A long‐term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure
The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the trad...
Saved in:
Published in | Ecology and evolution Vol. 4; no. 7; pp. 1073 - 1087 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.04.2014
John Wiley & Sons Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long‐term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid‐subtropical region and Fengqiu in warm‐temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high‐throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA, nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
The relative importance of historical and contemporary factors in shaping microbial community structure was assessed in this work by a long‐term large‐scale soil transplantation experiment, whereby the same two soils (red soil and purple soil from Yingtan, China) were placed into two geographic locations of ~1000 km apart. Twenty years after the transplantation, the resulting soil microbial communities were subject to molecular analysis, including the high‐throughput 454 pyrosequencing of 16S and 18S rRNA genes. The results suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. |
---|---|
AbstractList | The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long‐term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid‐subtropical region and Fengqiu in warm‐temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high‐throughput 454 pyrosequencing analysis of 16S and 18S
rRNA
genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal
amoA
, bacterial
amoA
,
nirK,
and
nifH
. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA , bacterial amoA , nirK, and nifH . Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA, nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The relative importance of historical and contemporary factors in shaping microbial community structure was assessed in this work by a long-term large-scale soil transplantation experiment, whereby the same two soils (red soil and purple soil from Yingtan, China) were placed into two geographic locations of ~1000 km apart. Twenty years after the transplantation, the resulting soil microbial communities were subject to molecular analysis, including the high-throughput 454 pyrosequencing of 16S and 18S rRNA genes. The results suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA, nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long‐term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid‐subtropical region and Fengqiu in warm‐temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high‐throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA, nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The relative importance of historical and contemporary factors in shaping microbial community structure was assessed in this work by a long‐term large‐scale soil transplantation experiment, whereby the same two soils (red soil and purple soil from Yingtan, China) were placed into two geographic locations of ~1000 km apart. Twenty years after the transplantation, the resulting soil microbial communities were subject to molecular analysis, including the high‐throughput 454 pyrosequencing of 16S and 18S rRNA genes. The results suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. |
Author | Dong, Zhixin Sun, Bo Li, Yun Jiang, Yuji Zhang, Xue‐Xian Li, Zhongpei Wang, Feng |
Author_xml | – sequence: 1 givenname: Bo surname: Sun fullname: Sun, Bo organization: Chinese Academy of Sciences – sequence: 2 givenname: Feng surname: Wang fullname: Wang, Feng organization: University of the Chinese Academy of Sciences – sequence: 3 givenname: Yuji surname: Jiang fullname: Jiang, Yuji organization: Chinese Academy of Sciences – sequence: 4 givenname: Yun surname: Li fullname: Li, Yun organization: Sichuan Agricultural University – sequence: 5 givenname: Zhixin surname: Dong fullname: Dong, Zhixin organization: Chinese Academy of Science – sequence: 6 givenname: Zhongpei surname: Li fullname: Li, Zhongpei organization: Chinese Academy of Sciences – sequence: 7 givenname: Xue‐Xian surname: Zhang fullname: Zhang, Xue‐Xian organization: Massey University at Albany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24772284$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAQxyNUREvpgRdAlrjAYak_kji5IFWr5UOqxAXOlu1Msq4cO9hOYW88Aq_Aq_EkON0tKhUIXzxj__5_zYz9uDhy3kFRPCX4FcGYnoMGtkT1g-KE4rJacV41R3fi4-IsxiucV41pifmj4piWnFPalCfFjwtkvRt-fvueIIyoN2A7BF8nCGYEl5DvUfTGohSki5OVLslkvEMdjN7FfJqMG1DaAgrewoJr7xKMkw8y7NAAfghy2hqNIkwy7MXGobiV06K8MR-NDl4ZabN4HGdn0g5l71mnOcCT4mEvbYSzw35afHqz-bh-t7r88Pb9-uJypauS1ivWtKrGQBuqGGlLKXOmCFRNr3lX1YTXpKMdr3ileqoVVi0pVam6Lieqblp2Wrze-06zGqHTufsgrZjyIHInwksj_rxxZisGfy1Y23JGWTZ4cTAI_vMMMYnRRA02Dw38HAXhhFZ1y-r6_2hF2oY1DSUZfX4PvfJzcHkSgtIWk7JleKGe3S3-d9W3D52B8z2QJx1jgF5os3_K3IuxgmCx_Cax_KYlWmp8eU9xa_o39uD-xVjY_RsUm_WG3Sh-AUab3gA |
CitedBy_id | crossref_primary_10_1016_j_biocontrol_2021_104628 crossref_primary_10_1002_ece3_6334 crossref_primary_10_3390_d13070282 crossref_primary_10_1016_j_geoderma_2019_06_017 crossref_primary_10_1016_j_soilbio_2020_108119 crossref_primary_10_1007_s00248_019_01414_7 crossref_primary_10_1134_S1064229321070103 crossref_primary_10_1007_s12665_015_4124_1 crossref_primary_10_1016_j_cej_2019_04_213 crossref_primary_10_3390_molecules22050707 crossref_primary_10_1371_journal_pone_0124671 crossref_primary_10_1128_msystems_01159_21 crossref_primary_10_1016_j_catena_2018_10_043 crossref_primary_10_1016_j_still_2020_104804 crossref_primary_10_1139_cjm_2017_0362 crossref_primary_10_1016_j_jconhyd_2021_103779 crossref_primary_10_1016_j_soilbio_2014_10_015 crossref_primary_10_1016_j_scitotenv_2017_10_326 crossref_primary_10_1038_s41396_021_00950_w crossref_primary_10_1007_s42773_019_00034_1 crossref_primary_10_1016_j_soilbio_2015_05_007 crossref_primary_10_1007_s13213_014_0969_x crossref_primary_10_1139_cjss_2019_0053 crossref_primary_10_1016_j_apsoil_2018_03_001 crossref_primary_10_1016_j_chnaes_2017_08_003 crossref_primary_10_1016_j_scitotenv_2022_153957 crossref_primary_10_1016_j_soilbio_2017_07_013 crossref_primary_10_1038_ismej_2015_78 |
Cites_doi | 10.1128/AEM.00335-09 10.1111/j.1365-2486.2009.02154.x 10.1128/AEM.02874-09 10.1111/j.1462-2920.2009.02131.x 10.1046/j.1365-294x.1998.00318.x 10.1016/j.mycres.2007.03.004 10.1007/s00248-006-9103-3 10.1128/MMBR.00051-12 10.1007/s00248-005-5010-2 10.2136/sssaj1962.03615995002600010034xc 10.1038/nature01014 10.1126/science.1153475 10.1111/j.1462-2920.2009.01879.x 10.1007/978-1-4419-9650-3_6 10.1038/nature05629 10.1128/aem.59.3.695-700.1993 10.1038/ismej.2010.46 10.1128/AEM.00083-13 10.1111/j.1462-2920.2005.00695.x 10.1038/nrmicro2795 10.1128/AEM.63.12.4704-4712.1997 10.1007/s00248-011-9807-x 10.1093/molbev/msr121 10.1007/s00299-001-0399-7 10.1038/nrmicro1643 10.1007/s00374-013-0779-5 10.1111/j.1365-2486.2006.01263.x 10.1016/j.soilbio.2013.06.021 10.1111/j.1758-2229.2009.00130.x 10.1038/nclimate1331 10.1038/ismej.2008.2 10.1346/CCMN.1999.0470509 10.1111/j.1365-294X.2010.04804.x 10.1038/ismej.2012.139 10.1111/j.1469-8137.1996.tb04351.x 10.1038/ncomms2431 10.1111/j.1365-294X.2012.05659.x 10.1038/nrmicro1341 10.1046/j.0962-1083.2001.01364.x 10.1093/nar/gkm864 10.1093/aob/mcs061 10.1007/s10533-004-0372-y 10.1016/j.soilbio.2013.02.012 10.1128/AEM.69.10.6152-6164.2003 10.1038/ismej.2010.39 10.1016/j.watres.2012.02.005 10.1016/j.soilbio.2013.02.017 10.1128/AEM.64.10.3769-3775.1998 10.1128/AEM.05778-11 10.1128/AEM.66.12.5448-5456.2000 10.1073/pnas.0506625102 10.1016/S0341-8162(98)00053-8 10.1016/j.crvi.2010.12.003 10.1111/j.1462-2920.2009.01891.x 10.1128/AEM.68.8.3818-3829.2002 10.1016/j.tree.2006.06.012 10.1126/science.1167755 10.1111/j.1365-2486.2007.01313.x 10.1038/ismej.2010.130 10.1590/S0100-06832011000500007 10.1111/j.1462-2920.2011.02480.x 10.1111/j.1462-2920.2005.00906.x 10.1038/ismej.2012.127 10.1073/pnas.1016308108 10.1186/gb-2007-8-7-r143 10.1073/pnas.0507535103 10.1007/s00442-010-1650-0 10.1128/AEM.01541-09 10.1073/pnas.96.4.1175 10.1111/j.1462-2920.2007.01358.x 10.1046/j.1365-2486.2003.00647.x 10.1046/j.1462-2920.2003.00476.x 10.1073/pnas.0901644106 |
ContentType | Journal Article |
Copyright | 2014 The Authors. published by John Wiley & Sons Ltd. 2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2014 The Authors. published by John Wiley & Sons Ltd. 2014 |
Copyright_xml | – notice: 2014 The Authors. published by John Wiley & Sons Ltd. – notice: 2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2014 The Authors. published by John Wiley & Sons Ltd. 2014 |
DBID | 24P AAYXX CITATION NPM 3V. 7SN 7SS 7ST 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 7T7 7U6 5PM |
DOI | 10.1002/ece3.1006 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Sustainability Science Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Sustainability Science Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) |
DatabaseTitleList | CrossRef Technology Research Database Agricultural Science Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2045-7758 |
EndPage | 1087 |
ExternalDocumentID | PMC3997323 24772284 10_1002_ece3_1006 ECE31006 |
Genre | article Journal Article |
GeographicLocations | China China, People's Rep |
GeographicLocations_xml | – name: China – name: China, People's Rep |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 41271258 – fundername: Knowledge Innovation Program of Chinese Academy of Sciences funderid: KZCX2‐YW‐407 – fundername: National Basic Research Program of China funderid: 2011CB100506; 2014CB441003 – fundername: MURF – fundername: New Zealand – China Scientist Exchange Program |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X2 8-0 8-1 8FE 8FH AAFWJ AAHBH AAHHS AAZKR ACCFJ ACCMX ACGFO ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AFRAH AIAGR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ATCPS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI CCPQU D-8 D-9 DIK EBS ECGQY EJD GODZA GROUPED_DOAJ GX1 HCIFZ HYE IAO IEP ITC KQ8 LK8 M0K M48 M7P M~E OK1 PIMPY PROAC RNS ROL RPM SUPJJ WIN AAYXX AFPKN CITATION PHGZM PHGZT NPM 3V. 7SN 7SS 7ST 8FD 8FK AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 7T7 7U6 5PM |
ID | FETCH-LOGICAL-c5426-389b60e282b3194aab60b1e58fc7d561761d2d7575bf2cb0b914b4bdd2cbb6893 |
IEDL.DBID | M48 |
ISSN | 2045-7758 |
IngestDate | Thu Aug 21 18:20:41 EDT 2025 Tue Aug 05 11:30:02 EDT 2025 Fri Jul 11 07:43:33 EDT 2025 Wed Aug 13 03:27:12 EDT 2025 Wed Feb 19 01:56:24 EST 2025 Tue Jul 01 01:37:37 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Wed Jan 22 16:23:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | historical contingency 454 pyrosequencing microbial biogeography contemporary disturbance nitrogen cycling soil transplantation |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/3.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5426-389b60e282b3194aab60b1e58fc7d561761d2d7575bf2cb0b914b4bdd2cbb6893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/ece3.1006 |
PMID | 24772284 |
PQID | 2290149301 |
PQPubID | 2034651 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3997323 proquest_miscellaneous_1712569366 proquest_miscellaneous_1519838821 proquest_journals_2290149301 pubmed_primary_24772284 crossref_citationtrail_10_1002_ece3_1006 crossref_primary_10_1002_ece3_1006 wiley_primary_10_1002_ece3_1006_ECE31006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Ecology and evolution |
PublicationTitleAlternate | Ecol Evol |
PublicationYear | 2014 |
Publisher | John Wiley & Sons, Inc John Wiley & Sons Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley & Sons Ltd |
References | 2010; 12 2013; 4 2013; 66 2010; 19 2013; 61 2011; 62 1999; 47 2011; 13 1999; 41 2013; 7 2011; 17 2008; 2 2012; 10 2007; 35 1934 2009; 11 2006; 21 2005; 102 2003; 9 2005; 73 2007; 8 2007; 9 2003; 5 1996; 133 1999; 96 2007; 5 2011; 28 2010; 2 2010; 4 2009; 323 2012; 21 2001; 10 2010; 76 2011; 334 2006; 52 2007; 446 2013; 49 2011 1997; 63 2000; 66 1997 2008 2011; 77 2010; 164 2011; 35 2002; 418 2006; 4 2007; 53 2008; 320 1998; 64 2011; 5 2007; 13 1993; 59 2012; 110 2012; 2 2011; 108 2004; 432 2009; 75 2013; 77 2013; 79 2007; 111 2002; 68 2003; 69 2005; 7 1962; 26 2012; 46 1998; 32 2006; 103 2009; 106 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Baas‐Becking L. (e_1_2_10_3_1) 1934 R‐Development‐Core‐Team (e_1_2_10_58_1) 2008 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Theissen A. A. (e_1_2_10_70_1) 1962; 26 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 Oksanen J. (e_1_2_10_51_1) 2011 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Muyzer G. (e_1_2_10_47_1) 1993; 59 e_1_2_10_60_1 Moore D. M. (e_1_2_10_45_1) 1997 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_68_1 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71 19229022 - Science. 2009 Feb 20;323(5917):1014-5 16407148 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31 16309395 - Environ Microbiol. 2005 Dec;7(12):1985-95 17659080 - Genome Biol. 2007;8(7):R143 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9 22580365 - Nat Rev Microbiol. 2012 May 14;10(7):497-506 18239609 - ISME J. 2008 Mar;2(3):254-64 11555271 - Mol Ecol. 2001 Sep;10(9):2297-305 24006468 - Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56 23178673 - ISME J. 2013 May;7(5):1038-50 16815589 - Trends Ecol Evol. 2006 Sep;21(9):501-7 9758798 - Appl Environ Microbiol. 1998 Oct;64(10):3769-75 17377582 - Nature. 2007 Mar 22;446(7134):436-9 22374298 - Water Res. 2012 May 1;46(7):2425-34 9989997 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1175-80 22686398 - Mol Ecol. 2012 Aug;21(15):3852-68 20393574 - ISME J. 2010 Sep;4(9):1144-53 22451600 - Ann Bot. 2012 Jul;110(2):213-22 17106806 - Microb Ecol. 2007 Feb;53(2):197-207 21640949 - C R Biol. 2011 May;334(5-6):403-11 23385579 - Nat Commun. 2013;4:1434 20023089 - Appl Environ Microbiol. 2010 Feb;76(4):999-1007 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12 12167873 - Nature. 2002 Aug 8;418(6898):671-7 19260937 - Environ Microbiol. 2009 Jun;11(6):1518-26 18497288 - Science. 2008 May 23;320(5879):1039-43 20461412 - Oecologia. 2010 Sep;164(1):141-50 17435792 - Nat Rev Microbiol. 2007 May;5(5):384-92 19805104 - Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19685-92 23766082 - Environ Microbiol Rep. 2010 Apr;2(2):304-12 17572334 - Mycol Res. 2007 May;111(Pt 5):509-47 20428223 - ISME J. 2010 Sep;4(9):1167-79 11097926 - Appl Environ Microbiol. 2000 Dec;66(12):5448-56 17061172 - Microb Ecol. 2006 Nov;52(4):716-24 21965395 - Appl Environ Microbiol. 2011 Dec;77(23):8241-8 23524671 - Appl Environ Microbiol. 2013 Jun;79(11):3327-35 21507180 - Environ Microbiol. 2011 Jun;13(6):1642-54 21298263 - Microb Ecol. 2011 Aug;62(2):474-85 12919414 - Environ Microbiol. 2003 Sep;5(9):787-97 17947321 - Nucleic Acids Res. 2007;35(21):7188-96 20050875 - Environ Microbiol. 2010 Apr;12(4):862-72 17686032 - Environ Microbiol. 2007 Sep;9(9):2364-74 25241408 - Mol Ecol. 2010 Oct;19(19):4315-27 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 12147477 - Appl Environ Microbiol. 2002 Aug;68(8):3818-29 20703315 - ISME J. 2011 Mar;5(3):532-42 14532075 - Appl Environ Microbiol. 2003 Oct;69(10):6152-64 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8 15683391 - Environ Microbiol. 2005 Mar;7(3):301-13 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12 7683183 - Appl Environ Microbiol. 1993 Mar;59(3):695-700 21518859 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7850-4 23096401 - ISME J. 2013 Mar;7(3):498-508 15592411 - Nature. 2004 Dec 9;432(7018):747-50 |
References_xml | – volume: 111 start-page: 509 year: 2007 end-page: 547 article-title: A higher‐level phylogenetic classification of the fungi publication-title: Mycol. Res. – year: 2011 – volume: 61 start-page: 121 year: 2013 end-page: 132 article-title: Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield publication-title: Soil Biol. Biochem. – volume: 77 start-page: 342 year: 2013 end-page: 356 article-title: Patterns and processes of microbial community assembly publication-title: Microbiol. Mol. Biol. Rev. – volume: 10 start-page: 497 year: 2012 end-page: 506 article-title: Beyond biogeographic patterns: processes shaping the microbial landscape publication-title: Nat. Rev. Microbiol. – volume: 9 start-page: 1097 year: 2003 end-page: 1105 article-title: A reciprocal transplant experiment within a climatic gradient in a semiarid shrub‐steppe ecosystem: effects on bunchgrass growth and reproduction, soil carbon, and soil nitrogen publication-title: Glob. Change Biol. – volume: 59 start-page: 695 year: 1993 end-page: 700 article-title: Profiling of complex microbial‐populations by denaturing gradient gel‐electrophoresis analysis of polymerase chain reaction‐amplified genes coding for 16S rRNA publication-title: Appl. Environ. Microbiol. – volume: 164 start-page: 141 year: 2010 end-page: 150 article-title: Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes publication-title: Oecologia – volume: 7 start-page: 498 year: 2013 end-page: 508 article-title: The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale publication-title: ISME J. – volume: 21 start-page: 501 year: 2006 end-page: 507 article-title: Spatial scaling of microbial biodiversity publication-title: Trends Ecol. Evol. – volume: 2 start-page: 304 year: 2010 end-page: 312 article-title: Putative ammonia‐oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns publication-title: Environ. Microbiol. Rep. – volume: 2 start-page: 106 year: 2012 end-page: 110 article-title: Microbial mediation of carbon‐cycle feedbacks to climate warming publication-title: Nat. Clim. Chang. – volume: 323 start-page: 1014 year: 2009 end-page: 1015 article-title: Controlling eutrophication: nitrogen and phosphorus publication-title: Science – volume: 32 start-page: 155 year: 1998 end-page: 172 article-title: Soil chronosequences, soil development, and soil evolution: a critical review publication-title: Catena – volume: 4 start-page: 1434 year: 2013 article-title: Turnover of soil bacterial diversity driven by wide‐scale environmental heterogeneity publication-title: Nat. Commun. – volume: 5 start-page: 384 year: 2007 end-page: 392 article-title: The role of ecological theory in microbial ecology publication-title: Nat. Rev. Microbiol. – volume: 103 start-page: 626 year: 2006 end-page: 631 article-title: The diversity and biogeography of soil bacterial communities publication-title: Proc. Natl Acad. Sci. U. S. A. – volume: 79 start-page: 3327 year: 2013 end-page: 3335 article-title: Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition publication-title: Appl. Environ. Microbiol. – volume: 26 start-page: 90 year: 1962 end-page: 91 article-title: A paste method for preparation of slides for clay mineral identification by X‐Ray diffraction publication-title: Soil Sci. Soc. Am. J. – volume: 106 start-page: 19685 year: 2009 end-page: 19692 article-title: Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions publication-title: Proc. Natl Acad. Sci. U. S. A. – volume: 76 start-page: 999 year: 2010 end-page: 1007 article-title: Soil microbial community responses to multiple experimental climate change drivers publication-title: Appl. Environ. Microbiol. – volume: 8 start-page: R143 year: 2007 article-title: Accuracy and quality of massively parallel DNA pyrosequencing publication-title: Genome Biol. – year: 1934 – volume: 133 start-page: 159 year: 1996 end-page: 171 article-title: Population dynamics of indigenous and genetically modified rhizobia in the field publication-title: New Phytol. – volume: 62 start-page: 474 year: 2011 end-page: 485 article-title: Rice to vegetables: short‐ versus long‐term impact of land‐use change on the indigenous soil microbial community publication-title: Microb. Ecol. – volume: 11 start-page: 1518 year: 2009 end-page: 1526 article-title: Mapping field‐scale spatial patterns of size and activity of the denitrifier community publication-title: Environ. Microbiol. – volume: 53 start-page: 197 year: 2007 end-page: 207 article-title: Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution publication-title: Microb. Ecol. – volume: 61 start-page: 61 year: 2013 end-page: 68 article-title: Grassland management influences spatial patterns of soil microbial communities publication-title: Soil Biol. Biochem. – volume: 5 start-page: 787 year: 2003 end-page: 797 article-title: Diversity and abundance of in terrestrial habitats studied by 16S RNA surveys and real time PCR publication-title: Environ. Microbiol. – volume: 21 start-page: 3852 year: 2012 end-page: 3868 article-title: Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms publication-title: Mol. Ecol. – volume: 66 start-page: 102 year: 2013 end-page: 109 article-title: Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil publication-title: Soil Biol. Biochem. – year: 2008 – start-page: 378 year: 1997 – volume: 102 start-page: 14683 year: 2005 end-page: 14688 article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean publication-title: Proc. Natl Acad. Sci. – volume: 4 start-page: 1167 year: 2010 end-page: 1179 article-title: GeoChip 3.0 as a high‐throughput tool for analyzing microbial community composition, structure and functional activity publication-title: ISME J. – volume: 46 start-page: 2425 year: 2012 end-page: 2434 article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H‐2 production from waste activated sludge publication-title: Water Res. – volume: 10 start-page: 2297 year: 2001 end-page: 2305 article-title: Genetic diversity of indigenous Rhizobium leguminosarum bv. viciae isolates nodulating two different host plants during soil restoration with alfalfa publication-title: Mol. Ecol. – volume: 64 start-page: 3769 year: 1998 end-page: 3775 article-title: Development of PCR primer systems for amplification of nitrite reductase genes ( and ) to detect denitrifying bacteria in environmental samples publication-title: Appl. Environ. Microbiol. – volume: 4 start-page: 102 year: 2006 end-page: 112 article-title: Microbial biogeography: putting microorganisms on the map publication-title: Nat. Rev. Microbiol. – volume: 12 start-page: 862 year: 2010 end-page: 872 article-title: Biogeography of wetland rice methanotrophs publication-title: Environ. Microbiol. – volume: 7 start-page: 1038 year: 2013 end-page: 1050 article-title: Contemporary environmental variation determines microbial diversity patterns in acid mine drainage publication-title: ISME J. – volume: 28 start-page: 2731 year: 2011 end-page: 2739 article-title: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods publication-title: Mol. Biol. Evol. – volume: 7 start-page: 1985 year: 2005 end-page: 1995 article-title: Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling publication-title: Environ. Microbiol. – volume: 418 start-page: 671 year: 2002 end-page: 677 article-title: Agricultural sustainability and intensive production practices publication-title: Nature – volume: 7 start-page: 301 year: 2005 end-page: 313 article-title: Bacterial diversity promotes community stability and functional resilience after perturbation publication-title: Environ. Microbiol. – volume: 49 start-page: 847 year: 2013 end-page: 856 article-title: Influence of long‐term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice‐field soil publication-title: Biol. Fertil. Soils – volume: 63 start-page: 4704 year: 1997 end-page: 4712 article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine‐scale analysis of natural ammonia‐oxidizing populations publication-title: Appl. Environ. Microbiol. – volume: 19 start-page: 4315 year: 2010 end-page: 4327 article-title: Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales publication-title: Mol. Ecol. – volume: 108 start-page: 7850 year: 2011 end-page: 7854 article-title: Drivers of bacterial beta‐diversity depend on spatial scale publication-title: Proc. Natl Acad. Sci. U. S. A. – volume: 5 start-page: 532 year: 2011 end-page: 542 article-title: Determinants of the distribution of nitrogen‐cycling microbial communities at the landscape scale publication-title: ISME J. – volume: 110 start-page: 213 year: 2012 end-page: 222 article-title: Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’ publication-title: Ann. Bot. – volume: 13 start-page: 980 year: 2007 end-page: 989 article-title: Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function publication-title: Glob. Change Biol. – volume: 77 start-page: 8241 year: 2011 end-page: 8248 article-title: Field‐scale transplantation experiment to investigate structures of soil bacterial communities at pioneering sites publication-title: Appl. Environ. Microbiol. – volume: 9 start-page: 2364 year: 2007 end-page: 2374 article-title: Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices publication-title: Environ. Microbiol. – volume: 73 start-page: 395 year: 2005 end-page: 415 article-title: Linking microbial community composition and soil processes in a California annual grassland and mixed‐conifer forest publication-title: Biogeochemistry – volume: 47 start-page: 630 year: 1999 end-page: 636 article-title: Layer change influences on the hydration of expandable 2: 1 phyllosilicates publication-title: Clays Clay Miner. – volume: 2 start-page: 254 year: 2008 end-page: 264 article-title: Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? publication-title: ISME J. – volume: 320 start-page: 1039 year: 2008 end-page: 1043 article-title: Microbial biogeography: from taxonomy to traits publication-title: Science – volume: 75 start-page: 7537 year: 2009 end-page: 7541 article-title: Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities publication-title: Appl. Environ. Microbiol. – volume: 334 start-page: 403 year: 2011 end-page: 411 article-title: Soil microbial diversity: methodological strategy, spatial overview and functional interest publication-title: C.R. Biol. – volume: 17 start-page: 538 year: 2011 end-page: 550 article-title: Transplantation of organic surface horizons of boreal soils into warmer regions alters microbiology but not the temperature sensitivity of decomposition publication-title: Glob. Change Biol. – volume: 13 start-page: 28 year: 2007 end-page: 39 article-title: Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem publication-title: Glob. Change Biol. – volume: 75 start-page: 5111 year: 2009 end-page: 5120 article-title: Pyrosequencing‐based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Appl. Environ. Microbiol. – volume: 13 start-page: 1642 year: 2011 end-page: 1654 article-title: The bacterial biogeography of British soils publication-title: Environ. Microbiol. – volume: 68 start-page: 3818 year: 2002 end-page: 3829 article-title: Biodiversity of denitrifying and dinitrogen‐fixing bacteria in an acid forest soil publication-title: Appl. Environ. Microbiol. – volume: 4 start-page: 1144 year: 2010 end-page: 1153 article-title: Freshwater Perkinsea and marine‐freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA publication-title: ISME J. – volume: 35 start-page: 7188 year: 2007 end-page: 7196 article-title: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB publication-title: Nucleic Acids Res. – volume: 446 start-page: 436 year: 2007 end-page: 439 article-title: Immigration history controls diversification in experimental adaptive radiation publication-title: Nature – volume: 69 start-page: 6152 year: 2003 end-page: 6164 article-title: Patterns of community change among ammonia oxidizers in meadow soils upon long‐term incubation at different temperatures publication-title: Appl. Environ. Microbiol. – start-page: 163 year: 2011 end-page: 200 – volume: 432 start-page: 747 year: 2004 end-page: 750 article-title: Spatial scaling of microbial eukaryote diversity publication-title: Nature – volume: 41 start-page: 95 year: 1999 end-page: 98 article-title: BioEdit: a user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT publication-title: Nucleic Acids Symp. Ser. – volume: 52 start-page: 716 year: 2006 end-page: 724 article-title: Response of microbial community composition and function to soil climate change publication-title: Microb. Ecol. – volume: 96 start-page: 1175 year: 1999 end-page: 1180 article-title: Nitrogen fertilizer: retrospect and prospect publication-title: Proc. Natl Acad. Sci. U. S. A. – volume: 35 start-page: 1527 year: 2011 end-page: 1540 article-title: Land‐use systems affect archaeal community structure and functional diversity in western amazon soils publication-title: Rev. Bras. Cienc. Solo – volume: 11 start-page: 1658 year: 2009 end-page: 1671 article-title: Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil publication-title: Environ. Microbiol. – volume: 66 start-page: 5448 year: 2000 end-page: 5456 article-title: Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil publication-title: Appl. Environ. Microbiol. – ident: e_1_2_10_37_1 doi: 10.1128/AEM.00335-09 – ident: e_1_2_10_73_1 doi: 10.1111/j.1365-2486.2009.02154.x – ident: e_1_2_10_9_1 doi: 10.1128/AEM.02874-09 – ident: e_1_2_10_41_1 doi: 10.1111/j.1462-2920.2009.02131.x – ident: e_1_2_10_21_1 doi: 10.1046/j.1365-294x.1998.00318.x – ident: e_1_2_10_29_1 doi: 10.1016/j.mycres.2007.03.004 – ident: e_1_2_10_74_1 doi: 10.1007/s00248-006-9103-3 – ident: e_1_2_10_49_1 doi: 10.1128/MMBR.00051-12 – ident: e_1_2_10_56_1 doi: 10.1007/s00248-005-5010-2 – volume: 26 start-page: 90 year: 1962 ident: e_1_2_10_70_1 article-title: A paste method for preparation of slides for clay mineral identification by X‐Ray diffraction publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1962.03615995002600010034xc – ident: e_1_2_10_71_1 doi: 10.1038/nature01014 – ident: e_1_2_10_22_1 doi: 10.1126/science.1153475 – ident: e_1_2_10_52_1 doi: 10.1111/j.1462-2920.2009.01879.x – ident: e_1_2_10_13_1 doi: 10.1007/978-1-4419-9650-3_6 – ident: e_1_2_10_17_1 doi: 10.1038/nature05629 – volume: 59 start-page: 695 year: 1993 ident: e_1_2_10_47_1 article-title: Profiling of complex microbial‐populations by denaturing gradient gel‐electrophoresis analysis of polymerase chain reaction‐amplified genes coding for 16S rRNA publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.59.3.695-700.1993 – ident: e_1_2_10_28_1 doi: 10.1038/ismej.2010.46 – ident: e_1_2_10_68_1 doi: 10.1128/AEM.00083-13 – ident: e_1_2_10_19_1 doi: 10.1111/j.1462-2920.2005.00695.x – ident: e_1_2_10_25_1 doi: 10.1038/nrmicro2795 – ident: e_1_2_10_61_1 doi: 10.1128/AEM.63.12.4704-4712.1997 – ident: e_1_2_10_67_1 doi: 10.1007/s00248-011-9807-x – ident: e_1_2_10_69_1 doi: 10.1093/molbev/msr121 – volume-title: Geobiologie of Inleiding Tot de Milieukunde year: 1934 ident: e_1_2_10_3_1 – ident: e_1_2_10_24_1 doi: 10.1007/s00299-001-0399-7 – ident: e_1_2_10_53_1 doi: 10.1038/nrmicro1643 – ident: e_1_2_10_46_1 doi: 10.1007/s00374-013-0779-5 – ident: e_1_2_10_59_1 doi: 10.1111/j.1365-2486.2006.01263.x – ident: e_1_2_10_66_1 doi: 10.1016/j.soilbio.2013.06.021 – ident: e_1_2_10_75_1 doi: 10.1111/j.1758-2229.2009.00130.x – ident: e_1_2_10_77_1 doi: 10.1038/nclimate1331 – ident: e_1_2_10_18_1 doi: 10.1038/ismej.2008.2 – ident: e_1_2_10_36_1 doi: 10.1346/CCMN.1999.0470509 – ident: e_1_2_10_5_1 doi: 10.1111/j.1365-294X.2010.04804.x – ident: e_1_2_10_35_1 doi: 10.1038/ismej.2012.139 – ident: e_1_2_10_30_1 doi: 10.1111/j.1469-8137.1996.tb04351.x – ident: e_1_2_10_57_1 doi: 10.1038/ncomms2431 – ident: e_1_2_10_55_1 doi: 10.1111/j.1365-294X.2012.05659.x – ident: e_1_2_10_43_1 doi: 10.1038/nrmicro1341 – ident: e_1_2_10_76_1 doi: 10.1046/j.0962-1083.2001.01364.x – ident: e_1_2_10_54_1 doi: 10.1093/nar/gkm864 – ident: e_1_2_10_62_1 doi: 10.1093/aob/mcs061 – volume-title: R: a language and environment for statistical computing year: 2008 ident: e_1_2_10_58_1 – ident: e_1_2_10_4_1 doi: 10.1007/s10533-004-0372-y – ident: e_1_2_10_63_1 doi: 10.1016/j.soilbio.2013.02.012 – ident: e_1_2_10_2_1 doi: 10.1128/AEM.69.10.6152-6164.2003 – ident: e_1_2_10_7_1 doi: 10.1038/ismej.2010.39 – ident: e_1_2_10_40_1 doi: 10.1016/j.watres.2012.02.005 – ident: e_1_2_10_78_1 doi: 10.1016/j.soilbio.2013.02.017 – ident: e_1_2_10_6_1 doi: 10.1128/AEM.64.10.3769-3775.1998 – ident: e_1_2_10_38_1 doi: 10.1128/AEM.05778-11 – ident: e_1_2_10_10_1 doi: 10.1128/AEM.66.12.5448-5456.2000 – ident: e_1_2_10_15_1 doi: 10.1073/pnas.0506625102 – ident: e_1_2_10_31_1 doi: 10.1016/S0341-8162(98)00053-8 – ident: e_1_2_10_42_1 doi: 10.1016/j.crvi.2010.12.003 – ident: e_1_2_10_34_1 doi: 10.1111/j.1462-2920.2009.01891.x – ident: e_1_2_10_60_1 doi: 10.1128/AEM.68.8.3818-3829.2002 – ident: e_1_2_10_20_1 doi: 10.1016/j.tree.2006.06.012 – volume-title: Vegan: community ecology package. R package version 1.17‐9 year: 2011 ident: e_1_2_10_51_1 – ident: e_1_2_10_12_1 doi: 10.1126/science.1167755 – ident: e_1_2_10_11_1 doi: 10.1111/j.1365-2486.2007.01313.x – ident: e_1_2_10_8_1 doi: 10.1038/ismej.2010.130 – ident: e_1_2_10_48_1 doi: 10.1590/S0100-06832011000500007 – ident: e_1_2_10_23_1 doi: 10.1111/j.1462-2920.2011.02480.x – ident: e_1_2_10_72_1 doi: 10.1111/j.1462-2920.2005.00906.x – ident: e_1_2_10_26_1 doi: 10.1038/ismej.2012.127 – ident: e_1_2_10_44_1 doi: 10.1073/pnas.1016308108 – ident: e_1_2_10_32_1 doi: 10.1186/gb-2007-8-7-r143 – ident: e_1_2_10_14_1 doi: 10.1073/pnas.0507535103 – ident: e_1_2_10_64_1 doi: 10.1007/s00442-010-1650-0 – ident: e_1_2_10_65_1 doi: 10.1128/AEM.01541-09 – ident: e_1_2_10_16_1 doi: 10.1073/pnas.96.4.1175 – ident: e_1_2_10_27_1 doi: 10.1111/j.1462-2920.2007.01358.x – ident: e_1_2_10_39_1 doi: 10.1046/j.1365-2486.2003.00647.x – ident: e_1_2_10_50_1 doi: 10.1046/j.1462-2920.2003.00476.x – start-page: 378 volume-title: X‐ray diffraction and the identification and analysis of clay minerals year: 1997 ident: e_1_2_10_45_1 – ident: e_1_2_10_33_1 doi: 10.1073/pnas.0901644106 – reference: 17686032 - Environ Microbiol. 2007 Sep;9(9):2364-74 – reference: 16407148 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31 – reference: 12919414 - Environ Microbiol. 2003 Sep;5(9):787-97 – reference: 20703315 - ISME J. 2011 Mar;5(3):532-42 – reference: 11097926 - Appl Environ Microbiol. 2000 Dec;66(12):5448-56 – reference: 20393574 - ISME J. 2010 Sep;4(9):1144-53 – reference: 23385579 - Nat Commun. 2013;4:1434 – reference: 9758798 - Appl Environ Microbiol. 1998 Oct;64(10):3769-75 – reference: 23096401 - ISME J. 2013 Mar;7(3):498-508 – reference: 22451600 - Ann Bot. 2012 Jul;110(2):213-22 – reference: 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12 – reference: 17572334 - Mycol Res. 2007 May;111(Pt 5):509-47 – reference: 12147477 - Appl Environ Microbiol. 2002 Aug;68(8):3818-29 – reference: 22580365 - Nat Rev Microbiol. 2012 May 14;10(7):497-506 – reference: 15683391 - Environ Microbiol. 2005 Mar;7(3):301-13 – reference: 17106806 - Microb Ecol. 2007 Feb;53(2):197-207 – reference: 20461412 - Oecologia. 2010 Sep;164(1):141-50 – reference: 21507180 - Environ Microbiol. 2011 Jun;13(6):1642-54 – reference: 23524671 - Appl Environ Microbiol. 2013 Jun;79(11):3327-35 – reference: 17947321 - Nucleic Acids Res. 2007;35(21):7188-96 – reference: 16815589 - Trends Ecol Evol. 2006 Sep;21(9):501-7 – reference: 21518859 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7850-4 – reference: 17061172 - Microb Ecol. 2006 Nov;52(4):716-24 – reference: 21640949 - C R Biol. 2011 May;334(5-6):403-11 – reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 – reference: 14532075 - Appl Environ Microbiol. 2003 Oct;69(10):6152-64 – reference: 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9 – reference: 22374298 - Water Res. 2012 May 1;46(7):2425-34 – reference: 20023089 - Appl Environ Microbiol. 2010 Feb;76(4):999-1007 – reference: 18239609 - ISME J. 2008 Mar;2(3):254-64 – reference: 7683183 - Appl Environ Microbiol. 1993 Mar;59(3):695-700 – reference: 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8 – reference: 23766082 - Environ Microbiol Rep. 2010 Apr;2(2):304-12 – reference: 12167873 - Nature. 2002 Aug 8;418(6898):671-7 – reference: 24006468 - Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56 – reference: 15592411 - Nature. 2004 Dec 9;432(7018):747-50 – reference: 20428223 - ISME J. 2010 Sep;4(9):1167-79 – reference: 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71 – reference: 9989997 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1175-80 – reference: 18497288 - Science. 2008 May 23;320(5879):1039-43 – reference: 20050875 - Environ Microbiol. 2010 Apr;12(4):862-72 – reference: 21965395 - Appl Environ Microbiol. 2011 Dec;77(23):8241-8 – reference: 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12 – reference: 17659080 - Genome Biol. 2007;8(7):R143 – reference: 22686398 - Mol Ecol. 2012 Aug;21(15):3852-68 – reference: 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20 – reference: 21298263 - Microb Ecol. 2011 Aug;62(2):474-85 – reference: 23178673 - ISME J. 2013 May;7(5):1038-50 – reference: 19229022 - Science. 2009 Feb 20;323(5917):1014-5 – reference: 16309395 - Environ Microbiol. 2005 Dec;7(12):1985-95 – reference: 11555271 - Mol Ecol. 2001 Sep;10(9):2297-305 – reference: 19260937 - Environ Microbiol. 2009 Jun;11(6):1518-26 – reference: 17377582 - Nature. 2007 Mar 22;446(7134):436-9 – reference: 25241408 - Mol Ecol. 2010 Oct;19(19):4315-27 – reference: 17435792 - Nat Rev Microbiol. 2007 May;5(5):384-92 – reference: 19805104 - Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19685-92 |
SSID | ssj0000602407 |
Score | 2.1327448 |
Snippet | The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1073 |
SubjectTerms | 454 pyrosequencing Archaea Bacteria Biogeography Communities Community structure contemporary disturbance Cycles Ecosystems Empirical analysis Environmental conditions Eukaryotes Experiments Fungi Genes Geographical locations historical contingency Historical structures Laboratories Manures Microbial activity microbial biogeography Microbiomes Microorganisms NifH gene Nitrogen Nitrogen cycle nitrogen cycling Original Research Phylogeny rRNA 16S rRNA 18S Soil microorganisms Soil structure soil transplantation Soil types Soils Studies Transplantation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbaRZV6QX13KVRu1UMvEZvEsZNTBSgIVSqqqiJxi-LXbqTFoWQ58Gv4q52xvYEVLbdEmSROZsbz2R5_Q8gXCMqthECYcGaKhNmsAJ9rWWJEqm3JdWoq3O_845SfnLHv58V5nHAbYlrluk_0HbXuFc6R72d-wa8Ce_x2-SfBqlG4uhpLaDwlW9AFl-WEbB3Wpz9_jbMsM44cXmJNKTTL9o0yOR7xzUD0AF0-TJK8D1599Dl-QbYjbKQHQc8vyRPjXpFntaecvnlNbg_osnfzBPtZ6pPS6B11P-0tHfpuSVeeyHzZht1GjmpzgegQbcDNKSBBirmGKK7ucVbReaiTvugUHUygCoebO0eHRYu7rcLDLzpP6QSNVGHPyeqGBnLa6yvzhpwd17-PTpJYeiFRBcTsBLQn-czAeEyCj7K2hTOZmqK0SmiAXIKnOtMCsJ60mZIzWaVMMqk1nEgOGOgtmbjemfeEWlGZVHIly8owbsvKSq4t3g7gSOt2Sr6u9dCoyEuO5TGWTWBUzhpUGR7xKfk8il4GMo5_Ce2uldlEfxyaO-uZkk_jZfAkXB5pnemvhwawT1XmMOJ4TEYAIORVzuE174J9jC3JGIxUINpPidiwnFEAmbw3r7hu4Rm9ASWKPMvhV3gb-__HNfVRjUsyfOfxr_xAngOyiylGu2QC6jZ7gJ5W8mN0kb8cOCCH priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELYoVaVeqtLfpYDcqodeIjaO4yTihNAihNSqhyJxi_y7G2lxqmY5cOMReAVejSdhxs4GVlDEzZHHiZPxeD7HM58J-Q5OWSpwhIngNk-4YznYnOSJLVLjSmFSW2G-889f4uiEH5_mp2tkb5kLE_khhh9uaBlhvkYDl6rbvSMNtdpmWBYvyEtMrcV4PsZ_Dz9YxgLpuzBdGhnXAUXm5ZJZaMx2h9ar_ugByHwYK3kfwwYndPiWvOnRI92P6t4ga9a_I68mgXn64j253qfz1k9vLq9wwqUhOo3ecfjT1tGubeZ0ERjN5zKmHXlq7BnCRBwMfkoBElIMOkRxfY-8ik7jgemzRtPORs5waNx42s0kpl3Fm581gdsJuqlj8snigkaW2vN_9gM5OZz8OThK-jMYEp2D805AjUqMLSzMFBgrlxKuVGrz0unCAPYqRGqYKQD0Kce0Gqsq5YorY-BCCQBDH8m6b739TKgrKpsqoVVZWS5cWTkljMPmgJKMkSPyY6mJWvcE5XhOxryO1MqsRqVhSYzIt0H0b2TleExoa6nOujfMrmZh37iCaW1Evg7VYFK4TyK9bc-7GkBQVWaw9HhKpgBkKKpMwGM-xREy9IRxWLKA2x-RYmXsDAJI6b1a45tZoPYGuFhkLINPEUbZ_1-unhxMcG9GbD5f9At5DXCvjzvaIuugersNkGqhdoLp3ALeJCKd priority: 102 providerName: Wiley-Blackwell |
Title | A long‐term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.1006 https://www.ncbi.nlm.nih.gov/pubmed/24772284 https://www.proquest.com/docview/2290149301 https://www.proquest.com/docview/1519838821 https://www.proquest.com/docview/1712569366 https://pubmed.ncbi.nlm.nih.gov/PMC3997323 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb5wwEB7loUq9VE1f2TZduVUPvdAGMAYOUZVGRFGlRFHVlXJDGJtdJGLasJGyvyZ_NTM2bHaVpDcQYzDMjOcz9nwD8AWDciExEHqC68jjVRChzxXc07GvqkQoX6eU73x6Jk4m_NdFdLEBQ43N_gN2j07tqJ7U5Kr5dvNv8QMd_qAnEP2uSx3SkdiEbQxIMRUyOO1RvhuQiciLEqeJex3xZJQMHEOrrYkXmCPYDBK-HqQeIM-HGyhXga2NTMcv4UUPKdmhs4Ed2NDmFTzLLB314jXcHrKmNVOPxmBmN6yxe1p_1lasa-uGzS3JeVO4TCTDlL4k5Ej2YaYMUSKjfYgkXq7wWbGpq6E-q0vWaUcjjo1rw7pZQZlY7uaXtaV7wk6WLh9lvmCOuPb6Sr-ByXH25-jE68syeGWE8dxDzUqxr3GuJtF_eVHgmfR1lFRlrBCOxcJXgYoRB8oqKOW-TH0uuVQKT6RAfPQWtkxr9C6wKk61L0Upk1RzUSVpJYWqqDkCJ6WKEXwd9JCXPWc5lc5ocse2HOSkPToSI_i8FP3riDoeE9oblJkPppYHdik5xZFuBJ-Wl9HLaOmkMLq97nLERWkS4mzkfzIxgkWRhgIf887Zx7Ing2GNIF6znKUAsXyvXzH1zLJ9I4KMwyDET2Ft7OmXy7OjjJZrxPsnH_8BniPg63ce7cEWalp_RFA1l2PYDPj5GLZ_Zmfnv8f218TYutEdAH8l_Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT5xAEN-YM0370vR_T227bdqkL0RYlgUemsZazFn10jSa-EbZP9yRnKByprlP02_gZ3SGBfRi65tvEJa7hZnZ-Q078xtCPoJTziQ4QkdwEzg8ZwHYXMYdE3o6j4T2TIz1zgdjMTriP46D4xVy2dXCYFpltyY2C7WuFH4j32TNhl8M-vj19MzBrlG4u9q10LBqsWcWfyBkq7_sfgf5fmJsJzncHjltVwFHBeCOHJiYFK6BUEOC-vEsgzPpmSDKVagBTUBcr5kOAcbInCnpytjjkkut4USKCMmXYMlf5b5w2YCsfkvGP3_1X3VcgZxhYUdh5LJNo4yPR2LZ8d1Cs7eTMm-C5cbb7Twhj1uYSresXj0lK6Z8Rh4kDcX14jn5u0VnVTlxcF2nTRIcvW4VQKuc1lUxo_OGOH2W2eqmkmpzgmgUda6cUECeFHMbcbi6wZFFJ7Yv-7RQtDaWmhxuLkpaTzOs7rI_flI0FFIwSWVrXOYLaslwL87NC3J0L0J5SQZlVZrXhOZhbDwplIxiw0UexbkUOsfbAYxpnQ3J504OqWp50LEdxyy1DM4sRZHhkRiSD_3QU0v-8a9BG50w09b-6_RaW4fkfX8ZLBe3Y7LSVBd1ClgrjnyIcO4aEwIAFbEv4G9eWf3oZ8I4REaALoYkXNKcfgAyhy9fKYtpwyAOqDT0mQ-votGx_z9cmmwnuAUk1u5-ynfk4ejwYD_d3x3vrZNHgCrb9KYNMgDRmzeA3ObybWsulPy-bwu9Aqq8XP4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VqUBcEP8NFFgQSFysxGt7bR8QKq2jlkJUISr1Zrx_iaV0XXAqlKfhPXg6Zry226jQW2-2PE7Wntmdb7wz3xDyBpxyIcARejzUkRcaFsGcK0JPx74yCVe-TrHe-cuU7x-Hn06ikw3yp6uFwbTKbk1sFmpVSfxGPmLNhl8K9jgybVrE0d7kw9kPDztI4U5r107DmcihXv2C8K1-f7AHun7L2CT7trvvtR0GPBmBa_JgkIKPNYQdAkwxLAo4E76OEiNjBcgCYnzFVAyQRhgmxVikfihCoRScCJ4gERMs_5sxRkUDsvkxmx597b_wjDnyh8UdndGYjbTUAR7xdSd4BdleTdC8DJwbzze5R-62kJXuOBu7Tza0fUBuZQ3d9eoh-b1DF5WdebjG0yYhjl60DaCVoXVVLuiyIVFfFK7SyVKlTxGZov3ZGQUUSjHPEcXlJb4sOnM92uelpLV2NOVwc2lpPS-w0sv9-GnZ0EnBIKWrd1muqCPGPf-pH5HjG1HKYzKwldVbhJo41b7gUiSpDrlJUiO4Mng7ADOliiF51-khly0nOrbmWOSOzZnlqDI84kPyuhc9c0Qg_xLa7pSZt2tBnV9Y7pC86i_DLMatmcLq6rzOAXelSQDRznUyMYBRngYc_uaJs49-JCyEKAmQxpDEa5bTCyCL-PoVW84bNnFAqHHAAngVjY39_-HybDfD7SD-9PqnfEluw8zMPx9MD5-ROwAw20ynbTIAzevnAOKW4kU7Wyj5ftMT9C-SI2Ez |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+long-term+field+experiment+of+soil+transplantation+demonstrating+the+role+of+contemporary+geographic+separation+in+shaping+soil+microbial+community+structure&rft.jtitle=Ecology+and+evolution&rft.au=Sun%2C+Bo&rft.au=Wang%2C+Feng&rft.au=Jiang%2C+Yuji&rft.au=Li%2C+Yun&rft.date=2014-04-01&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=4&rft.issue=7&rft.spage=1073&rft_id=info:doi/10.1002%2Fece3.1006&rft_id=info%3Apmid%2F24772284&rft.externalDocID=24772284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon |