A long‐term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure

The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the trad...

Full description

Saved in:
Bibliographic Details
Published inEcology and evolution Vol. 4; no. 7; pp. 1073 - 1087
Main Authors Sun, Bo, Wang, Feng, Jiang, Yuji, Li, Yun, Dong, Zhixin, Li, Zhongpei, Zhang, Xue‐Xian
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.04.2014
John Wiley & Sons Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long‐term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid‐subtropical region and Fengqiu in warm‐temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high‐throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA, nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The relative importance of historical and contemporary factors in shaping microbial community structure was assessed in this work by a long‐term large‐scale soil transplantation experiment, whereby the same two soils (red soil and purple soil from Yingtan, China) were placed into two geographic locations of ~1000 km apart. Twenty years after the transplantation, the resulting soil microbial communities were subject to molecular analysis, including the high‐throughput 454 pyrosequencing of 16S and 18S rRNA genes. The results suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
AbstractList The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long‐term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid‐subtropical region and Fengqiu in warm‐temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high‐throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA , bacterial amoA , nirK, and nifH . Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA , bacterial amoA , nirK, and nifH . Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA, nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The relative importance of historical and contemporary factors in shaping microbial community structure was assessed in this work by a long-term large-scale soil transplantation experiment, whereby the same two soils (red soil and purple soil from Yingtan, China) were placed into two geographic locations of ~1000 km apart. Twenty years after the transplantation, the resulting soil microbial communities were subject to molecular analysis, including the high-throughput 454 pyrosequencing of 16S and 18S rRNA genes. The results suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA, nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long‐term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ~1000 km apart (i.e., Yingtan in the mid‐subtropical region and Fengqiu in warm‐temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high‐throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA, nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. The relative importance of historical and contemporary factors in shaping microbial community structure was assessed in this work by a long‐term large‐scale soil transplantation experiment, whereby the same two soils (red soil and purple soil from Yingtan, China) were placed into two geographic locations of ~1000 km apart. Twenty years after the transplantation, the resulting soil microbial communities were subject to molecular analysis, including the high‐throughput 454 pyrosequencing of 16S and 18S rRNA genes. The results suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil.
Author Dong, Zhixin
Sun, Bo
Li, Yun
Jiang, Yuji
Zhang, Xue‐Xian
Li, Zhongpei
Wang, Feng
Author_xml – sequence: 1
  givenname: Bo
  surname: Sun
  fullname: Sun, Bo
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  organization: University of the Chinese Academy of Sciences
– sequence: 3
  givenname: Yuji
  surname: Jiang
  fullname: Jiang, Yuji
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Yun
  surname: Li
  fullname: Li, Yun
  organization: Sichuan Agricultural University
– sequence: 5
  givenname: Zhixin
  surname: Dong
  fullname: Dong, Zhixin
  organization: Chinese Academy of Science
– sequence: 6
  givenname: Zhongpei
  surname: Li
  fullname: Li, Zhongpei
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Xue‐Xian
  surname: Zhang
  fullname: Zhang, Xue‐Xian
  organization: Massey University at Albany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24772284$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAQxyNUREvpgRdAlrjAYak_kji5IFWr5UOqxAXOlu1Msq4cO9hOYW88Aq_Aq_EkON0tKhUIXzxj__5_zYz9uDhy3kFRPCX4FcGYnoMGtkT1g-KE4rJacV41R3fi4-IsxiucV41pifmj4piWnFPalCfFjwtkvRt-fvueIIyoN2A7BF8nCGYEl5DvUfTGohSki5OVLslkvEMdjN7FfJqMG1DaAgrewoJr7xKMkw8y7NAAfghy2hqNIkwy7MXGobiV06K8MR-NDl4ZabN4HGdn0g5l71mnOcCT4mEvbYSzw35afHqz-bh-t7r88Pb9-uJypauS1ivWtKrGQBuqGGlLKXOmCFRNr3lX1YTXpKMdr3ileqoVVi0pVam6Lieqblp2Wrze-06zGqHTufsgrZjyIHInwksj_rxxZisGfy1Y23JGWTZ4cTAI_vMMMYnRRA02Dw38HAXhhFZ1y-r6_2hF2oY1DSUZfX4PvfJzcHkSgtIWk7JleKGe3S3-d9W3D52B8z2QJx1jgF5os3_K3IuxgmCx_Cax_KYlWmp8eU9xa_o39uD-xVjY_RsUm_WG3Sh-AUab3gA
CitedBy_id crossref_primary_10_1016_j_biocontrol_2021_104628
crossref_primary_10_1002_ece3_6334
crossref_primary_10_3390_d13070282
crossref_primary_10_1016_j_geoderma_2019_06_017
crossref_primary_10_1016_j_soilbio_2020_108119
crossref_primary_10_1007_s00248_019_01414_7
crossref_primary_10_1134_S1064229321070103
crossref_primary_10_1007_s12665_015_4124_1
crossref_primary_10_1016_j_cej_2019_04_213
crossref_primary_10_3390_molecules22050707
crossref_primary_10_1371_journal_pone_0124671
crossref_primary_10_1128_msystems_01159_21
crossref_primary_10_1016_j_catena_2018_10_043
crossref_primary_10_1016_j_still_2020_104804
crossref_primary_10_1139_cjm_2017_0362
crossref_primary_10_1016_j_jconhyd_2021_103779
crossref_primary_10_1016_j_soilbio_2014_10_015
crossref_primary_10_1016_j_scitotenv_2017_10_326
crossref_primary_10_1038_s41396_021_00950_w
crossref_primary_10_1007_s42773_019_00034_1
crossref_primary_10_1016_j_soilbio_2015_05_007
crossref_primary_10_1007_s13213_014_0969_x
crossref_primary_10_1139_cjss_2019_0053
crossref_primary_10_1016_j_apsoil_2018_03_001
crossref_primary_10_1016_j_chnaes_2017_08_003
crossref_primary_10_1016_j_scitotenv_2022_153957
crossref_primary_10_1016_j_soilbio_2017_07_013
crossref_primary_10_1038_ismej_2015_78
Cites_doi 10.1128/AEM.00335-09
10.1111/j.1365-2486.2009.02154.x
10.1128/AEM.02874-09
10.1111/j.1462-2920.2009.02131.x
10.1046/j.1365-294x.1998.00318.x
10.1016/j.mycres.2007.03.004
10.1007/s00248-006-9103-3
10.1128/MMBR.00051-12
10.1007/s00248-005-5010-2
10.2136/sssaj1962.03615995002600010034xc
10.1038/nature01014
10.1126/science.1153475
10.1111/j.1462-2920.2009.01879.x
10.1007/978-1-4419-9650-3_6
10.1038/nature05629
10.1128/aem.59.3.695-700.1993
10.1038/ismej.2010.46
10.1128/AEM.00083-13
10.1111/j.1462-2920.2005.00695.x
10.1038/nrmicro2795
10.1128/AEM.63.12.4704-4712.1997
10.1007/s00248-011-9807-x
10.1093/molbev/msr121
10.1007/s00299-001-0399-7
10.1038/nrmicro1643
10.1007/s00374-013-0779-5
10.1111/j.1365-2486.2006.01263.x
10.1016/j.soilbio.2013.06.021
10.1111/j.1758-2229.2009.00130.x
10.1038/nclimate1331
10.1038/ismej.2008.2
10.1346/CCMN.1999.0470509
10.1111/j.1365-294X.2010.04804.x
10.1038/ismej.2012.139
10.1111/j.1469-8137.1996.tb04351.x
10.1038/ncomms2431
10.1111/j.1365-294X.2012.05659.x
10.1038/nrmicro1341
10.1046/j.0962-1083.2001.01364.x
10.1093/nar/gkm864
10.1093/aob/mcs061
10.1007/s10533-004-0372-y
10.1016/j.soilbio.2013.02.012
10.1128/AEM.69.10.6152-6164.2003
10.1038/ismej.2010.39
10.1016/j.watres.2012.02.005
10.1016/j.soilbio.2013.02.017
10.1128/AEM.64.10.3769-3775.1998
10.1128/AEM.05778-11
10.1128/AEM.66.12.5448-5456.2000
10.1073/pnas.0506625102
10.1016/S0341-8162(98)00053-8
10.1016/j.crvi.2010.12.003
10.1111/j.1462-2920.2009.01891.x
10.1128/AEM.68.8.3818-3829.2002
10.1016/j.tree.2006.06.012
10.1126/science.1167755
10.1111/j.1365-2486.2007.01313.x
10.1038/ismej.2010.130
10.1590/S0100-06832011000500007
10.1111/j.1462-2920.2011.02480.x
10.1111/j.1462-2920.2005.00906.x
10.1038/ismej.2012.127
10.1073/pnas.1016308108
10.1186/gb-2007-8-7-r143
10.1073/pnas.0507535103
10.1007/s00442-010-1650-0
10.1128/AEM.01541-09
10.1073/pnas.96.4.1175
10.1111/j.1462-2920.2007.01358.x
10.1046/j.1365-2486.2003.00647.x
10.1046/j.1462-2920.2003.00476.x
10.1073/pnas.0901644106
ContentType Journal Article
Copyright 2014 The Authors. published by John Wiley & Sons Ltd.
2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2014 The Authors. published by John Wiley & Sons Ltd. 2014
Copyright_xml – notice: 2014 The Authors. published by John Wiley & Sons Ltd.
– notice: 2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2014 The Authors. published by John Wiley & Sons Ltd. 2014
DBID 24P
AAYXX
CITATION
NPM
3V.
7SN
7SS
7ST
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
7T7
7U6
5PM
DOI 10.1002/ece3.1006
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Sustainability Science Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Sustainability Science Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
DatabaseTitleList CrossRef

Technology Research Database
Agricultural Science Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2045-7758
EndPage 1087
ExternalDocumentID PMC3997323
24772284
10_1002_ece3_1006
ECE31006
Genre article
Journal Article
GeographicLocations China
China, People's Rep
GeographicLocations_xml – name: China
– name: China, People's Rep
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 41271258
– fundername: Knowledge Innovation Program of Chinese Academy of Sciences
  funderid: KZCX2‐YW‐407
– fundername: National Basic Research Program of China
  funderid: 2011CB100506; 2014CB441003
– fundername: MURF
– fundername: New Zealand – China Scientist Exchange Program
GroupedDBID 0R~
1OC
24P
53G
5VS
7X2
8-0
8-1
8FE
8FH
AAFWJ
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AFRAH
AIAGR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ATCPS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
D-8
D-9
DIK
EBS
ECGQY
EJD
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEP
ITC
KQ8
LK8
M0K
M48
M7P
M~E
OK1
PIMPY
PROAC
RNS
ROL
RPM
SUPJJ
WIN
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
3V.
7SN
7SS
7ST
8FD
8FK
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
7T7
7U6
5PM
ID FETCH-LOGICAL-c5426-389b60e282b3194aab60b1e58fc7d561761d2d7575bf2cb0b914b4bdd2cbb6893
IEDL.DBID M48
ISSN 2045-7758
IngestDate Thu Aug 21 18:20:41 EDT 2025
Tue Aug 05 11:30:02 EDT 2025
Fri Jul 11 07:43:33 EDT 2025
Wed Aug 13 03:27:12 EDT 2025
Wed Feb 19 01:56:24 EST 2025
Tue Jul 01 01:37:37 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Wed Jan 22 16:23:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords historical contingency
454 pyrosequencing
microbial biogeography
contemporary disturbance
nitrogen cycling
soil transplantation
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5426-389b60e282b3194aab60b1e58fc7d561761d2d7575bf2cb0b914b4bdd2cbb6893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/ece3.1006
PMID 24772284
PQID 2290149301
PQPubID 2034651
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3997323
proquest_miscellaneous_1712569366
proquest_miscellaneous_1519838821
proquest_journals_2290149301
pubmed_primary_24772284
crossref_citationtrail_10_1002_ece3_1006
crossref_primary_10_1002_ece3_1006
wiley_primary_10_1002_ece3_1006_ECE31006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Ecology and evolution
PublicationTitleAlternate Ecol Evol
PublicationYear 2014
Publisher John Wiley & Sons, Inc
John Wiley & Sons Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley & Sons Ltd
References 2010; 12
2013; 4
2013; 66
2010; 19
2013; 61
2011; 62
1999; 47
2011; 13
1999; 41
2013; 7
2011; 17
2008; 2
2012; 10
2007; 35
1934
2009; 11
2006; 21
2005; 102
2003; 9
2005; 73
2007; 8
2007; 9
2003; 5
1996; 133
1999; 96
2007; 5
2011; 28
2010; 2
2010; 4
2009; 323
2012; 21
2001; 10
2010; 76
2011; 334
2006; 52
2007; 446
2013; 49
2011
1997; 63
2000; 66
1997
2008
2011; 77
2010; 164
2011; 35
2002; 418
2006; 4
2007; 53
2008; 320
1998; 64
2011; 5
2007; 13
1993; 59
2012; 110
2012; 2
2011; 108
2004; 432
2009; 75
2013; 77
2013; 79
2007; 111
2002; 68
2003; 69
2005; 7
1962; 26
2012; 46
1998; 32
2006; 103
2009; 106
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Baas‐Becking L. (e_1_2_10_3_1) 1934
R‐Development‐Core‐Team (e_1_2_10_58_1) 2008
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Theissen A. A. (e_1_2_10_70_1) 1962; 26
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
Oksanen J. (e_1_2_10_51_1) 2011
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Muyzer G. (e_1_2_10_47_1) 1993; 59
e_1_2_10_60_1
Moore D. M. (e_1_2_10_45_1) 1997
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_68_1
19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71
19229022 - Science. 2009 Feb 20;323(5917):1014-5
16407148 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31
16309395 - Environ Microbiol. 2005 Dec;7(12):1985-95
17659080 - Genome Biol. 2007;8(7):R143
21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9
22580365 - Nat Rev Microbiol. 2012 May 14;10(7):497-506
18239609 - ISME J. 2008 Mar;2(3):254-64
11555271 - Mol Ecol. 2001 Sep;10(9):2297-305
24006468 - Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56
23178673 - ISME J. 2013 May;7(5):1038-50
16815589 - Trends Ecol Evol. 2006 Sep;21(9):501-7
9758798 - Appl Environ Microbiol. 1998 Oct;64(10):3769-75
17377582 - Nature. 2007 Mar 22;446(7134):436-9
22374298 - Water Res. 2012 May 1;46(7):2425-34
9989997 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1175-80
22686398 - Mol Ecol. 2012 Aug;21(15):3852-68
20393574 - ISME J. 2010 Sep;4(9):1144-53
22451600 - Ann Bot. 2012 Jul;110(2):213-22
17106806 - Microb Ecol. 2007 Feb;53(2):197-207
21640949 - C R Biol. 2011 May;334(5-6):403-11
23385579 - Nat Commun. 2013;4:1434
20023089 - Appl Environ Microbiol. 2010 Feb;76(4):999-1007
19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20
16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12
12167873 - Nature. 2002 Aug 8;418(6898):671-7
19260937 - Environ Microbiol. 2009 Jun;11(6):1518-26
18497288 - Science. 2008 May 23;320(5879):1039-43
20461412 - Oecologia. 2010 Sep;164(1):141-50
17435792 - Nat Rev Microbiol. 2007 May;5(5):384-92
19805104 - Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19685-92
23766082 - Environ Microbiol Rep. 2010 Apr;2(2):304-12
17572334 - Mycol Res. 2007 May;111(Pt 5):509-47
20428223 - ISME J. 2010 Sep;4(9):1167-79
11097926 - Appl Environ Microbiol. 2000 Dec;66(12):5448-56
17061172 - Microb Ecol. 2006 Nov;52(4):716-24
21965395 - Appl Environ Microbiol. 2011 Dec;77(23):8241-8
23524671 - Appl Environ Microbiol. 2013 Jun;79(11):3327-35
21507180 - Environ Microbiol. 2011 Jun;13(6):1642-54
21298263 - Microb Ecol. 2011 Aug;62(2):474-85
12919414 - Environ Microbiol. 2003 Sep;5(9):787-97
17947321 - Nucleic Acids Res. 2007;35(21):7188-96
20050875 - Environ Microbiol. 2010 Apr;12(4):862-72
17686032 - Environ Microbiol. 2007 Sep;9(9):2364-74
25241408 - Mol Ecol. 2010 Oct;19(19):4315-27
19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
12147477 - Appl Environ Microbiol. 2002 Aug;68(8):3818-29
20703315 - ISME J. 2011 Mar;5(3):532-42
14532075 - Appl Environ Microbiol. 2003 Oct;69(10):6152-64
16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8
15683391 - Environ Microbiol. 2005 Mar;7(3):301-13
9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12
7683183 - Appl Environ Microbiol. 1993 Mar;59(3):695-700
21518859 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7850-4
23096401 - ISME J. 2013 Mar;7(3):498-508
15592411 - Nature. 2004 Dec 9;432(7018):747-50
References_xml – volume: 111
  start-page: 509
  year: 2007
  end-page: 547
  article-title: A higher‐level phylogenetic classification of the fungi
  publication-title: Mycol. Res.
– year: 2011
– volume: 61
  start-page: 121
  year: 2013
  end-page: 132
  article-title: Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield
  publication-title: Soil Biol. Biochem.
– volume: 77
  start-page: 342
  year: 2013
  end-page: 356
  article-title: Patterns and processes of microbial community assembly
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 10
  start-page: 497
  year: 2012
  end-page: 506
  article-title: Beyond biogeographic patterns: processes shaping the microbial landscape
  publication-title: Nat. Rev. Microbiol.
– volume: 9
  start-page: 1097
  year: 2003
  end-page: 1105
  article-title: A reciprocal transplant experiment within a climatic gradient in a semiarid shrub‐steppe ecosystem: effects on bunchgrass growth and reproduction, soil carbon, and soil nitrogen
  publication-title: Glob. Change Biol.
– volume: 59
  start-page: 695
  year: 1993
  end-page: 700
  article-title: Profiling of complex microbial‐populations by denaturing gradient gel‐electrophoresis analysis of polymerase chain reaction‐amplified genes coding for 16S rRNA
  publication-title: Appl. Environ. Microbiol.
– volume: 164
  start-page: 141
  year: 2010
  end-page: 150
  article-title: Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes
  publication-title: Oecologia
– volume: 7
  start-page: 498
  year: 2013
  end-page: 508
  article-title: The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale
  publication-title: ISME J.
– volume: 21
  start-page: 501
  year: 2006
  end-page: 507
  article-title: Spatial scaling of microbial biodiversity
  publication-title: Trends Ecol. Evol.
– volume: 2
  start-page: 304
  year: 2010
  end-page: 312
  article-title: Putative ammonia‐oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns
  publication-title: Environ. Microbiol. Rep.
– volume: 2
  start-page: 106
  year: 2012
  end-page: 110
  article-title: Microbial mediation of carbon‐cycle feedbacks to climate warming
  publication-title: Nat. Clim. Chang.
– volume: 323
  start-page: 1014
  year: 2009
  end-page: 1015
  article-title: Controlling eutrophication: nitrogen and phosphorus
  publication-title: Science
– volume: 32
  start-page: 155
  year: 1998
  end-page: 172
  article-title: Soil chronosequences, soil development, and soil evolution: a critical review
  publication-title: Catena
– volume: 4
  start-page: 1434
  year: 2013
  article-title: Turnover of soil bacterial diversity driven by wide‐scale environmental heterogeneity
  publication-title: Nat. Commun.
– volume: 5
  start-page: 384
  year: 2007
  end-page: 392
  article-title: The role of ecological theory in microbial ecology
  publication-title: Nat. Rev. Microbiol.
– volume: 103
  start-page: 626
  year: 2006
  end-page: 631
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: Proc. Natl Acad. Sci. U. S. A.
– volume: 79
  start-page: 3327
  year: 2013
  end-page: 3335
  article-title: Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition
  publication-title: Appl. Environ. Microbiol.
– volume: 26
  start-page: 90
  year: 1962
  end-page: 91
  article-title: A paste method for preparation of slides for clay mineral identification by X‐Ray diffraction
  publication-title: Soil Sci. Soc. Am. J.
– volume: 106
  start-page: 19685
  year: 2009
  end-page: 19692
  article-title: Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions
  publication-title: Proc. Natl Acad. Sci. U. S. A.
– volume: 76
  start-page: 999
  year: 2010
  end-page: 1007
  article-title: Soil microbial community responses to multiple experimental climate change drivers
  publication-title: Appl. Environ. Microbiol.
– volume: 8
  start-page: R143
  year: 2007
  article-title: Accuracy and quality of massively parallel DNA pyrosequencing
  publication-title: Genome Biol.
– year: 1934
– volume: 133
  start-page: 159
  year: 1996
  end-page: 171
  article-title: Population dynamics of indigenous and genetically modified rhizobia in the field
  publication-title: New Phytol.
– volume: 62
  start-page: 474
  year: 2011
  end-page: 485
  article-title: Rice to vegetables: short‐ versus long‐term impact of land‐use change on the indigenous soil microbial community
  publication-title: Microb. Ecol.
– volume: 11
  start-page: 1518
  year: 2009
  end-page: 1526
  article-title: Mapping field‐scale spatial patterns of size and activity of the denitrifier community
  publication-title: Environ. Microbiol.
– volume: 53
  start-page: 197
  year: 2007
  end-page: 207
  article-title: Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution
  publication-title: Microb. Ecol.
– volume: 61
  start-page: 61
  year: 2013
  end-page: 68
  article-title: Grassland management influences spatial patterns of soil microbial communities
  publication-title: Soil Biol. Biochem.
– volume: 5
  start-page: 787
  year: 2003
  end-page: 797
  article-title: Diversity and abundance of in terrestrial habitats studied by 16S RNA surveys and real time PCR
  publication-title: Environ. Microbiol.
– volume: 21
  start-page: 3852
  year: 2012
  end-page: 3868
  article-title: Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms
  publication-title: Mol. Ecol.
– volume: 66
  start-page: 102
  year: 2013
  end-page: 109
  article-title: Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil
  publication-title: Soil Biol. Biochem.
– year: 2008
– start-page: 378
  year: 1997
– volume: 102
  start-page: 14683
  year: 2005
  end-page: 14688
  article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proc. Natl Acad. Sci.
– volume: 4
  start-page: 1167
  year: 2010
  end-page: 1179
  article-title: GeoChip 3.0 as a high‐throughput tool for analyzing microbial community composition, structure and functional activity
  publication-title: ISME J.
– volume: 46
  start-page: 2425
  year: 2012
  end-page: 2434
  article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H‐2 production from waste activated sludge
  publication-title: Water Res.
– volume: 10
  start-page: 2297
  year: 2001
  end-page: 2305
  article-title: Genetic diversity of indigenous Rhizobium leguminosarum bv. viciae isolates nodulating two different host plants during soil restoration with alfalfa
  publication-title: Mol. Ecol.
– volume: 64
  start-page: 3769
  year: 1998
  end-page: 3775
  article-title: Development of PCR primer systems for amplification of nitrite reductase genes ( and ) to detect denitrifying bacteria in environmental samples
  publication-title: Appl. Environ. Microbiol.
– volume: 4
  start-page: 102
  year: 2006
  end-page: 112
  article-title: Microbial biogeography: putting microorganisms on the map
  publication-title: Nat. Rev. Microbiol.
– volume: 12
  start-page: 862
  year: 2010
  end-page: 872
  article-title: Biogeography of wetland rice methanotrophs
  publication-title: Environ. Microbiol.
– volume: 7
  start-page: 1038
  year: 2013
  end-page: 1050
  article-title: Contemporary environmental variation determines microbial diversity patterns in acid mine drainage
  publication-title: ISME J.
– volume: 28
  start-page: 2731
  year: 2011
  end-page: 2739
  article-title: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
  publication-title: Mol. Biol. Evol.
– volume: 7
  start-page: 1985
  year: 2005
  end-page: 1995
  article-title: Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling
  publication-title: Environ. Microbiol.
– volume: 418
  start-page: 671
  year: 2002
  end-page: 677
  article-title: Agricultural sustainability and intensive production practices
  publication-title: Nature
– volume: 7
  start-page: 301
  year: 2005
  end-page: 313
  article-title: Bacterial diversity promotes community stability and functional resilience after perturbation
  publication-title: Environ. Microbiol.
– volume: 49
  start-page: 847
  year: 2013
  end-page: 856
  article-title: Influence of long‐term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice‐field soil
  publication-title: Biol. Fertil. Soils
– volume: 63
  start-page: 4704
  year: 1997
  end-page: 4712
  article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine‐scale analysis of natural ammonia‐oxidizing populations
  publication-title: Appl. Environ. Microbiol.
– volume: 19
  start-page: 4315
  year: 2010
  end-page: 4327
  article-title: Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales
  publication-title: Mol. Ecol.
– volume: 108
  start-page: 7850
  year: 2011
  end-page: 7854
  article-title: Drivers of bacterial beta‐diversity depend on spatial scale
  publication-title: Proc. Natl Acad. Sci. U. S. A.
– volume: 5
  start-page: 532
  year: 2011
  end-page: 542
  article-title: Determinants of the distribution of nitrogen‐cycling microbial communities at the landscape scale
  publication-title: ISME J.
– volume: 110
  start-page: 213
  year: 2012
  end-page: 222
  article-title: Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’
  publication-title: Ann. Bot.
– volume: 13
  start-page: 980
  year: 2007
  end-page: 989
  article-title: Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function
  publication-title: Glob. Change Biol.
– volume: 77
  start-page: 8241
  year: 2011
  end-page: 8248
  article-title: Field‐scale transplantation experiment to investigate structures of soil bacterial communities at pioneering sites
  publication-title: Appl. Environ. Microbiol.
– volume: 9
  start-page: 2364
  year: 2007
  end-page: 2374
  article-title: Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices
  publication-title: Environ. Microbiol.
– volume: 73
  start-page: 395
  year: 2005
  end-page: 415
  article-title: Linking microbial community composition and soil processes in a California annual grassland and mixed‐conifer forest
  publication-title: Biogeochemistry
– volume: 47
  start-page: 630
  year: 1999
  end-page: 636
  article-title: Layer change influences on the hydration of expandable 2: 1 phyllosilicates
  publication-title: Clays Clay Miner.
– volume: 2
  start-page: 254
  year: 2008
  end-page: 264
  article-title: Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies?
  publication-title: ISME J.
– volume: 320
  start-page: 1039
  year: 2008
  end-page: 1043
  article-title: Microbial biogeography: from taxonomy to traits
  publication-title: Science
– volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  article-title: Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities
  publication-title: Appl. Environ. Microbiol.
– volume: 334
  start-page: 403
  year: 2011
  end-page: 411
  article-title: Soil microbial diversity: methodological strategy, spatial overview and functional interest
  publication-title: C.R. Biol.
– volume: 17
  start-page: 538
  year: 2011
  end-page: 550
  article-title: Transplantation of organic surface horizons of boreal soils into warmer regions alters microbiology but not the temperature sensitivity of decomposition
  publication-title: Glob. Change Biol.
– volume: 13
  start-page: 28
  year: 2007
  end-page: 39
  article-title: Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem
  publication-title: Glob. Change Biol.
– volume: 75
  start-page: 5111
  year: 2009
  end-page: 5120
  article-title: Pyrosequencing‐based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale
  publication-title: Appl. Environ. Microbiol.
– volume: 13
  start-page: 1642
  year: 2011
  end-page: 1654
  article-title: The bacterial biogeography of British soils
  publication-title: Environ. Microbiol.
– volume: 68
  start-page: 3818
  year: 2002
  end-page: 3829
  article-title: Biodiversity of denitrifying and dinitrogen‐fixing bacteria in an acid forest soil
  publication-title: Appl. Environ. Microbiol.
– volume: 4
  start-page: 1144
  year: 2010
  end-page: 1153
  article-title: Freshwater Perkinsea and marine‐freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA
  publication-title: ISME J.
– volume: 35
  start-page: 7188
  year: 2007
  end-page: 7196
  article-title: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB
  publication-title: Nucleic Acids Res.
– volume: 446
  start-page: 436
  year: 2007
  end-page: 439
  article-title: Immigration history controls diversification in experimental adaptive radiation
  publication-title: Nature
– volume: 69
  start-page: 6152
  year: 2003
  end-page: 6164
  article-title: Patterns of community change among ammonia oxidizers in meadow soils upon long‐term incubation at different temperatures
  publication-title: Appl. Environ. Microbiol.
– start-page: 163
  year: 2011
  end-page: 200
– volume: 432
  start-page: 747
  year: 2004
  end-page: 750
  article-title: Spatial scaling of microbial eukaryote diversity
  publication-title: Nature
– volume: 41
  start-page: 95
  year: 1999
  end-page: 98
  article-title: BioEdit: a user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT
  publication-title: Nucleic Acids Symp. Ser.
– volume: 52
  start-page: 716
  year: 2006
  end-page: 724
  article-title: Response of microbial community composition and function to soil climate change
  publication-title: Microb. Ecol.
– volume: 96
  start-page: 1175
  year: 1999
  end-page: 1180
  article-title: Nitrogen fertilizer: retrospect and prospect
  publication-title: Proc. Natl Acad. Sci. U. S. A.
– volume: 35
  start-page: 1527
  year: 2011
  end-page: 1540
  article-title: Land‐use systems affect archaeal community structure and functional diversity in western amazon soils
  publication-title: Rev. Bras. Cienc. Solo
– volume: 11
  start-page: 1658
  year: 2009
  end-page: 1671
  article-title: Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil
  publication-title: Environ. Microbiol.
– volume: 66
  start-page: 5448
  year: 2000
  end-page: 5456
  article-title: Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil
  publication-title: Appl. Environ. Microbiol.
– ident: e_1_2_10_37_1
  doi: 10.1128/AEM.00335-09
– ident: e_1_2_10_73_1
  doi: 10.1111/j.1365-2486.2009.02154.x
– ident: e_1_2_10_9_1
  doi: 10.1128/AEM.02874-09
– ident: e_1_2_10_41_1
  doi: 10.1111/j.1462-2920.2009.02131.x
– ident: e_1_2_10_21_1
  doi: 10.1046/j.1365-294x.1998.00318.x
– ident: e_1_2_10_29_1
  doi: 10.1016/j.mycres.2007.03.004
– ident: e_1_2_10_74_1
  doi: 10.1007/s00248-006-9103-3
– ident: e_1_2_10_49_1
  doi: 10.1128/MMBR.00051-12
– ident: e_1_2_10_56_1
  doi: 10.1007/s00248-005-5010-2
– volume: 26
  start-page: 90
  year: 1962
  ident: e_1_2_10_70_1
  article-title: A paste method for preparation of slides for clay mineral identification by X‐Ray diffraction
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1962.03615995002600010034xc
– ident: e_1_2_10_71_1
  doi: 10.1038/nature01014
– ident: e_1_2_10_22_1
  doi: 10.1126/science.1153475
– ident: e_1_2_10_52_1
  doi: 10.1111/j.1462-2920.2009.01879.x
– ident: e_1_2_10_13_1
  doi: 10.1007/978-1-4419-9650-3_6
– ident: e_1_2_10_17_1
  doi: 10.1038/nature05629
– volume: 59
  start-page: 695
  year: 1993
  ident: e_1_2_10_47_1
  article-title: Profiling of complex microbial‐populations by denaturing gradient gel‐electrophoresis analysis of polymerase chain reaction‐amplified genes coding for 16S rRNA
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.59.3.695-700.1993
– ident: e_1_2_10_28_1
  doi: 10.1038/ismej.2010.46
– ident: e_1_2_10_68_1
  doi: 10.1128/AEM.00083-13
– ident: e_1_2_10_19_1
  doi: 10.1111/j.1462-2920.2005.00695.x
– ident: e_1_2_10_25_1
  doi: 10.1038/nrmicro2795
– ident: e_1_2_10_61_1
  doi: 10.1128/AEM.63.12.4704-4712.1997
– ident: e_1_2_10_67_1
  doi: 10.1007/s00248-011-9807-x
– ident: e_1_2_10_69_1
  doi: 10.1093/molbev/msr121
– volume-title: Geobiologie of Inleiding Tot de Milieukunde
  year: 1934
  ident: e_1_2_10_3_1
– ident: e_1_2_10_24_1
  doi: 10.1007/s00299-001-0399-7
– ident: e_1_2_10_53_1
  doi: 10.1038/nrmicro1643
– ident: e_1_2_10_46_1
  doi: 10.1007/s00374-013-0779-5
– ident: e_1_2_10_59_1
  doi: 10.1111/j.1365-2486.2006.01263.x
– ident: e_1_2_10_66_1
  doi: 10.1016/j.soilbio.2013.06.021
– ident: e_1_2_10_75_1
  doi: 10.1111/j.1758-2229.2009.00130.x
– ident: e_1_2_10_77_1
  doi: 10.1038/nclimate1331
– ident: e_1_2_10_18_1
  doi: 10.1038/ismej.2008.2
– ident: e_1_2_10_36_1
  doi: 10.1346/CCMN.1999.0470509
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1365-294X.2010.04804.x
– ident: e_1_2_10_35_1
  doi: 10.1038/ismej.2012.139
– ident: e_1_2_10_30_1
  doi: 10.1111/j.1469-8137.1996.tb04351.x
– ident: e_1_2_10_57_1
  doi: 10.1038/ncomms2431
– ident: e_1_2_10_55_1
  doi: 10.1111/j.1365-294X.2012.05659.x
– ident: e_1_2_10_43_1
  doi: 10.1038/nrmicro1341
– ident: e_1_2_10_76_1
  doi: 10.1046/j.0962-1083.2001.01364.x
– ident: e_1_2_10_54_1
  doi: 10.1093/nar/gkm864
– ident: e_1_2_10_62_1
  doi: 10.1093/aob/mcs061
– volume-title: R: a language and environment for statistical computing
  year: 2008
  ident: e_1_2_10_58_1
– ident: e_1_2_10_4_1
  doi: 10.1007/s10533-004-0372-y
– ident: e_1_2_10_63_1
  doi: 10.1016/j.soilbio.2013.02.012
– ident: e_1_2_10_2_1
  doi: 10.1128/AEM.69.10.6152-6164.2003
– ident: e_1_2_10_7_1
  doi: 10.1038/ismej.2010.39
– ident: e_1_2_10_40_1
  doi: 10.1016/j.watres.2012.02.005
– ident: e_1_2_10_78_1
  doi: 10.1016/j.soilbio.2013.02.017
– ident: e_1_2_10_6_1
  doi: 10.1128/AEM.64.10.3769-3775.1998
– ident: e_1_2_10_38_1
  doi: 10.1128/AEM.05778-11
– ident: e_1_2_10_10_1
  doi: 10.1128/AEM.66.12.5448-5456.2000
– ident: e_1_2_10_15_1
  doi: 10.1073/pnas.0506625102
– ident: e_1_2_10_31_1
  doi: 10.1016/S0341-8162(98)00053-8
– ident: e_1_2_10_42_1
  doi: 10.1016/j.crvi.2010.12.003
– ident: e_1_2_10_34_1
  doi: 10.1111/j.1462-2920.2009.01891.x
– ident: e_1_2_10_60_1
  doi: 10.1128/AEM.68.8.3818-3829.2002
– ident: e_1_2_10_20_1
  doi: 10.1016/j.tree.2006.06.012
– volume-title: Vegan: community ecology package. R package version 1.17‐9
  year: 2011
  ident: e_1_2_10_51_1
– ident: e_1_2_10_12_1
  doi: 10.1126/science.1167755
– ident: e_1_2_10_11_1
  doi: 10.1111/j.1365-2486.2007.01313.x
– ident: e_1_2_10_8_1
  doi: 10.1038/ismej.2010.130
– ident: e_1_2_10_48_1
  doi: 10.1590/S0100-06832011000500007
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1462-2920.2011.02480.x
– ident: e_1_2_10_72_1
  doi: 10.1111/j.1462-2920.2005.00906.x
– ident: e_1_2_10_26_1
  doi: 10.1038/ismej.2012.127
– ident: e_1_2_10_44_1
  doi: 10.1073/pnas.1016308108
– ident: e_1_2_10_32_1
  doi: 10.1186/gb-2007-8-7-r143
– ident: e_1_2_10_14_1
  doi: 10.1073/pnas.0507535103
– ident: e_1_2_10_64_1
  doi: 10.1007/s00442-010-1650-0
– ident: e_1_2_10_65_1
  doi: 10.1128/AEM.01541-09
– ident: e_1_2_10_16_1
  doi: 10.1073/pnas.96.4.1175
– ident: e_1_2_10_27_1
  doi: 10.1111/j.1462-2920.2007.01358.x
– ident: e_1_2_10_39_1
  doi: 10.1046/j.1365-2486.2003.00647.x
– ident: e_1_2_10_50_1
  doi: 10.1046/j.1462-2920.2003.00476.x
– start-page: 378
  volume-title: X‐ray diffraction and the identification and analysis of clay minerals
  year: 1997
  ident: e_1_2_10_45_1
– ident: e_1_2_10_33_1
  doi: 10.1073/pnas.0901644106
– reference: 17686032 - Environ Microbiol. 2007 Sep;9(9):2364-74
– reference: 16407148 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31
– reference: 12919414 - Environ Microbiol. 2003 Sep;5(9):787-97
– reference: 20703315 - ISME J. 2011 Mar;5(3):532-42
– reference: 11097926 - Appl Environ Microbiol. 2000 Dec;66(12):5448-56
– reference: 20393574 - ISME J. 2010 Sep;4(9):1144-53
– reference: 23385579 - Nat Commun. 2013;4:1434
– reference: 9758798 - Appl Environ Microbiol. 1998 Oct;64(10):3769-75
– reference: 23096401 - ISME J. 2013 Mar;7(3):498-508
– reference: 22451600 - Ann Bot. 2012 Jul;110(2):213-22
– reference: 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12
– reference: 17572334 - Mycol Res. 2007 May;111(Pt 5):509-47
– reference: 12147477 - Appl Environ Microbiol. 2002 Aug;68(8):3818-29
– reference: 22580365 - Nat Rev Microbiol. 2012 May 14;10(7):497-506
– reference: 15683391 - Environ Microbiol. 2005 Mar;7(3):301-13
– reference: 17106806 - Microb Ecol. 2007 Feb;53(2):197-207
– reference: 20461412 - Oecologia. 2010 Sep;164(1):141-50
– reference: 21507180 - Environ Microbiol. 2011 Jun;13(6):1642-54
– reference: 23524671 - Appl Environ Microbiol. 2013 Jun;79(11):3327-35
– reference: 17947321 - Nucleic Acids Res. 2007;35(21):7188-96
– reference: 16815589 - Trends Ecol Evol. 2006 Sep;21(9):501-7
– reference: 21518859 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7850-4
– reference: 17061172 - Microb Ecol. 2006 Nov;52(4):716-24
– reference: 21640949 - C R Biol. 2011 May;334(5-6):403-11
– reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
– reference: 14532075 - Appl Environ Microbiol. 2003 Oct;69(10):6152-64
– reference: 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9
– reference: 22374298 - Water Res. 2012 May 1;46(7):2425-34
– reference: 20023089 - Appl Environ Microbiol. 2010 Feb;76(4):999-1007
– reference: 18239609 - ISME J. 2008 Mar;2(3):254-64
– reference: 7683183 - Appl Environ Microbiol. 1993 Mar;59(3):695-700
– reference: 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8
– reference: 23766082 - Environ Microbiol Rep. 2010 Apr;2(2):304-12
– reference: 12167873 - Nature. 2002 Aug 8;418(6898):671-7
– reference: 24006468 - Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56
– reference: 15592411 - Nature. 2004 Dec 9;432(7018):747-50
– reference: 20428223 - ISME J. 2010 Sep;4(9):1167-79
– reference: 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71
– reference: 9989997 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1175-80
– reference: 18497288 - Science. 2008 May 23;320(5879):1039-43
– reference: 20050875 - Environ Microbiol. 2010 Apr;12(4):862-72
– reference: 21965395 - Appl Environ Microbiol. 2011 Dec;77(23):8241-8
– reference: 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12
– reference: 17659080 - Genome Biol. 2007;8(7):R143
– reference: 22686398 - Mol Ecol. 2012 Aug;21(15):3852-68
– reference: 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20
– reference: 21298263 - Microb Ecol. 2011 Aug;62(2):474-85
– reference: 23178673 - ISME J. 2013 May;7(5):1038-50
– reference: 19229022 - Science. 2009 Feb 20;323(5917):1014-5
– reference: 16309395 - Environ Microbiol. 2005 Dec;7(12):1985-95
– reference: 11555271 - Mol Ecol. 2001 Sep;10(9):2297-305
– reference: 19260937 - Environ Microbiol. 2009 Jun;11(6):1518-26
– reference: 17377582 - Nature. 2007 Mar 22;446(7134):436-9
– reference: 25241408 - Mol Ecol. 2010 Oct;19(19):4315-27
– reference: 17435792 - Nat Rev Microbiol. 2007 May;5(5):384-92
– reference: 19805104 - Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19685-92
SSID ssj0000602407
Score 2.1327448
Snippet The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1073
SubjectTerms 454 pyrosequencing
Archaea
Bacteria
Biogeography
Communities
Community structure
contemporary disturbance
Cycles
Ecosystems
Empirical analysis
Environmental conditions
Eukaryotes
Experiments
Fungi
Genes
Geographical locations
historical contingency
Historical structures
Laboratories
Manures
Microbial activity
microbial biogeography
Microbiomes
Microorganisms
NifH gene
Nitrogen
Nitrogen cycle
nitrogen cycling
Original Research
Phylogeny
rRNA 16S
rRNA 18S
Soil microorganisms
Soil structure
soil transplantation
Soil types
Soils
Studies
Transplantation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbaRZV6QX13KVRu1UMvEZvEsZNTBSgIVSqqqiJxi-LXbqTFoWQ58Gv4q52xvYEVLbdEmSROZsbz2R5_Q8gXCMqthECYcGaKhNmsAJ9rWWJEqm3JdWoq3O_845SfnLHv58V5nHAbYlrluk_0HbXuFc6R72d-wa8Ce_x2-SfBqlG4uhpLaDwlW9AFl-WEbB3Wpz9_jbMsM44cXmJNKTTL9o0yOR7xzUD0AF0-TJK8D1599Dl-QbYjbKQHQc8vyRPjXpFntaecvnlNbg_osnfzBPtZ6pPS6B11P-0tHfpuSVeeyHzZht1GjmpzgegQbcDNKSBBirmGKK7ucVbReaiTvugUHUygCoebO0eHRYu7rcLDLzpP6QSNVGHPyeqGBnLa6yvzhpwd17-PTpJYeiFRBcTsBLQn-czAeEyCj7K2hTOZmqK0SmiAXIKnOtMCsJ60mZIzWaVMMqk1nEgOGOgtmbjemfeEWlGZVHIly8owbsvKSq4t3g7gSOt2Sr6u9dCoyEuO5TGWTWBUzhpUGR7xKfk8il4GMo5_Ce2uldlEfxyaO-uZkk_jZfAkXB5pnemvhwawT1XmMOJ4TEYAIORVzuE174J9jC3JGIxUINpPidiwnFEAmbw3r7hu4Rm9ASWKPMvhV3gb-__HNfVRjUsyfOfxr_xAngOyiylGu2QC6jZ7gJ5W8mN0kb8cOCCH
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELYoVaVeqtLfpYDcqodeIjaO4yTihNAihNSqhyJxi_y7G2lxqmY5cOMReAVejSdhxs4GVlDEzZHHiZPxeD7HM58J-Q5OWSpwhIngNk-4YznYnOSJLVLjSmFSW2G-889f4uiEH5_mp2tkb5kLE_khhh9uaBlhvkYDl6rbvSMNtdpmWBYvyEtMrcV4PsZ_Dz9YxgLpuzBdGhnXAUXm5ZJZaMx2h9ar_ugByHwYK3kfwwYndPiWvOnRI92P6t4ga9a_I68mgXn64j253qfz1k9vLq9wwqUhOo3ecfjT1tGubeZ0ERjN5zKmHXlq7BnCRBwMfkoBElIMOkRxfY-8ik7jgemzRtPORs5waNx42s0kpl3Fm581gdsJuqlj8snigkaW2vN_9gM5OZz8OThK-jMYEp2D805AjUqMLSzMFBgrlxKuVGrz0unCAPYqRGqYKQD0Kce0Gqsq5YorY-BCCQBDH8m6b739TKgrKpsqoVVZWS5cWTkljMPmgJKMkSPyY6mJWvcE5XhOxryO1MqsRqVhSYzIt0H0b2TleExoa6nOujfMrmZh37iCaW1Evg7VYFK4TyK9bc-7GkBQVWaw9HhKpgBkKKpMwGM-xREy9IRxWLKA2x-RYmXsDAJI6b1a45tZoPYGuFhkLINPEUbZ_1-unhxMcG9GbD5f9At5DXCvjzvaIuugersNkGqhdoLp3ALeJCKd
  priority: 102
  providerName: Wiley-Blackwell
Title A long‐term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.1006
https://www.ncbi.nlm.nih.gov/pubmed/24772284
https://www.proquest.com/docview/2290149301
https://www.proquest.com/docview/1519838821
https://www.proquest.com/docview/1712569366
https://pubmed.ncbi.nlm.nih.gov/PMC3997323
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb5wwEB7loUq9VE1f2TZduVUPvdAGMAYOUZVGRFGlRFHVlXJDGJtdJGLasJGyvyZ_NTM2bHaVpDcQYzDMjOcz9nwD8AWDciExEHqC68jjVRChzxXc07GvqkQoX6eU73x6Jk4m_NdFdLEBQ43N_gN2j07tqJ7U5Kr5dvNv8QMd_qAnEP2uSx3SkdiEbQxIMRUyOO1RvhuQiciLEqeJex3xZJQMHEOrrYkXmCPYDBK-HqQeIM-HGyhXga2NTMcv4UUPKdmhs4Ed2NDmFTzLLB314jXcHrKmNVOPxmBmN6yxe1p_1lasa-uGzS3JeVO4TCTDlL4k5Ej2YaYMUSKjfYgkXq7wWbGpq6E-q0vWaUcjjo1rw7pZQZlY7uaXtaV7wk6WLh9lvmCOuPb6Sr-ByXH25-jE68syeGWE8dxDzUqxr3GuJtF_eVHgmfR1lFRlrBCOxcJXgYoRB8oqKOW-TH0uuVQKT6RAfPQWtkxr9C6wKk61L0Upk1RzUSVpJYWqqDkCJ6WKEXwd9JCXPWc5lc5ocse2HOSkPToSI_i8FP3riDoeE9oblJkPppYHdik5xZFuBJ-Wl9HLaOmkMLq97nLERWkS4mzkfzIxgkWRhgIf887Zx7Ing2GNIF6znKUAsXyvXzH1zLJ9I4KMwyDET2Ft7OmXy7OjjJZrxPsnH_8BniPg63ce7cEWalp_RFA1l2PYDPj5GLZ_Zmfnv8f218TYutEdAH8l_Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT5xAEN-YM0370vR_T227bdqkL0RYlgUemsZazFn10jSa-EbZP9yRnKByprlP02_gZ3SGBfRi65tvEJa7hZnZ-Q078xtCPoJTziQ4QkdwEzg8ZwHYXMYdE3o6j4T2TIz1zgdjMTriP46D4xVy2dXCYFpltyY2C7WuFH4j32TNhl8M-vj19MzBrlG4u9q10LBqsWcWfyBkq7_sfgf5fmJsJzncHjltVwFHBeCOHJiYFK6BUEOC-vEsgzPpmSDKVagBTUBcr5kOAcbInCnpytjjkkut4USKCMmXYMlf5b5w2YCsfkvGP3_1X3VcgZxhYUdh5LJNo4yPR2LZ8d1Cs7eTMm-C5cbb7Twhj1uYSresXj0lK6Z8Rh4kDcX14jn5u0VnVTlxcF2nTRIcvW4VQKuc1lUxo_OGOH2W2eqmkmpzgmgUda6cUECeFHMbcbi6wZFFJ7Yv-7RQtDaWmhxuLkpaTzOs7rI_flI0FFIwSWVrXOYLaslwL87NC3J0L0J5SQZlVZrXhOZhbDwplIxiw0UexbkUOsfbAYxpnQ3J504OqWp50LEdxyy1DM4sRZHhkRiSD_3QU0v-8a9BG50w09b-6_RaW4fkfX8ZLBe3Y7LSVBd1ClgrjnyIcO4aEwIAFbEv4G9eWf3oZ8I4REaALoYkXNKcfgAyhy9fKYtpwyAOqDT0mQ-votGx_z9cmmwnuAUk1u5-ynfk4ejwYD_d3x3vrZNHgCrb9KYNMgDRmzeA3ObybWsulPy-bwu9Aqq8XP4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VqUBcEP8NFFgQSFysxGt7bR8QKq2jlkJUISr1Zrx_iaV0XXAqlKfhPXg6Zry226jQW2-2PE7Wntmdb7wz3xDyBpxyIcARejzUkRcaFsGcK0JPx74yCVe-TrHe-cuU7x-Hn06ikw3yp6uFwbTKbk1sFmpVSfxGPmLNhl8K9jgybVrE0d7kw9kPDztI4U5r107DmcihXv2C8K1-f7AHun7L2CT7trvvtR0GPBmBa_JgkIKPNYQdAkwxLAo4E76OEiNjBcgCYnzFVAyQRhgmxVikfihCoRScCJ4gERMs_5sxRkUDsvkxmx597b_wjDnyh8UdndGYjbTUAR7xdSd4BdleTdC8DJwbzze5R-62kJXuOBu7Tza0fUBuZQ3d9eoh-b1DF5WdebjG0yYhjl60DaCVoXVVLuiyIVFfFK7SyVKlTxGZov3ZGQUUSjHPEcXlJb4sOnM92uelpLV2NOVwc2lpPS-w0sv9-GnZ0EnBIKWrd1muqCPGPf-pH5HjG1HKYzKwldVbhJo41b7gUiSpDrlJUiO4Mng7ADOliiF51-khly0nOrbmWOSOzZnlqDI84kPyuhc9c0Qg_xLa7pSZt2tBnV9Y7pC86i_DLMatmcLq6rzOAXelSQDRznUyMYBRngYc_uaJs49-JCyEKAmQxpDEa5bTCyCL-PoVW84bNnFAqHHAAngVjY39_-HybDfD7SD-9PqnfEluw8zMPx9MD5-ROwAw20ynbTIAzevnAOKW4kU7Wyj5ftMT9C-SI2Ez
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+long-term+field+experiment+of+soil+transplantation+demonstrating+the+role+of+contemporary+geographic+separation+in+shaping+soil+microbial+community+structure&rft.jtitle=Ecology+and+evolution&rft.au=Sun%2C+Bo&rft.au=Wang%2C+Feng&rft.au=Jiang%2C+Yuji&rft.au=Li%2C+Yun&rft.date=2014-04-01&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=4&rft.issue=7&rft.spage=1073&rft_id=info:doi/10.1002%2Fece3.1006&rft_id=info%3Apmid%2F24772284&rft.externalDocID=24772284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon