS ONE – volume: 71 start-page: 7286 year: 2020 end-page: 7300 article-title: Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars publication-title: Journal of Experimental Botany – volume: 283 start-page: 99 year: 2006 end-page: 117 article-title: Water uptake by plant roots: ii—modelling of water transfer in the soil root‐system with explicit account of flow within the root system—comparison with experiments publication-title: Plant and Soil – volume: 3 start-page: 139 year: 2001 end-page: 156 article-title: Soil‐root interface water potential in sweet corn as affected by organic fertilizer and a microbial inoculant publication-title: Journal of Crop Production – volume: 230 start-page: 2001 year: 2021 end-page: 2010 article-title: Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants publication-title: New Phytologist – volume: 186 start-page: 1908 year: 2021 end-page: 1918 article-title: Herb and conifer roots show similar high sensitivity to water deficit publication-title: Plant Physiology – volume: 61 start-page: 3543 year: 2010 end-page: 3551 article-title: Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying publication-title: Journal of Experimental Botany – year: 2008 – volume: 59 start-page: 356 year: 2017 end-page: 389 article-title: Plant xylem hydraulics: what we understand, current research, and future challenges publication-title: Journal of Integrative Plant Biology – volume: 447 start-page: 565 year: 2020 end-page: 578 article-title: Linear relation between leaf xylem water potential and transpiration in pearl millet during soil drying publication-title: Plant and Soil – volume: 205 start-page: 1106 year: 2015 end-page: 1116 article-title: Drought‐induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change? publication-title: New Phytologist – volume: 206 start-page: 7 year: 1998 end-page: 19 article-title: Apoplastic transport across young maize roots: effect of the exodermis publication-title: Planta – volume: 43 start-page: 319 year: 1992 end-page: 326 article-title: Hydraulic conductances of the soil, the root—soil air gap, and the root: changes for desert succulents in drying soil publication-title: Journal of Experimental Botany – volume: 47 start-page: 302 year: 2005 end-page: 310 article-title: Changes in root hydraulic conductivity during wheat evolution publication-title: Journal of Integrative Plant Biology – volume: 135 start-page: 21 year: 1997 end-page: 29 article-title: Root‐soil contact for the desert succulent Agave deserti in wet and drying soil publication-title: New Phytologist – volume: 31 start-page: 333 year: 1980 end-page: 345 article-title: The transport of water from soil to shoot in wheat seedlings publication-title: Journal of Experimental Botany – volume: 25 start-page: 251 year: 2002 end-page: 263 article-title: Water deficits and hydraulic limits to leaf water supply publication-title: Plant, Cell & Environment – volume: 43 start-page: 854 year: 2020 end-page: 865 article-title: Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat publication-title: Plant, Cell & Environment – volume: 229 start-page: 272 year: 2021 end-page: 283 article-title: Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function publication-title: New Phytologist – volume: 63 start-page: 3485 year: 2012 end-page: 3498 article-title: Traits and selection strategies to improve root systems and water uptake in water‐limited wheat crops publication-title: Journal of Experimental Botany – volume: 44 start-page: 49 year: 2021 end-page: 67 article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress publication-title: Plant, Cell & Environment – volume: 187 start-page: 858 year: 2021 end-page: 872 article-title: Soil textures rather than root hairs dominate water uptake and soil–plant hydraulics under drought publication-title: Plant Physiology – volume: 215 start-page: 466 year: 2002 end-page: 471 article-title: Xylem embolism and drought‐induced stomatal closure in maize publication-title: Planta – volume: 89 start-page: 63 year: 1960 end-page: 73 article-title: Dynamic aspects of water availability to plants publication-title: Soil Science – volume: 24 start-page: 73 year: 2021 end-page: 82 article-title: Accession difference in leaf photosynthesis, root hydraulic conductance and gene expression of root aquaporins under salt stress in barley seedlings publication-title: Plant Production Science – volume: 398 start-page: 59 year: 2016 end-page: 77 article-title: Measurements of water uptake of maize roots: the key function of lateral roots publication-title: Plant and Soil – volume: 61 start-page: 2145 year: 2010 end-page: 2155 article-title: Model‐assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils publication-title: Journal of Experimental Botany – volume: 126 start-page: 352 year: 2001 end-page: 362 article-title: Hydraulic conductance and mercury‐sensitive water transport for roots of opuntia acanthocarpa in relation to soil drying and rewetting publication-title: Plant Physiology – volume: 221 start-page: 93 year: 2019 end-page: 98 article-title: Speedy stomata, photosynthesis and plant water use efficiency publication-title: New Phytologist – volume: 8 start-page: 805 year: 2009 end-page: 809 article-title: When roots lose contact publication-title: Vadose Zone Journal – volume: 128 start-page: 45 year: 2021 end-page: 57 article-title: Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare L.), maize (Zea mays L.), and Lotus japonicus (Gifu) publication-title: Annals of Botany – volume: 15 year: 2020 article-title: Aquaporins are main contributors to root hydraulic conductivity in pearl millet [ (L.) R. Br.] publication-title: PLoS ONE – volume: 37 start-page: 313 year: 2010 end-page: 322 article-title: The utility of phenotypic plasticity of root hair length for phosphorus acquisition publication-title: Functional Plant Biology – volume: 5 start-page: 5365 year: 2014 article-title: Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance publication-title: Nature Communications – volume: 225 start-page: 126 year: 2020 end-page: 134 article-title: Declining root water transport drives stomatal closure in olive under moderate water stress publication-title: New Phytol – volume: 43 start-page: 199 year: 2016 end-page: 206 article-title: Enhanced root growth of the brb (bald root barley) mutant in drying soil allows similar shoot physiological responses to soil water deficit as wild‐type plants publication-title: Functional Plant Biology – year: 2000 – volume: 368 start-page: 649 year: 2013 end-page: 667 article-title: Uptake of water from a Kandosol subsoil. II. Control of water uptake by roots publication-title: Plant and Soil – volume: 407 start-page: 161 year: 2016 end-page: 171 article-title: Drying of mucilage causes water repellency in the rhizosphere of maize: measurements and modelling publication-title: Plant and Soil – volume: 69 start-page: 1199 year: 2018 end-page: 1206 article-title: Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize publication-title: Journal of Experimental Botany – volume: 51 start-page: 192 year: 2016 end-page: 196 article-title: Measuring root hydraulic parameters of container‐grown herbaceous and woody plants using the hydraulic conductance flow meter publication-title: HortScience – volume: 207 start-page: 14 year: 2015 end-page: 27 article-title: What plant hydraulics can tell us about responses to climate‐change droughts publication-title: New Phytologist – volume: 224 start-page: 21 year: 2019 end-page: 36 article-title: How do stomata respond to water status? publication-title: New Phytologist – volume: 54 start-page: 1147 year: 2014 end-page: 1152 article-title: Hydraulic conductance of maize hybrids differing in transpiration response to vapor pressure deficit publication-title: Crop Science – volume: 43 start-page: 344 year: 2020 end-page: 357 article-title: Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity publication-title: Plant, Cell & Environment – volume: 16 start-page: 341 year: 1993 end-page: 349 article-title: Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants publication-title: Plant, Cell & Environment – volume: 5 year: 2015 article-title: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought‐stressed grapevine publication-title: Scientific Reports – volume: 41 start-page: 1129 year: 2014 end-page: 1137 article-title: Mucilage exudation facilitates root water uptake in dry soils publication-title: Functional Plant Biology – volume: 7 start-page: 1027 year: 2008 end-page: 1034 article-title: Water uptake and hydraulics of the root hair rhizosphere publication-title: Vadose Zone Journal – volume: 21 start-page: 347 year: 1998 end-page: 359 article-title: Limitation of plant water use by rhizosphere and xylem conductance: results from a model publication-title: Plant, Cell & Environment – volume: 132 start-page: 2166 year: 2003 end-page: 2173 article-title: Stomatal closure during leaf dehydration, correlation with other leaf physiological traits publication-title: Plant Physiology – volume: 69 start-page: 3255 year: 2018 end-page: 3265 article-title: Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water‐limited grain crops: a critical review publication-title: Journal of Experimental Botany – volume: 218 start-page: 443 year: 1982 end-page: 448 article-title: Plant productivity and environment publication-title: Science – volume: 128 start-page: 1 year: 2021 end-page: 16 article-title: Significance of root hairs for plant performance under contrasting field conditions and water deficit publication-title: Annals of Botany – volume: 42 start-page: 717 year: 2019 end-page: 729 article-title: Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in under water stress: aquaporin activity regulates stomatal conductace publication-title: Plant, Cell & Environment – volume: 216 start-page: 771 year: 2017 end-page: 781 article-title: Root hairs enable high transpiration rates in drying soils publication-title: New Phytologist – volume: 124 start-page: 96 year: 2019 end-page: 105 article-title: Measurements and simulation of leaf xylem water potential and root water uptake in heterogeneous soil water contents publication-title: Advances in Water Resources – volume: 91 start-page: 719 year: 1989 end-page: 726 article-title: Axial and radial hydraulic resistance to roots of maize ( L.) 1 publication-title: Plant Physiology – volume: 192 start-page: 664 year: 2011 end-page: 675 article-title: Root hydraulic conductance and aquaporin abundance respond rapidly to partial root‐zone drying events in a riparian Melaleuca species publication-title: New Phytologist – volume: 4 start-page: 442 year: 2013 article-title: Root traits contributing to plant productivity under drought publication-title: Frontiers in Plant Science – volume: 44 start-page: 425 year: 2021 end-page: 431 article-title: Stomatal closure of tomato under drought is driven by an increase in soil–root hydraulic resistance publication-title: Plant, Cell & Environment – year: 2020 – volume: 150 start-page: 348 year: 2009 end-page: 364 article-title: Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots publication-title: Plant Physiology – volume: 40 start-page: 943 year: 1989 end-page: 950 article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain‐fed environments publication-title: Australian Journal of Agricultural Research – volume: 1300 start-page: 131 year: 2020 end-page: 138 article-title: Measurement of leaf xylem water potential and transpiration during soil drying using a root pressure chamber system publication-title: Acta Horticulturae – volume: 10 start-page: 10 year: 2020 article-title: Transpiration reduction in maize ( L.) in response to soil drying publication-title: Frontiers in Plant Science – volume: 61 start-page: 3191 year: 2010 end-page: 3198 article-title: The significance of roots as hydraulic rheostats publication-title: Journal of Experimental Botany – volume: 25 start-page: 868 year: 2020 end-page: 880 article-title: Soil Rather than xylem vulnerability controls stomatal response to drought publication-title: Trends in Plant Science – volume: 112 start-page: 347 year: 2013 end-page: 357 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany – start-page: mcab141 year: 2021 article-title: Stomatal closure during water deficit is controlled by belowground hydraulics publication-title: Annals of Botany – volume: 119 start-page: 629 year: 2017 end-page: 643 article-title: The composite water and solute transport of barley ( ) roots: effect of suberized barriers publication-title: Annals of Botany – volume: 165 start-page: 15 year: 2014 end-page: 24 article-title: Root hydraulics: the forgotten side of roots in drought adaptation publication-title: Field Crops Research – volume: 168 start-page: 275 year: 2005 end-page: 292 article-title: The control of stomata by water balance publication-title: New Phytologist – volume: 22 start-page: 2449 year: 2018 end-page: 2470 article-title: Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions publication-title: Hydrology and Earth System Sciences – volume: 431 start-page: 417 year: 2018 end-page: 431 article-title: Root‐soil contact dynamics of in sand publication-title: Plant and Soil – volume: 172 start-page: 1669 year: 2016 end-page: 1678 article-title: Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought publication-title: Plant Physiology – volume: 221 start-page: 180 year: 2019 end-page: 194 article-title: Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses publication-title: New Phytologist – ident: e_1_2_8_19_1 doi: 10.1111/nph.15899 – ident: e_1_2_8_55_1 doi: 10.1093/aob/mcs293 – ident: e_1_2_8_65_1 doi: 10.1071/AR9890943 – ident: e_1_2_8_52_1 doi: 10.1111/pce.13675 – ident: e_1_2_8_83_1 doi: 10.1016/j.tplants.2019.10.015 – ident: e_1_2_8_58_1 doi: 10.1093/jxb/erq150 – ident: e_1_2_8_74_1 doi: 10.1046/j.0016-8025.2001.00799.x – ident: e_1_2_8_23_1 doi: 10.1093/plphys/kiab271 – ident: e_1_2_8_51_1 doi: 10.1007/s11104-018-3769-4 – ident: e_1_2_8_11_1 doi: 10.1371/journal.pone.0185481 – ident: e_1_2_8_95_1 doi: 10.1007/s004250050368 – ident: e_1_2_8_30_1 doi: 10.3389/fpls.2013.00442 – ident: e_1_2_8_85_1 doi: 10.1016/j.fcr.2014.03.017 – ident: e_1_2_8_13_1 doi: 10.1093/plphys/kiab207 – ident: e_1_2_8_62_1 doi: 10.1046/j.1469-8137.1997.00620.x – ident: e_1_2_8_10_1 doi: 10.1093/jxb/eraa392 – ident: e_1_2_8_57_1 doi: 10.1104/pp.126.1.352 – ident: e_1_2_8_67_1 doi: 10.1111/pce.13460 – volume: 119 start-page: 629 year: 2017 ident: e_1_2_8_64_1 article-title: The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers publication-title: Annals of Botany – ident: e_1_2_8_6_1 doi: 10.1071/FP13330 – ident: e_1_2_8_21_1 doi: 10.1007/s11104-019-04408-z – ident: e_1_2_8_31_1 doi: 10.1111/pce.13722 – ident: e_1_2_8_9_1 doi: 10.1093/jxb/erx439 – ident: e_1_2_8_61_1 doi: 10.1093/jxb/43.3.319 – ident: e_1_2_8_24_1 doi: 10.5194/hess-22-2449-2018 – ident: e_1_2_8_46_1 doi: 10.3389/fpls.2019.01695 – ident: e_1_2_8_39_1 doi: 10.1093/jxb/erq077 – ident: e_1_2_8_56_1 doi: 10.1093/aob/mcaa181 – ident: e_1_2_8_60_1 doi: 10.1111/j.1469-8137.2011.03834.x – volume-title: Advances in understanding plant root water uptake year: 2020 ident: e_1_2_8_4_1 – ident: e_1_2_8_91_1 doi: 10.1300/J144v03n01_13 – ident: e_1_2_8_53_1 doi: 10.1111/nph.15351 – ident: e_1_2_8_42_1 doi: 10.1104/pp.91.2.719 – ident: e_1_2_8_73_1 doi: 10.1046/j.1365-3040.1998.00287.x – ident: e_1_2_8_84_1 doi: 10.1093/jexbot/51.345.823 – ident: e_1_2_8_25_1 doi: 10.1038/ncomms6365 – ident: e_1_2_8_49_1 doi: 10.1093/aob/mcr184 – ident: e_1_2_8_86_1 doi: 10.1111/jipb.12534 – ident: e_1_2_8_2_1 doi: 10.1093/aob/mcab141 – ident: e_1_2_8_3_1 doi: 10.1111/pce.13939 – ident: e_1_2_8_70_1 doi: 10.1111/pce.12933 – ident: e_1_2_8_40_1 doi: 10.1111/j.1469-8137.1982.tb03391.x – ident: e_1_2_8_93_1 doi: 10.1111/j.1744-7909.2005.00043.x – ident: e_1_2_8_71_1 doi: 10.1093/jxb/erx252 – ident: e_1_2_8_88_1 doi: 10.1093/jxb/ers111 – ident: e_1_2_8_28_1 doi: 10.2136/vzj2008.0147 – ident: e_1_2_8_20_1 doi: 10.1093/aob/mcab029 – ident: e_1_2_8_69_1 doi: 10.1111/nph.13112 – ident: e_1_2_8_89_1 doi: 10.1111/j.1365-3040.2009.02059.x – ident: e_1_2_8_22_1 doi: 10.17660/ActaHortic.2020.1300.17 – ident: e_1_2_8_63_1 doi: 10.1093/jxb/31.1.333 – ident: e_1_2_8_92_1 doi: 10.1111/nph.17278 – ident: e_1_2_8_16_1 doi: 10.1104/pp.103.023879 – ident: e_1_2_8_7_1 doi: 10.1093/jxb/ery183 – ident: e_1_2_8_27_1 doi: 10.1111/nph.14715 – ident: e_1_2_8_34_1 – ident: e_1_2_8_38_1 doi: 10.1007/s11104-004-7904-z – ident: e_1_2_8_59_1 doi: 10.1104/pp.16.00380 – ident: e_1_2_8_50_1 doi: 10.1080/1343943X.2020.1794915 – year: 2021 ident: e_1_2_8_87_1 article-title: Stomatal regulation prevents plants from critical water potentials during drought: result of a model linking soil‐plant hydraulics to ABA dynamics publication-title: Ecohydrology – ident: e_1_2_8_33_1 doi: 10.1104/pp.16.00923 – ident: e_1_2_8_76_1 doi: 10.1111/nph.14059 – ident: e_1_2_8_77_1 doi: 10.1111/pce.13875 – ident: e_1_2_8_80_1 doi: 10.1111/j.1365-3040.1993.tb00880.x – ident: e_1_2_8_66_1 doi: 10.1111/nph.16177 – ident: e_1_2_8_35_1 doi: 10.1007/s11104-013-1736-7 – ident: e_1_2_8_78_1 doi: 10.2135/cropsci2013.05.0303 – ident: e_1_2_8_36_1 doi: 10.1071/FP15303 – ident: e_1_2_8_8_1 doi: 10.1007/s11104-015-2639-6 – ident: e_1_2_8_14_1 doi: 10.1126/science.218.4571.443 – ident: e_1_2_8_32_1 doi: 10.1111/nph.16542 – ident: e_1_2_8_90_1 – ident: e_1_2_8_79_1 doi: 10.1111/nph.14292 – ident: e_1_2_8_43_1 doi: 10.1097/00010694-196002000-00001 – ident: e_1_2_8_45_1 doi: 10.1016/j.advwatres.2018.12.009 – ident: e_1_2_8_75_1 doi: 10.1111/nph.13354 – ident: e_1_2_8_5_1 doi: 10.1007/s11104-015-2749-1 – ident: e_1_2_8_47_1 doi: 10.2136/vzj2007.0115 – ident: e_1_2_8_82_1 doi: 10.1038/srep12449 – ident: e_1_2_8_12_1 doi: 10.3389/fpls.2016.01763 – volume: 24 start-page: 37 year: 1964 ident: e_1_2_8_17_1 article-title: HYDRAU uc properties of porous media publication-title: Hydrology Papers, Colorado State University – ident: e_1_2_8_94_1 doi: 10.1071/FP09197 – ident: e_1_2_8_72_1 doi: 10.2136/vzj2007.0122 – ident: e_1_2_8_81_1 doi: 10.2134/agronj1983.00021962007500050020x – ident: e_1_2_8_37_1 doi: 10.1093/jxb/erq195 – ident: e_1_2_8_54_1 doi: 10.1111/nph.15330 – ident: e_1_2_8_15_1 doi: 10.1104/pp.108.134098 – ident: e_1_2_8_29_1 doi: 10.1007/s00425-002-0766-9 – ident: e_1_2_8_18_1 doi: 10.1111/j.1469-8137.2005.01543.x – ident: e_1_2_8_26_1 doi: 10.1016/j.tplants.2020.04.003 – ident: e_1_2_8_44_1 doi: 10.1371/journal.pone.0233481 – ident: e_1_2_8_41_1 doi: 10.1073/pnas.1712381114 – ident: e_1_2_8_68_1 – ident: e_1_2_8_48_1 doi: 10.21273/HORTSCI.51.2.192 |
SSID | ssj0001479 |
Score | 2.6249402 |
SecondaryResourceType | review_article |
Snippet | Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 650 |
SubjectTerms | Conductance Crop production Desiccation drought Drying environment hydraulic conductivity Hydraulic properties Hydraulics Invited Review Invited Reviews leaf water potential leaves Moisture content Phenotype Phenotypes Plant Roots - chemistry Plant Transpiration Root hairs root hydraulic conductance root length root water uptake Soil soil hydraulic conductivity Soil investigations Soil properties Soil texture Soil water Soil water potential Soils Transpiration Water - analysis Water flow Water potential Water uptake Water use |
Title | Root hydraulic phenotypes impacting water uptake in drying soils |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14259 https://www.ncbi.nlm.nih.gov/pubmed/35037263 https://www.proquest.com/docview/2633228641 https://www.proquest.com/docview/2620785987 https://www.proquest.com/docview/2661040054 https://pubmed.ncbi.nlm.nih.gov/PMC9303794 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MoeCLzqmzuo0oPvjS0aZJ0-KLbmwMQRnDwR6EkqQNu-zSXm5b5PrXe5K0dXdTEelLIKe0-XFyviTnfAfgLZo8tKrUZamLQiZpFkqWm1ALwyUiEON5tj9_SU8v2KdLfrkB78dYGM8PMR24Wc1w67VVcKnaG0q-0BWqOaJ3XH-tr5YFROe_qKNi5nn2rPuiEHk8sApZL57pzXVbdAdg3vWTvIlfnQE6eQzfxl_3fifXB32nDvSPW6yO_9m2LXg0AFPy0c-kJ7BR1dvwwKeqXG3D_cMGYeTqKXw4b5qOXK3KpeznM02sj1hjD3Jb4iMu0RaS74hgl6RfdPK6IrOalEsbTUXaZjZvn8HFyfHXo9NwSMMQapvMKuSalZEwuG3NdKqUpkqw0jBtJMe9hjA6T7GoKq4NogvJRS4TozIdpyKWUifJc9ism7p6AUSXsUqZVtRlAswFPlGiIkONve7UPIB344AUeuAot6ky5sW4V8GeKVzPBPBmEl14Yo7fCe2Oo1oMutkWNE1wFctSFgfweqpGrbJXJbKumt7KUMROPM_E32QQejKLeQPY8RNl-pOER4nADwUg1qbQJGBZvddr6tmVY_fOEVTgIold4WbInxtXnB0du8LLfxd9BQ-pjd9wTnS7sNkt-2oPUVWn9uEeZWf7Tol-Apf-HgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQSXAuXRQAGDQOKSKnGcODkgAX1oSx9CVSv1FmwnVlddJatNomr5TfwV_hNj50GXAuLSA8rFUkaKY8_jsz3-BuA1hjyMqtRWqfNcJmjsCpZoV3EdCkQguuXZPjiMRifs02l4ugTf-rswLT_EsOFmLMP6a2PgZkP6kpVPVY52jvC9S6ncy-cXuGCr3u1u4ey-oXRn-3hz5HY1BVxlKjO5oWKZxzWuwWIVSamo5CzTTGkRInDmWiURNmUeKo2hUoQ8EYGWsfIj7guhzPYnOvwbpoK4YerfOvpJVuWzltnPJExynvgdj5HJGxq6uhj9rkDaq5mZlxGzDXk7d-F7P1htpsv5RlPLDfX1Fx7J_2U078FKh73Jh9ZY7sNSXqzCrbYa53wVbn4sESnPH8D7o7Ksydk8m4lmMlbEpMGVZq-6Iu2lUgz35AJB-ow001qc52RckGxmLoyRqhxPqodwci3_8QiWi7LI14CozJcRU5LaYocJx8cLpKepNie6KnTgba8Bqepo2E01kEnaL8dwJlI7Ew68GkSnLffI74TWezVKO_dTpTQK0FHHEfMdeDm8RsdhToNEkZeNkaEID8Mk5n-TQXTNDKx34HGrmUNPgtALOH7IAb6gs4OAIS5ffFOMzyyBeYK4CeMADoVVyT__XPp5c9s2nvy76Au4PTo-2E_3dw_3nsIdaq6r2JzBdViuZ03-DEFkLZ9b2yXw5brV-wdFnX1M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEB-O8wNfRM-v6qlRFHwptGnStA-CenfLnafHIh7cW03Shltc2mW7y7F_k_-kM2m33HIqvhx9CXSg6SQz80sy-Q3AGwx5GFW5r1IXhULzLNQid6FVTmpEIK7j2f56kh6eis9n8mwLfq3vwnT8EMOGG1mG99dk4LPSXTLyma3QzBG99xmVx9XqAtdr7fujfRzct5yPDr7vHYZ9SYHQUmGmUFpRRsrhEiyzqTGWGyVKJ6zTEnGzcjZPsWkqaR1GSi1VrhNnMhunKtba0u4n-vsbdLhI-WNcjAe3H4uO2I_yJZXK457GiNKGhq5uBr8riPZqYuZlwOwj3uge3O2hKvvYza37sFXVO3CrK1652oGbnxoElqsH8OFb0yzY-aqc6-V0YhlljTW0tduy7g4mRkd2gZh2zpazhf5ZsUnNyjndr2JtM5m2D-H0WrT4CLbrpq6eALNlbFJhDfe1AXOFT5SYyHFHB6BWBvBurbHC9qzlVDxjWqxXL6jcwis3gNeD6Kyj6viT0O5a7UVvrW3B0wT9WpaKOIBXw2u0Mzo80XXVLEmGI5qSeab-JYNgVBAKDuBxN5JDTxIZJQo_FIDaGONBgHi-N9_Uk3PP950jzEC3iarws-HvP1eM9w584-n_i76E2-P9UfHl6OT4GdzhdLnDZ9jtwvZivqyeI-RamBd-qjP4cd229RtC_TsN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+hydraulic+phenotypes+impacting+water+uptake+in+drying+soils&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Cai%2C+Gaochao&rft.au=Ahmed%2C+Mutez+A.&rft.au=Abdalla%2C+Mohanned&rft.au=Carminati%2C+Andrea&rft.date=2022-03-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=45&rft.issue=3&rft.spage=650&rft.epage=663&rft_id=info:doi/10.1111%2Fpce.14259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pce_14259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |