Liver is the major source of elevated serum lipocalin‐2 levels after bacterial infection or partial hepatectomy: A critical role for IL‐6/STAT3

Lipocalin‐2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase‐associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte‐specific Lcn2 knock...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 61; no. 2; pp. 692 - 702
Main Authors Xu, Ming‐Jiang, Feng, Dechun, Wu, Hailong, Wang, Hua, Chan, Yvonne, Kolls, Jay, Borregaard, Niels, Porse, Bo, Berger, Thorsten, Mak, Tak W., Cowland, Jack B., Kong, Xiaoni, Gao, Bin
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer Health, Inc 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lipocalin‐2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase‐associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte‐specific Lcn2 knockout (Lcn2Hep–/–) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2Hep–/– mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (∼6,000 ng/mL) postinfection and more than 60% post‐PHx (∼700 ng/mL). Interestingly, both Lcn2Hep–/– and global Lcn2 knockout (Lcn2–/–) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)‐6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte‐specific ablation of the IL‐6 receptor or Stat3, a major downstream effector of IL‐6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL‐6. Conclusion: Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL‐6 activation of the STAT3 signaling pathway. Thus, hepatocyte‐derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration. (Hepatology 2015;61:692‐702)
AbstractList Lipocalin‐2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase‐associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte‐specific Lcn2 knockout (Lcn2Hep–/–) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2Hep–/– mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (∼6,000 ng/mL) postinfection and more than 60% post‐PHx (∼700 ng/mL). Interestingly, both Lcn2Hep–/– and global Lcn2 knockout (Lcn2–/–) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)‐6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte‐specific ablation of the IL‐6 receptor or Stat3, a major downstream effector of IL‐6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL‐6. Conclusion: Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL‐6 activation of the STAT3 signaling pathway. Thus, hepatocyte‐derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration. (Hepatology 2015;61:692‐702)
Lipocalin‐2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase‐associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte‐specific Lcn2 knockout ( Lcn2 Hep–/– ) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2 Hep–/– mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (∼6,000 ng/mL) postinfection and more than 60% post‐PHx (∼700 ng/mL). Interestingly, both Lcn2 Hep–/– and global Lcn2 knockout ( Lcn2 –/– ) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli . These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)‐6 stimulated hepatocytes to produce LCN2 in vitro and in vivo . Hepatocyte‐specific ablation of the IL‐6 receptor or Stat3 , a major downstream effector of IL‐6, markedly abrogated LCN2 elevation in vivo . Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL‐6. Conclusion : Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL‐6 activation of the STAT3 signaling pathway. Thus, hepatocyte‐derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration. (H epatology 2015;61:692‐702)
Lipocalin-2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout (Lcn2(Hep-/-)) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2(Hep-/-) mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼ 62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (∼ 6,000 ng/mL) postinfection and more than 60% post-PHx (∼ 700 ng/mL). Interestingly, both Lcn2(Hep-/-) and global Lcn2 knockout (Lcn2(-/-)) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL-6 receptor or Stat3, a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6. Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration.
Lipocalin-2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout (Lcn2Hep-/-) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2Hep-/- mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (6,000 ng/mL) postinfection and more than 60% post-PHx (700 ng/mL). Interestingly, both Lcn2Hep-/- and global Lcn2 knockout (Lcn2-/-) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL-6 receptor or Stat3, a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6. Conclusion: Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration. (Hepatology 2015;61:692-702)
Lipocalin-2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout (Lcn2(Hep-/-)) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2(Hep-/-) mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼ 62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (∼ 6,000 ng/mL) postinfection and more than 60% post-PHx (∼ 700 ng/mL). Interestingly, both Lcn2(Hep-/-) and global Lcn2 knockout (Lcn2(-/-)) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL-6 receptor or Stat3, a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6.UNLABELLEDLipocalin-2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout (Lcn2(Hep-/-)) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2(Hep-/-) mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼ 62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (∼ 6,000 ng/mL) postinfection and more than 60% post-PHx (∼ 700 ng/mL). Interestingly, both Lcn2(Hep-/-) and global Lcn2 knockout (Lcn2(-/-)) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL-6 receptor or Stat3, a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6.Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration.CONCLUSIONHepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration.
Lipocalin-2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout (Lcn2 super(Hep-/-)) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2 super(Hep-/-) mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (6,000 ng/mL) postinfection and more than 60% post-PHx (700 ng/mL). Interestingly, both Lcn2 super(Hep-/-) and global Lcn2 knockout (Lcn2 super(-/-)) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL-6 receptor or Stat3, a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6. Conclusion: Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration. (Hepatology 2015; 61:692-702)
Lipocalin-2 (LCN2) was originally isolated from neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout ( Lcn2 Hep−/− ) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli ) or partial hepatectomy (PHx). Studies of Lcn2 Hep−/− mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (~62 ng/ml) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (~6,000 ng/ml) post-infection and more than 60% post-PHx (~700 ng/ml). Interestingly, both Lcn2 Hep−/− and global Lcn2 knockout ( Lcn2 −/− ) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli . These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with IL-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo . Hepatocyte-specific ablation of the IL-6 receptor or Stat3 , a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo . Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6. In conclusion, hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration.
Author Wu, Hailong
Berger, Thorsten
Porse, Bo
Gao, Bin
Feng, Dechun
Kong, Xiaoni
Chan, Yvonne
Kolls, Jay
Mak, Tak W.
Cowland, Jack B.
Wang, Hua
Xu, Ming‐Jiang
Borregaard, Niels
AuthorAffiliation 2 Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
1 Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
3 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
4 Division of Pulmonary, Allergy and Critical Care Medicine, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
11 School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
10 The Campbell Family Institute for Breast Cancer Research, University Health Network, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada
9 Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhage
AuthorAffiliation_xml – name: 1 Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
– name: 9 Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Denmark
– name: 11 School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
– name: 8 Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
– name: 7 The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
– name: 5 Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
– name: 10 The Campbell Family Institute for Breast Cancer Research, University Health Network, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada
– name: 3 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
– name: 6 Granulocyte Research Laboratory, Rigshospitalet, Copenhagen, Denmark
– name: 2 Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
– name: 4 Division of Pulmonary, Allergy and Critical Care Medicine, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
Author_xml – sequence: 1
  givenname: Ming‐Jiang
  surname: Xu
  fullname: Xu, Ming‐Jiang
  organization: Key Laboratory of Molecular Cardiovascular Science, Ministry of Education
– sequence: 2
  givenname: Dechun
  surname: Feng
  fullname: Feng, Dechun
  organization: National Institutes of Health
– sequence: 3
  givenname: Hailong
  surname: Wu
  fullname: Wu, Hailong
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: National Institutes of Health
– sequence: 5
  givenname: Yvonne
  surname: Chan
  fullname: Chan, Yvonne
  organization: University of Pittsburgh
– sequence: 6
  givenname: Jay
  surname: Kolls
  fullname: Kolls, Jay
  organization: Children's Hospital of Pittsburgh
– sequence: 7
  givenname: Niels
  surname: Borregaard
  fullname: Borregaard, Niels
  organization: Granulocyte Research Laboratory
– sequence: 8
  givenname: Bo
  surname: Porse
  fullname: Porse, Bo
  organization: University of Copenhagen
– sequence: 9
  givenname: Thorsten
  surname: Berger
  fullname: Berger, Thorsten
  organization: University Health Network
– sequence: 10
  givenname: Tak W.
  surname: Mak
  fullname: Mak, Tak W.
  organization: University Health Network
– sequence: 11
  givenname: Jack B.
  surname: Cowland
  fullname: Cowland, Jack B.
  organization: Granulocyte Research Laboratory
– sequence: 12
  givenname: Xiaoni
  surname: Kong
  fullname: Kong, Xiaoni
  organization: Shanghai Jiao Tong University
– sequence: 13
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  organization: National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25234944$$D View this record in MEDLINE/PubMed
BookMark eNqNkt2KEzEUgIOsuN3VC19AAt7oRbeZJPPnxUJZVnehoGC9DpnMiU3JTGoyU-mdjyD4hj6Jp7Yruih4FZLznY_zkzNy0oceCHmasYuMMT5bweaCl1KWD8gky3k5FSJnJ2TCeMmmdSbqU3KW0poxVktePSKnPOdC1lJOyLeF20KkLtFhBbTT6xBpCmM0QIOl4GGrB2hpgjh21LtNMNq7_vuXr5xiDHyi2g4oaLTBw2lPXW_BDC70FFUbHYf9I1aIHjOEbveKzqmJbnBoojF4oBbB2wU6i9n75XwpHpOHVvsET47nOfnw-np5dTNdvH1zezVfTE0usUlec8GqoqyK1rQ8z0SV50LbBuocMmEKbmq8lQC2qo1tKqPbykBRW5HZUjdanJPLg3czNh20Bvohaq820XU67lTQTv0Z6d1KfQxbJQXD8QkUvDgKYvg0QhpU55IB73UPYUwqK3JZlHVVZv-DcslZxRmiz--ha1xIj5NAShZVjuieevZ78b-qvlstArMDYGJIKYJVxg16vxjsxXmVMbX_PApXo35-Hsx4eS_jTvo39mj_7Dzs_g2qm-t3h4wfzqfW1w
CODEN HPTLD9
CitedBy_id crossref_primary_10_1016_j_molimm_2018_07_021
crossref_primary_10_1111_hepr_13251
crossref_primary_10_2217_clp_14_65
crossref_primary_10_1113_JP272240
crossref_primary_10_3390_toxins16120543
crossref_primary_10_1038_s41392_024_01937_7
crossref_primary_10_7762_cnr_2023_12_2_154
crossref_primary_10_3389_fimmu_2018_02717
crossref_primary_10_1002_glia_24245
crossref_primary_10_1002_hep_27846
crossref_primary_10_3390_v14102247
crossref_primary_10_1016_j_ajpath_2016_05_006
crossref_primary_10_1002_hep_27845
crossref_primary_10_1016_j_biopha_2021_112002
crossref_primary_10_1016_j_cgh_2016_11_035
crossref_primary_10_1038_icb_2016_107
crossref_primary_10_1097_MNH_0000000000000804
crossref_primary_10_1128_IAI_01268_15
crossref_primary_10_2174_1389557520666200821121903
crossref_primary_10_4049_jimmunol_1701573
crossref_primary_10_1053_j_ajkd_2020_03_016
crossref_primary_10_1111_eci_12695
crossref_primary_10_1002_jbm4_10338
crossref_primary_10_1002_hep4_1109
crossref_primary_10_1016_j_cellsig_2019_01_001
crossref_primary_10_1016_j_ajpath_2018_05_006
crossref_primary_10_1016_j_jhep_2016_01_020
crossref_primary_10_1002_prca_201600030
crossref_primary_10_1002_hep_29919
crossref_primary_10_3727_105221617X15093738210295
crossref_primary_10_1021_acs_jafc_2c02015
crossref_primary_10_3390_ijms17050637
crossref_primary_10_3389_fphys_2016_00430
crossref_primary_10_1002_hep_30067
crossref_primary_10_1177_0884533615575046
crossref_primary_10_1186_s13578_023_01184_3
crossref_primary_10_3390_endocrines6010004
crossref_primary_10_1038_s41374_021_00672_9
crossref_primary_10_1038_s41467_024_47266_9
crossref_primary_10_1042_CS20150075
crossref_primary_10_3389_fphar_2025_1548832
crossref_primary_10_4254_wjh_v16_i2_177
crossref_primary_10_1371_journal_pone_0185685
crossref_primary_10_11569_wcjd_v31_i15_630
crossref_primary_10_3390_ijms19113395
crossref_primary_10_1016_j_aohep_2024_101756
crossref_primary_10_1186_s13075_020_02149_4
crossref_primary_10_3390_nu14235049
crossref_primary_10_1186_s12864_021_08211_y
crossref_primary_10_4049_jimmunol_1501668
crossref_primary_10_1002_hep_30919
crossref_primary_10_1038_s41423_020_00580_w
crossref_primary_10_1111_cas_15991
crossref_primary_10_3748_wjg_v30_i46_4864
crossref_primary_10_1073_pnas_1814797116
crossref_primary_10_18632_oncotarget_24370
crossref_primary_10_16984_saufenbilder_886245
crossref_primary_10_3389_fncel_2023_1140769
crossref_primary_10_1177_1091581819898399
crossref_primary_10_1038_s41421_021_00326_6
crossref_primary_10_3389_fvets_2019_00315
crossref_primary_10_1093_jn_nxaa366
crossref_primary_10_1016_j_kint_2017_12_006
crossref_primary_10_1016_j_ymthe_2023_07_012
crossref_primary_10_1007_s00204_024_03920_1
crossref_primary_10_1186_s13054_019_2550_2
crossref_primary_10_3390_ijms252212072
crossref_primary_10_1371_journal_pone_0201387
crossref_primary_10_1038_s41413_021_00154_0
crossref_primary_10_1097_HC9_0000000000000296
crossref_primary_10_1038_s41598_020_72172_7
crossref_primary_10_3389_fmed_2023_1087274
crossref_primary_10_1016_j_pharmthera_2017_06_007
crossref_primary_10_1016_j_biopha_2017_10_055
crossref_primary_10_1007_s00430_015_0394_1
crossref_primary_10_3390_cancers11030385
crossref_primary_10_1111_jgh_15125
crossref_primary_10_1371_journal_pone_0156128
crossref_primary_10_1007_s12275_022_2007_1
crossref_primary_10_3389_fimmu_2020_634409
crossref_primary_10_1007_s12016_017_8655_y
crossref_primary_10_3390_ijms25105061
crossref_primary_10_1016_j_ajem_2017_12_013
crossref_primary_10_1002_hep_27930
crossref_primary_10_1038_nrgastro_2015_35
crossref_primary_10_1111_jcmm_14224
crossref_primary_10_3390_ijms222313156
crossref_primary_10_1016_j_kint_2019_11_013
crossref_primary_10_1002_hep_27928
crossref_primary_10_1097_CM9_0000000000001240
crossref_primary_10_3390_ijms23126789
crossref_primary_10_1111_hepr_13847
crossref_primary_10_2147_DMSO_S338254
crossref_primary_10_1002_jcla_23247
crossref_primary_10_1016_j_bbadis_2017_04_006
crossref_primary_10_1016_j_jcmgh_2016_03_007
crossref_primary_10_1093_bbb_zbad140
crossref_primary_10_1016_j_jconrel_2022_03_038
crossref_primary_10_1186_s12943_016_0564_9
crossref_primary_10_1016_j_jceh_2022_05_004
crossref_primary_10_1016_j_arr_2021_101414
crossref_primary_10_1016_j_isci_2023_107217
crossref_primary_10_1007_s00203_021_02346_y
crossref_primary_10_1111_all_12797
crossref_primary_10_3390_ijms241310470
crossref_primary_10_1038_s41467_021_22361_3
crossref_primary_10_3390_applmicrobiol4020043
crossref_primary_10_1016_j_bbamcr_2015_08_010
crossref_primary_10_3389_fimmu_2023_1159411
crossref_primary_10_1002_hep_30945
crossref_primary_10_1002_hep_32569
crossref_primary_10_1371_journal_pone_0128145
crossref_primary_10_3390_ijms21155230
crossref_primary_10_1016_j_ebiom_2017_09_008
crossref_primary_10_1515_cclm_2016_0118
crossref_primary_10_1016_j_jhep_2015_11_037
crossref_primary_10_1016_j_kint_2020_03_017
crossref_primary_10_1182_blood_2016_11_753434
crossref_primary_10_1016_j_alcohol_2021_10_003
crossref_primary_10_1097_PAI_0000000000001151
crossref_primary_10_1016_j_exphem_2019_05_001
crossref_primary_10_1080_15412555_2021_1954151
crossref_primary_10_5604_01_3001_0012_7907
crossref_primary_10_1002_hep_29733
crossref_primary_10_1016_j_jhep_2015_04_004
crossref_primary_10_1038_cmi_2015_97
crossref_primary_10_1038_labinvest_2017_44
crossref_primary_10_1038_s41419_018_0377_4
crossref_primary_10_1016_j_molmet_2019_09_009
crossref_primary_10_11569_wcjd_v31_i19_808
crossref_primary_10_1002_hep4_1341
crossref_primary_10_1016_j_cca_2022_05_022
crossref_primary_10_1152_physiol_00001_2023
crossref_primary_10_1016_j_jhep_2016_03_002
crossref_primary_10_1042_CS20230522
crossref_primary_10_1016_j_jhep_2021_02_004
crossref_primary_10_1016_j_tem_2017_01_003
crossref_primary_10_1155_2015_101987
crossref_primary_10_3389_fimmu_2021_747794
Cites_doi 10.1016/S0021-9258(18)82217-7
10.1073/pnas.0510847103
10.1006/geno.1997.4896
10.1186/1465-9921-11-96
10.1038/nature03104
10.1210/me.2007-0420
10.1016/j.molmet.2013.04.003
10.1038/nm1710
10.4049/jimmunol.1200892
10.1001/archsurg.1992.01420090109016
10.1111/j.1600-0609.2005.00511.x
10.4049/jimmunol.0803282
10.1097/SHK.0b013e31823918c2
10.1371/journal.pone.0096997
10.1038/sj.onc.1201728
10.1016/j.ajpath.2011.01.001
10.1016/j.chom.2009.03.011
10.1172/JCI59408
10.1002/hep.26467
10.1016/j.ijsu.2013.02.008
10.1053/j.gastro.2008.01.016
10.1210/en.2013-1289
10.1371/journal.pone.0039646
10.1016/S1097-2765(02)00708-6
10.1002/hep.22034
10.1002/hep.26980
10.1053/j.gastro.2012.08.043
10.4049/jimmunol.176.9.5559
10.7150/ijbs.7.536
10.1016/j.bbadis.2013.01.014
10.1016/j.cyto.2011.07.021
ContentType Journal Article
Copyright 2014 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
2015 by the American Association for the Study of Liver Diseases
Copyright_xml – notice: 2014 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: 2015 by the American Association for the Study of Liver Diseases
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
7QL
7T7
8FD
C1K
FR3
P64
5PM
DOI 10.1002/hep.27447
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
MEDLINE
AIDS and Cancer Research Abstracts
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 702
ExternalDocumentID PMC4303493
3562823731
25234944
10_1002_hep_27447
HEP27447
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 AA999999
– fundername: Intramural NIH HHS
  grantid: ZIA AA000368
– fundername: Intramural NIH HHS
  grantid: ZIA AA000369
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ABJNI
ACZKN
AFNMH
AGQPQ
AHQVU
CITATION
MEWTI
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
ADSXY
H94
K9.
7X8
7QL
7T7
8FD
C1K
FR3
P64
5PM
ID FETCH-LOGICAL-c5427-2923086786dcd25138553afbe95e13c62c9afb7eef89cfb8cad8ce69f31f7aba3
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Thu Aug 21 18:02:29 EDT 2025
Fri Jul 11 11:55:51 EDT 2025
Tue Aug 05 10:33:28 EDT 2025
Wed Aug 13 10:39:34 EDT 2025
Mon Jul 21 06:02:56 EDT 2025
Tue Jul 01 05:03:18 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
Wed Jan 22 17:10:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2014 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5427-2923086786dcd25138553afbe95e13c62c9afb7eef89cfb8cad8ce69f31f7aba3
Notes Supported by the intramural program of NIAAA, NIH (B.G. and the State Key Laboratory of Oncogenes and Related Genes (90‐13‐02) (X.L.K.).
Potential conflict of interest: Dr. Borregaard owns stock in Novo Nordisk and Novozymes.
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
MJ.X, D.F, HL.W contributed equally to this work.
OpenAccessLink http://doi.org/10.1002/hep.27447
PMID 25234944
PQID 1646856520
PQPubID 996352
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4303493
proquest_miscellaneous_1654679871
proquest_miscellaneous_1652420820
proquest_journals_1646856520
pubmed_primary_25234944
crossref_citationtrail_10_1002_hep_27447
crossref_primary_10_1002_hep_27447
wiley_primary_10_1002_hep_27447_HEP27447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2015
Publisher Wolters Kluwer Health, Inc
Publisher_xml – name: Wolters Kluwer Health, Inc
References 2010; 11
2012; 143
2012; 122
2012; 189
2013; 2
2013; 1832
2012; 1826
2009; 182
2002; 10
1997; 45
1992; 127
2008; 14
2006; 176
2011; 56
2012; 37
1993; 268
2014; 60
2011; 178
2011; 7
1998; 16
2013; 58
2004; 432
2013; 11
2008; 47
2005; 75
2008; 22
2014
2013; 154
2009; 5
2013
2014; 9
2008; 134
2012; 7
2006; 103
(hep27447-bib-0001-20241017) 2008; 47
(hep27447-bib-0034-20241017) 1998; 16
(hep27447-bib-0023-20241017) 2008; 22
(hep27447-bib-0030-20241017) 2011; 7
(hep27447-bib-0014-20241017) 2006; 103
(hep27447-bib-0012-20241017) 2002; 10
(hep27447-bib-0025-20241017) 2011; 178
(hep27447-bib-0033-20241017) 2014
(hep27447-bib-0006-20241017) 2014
(hep27447-bib-0021-20241017) 2012; 7
(hep27447-bib-0026-20241017) 1992; 127
(hep27447-bib-0031-20241017) 2013; 1832
(hep27447-bib-0022-20241017) 2013; 11
(hep27447-bib-0035-20241017) 2012; 143
(hep27447-bib-0017-20241017) 2014; 9
(hep27447-bib-0008-20241017) 2012; 37
(hep27447-bib-0024-20241017) 2008; 134
(hep27447-bib-0005-20241017) 2012; 1826
(hep27447-bib-0032-20241017) 2012; 189
(hep27447-bib-0020-20241017) 2005; 75
(hep27447-bib-0027-20241017) 2008; 14
(hep27447-bib-0009-20241017) 2013
(hep27447-bib-0018-20241017) 2014; 60
(hep27447-bib-0029-20241017) 2012; 122
(hep27447-bib-0013-20241017) 2004; 432
(hep27447-bib-0004-20241017) 1993; 268
(hep27447-bib-0028-20241017) 2009; 5
(hep27447-bib-0010-20241017) 2013; 2
(hep27447-bib-0007-20241017) 2011; 56
(hep27447-bib-0003-20241017) 2010; 11
(hep27447-bib-0015-20241017) 2009; 182
(hep27447-bib-0016-20241017) 2013; 58
(hep27447-bib-0019-20241017) 2013; 154
(hep27447-bib-0002-20241017) 1997; 45
(hep27447-bib-0011-20241017) 2006; 176
25865955 - Hepatology. 2016 Feb;63(2):674-5. doi: 10.1002/hep.27846.
25865824 - Hepatology. 2016 Feb;63(2):673-4. doi: 10.1002/hep.27845.
26054053 - Hepatology. 2016 Feb;63(2):669-71. doi: 10.1002/hep.27930.
26053944 - Hepatology. 2016 Feb;63(2):671-2. doi: 10.1002/hep.27928.
References_xml – volume: 178
  start-page: 1614
  year: 2011
  end-page: 1621
  article-title: Enhanced liver regeneration in IL‐10‐deficient mice after partial hepatectomy via stimulating inflammatory response and activating hepatocyte STAT3
  publication-title: Am J Pathol
– volume: 189
  start-page: 1911
  year: 2012
  end-page: 1919
  article-title: Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin‐induced sepsis
  publication-title: J Immunol
– volume: 5
  start-page: 476
  year: 2009
  end-page: 486
  article-title: Lipocalin‐2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine
  publication-title: Cell Host Microbe
– volume: 16
  start-page: 2141
  year: 1998
  end-page: 2150
  article-title: Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the regenerating liver
  publication-title: Oncogene
– volume: 45
  start-page: 17
  year: 1997
  end-page: 23
  article-title: Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase‐associated lipocalin from humans
  publication-title: Genomics
– volume: 268
  start-page: 10425
  year: 1993
  end-page: 10432
  article-title: Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase
  publication-title: J Biol Chem
– year: 2013
  article-title: Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes
  publication-title: J Clin Invest
– volume: 122
  start-page: 1758
  year: 2012
  end-page: 1763
  article-title: Hepatocyte‐specific mutation of both NF‐kappaB RelA and STAT3 abrogates the acute phase response in mice
  publication-title: J Clin Invest
– volume: 11
  start-page: 314
  year: 2013
  end-page: 318
  article-title: Lipocalin‐2 gene expression during liver regeneration after partial hepatectomy in rats
  publication-title: Int J Surg
– volume: 1832
  start-page: 660
  year: 2013
  end-page: 673
  article-title: Protective effects of lipocalin‐2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis
  publication-title: Biochim Biophys Acta
– volume: 7
  start-page: e39646
  year: 2012
  article-title: No effect of NGAL/lipocalin‐2 on aggressiveness of cancer in the MMTV‐PyMT/FVB/N mouse model for breast cancer
  publication-title: PLoS One
– volume: 7
  start-page: 536
  year: 2011
  end-page: 550
  article-title: Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target
  publication-title: Int J Biol Sci
– volume: 11
  start-page: 96
  year: 2010
  article-title: Lipocalin 2 is protective against E. coli pneumonia
  publication-title: Respir Res
– volume: 60
  start-page: 622
  year: 2014
  end-page: 632
  article-title: Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury
  publication-title: Hepatology
– volume: 1826
  start-page: 129
  year: 2012
  end-page: 169
  article-title: The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer
  publication-title: Biochim Biophys Acta
– volume: 143
  start-page: 1609
  year: 2012
  end-page: 1619 e4
  article-title: Liver failure after extended hepatectomy in mice is mediated by a p21‐dependent barrier to liver regeneration
  publication-title: Gastroenterology
– volume: 58
  start-page: 1349
  year: 2013
  end-page: 1361
  article-title: Lipocalin‐2 negatively modulates the epithelial‐to‐mesenchymal transition in hepatocellular carcinoma through the epidermal growth factor (TGF‐beta1)/Lcn2/Twist1 pathway
  publication-title: Hepatology
– volume: 56
  start-page: 435
  year: 2011
  end-page: 441
  article-title: Lipocalin 2 regulation and its complex role in inflammation and cancer
  publication-title: Cytokine
– volume: 176
  start-page: 5559
  year: 2006
  end-page: 5566
  article-title: IL‐1beta‐specific up‐regulation of neutrophil gelatinase‐associated lipocalin is controlled by IkappaB‐zeta
  publication-title: J Immunol
– volume: 10
  start-page: 1033
  year: 2002
  end-page: 1043
  article-title: The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore‐mediated iron acquisition
  publication-title: Mol Cell
– volume: 127
  start-page: 1101
  year: 1992
  end-page: 1106
  article-title: Bacterial translocation after major hepatectomy in patients and rats
  publication-title: Arch Surg
– volume: 22
  start-page: 1416
  year: 2008
  end-page: 1426
  article-title: The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages
  publication-title: Mol Endocrinol
– year: 2014
  article-title: The role of lipocalin‐2 in liver regeneration
  publication-title: Liver Int
– year: 2014
  article-title: The induction of lipocalin‐2 expression in vivo and in vitro
  publication-title: J Biol Chem
– volume: 432
  start-page: 917
  year: 2004
  end-page: 921
  article-title: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron
  publication-title: Nature
– volume: 103
  start-page: 1834
  year: 2006
  end-page: 1839
  article-title: Lipocalin 2‐deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia‐reperfusion injury
  publication-title: Proc Natl Acad Sci U S A
– volume: 47
  start-page: 729
  year: 2008
  end-page: 736
  article-title: Liver: an organ with predominant innate immunity
  publication-title: Hepatology
– volume: 182
  start-page: 4947
  year: 2009
  end-page: 4956
  article-title: Lipocalin 2 is required for pulmonary host defense against Klebsiella infection
  publication-title: J Immunol
– volume: 9
  start-page: e96997
  year: 2014
  article-title: Lipocalin 2 expression and secretion is highly regulated by metabolic stress, cytokines, and nutrients in adipocytes
  publication-title: PLoS One
– volume: 75
  start-page: 332
  year: 2005
  end-page: 340
  article-title: On mouse and man: neutrophil gelatinase associated lipocalin is not involved in apoptosis or acute response
  publication-title: Eur J Haematol
– volume: 134
  start-page: 1148
  year: 2008
  end-page: 1158
  article-title: Cell type‐dependent pro‐ and anti‐inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury
  publication-title: Gastroenterology
– volume: 37
  start-page: 191
  year: 2012
  end-page: 196
  article-title: Lipocalin‐2 is a major acute‐phase protein in a rat and mouse model of sterile abscess
  publication-title: Shock
– volume: 154
  start-page: 3525
  year: 2013
  end-page: 3538
  article-title: Evidence for the regulatory role of lipocalin 2 in high‐fat diet‐induced adipose tissue remodeling in male mice
  publication-title: Endocrinology
– volume: 2
  start-page: 161
  year: 2013
  end-page: 170
  article-title: STAT1, NF‐kappaB and ERKs play a role in the induction of lipocalin‐2 expression in adipocytes
  publication-title: Mol Metab
– volume: 14
  start-page: 275
  year: 2008
  end-page: 281
  article-title: IL‐22 mediates mucosal host defense against Gram‐negative bacterial pneumonia
  publication-title: Nat Med
– volume: 268
  start-page: 10425
  year: 1993
  ident: hep27447-bib-0004-20241017
  article-title: Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)82217-7
– volume: 103
  start-page: 1834
  year: 2006
  ident: hep27447-bib-0014-20241017
  article-title: Lipocalin 2‐deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia‐reperfusion injury
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0510847103
– volume: 45
  start-page: 17
  year: 1997
  ident: hep27447-bib-0002-20241017
  article-title: Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase‐associated lipocalin from humans
  publication-title: Genomics
  doi: 10.1006/geno.1997.4896
– volume: 11
  start-page: 96
  year: 2010
  ident: hep27447-bib-0003-20241017
  article-title: Lipocalin 2 is protective against E. coli pneumonia
  publication-title: Respir Res
  doi: 10.1186/1465-9921-11-96
– volume: 432
  start-page: 917
  year: 2004
  ident: hep27447-bib-0013-20241017
  article-title: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron
  publication-title: Nature
  doi: 10.1038/nature03104
– volume: 22
  start-page: 1416
  year: 2008
  ident: hep27447-bib-0023-20241017
  article-title: The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2007-0420
– volume: 2
  start-page: 161
  year: 2013
  ident: hep27447-bib-0010-20241017
  article-title: STAT1, NF‐kappaB and ERKs play a role in the induction of lipocalin‐2 expression in adipocytes
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2013.04.003
– volume: 14
  start-page: 275
  year: 2008
  ident: hep27447-bib-0027-20241017
  article-title: IL‐22 mediates mucosal host defense against Gram‐negative bacterial pneumonia
  publication-title: Nat Med
  doi: 10.1038/nm1710
– year: 2013
  ident: hep27447-bib-0009-20241017
  article-title: Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes
  publication-title: J Clin Invest
– volume: 189
  start-page: 1911
  year: 2012
  ident: hep27447-bib-0032-20241017
  article-title: Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin‐induced sepsis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1200892
– volume: 1826
  start-page: 129
  year: 2012
  ident: hep27447-bib-0005-20241017
  article-title: The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer
  publication-title: Biochim Biophys Acta
– volume: 127
  start-page: 1101
  year: 1992
  ident: hep27447-bib-0026-20241017
  article-title: Bacterial translocation after major hepatectomy in patients and rats
  publication-title: Arch Surg
  doi: 10.1001/archsurg.1992.01420090109016
– volume: 75
  start-page: 332
  year: 2005
  ident: hep27447-bib-0020-20241017
  article-title: On mouse and man: neutrophil gelatinase associated lipocalin is not involved in apoptosis or acute response
  publication-title: Eur J Haematol
  doi: 10.1111/j.1600-0609.2005.00511.x
– volume: 182
  start-page: 4947
  year: 2009
  ident: hep27447-bib-0015-20241017
  article-title: Lipocalin 2 is required for pulmonary host defense against Klebsiella infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0803282
– volume: 37
  start-page: 191
  year: 2012
  ident: hep27447-bib-0008-20241017
  article-title: Lipocalin‐2 is a major acute‐phase protein in a rat and mouse model of sterile abscess
  publication-title: Shock
  doi: 10.1097/SHK.0b013e31823918c2
– volume: 9
  start-page: e96997
  year: 2014
  ident: hep27447-bib-0017-20241017
  article-title: Lipocalin 2 expression and secretion is highly regulated by metabolic stress, cytokines, and nutrients in adipocytes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096997
– year: 2014
  ident: hep27447-bib-0033-20241017
  article-title: The role of lipocalin‐2 in liver regeneration
  publication-title: Liver Int
– volume: 16
  start-page: 2141
  year: 1998
  ident: hep27447-bib-0034-20241017
  article-title: Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the regenerating liver
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1201728
– volume: 178
  start-page: 1614
  year: 2011
  ident: hep27447-bib-0025-20241017
  article-title: Enhanced liver regeneration in IL‐10‐deficient mice after partial hepatectomy via stimulating inflammatory response and activating hepatocyte STAT3
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.01.001
– volume: 5
  start-page: 476
  year: 2009
  ident: hep27447-bib-0028-20241017
  article-title: Lipocalin‐2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.03.011
– volume: 122
  start-page: 1758
  year: 2012
  ident: hep27447-bib-0029-20241017
  article-title: Hepatocyte‐specific mutation of both NF‐kappaB RelA and STAT3 abrogates the acute phase response in mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI59408
– volume: 58
  start-page: 1349
  year: 2013
  ident: hep27447-bib-0016-20241017
  article-title: Lipocalin‐2 negatively modulates the epithelial‐to‐mesenchymal transition in hepatocellular carcinoma through the epidermal growth factor (TGF‐beta1)/Lcn2/Twist1 pathway
  publication-title: Hepatology
  doi: 10.1002/hep.26467
– volume: 11
  start-page: 314
  year: 2013
  ident: hep27447-bib-0022-20241017
  article-title: Lipocalin‐2 gene expression during liver regeneration after partial hepatectomy in rats
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2013.02.008
– volume: 134
  start-page: 1148
  year: 2008
  ident: hep27447-bib-0024-20241017
  article-title: Cell type‐dependent pro‐ and anti‐inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.01.016
– volume: 154
  start-page: 3525
  year: 2013
  ident: hep27447-bib-0019-20241017
  article-title: Evidence for the regulatory role of lipocalin 2 in high‐fat diet‐induced adipose tissue remodeling in male mice
  publication-title: Endocrinology
  doi: 10.1210/en.2013-1289
– volume: 7
  start-page: e39646
  year: 2012
  ident: hep27447-bib-0021-20241017
  article-title: No effect of NGAL/lipocalin‐2 on aggressiveness of cancer in the MMTV‐PyMT/FVB/N mouse model for breast cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039646
– year: 2014
  ident: hep27447-bib-0006-20241017
  article-title: The induction of lipocalin‐2 expression in vivo and in vitro
  publication-title: J Biol Chem
– volume: 10
  start-page: 1033
  year: 2002
  ident: hep27447-bib-0012-20241017
  article-title: The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore‐mediated iron acquisition
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(02)00708-6
– volume: 47
  start-page: 729
  year: 2008
  ident: hep27447-bib-0001-20241017
  article-title: Liver: an organ with predominant innate immunity
  publication-title: Hepatology
  doi: 10.1002/hep.22034
– volume: 60
  start-page: 622
  year: 2014
  ident: hep27447-bib-0018-20241017
  article-title: Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury
  publication-title: Hepatology
  doi: 10.1002/hep.26980
– volume: 143
  start-page: 1609
  year: 2012
  ident: hep27447-bib-0035-20241017
  article-title: Liver failure after extended hepatectomy in mice is mediated by a p21‐dependent barrier to liver regeneration
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.08.043
– volume: 176
  start-page: 5559
  year: 2006
  ident: hep27447-bib-0011-20241017
  article-title: IL‐1beta‐specific up‐regulation of neutrophil gelatinase‐associated lipocalin is controlled by IkappaB‐zeta
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.9.5559
– volume: 7
  start-page: 536
  year: 2011
  ident: hep27447-bib-0030-20241017
  article-title: Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.7.536
– volume: 1832
  start-page: 660
  year: 2013
  ident: hep27447-bib-0031-20241017
  article-title: Protective effects of lipocalin‐2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2013.01.014
– volume: 56
  start-page: 435
  year: 2011
  ident: hep27447-bib-0007-20241017
  article-title: Lipocalin 2 regulation and its complex role in inflammation and cancer
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2011.07.021
– reference: 25865955 - Hepatology. 2016 Feb;63(2):674-5. doi: 10.1002/hep.27846.
– reference: 26054053 - Hepatology. 2016 Feb;63(2):669-71. doi: 10.1002/hep.27930.
– reference: 25865824 - Hepatology. 2016 Feb;63(2):673-4. doi: 10.1002/hep.27845.
– reference: 26053944 - Hepatology. 2016 Feb;63(2):671-2. doi: 10.1002/hep.27928.
SSID ssj0009428
Score 2.5150015
Snippet Lipocalin‐2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase‐associated lipocalin (NGAL). However, the functions of LCN2...
Lipocalin-2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2...
Lipocalin-2 (LCN2) was originally isolated from neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 692
SubjectTerms Acute-Phase Proteins
Animals
Bacterial infections
Bacterial Infections - blood
Escherichia coli
Hepatectomy
Hepatocytes - metabolism
Hepatology
Infections
Interleukin-6 - metabolism
Klebsiella pneumoniae
Lipocalin-2
Lipocalins - blood
Liver Regeneration
Mice, Inbred C57BL
Oncogene Proteins - blood
Receptors, Interleukin-6 - metabolism
Rodents
STAT3 Transcription Factor - metabolism
Title Liver is the major source of elevated serum lipocalin‐2 levels after bacterial infection or partial hepatectomy: A critical role for IL‐6/STAT3
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.27447
https://www.ncbi.nlm.nih.gov/pubmed/25234944
https://www.proquest.com/docview/1646856520
https://www.proquest.com/docview/1652420820
https://www.proquest.com/docview/1654679871
https://pubmed.ncbi.nlm.nih.gov/PMC4303493
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VPVRceD8CLRoQBy5O4l2vH_QUoVYBFYQglXpAstbrXTUlsaMmOdATPwGJf8gvYWbXdgkFgbjF8djetWe833q-_YaxZ2FsuM5MGlgcPoJIZmFQiMQGyqoy5twOZeFYvm_j8XH0-kSebLH9di2M14foPrhRZLj3NQW4KpaDS9HQU7Pok7wdrSQnrhYBoveX0lFZ5Oqq4qxrSNnlrFUVGvJBd-TmWHQFYF7lSf6MX90AdHiDfWyb7nknn_rrVdHXF7-oOv5n326y6w0whZH3pFtsy1S32c6bJvV-h307IgYHTJeAkBHm6qw-B__lH2oLtEodUWsJ6NHrOcymCxojp9X3L185zIiYtARXjhwKLw-Nl2p5YBXgqRbkwvgntklRXqOef34BI9BNJQYgFiQgwIZXR3jOePBhMpqIu-z48GDychw0FR0CLSOeBBzhJM6hkjQudYnISqRSCmULk0kTCh2j2-BWYoxNM22LVKsy1SbOrAhtogol7rHtqq7MAwb4prb0cEPSWBNhqNKMpkol4jOBk7Kox563zzbXjdw5Vd2Y5V6omefYodzd5B572pkuvMbH74x2WwfJmzBf5iTOliIk5sMee9LtxgClrIuqTL0mG8mJw_AXm4jSYUnYY_e9z3Ut4ZKThBB2KNnwxs6ABMI391TTUycUHglSHxJ4K5yz_blz-fjgnfvx8N9NH7FrCB6lZ7Dvsu3V-drsIUBbFY9dJP4AroY5sA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIgGX8iwNFBgQBy5O4l2vH4hLhFqlkFYIUqkXZK3Xu2ogsaMmOcCJn4DEP-SXMLN-lFAQiJvtHdu79oz3m53xN4w99UPDdWJiz-L04QUy8b1MRNZTVuUh57YvM5flexQOj4NXJ_Jkg71o_oWp-CHaBTeyDPe9JgOnBeneOWvoqZl3id8uusQuU0Vv51C9PSePSgJXWRX9rj7Fl5OGV6jPe-2p67PRBYh5MVPyZwTrpqD96-x90_kq8-Rjd7XMuvrzL7yO_zu6G2yrxqYwqJTpJtswxS125bCOvt9m30aUxAGTBSBqhJn6UJ5BtfgPpQX6UR2Baw6o1KsZTCdzmiYnxfcvXzlMKTdpAa4iOWQVQzTeqkkFKwAvNSctxoPYJ0WhjXL26TkMQNfFGIASIQExNhyM8Jph7914MBZ32PH-3vjl0KuLOnhaBjzyOCJKdKOiOMx1juBKxFIKZTOTSOMLHaLm4F5kjI0TbbNYqzzWJkys8G2kMiW22WZRFmaHAX6sLb1dn2jWhO-rOCFvKUeIJtAvCzrsWfNyU10znlPhjWlacTXzFAeUuofcYU9a0XlF8_E7od1GQ9La0hcp8bPFiIp5v8Met81ooxR4UYUpVyQjOaUx_EUmoIhY5HfY3Urp2p5wyYlFCAcUraljK0Ac4estxeTUcYUHggiIBD4Kp21_Hlw63HvjNu79u-gjdnU4Phylo4Oj1_fZNcSSskpo32Wby7OVeYB4bZk9dGb5AxhSPcs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIlVcaHmVlAIL4sDFib3r9aOcItoohVBVkEo9IFnr9a4aSGyrSQ5w4idU6j_klzCzfpRQEIibH2N7157xfuv5_A0hL7xAMxXryDEwfDi-iD0n5aFxpJFZwJhxRWpZvkfB8MR_cypO18ir5l-YSh-i_eCGkWHf1xjgZWZ6V6KhZ7rsorxdeIPc9AM3Qpfef3-lHRX7trAqTLtcTC_HjayQy3rtoauD0TWEeZ0o-TOAtSPQYJN8bNpeEU8-d5eLtKu-_iLr-J-d2yK3a2RK-5Ur3SFrOr9LNt7Vufd75HKEFA46mVPAjHQmPxXntPr0TwtD8Td1gK0ZBZdezuh0UuIgOcm_f7tgdIrMpDm19chpWulDw6UaIlhO4VQl-jBshDZJTGwUsy97tE9VXYqBIg2SAsKmhyM4Z9D7MO6P-X1yMjgYvx46dUkHRwmfhQ4DPAmTqDAKMpUBtOKREFyaVMdCe1wF4DewFmptoliZNFIyi5QOYsM9E8pU8gdkPS9y_ZBQeFUbfLgeiqxxz5NRjHOlDAAah1mZ3yEvm2ebqFrvHMtuTJNKqZkl0KHE3uQOed6alpXIx--MdhsHSeo4nyeozhYBJmZuhzxrd0OEYtpF5rpYoo1gSGL4i42P-bDQ65DtyufaljDBUEMIOhSueGNrgArhq3vyyZlVCvc5yg9xuBXW2f7cuWR4cGwXdv7d9CnZON4fJKPDo7ePyC0AkqJis--S9cX5Uj8GsLZIn9ig_AFakjyD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+is+the+major+source+of+elevated+serum+lipocalin-2+levels+after+bacterial+infection+or+partial+hepatectomy%3A+A+critical+role+for+IL-6%2FSTAT3&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Xu%2C+Ming-Jiang&rft.au=Feng%2C+Dechun&rft.au=Wu%2C+Hailong&rft.au=Wang%2C+Hua&rft.date=2015-02-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=61&rft.issue=2&rft.spage=692&rft.epage=702&rft_id=info:doi/10.1002%2Fhep.27447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon