Origin of volatile organic compound emissions from subarctic tundra under global warming

Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. Howe...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 26; no. 3; pp. 1908 - 1925
Main Authors Ghirardo, Andrea, Lindstein, Frida, Koch, Kerstin, Buegger, Franz, Schloter, Michael, Albert, Andreas, Michelsen, Anders, Winkler, J. Barbro, Schnitzler, Jörg‐Peter, Rinnan, Riikka
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems. We studied the origin of biogenic volatile organic compounds (VOCs) and carbon (C) allocation under global warming in subarctic heath tundra ecosystem using isotope labeling of 13CO2. Our results show the importance of de novo monoterpene biosynthesis and the impact of warming in vegetation communities characterized by Salix spp. (willows) or Betula spp. (birch). Warming increased overall VOC emissions and altered the composition of the volatile blend toward more reactive compounds. Analyses of above‐ and belowground 12/13C suggest shifts of C allocation and negative effects of warming on C sequestration in these delicate tundra ecosystems.
AbstractList Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13 CO 2 ‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula . The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13 C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% ( Salix ) and 60%–68% ( Betula ) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% ( Salix ) and 87%–95% ( Betula ). Analyses of above‐ and belowground 12/13 C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO 2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature-dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13 CO2 -labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil-plant-atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13 C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%-44% (Salix) and 60%-68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%-58% (Salix) and 87%-95% (Betula). Analyses of above- and belowground 12/13 C showed shifts of C allocation in the plant-soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature-dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13 CO2 -labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil-plant-atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13 C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%-44% (Salix) and 60%-68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%-58% (Salix) and 87%-95% (Betula). Analyses of above- and belowground 12/13 C showed shifts of C allocation in the plant-soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13 CO 2 ‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula . The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13 C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% ( Salix ) and 60%–68% ( Betula ) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% ( Salix ) and 87%–95% ( Betula ). Analyses of above‐ and belowground 12/13 C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO 2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems. We studied the origin of biogenic volatile organic compounds (VOCs) and carbon (C) allocation under global warming in subarctic heath tundra ecosystem using isotope labeling of 13 CO 2 . Our results show the importance of de novo monoterpene biosynthesis and the impact of warming in vegetation communities characterized by Salix spp. (willows) or Betula spp. (birch). Warming increased overall VOC emissions and altered the composition of the volatile blend toward more reactive compounds. Analyses of above‐ and belowground 12/13 C suggest shifts of C allocation and negative effects of warming on C sequestration in these delicate tundra ecosystems.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature-dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using CO -labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil-plant-atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%-44% (Salix) and 60%-68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%-58% (Salix) and 87%-95% (Betula). Analyses of above- and belowground C showed shifts of C allocation in the plant-soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using ¹³CO₂‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The ¹³C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground ¹²/¹³C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO₂ and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems. We studied the origin of biogenic volatile organic compounds (VOCs) and carbon (C) allocation under global warming in subarctic heath tundra ecosystem using isotope labeling of 13CO2. Our results show the importance of de novo monoterpene biosynthesis and the impact of warming in vegetation communities characterized by Salix spp. (willows) or Betula spp. (birch). Warming increased overall VOC emissions and altered the composition of the volatile blend toward more reactive compounds. Analyses of above‐ and belowground 12/13C suggest shifts of C allocation and negative effects of warming on C sequestration in these delicate tundra ecosystems.
Author Schnitzler, Jörg‐Peter
Koch, Kerstin
Michelsen, Anders
Albert, Andreas
Winkler, J. Barbro
Buegger, Franz
Rinnan, Riikka
Schloter, Michael
Ghirardo, Andrea
Lindstein, Frida
AuthorAffiliation 1 Research Unit Environmental Simulation (EUS) Institute of Biochemical Plant Pathology Helmholtz Zentrum München Neuherberg Germany
2 Terrestrial Ecology Section Department of Biology University of Copenhagen Copenhagen Denmark
4 Research Unit for Comparative Microbiome Analysis (COMI) Helmholtz Zentrum München Neuherberg Germany
5 Center for Permafrost Department of Geoscience and Natural Resource Management University of Copenhagen Copenhagen Denmark
3 Institute of Biochemical Plant Pathology (BIOP) Helmholtz Zentrum München Neuherberg Germany
AuthorAffiliation_xml – name: 4 Research Unit for Comparative Microbiome Analysis (COMI) Helmholtz Zentrum München Neuherberg Germany
– name: 1 Research Unit Environmental Simulation (EUS) Institute of Biochemical Plant Pathology Helmholtz Zentrum München Neuherberg Germany
– name: 2 Terrestrial Ecology Section Department of Biology University of Copenhagen Copenhagen Denmark
– name: 5 Center for Permafrost Department of Geoscience and Natural Resource Management University of Copenhagen Copenhagen Denmark
– name: 3 Institute of Biochemical Plant Pathology (BIOP) Helmholtz Zentrum München Neuherberg Germany
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0003-1973-4007
  surname: Ghirardo
  fullname: Ghirardo, Andrea
  organization: Helmholtz Zentrum München
– sequence: 2
  givenname: Frida
  orcidid: 0000-0002-3981-5966
  surname: Lindstein
  fullname: Lindstein, Frida
  organization: University of Copenhagen
– sequence: 3
  givenname: Kerstin
  orcidid: 0000-0001-5834-8550
  surname: Koch
  fullname: Koch, Kerstin
  organization: Helmholtz Zentrum München
– sequence: 4
  givenname: Franz
  orcidid: 0000-0003-3526-4711
  surname: Buegger
  fullname: Buegger, Franz
  organization: Helmholtz Zentrum München
– sequence: 5
  givenname: Michael
  orcidid: 0000-0003-1671-1125
  surname: Schloter
  fullname: Schloter, Michael
  organization: Helmholtz Zentrum München
– sequence: 6
  givenname: Andreas
  orcidid: 0000-0002-0582-2674
  surname: Albert
  fullname: Albert, Andreas
  organization: Helmholtz Zentrum München
– sequence: 7
  givenname: Anders
  orcidid: 0000-0002-9541-8658
  surname: Michelsen
  fullname: Michelsen, Anders
  organization: University of Copenhagen
– sequence: 8
  givenname: J. Barbro
  orcidid: 0000-0002-7092-9742
  surname: Winkler
  fullname: Winkler, J. Barbro
  organization: Helmholtz Zentrum München
– sequence: 9
  givenname: Jörg‐Peter
  orcidid: 0000-0002-9825-867X
  surname: Schnitzler
  fullname: Schnitzler, Jörg‐Peter
  organization: Helmholtz Zentrum München
– sequence: 10
  givenname: Riikka
  orcidid: 0000-0001-7222-700X
  surname: Rinnan
  fullname: Rinnan, Riikka
  email: riikkar@bio.ku.dk
  organization: University of Copenhagen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31957145$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1LHTEQhoMo9aO98A-UQG_sxWo-JvtxU2gPrQqCNwrehWw2u41kk9NkV_Hfm9NzLCoVc5EMzDMv72RmH2374A1Ch5Qc03xOBt0eU2i42EJ7lJeiYFCX26tYQEEJ5btoP6VbQghnpPyAdjltREVB7KGby2gH63Ho8V1warLO4BAH5a3GOozLMPsOm9GmZINPuI9hxGluVdRTJqacjQrn20Q8uNAqh-9VHK0fPqKdXrlkPm3eA3T96-fV4qy4uDw9X3y_KLQAJoreCKZ03dbZN5R11wkFTQWt1j0VQDtgrKd9Cw0VhLWVIh2vO9BQ8gZqZjQ_QN_Wusu5HU2njZ-icnIZ7ajigwzKypcZb3_LIdzJilR1I8oscLQRiOHPbNIkc7faOKe8CXOSDAiBGrKb91EOjJeUlCvVL6_Q2zBHn38iUxUlUDWsytTn5-b_uX6aTwZO1oCOIaVoeqntlKcUVr1YJymRqw2QeQPk3w3IFV9fVTyJ_o_dqN_nsT-8DcrTxY91xSNrSr-W
CitedBy_id crossref_primary_10_1093_jxb_erab520
crossref_primary_10_1002_ece3_8371
crossref_primary_10_3389_fpls_2020_558979
crossref_primary_10_3390_atmos11060651
crossref_primary_10_1093_aob_mcac004
crossref_primary_10_1021_acs_energyfuels_3c04438
crossref_primary_10_3389_fenvs_2021_649905
crossref_primary_10_1093_treephys_tpab023
crossref_primary_10_1029_2023JG007475
crossref_primary_10_1029_2024JG008067
crossref_primary_10_1093_treephys_tpad087
crossref_primary_10_1111_ppl_14646
crossref_primary_10_1016_j_chemosphere_2022_137489
crossref_primary_10_5194_bg_20_4069_2023
crossref_primary_10_1029_2024JD042616
crossref_primary_10_1029_2021JG006688
crossref_primary_10_1007_s00442_021_04905_y
crossref_primary_10_1007_s00442_021_04907_w
crossref_primary_10_1111_pce_14010
crossref_primary_10_1002_pei3_10100
crossref_primary_10_1007_s11104_022_05576_1
crossref_primary_10_1007_s10021_021_00690_0
crossref_primary_10_1111_gcb_15773
crossref_primary_10_1111_gcb_15471
crossref_primary_10_1186_s12870_020_02745_1
crossref_primary_10_5194_acp_22_2237_2022
crossref_primary_10_1016_j_flora_2024_152638
crossref_primary_10_5194_acp_23_637_2023
crossref_primary_10_1039_D2NP00061J
crossref_primary_10_1016_j_scitotenv_2022_155783
crossref_primary_10_1093_treephys_tpad016
crossref_primary_10_1093_jxb_erad095
crossref_primary_10_1146_annurev_ecolsys_102722_125156
crossref_primary_10_3389_fmicb_2024_1462941
crossref_primary_10_1007_s11104_024_06524_x
crossref_primary_10_1016_j_scitotenv_2021_148516
crossref_primary_10_1111_pce_14416
crossref_primary_10_3389_fpls_2020_549913
crossref_primary_10_1039_D4EA00017J
crossref_primary_10_3390_insects12050409
crossref_primary_10_5194_amt_15_79_2022
crossref_primary_10_3389_fpls_2023_1309747
crossref_primary_10_2139_ssrn_4129960
crossref_primary_10_1111_ppl_13840
Cites_doi 10.5194/bg-8-2247-2011
10.1111/pce.12326
10.1111/gcb.13850
10.1104/pp.114.236018
10.1016/j.atmosenv.2005.10.071
10.1038/s41467-018-04658-y
10.1016/1011-1344(93)80180-H
10.1007/s00300-013-1427-0
10.5194/bg-13-6651-2016
10.1111/j.1469-8137.2008.02587.x
10.1111/j.1365-3040.2009.02104.x
10.1016/j.atmosenv.2006.04.049
10.1016/j.soilbio.2017.03.016
10.1038/srep22152
10.1038/nature01312
10.1111/j.1600-0889.2007.00263.x
10.3389/fmicb.2019.00891
10.1038/nature13032
10.1111/pce.12643
10.1016/S0176-1617(96)80302-6
10.1007/s13280-011-0212-y
10.1038/nature20150
10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2
10.1021/es015872v
10.1007/s00442-014-3008-5
10.1111/gcb.12831
10.1023/A:1006127516791
10.1002/rcm.1620
10.1016/S1369-5266(02)00251-0
10.1002/2015JG003295
10.1073/pnas.1700299114
10.1111/pce.12320
10.1038/ngeo2692
10.1093/jxb/ert455
10.1890/09-0102.1
10.1104/pp.15.00871
10.1016/j.scitotenv.2016.02.111
10.1046/j.1365-3040.2000.00536.x
10.1155/2013/786290
10.1016/j.tplants.2009.12.004
10.1046/j.1365-2486.2001.00414.x
10.1111/j.1469-8137.2009.03044.x
10.1073/pnas.0904128106
10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
10.1111/pce.12340
10.1016/S1352-2310(98)00250-7
10.1055/s-2007-964975
10.1016/S0176-1617(96)80279-3
10.1016/j.plaphy.2015.07.029
10.1007/BF00384257
10.5194/bg-2017-260
10.1016/j.ijms.2009.07.005
10.1111/nph.12021
10.1046/j.1469-8137.2000.00612.x
10.1016/j.soilbio.2018.02.001
10.1111/nph.12391
10.1007/s00425-002-0825-2
10.1126/science.1092805
10.1074/jbc.M302526200
10.1111/j.1469-8137.2007.02330.x
10.1016/S1352-2310(03)00391-1
10.1038/nclimate1465
10.1111/gcb.12143
10.1111/j.1365-2486.2008.01803.x
10.1111/j.1469-8137.2012.04204.x
10.5194/acpd-8-9435-2008
10.1371/journal.pone.0017393
10.1111/j.1469-8137.2010.03270.x
10.1104/pp.103.037374
10.1111/j.1365-2486.2005.00993.x
10.1016/j.tplants.2009.12.006
10.5194/bg-8-2757-2011
10.1016/j.apsoil.2007.12.014
10.1016/j.atmosenv.2015.08.082
10.1029/2010JG001291
10.1002/rcm.1823
10.5194/acp-16-2901-2016
10.1111/j.1365-2389.2007.00911.x
10.1111/j.1365-3040.2012.02545.x
10.1038/s41586-018-0358-x
10.1111/gcb.12953
10.1111/j.1365-2486.2006.01263.x
10.5194/gmd-5-1471-2012
10.1007/s11104-009-9945-9
10.1105/tpc.16.00898
10.1007/s11104-017-3322-x
10.5194/bg-8-3457-2011
10.1007/s11104-014-2031-y
10.1016/j.tplants.2009.12.005
10.1104/pp.110.1.267
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd
2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd
– notice: 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
DOI 10.1111/gcb.14935
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
DocumentTitleAlternate GHIRARDO et al
EISSN 1365-2486
EndPage 1925
ExternalDocumentID PMC7078956
31957145
10_1111_gcb_14935
GCB14935
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Arctic Regions
Arctic region
GeographicLocations_xml – name: Arctic Regions
– name: Arctic region
GrantInformation_xml – fundername: Villum Fonden
  funderid: VKR022589
– fundername: Danmarks Grundforskningsfond
  funderid: CENPERM DNRF100
– fundername: H2020 European Research Council
  funderid: 771012
– fundername: Natur og Univers, Det Frie Forskningsråd
  funderid: DFF‐4181‐00141
– fundername: Danmarks Grundforskningsfond
  grantid: CENPERM DNRF100
– fundername: H2020 European Research Council
  grantid: 771012
– fundername: Villum Fonden
  grantid: VKR022589
– fundername: Natur og Univers, Det Frie Forskningsråd
  grantid: DFF-4181-00141
– fundername: ;
  grantid: VKR022589
– fundername: ;
  grantid: 771012
– fundername: ;
  grantid: CENPERM DNRF100
– fundername: ;
  grantid: DFF‐4181‐00141
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5425-fe52ac8b8136468dd5a4974bccf1541d422f1fb491502b7a0d38d4c4639482ec3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Thu Aug 21 14:04:53 EDT 2025
Fri Jul 11 18:34:30 EDT 2025
Thu Jul 10 19:57:27 EDT 2025
Fri Jul 25 10:31:41 EDT 2025
Wed Feb 19 02:29:18 EST 2025
Thu Apr 24 23:03:27 EDT 2025
Tue Jul 01 03:53:03 EDT 2025
Wed Jan 22 16:34:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords tundra
de novo biosynthesis
global warming
net ecosystem exchange
terpene
subarctic heath
Arctic
volatile organic compound
13CO2
climate change
Language English
License Attribution
2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5425-fe52ac8b8136468dd5a4974bccf1541d422f1fb491502b7a0d38d4c4639482ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Andrea Ghirardo and Frida Lindstein contributed equally to this work.
ORCID 0000-0003-1973-4007
0000-0002-9825-867X
0000-0001-7222-700X
0000-0002-3981-5966
0000-0003-3526-4711
0000-0002-7092-9742
0000-0003-1671-1125
0000-0001-5834-8550
0000-0002-0582-2674
0000-0002-9541-8658
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14935
PMID 31957145
PQID 2371047927
PQPubID 30327
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7078956
proquest_miscellaneous_2400484154
proquest_miscellaneous_2342361066
proquest_journals_2371047927
pubmed_primary_31957145
crossref_citationtrail_10_1111_gcb_14935
crossref_primary_10_1111_gcb_14935
wiley_primary_10_1111_gcb_14935_GCB14935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2018; 560
2018; 120
2010; 15
2019; 10
1993; 21
2008; 39
2010; 187
2013; 200
2016; 540
2008; 8
1996; 148
2014; 176
2017; 111
2016; 39
2003; 278
2014; 379
2014; 65
2013; 19
2018; 9
2004; 135
2013; 2013
1981; 153
2010; 115
2009; 90
2009; 286
2016; 553
2013; 197
2014; 165
2009; 323
2009; 15
2010; 33
2002; 36
2017; 419
2004; 303
2000; 23
2015; 95
2015; 169
2002; 5
2011; 40
2015; 120
2003; 37
2002; 215
2016; 121
2008; 10
2017; 29
2012; 35
2011; 6
2016; 16
2011; 8
2007; 13
2007; 58
2016; 13
2007; 59
2018; 24
2012; 195
2008; 180
2016; 6
2012; 2
2005; 19
2014; 506
2006; 40
2000; 146
2001; 7
2004; 18
2001; 6
2002; 165
1995; 48
2018; 115
2015; 21
2014; 37
2000; 81
1999; 33
2017
1996; 110
2009; 184
2013
2008; 178
2003; 421
2012; 5
2005; 11
2016; 9
2009; 106
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_72_1
e_1_2_6_91_1
IPCC (e_1_2_6_37_1) 2013
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
Joergensen R. G. (e_1_2_6_39_1) 1995; 48
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_94_1
Hakola H. (e_1_2_6_30_1) 2001; 6
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_92_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 21
  start-page: 175
  year: 1993
  end-page: 181
  article-title: A new sunlight simulator for ecological research on plants
  publication-title: Journal of Photochemistry and Photobiology, B: Biology
– volume: 13
  start-page: 28
  year: 2007
  end-page: 39
  article-title: Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem
  publication-title: Global Change Biology
– volume: 33
  start-page: 781
  year: 2010
  end-page: 792
  article-title: Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by CO labelling and PTR‐MS analysis
  publication-title: Plant Cell Environment
– volume: 379
  start-page: 193
  year: 2014
  end-page: 204
  article-title: Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath
  publication-title: Plant and Soil
– volume: 278
  start-page: 26666
  year: 2003
  end-page: 32676
  article-title: Cross‐talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow‐2 cells
  publication-title: The Journal of Biological Chemistry
– volume: 110
  start-page: 267
  year: 1996
  end-page: 275
  article-title: Influence of environmental factors and air composition on the emission of α‐pinene from leaves
  publication-title: Plant Physiology
– volume: 23
  start-page: 229
  year: 2000
  end-page: 234
  article-title: Incomplete C labelling of α‐pinene content of leaves and appearance of unlabelled C in α‐pinene emission in the dark
  publication-title: Plant, Cell & Environment
– volume: 106
  start-page: 8835
  year: 2009
  end-page: 8840
  article-title: Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 33
  start-page: 23
  year: 1999
  end-page: 88
  article-title: Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology
  publication-title: Journal of Atmospheric Chemistry
– volume: 286
  start-page: 122
  year: 2009
  end-page: 128
  article-title: A high resolution and high sensitivity proton‐transfer‐reaction time‐of‐flight mass spectrometer (PTR‐TOF‐MS)
  publication-title: International Journal of Mass Spectrometry
– volume: 121
  start-page: 895
  issue: 3
  year: 2016
  end-page: 902
  article-title: Fourfold higher tundra volatile emissions due to arctic summer warming
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 39
  start-page: 271
  year: 2008
  end-page: 281
  article-title: Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem
  publication-title: Applied Soil Ecology
– volume: 8
  start-page: 2757
  year: 2011
  end-page: 2771
  article-title: Monoterpene and sesquiterpene emissions from exhibit interacting responses to light and temperature
  publication-title: Biogeosciences
– volume: 36
  start-page: 3586
  year: 2002
  end-page: 3596
  article-title: Contribution of biogenic emissions to the formation of ozone and particulate matter in the Eastern United States
  publication-title: Environmental Science and Technology
– volume: 176
  start-page: 35
  year: 2014
  end-page: 55
  article-title: Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: Control by light, temperature and stomatal conductance
  publication-title: Oecologia
– volume: 6
  year: 2011
  article-title: Biogenic volatile organic compound and respiratory CO emissions after C‐labeling: Online tracing of C translocation dynamics in poplar plants
  publication-title: PLoS ONE
– volume: 90
  start-page: 2657
  year: 2009
  end-page: 2663
  article-title: Increased plant biomass in a High Arctic heath community from 1981 to 2008
  publication-title: Ecology
– volume: 200
  start-page: 534
  year: 2013
  end-page: 546
  article-title: Increasing atmospheric CO reduces metabolic and physiological differences between isoprene‐ and non‐isoprene‐emitting poplars
  publication-title: The New Phytologist
– volume: 135
  start-page: 152
  year: 2004
  end-page: 160
  article-title: Contribution of different carbon sources to isoprene biosynthesis in poplar leaves
  publication-title: Plant Physiology
– volume: 37
  start-page: 237
  year: 2014
  end-page: 249
  article-title: Biogenic volatile organic compound emissions in four vegetation types in high arctic Greenland
  publication-title: Polar Biology
– volume: 37
  start-page: 1776
  year: 2014
  end-page: 1789
  article-title: Plant volatiles in extreme terrestrial and marine environments
  publication-title: Plant, Cell and Environment
– volume: 148
  start-page: 456
  year: 1996
  end-page: 463
  article-title: A phytotron for plants stress research: How far can artificial lighting compare to natural sunlight?
  publication-title: Journal of Plant Physiology
– volume: 35
  start-page: 2192
  year: 2012
  end-page: 2207
  article-title: Function of defensive volatiles in pedunculate oak ( ) is tricked by the moth
  publication-title: Plant Cell & Environment
– volume: 120
  start-page: 80
  year: 2018
  end-page: 90
  article-title: Emissions of biogenic volatile organic compounds from arctic shrub litter are coupled with changes in the bacterial community composition
  publication-title: Soil Biology and Biochemistry
– year: 2017
  article-title: C labelling study of constitutive and stress‐induced terpenoide missions from and
  publication-title: Biogeosciences Discussions
– volume: 9
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Strong sesquiterpene emissions from Amazonian soils
  publication-title: Nature Communications
– volume: 146
  start-page: 27
  issue: 1
  year: 2000
  end-page: 36
  article-title: Fumigation with exogenous monoterpenes of a non‐isoprenoid‐emitting oak ( ): Monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures
  publication-title: New Phytologist
– volume: 15
  start-page: 118
  year: 2010
  end-page: 125
  article-title: Induced BVOCs: How to bug our models?
  publication-title: Trends in Plant Science
– volume: 33
  start-page: 2527
  year: 1999
  end-page: 2536
  article-title: Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA
  publication-title: Atmospheric Environment
– volume: 169
  start-page: 560
  year: 2015
  end-page: 575
  article-title: Facing the future: Effects of short‐term climate extremes on isoprene‐emitting and non‐emitting poplar
  publication-title: Plant Physiology
– volume: 48
  start-page: 3
  year: 1995
  end-page: 4
  article-title: The fumigation‐extraction method to estimate soil microbial biomass: Extraction with 0.01 M CaCl
  publication-title: Agribiological Research
– volume: 11
  start-page: 1387
  year: 2005
  end-page: 1401
  article-title: Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO /O concentrations throughout two subsequent growing seasons
  publication-title: Global Change Biology
– volume: 81
  start-page: 1537
  year: 2000
  end-page: 1575
  article-title: Biogenic hydrocarbons in the atmospheric boundary layer: A review
  publication-title: Bulletin of the American Meteorological Society
– volume: 37
  start-page: 1866
  year: 2014
  end-page: 1891
  article-title: Biogenic volatile emissions from the soil
  publication-title: Plant, Cell & Environment
– volume: 215
  start-page: 894
  year: 2002
  end-page: 905
  article-title: On‐line analysis of the CO labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors
  publication-title: Planta
– volume: 39
  start-page: 1204
  year: 2016
  end-page: 1215
  article-title: Effects of heat and drought stress on post illumination bursts of volatile organic compounds in isoprene emitting and non‐emitting poplar
  publication-title: Plant, Cell & Environment
– volume: 37
  start-page: 1965
  year: 2014
  end-page: 1980
  article-title: A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics
  publication-title: Plant, Cell & Environment
– volume: 19
  start-page: 2303
  year: 2013
  end-page: 2338
  article-title: Evidence of current impact of climate change on life: A walk from genes to the biosphere
  publication-title: Global Change Biology
– volume: 8
  start-page: 2247
  year: 2011
  end-page: 2255
  article-title: Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest
  publication-title: Biogeosciences
– volume: 9
  start-page: 349
  year: 2016
  end-page: 353
  article-title: Large increases in Arctic biogenic volatile emissions are a direct effect of warming
  publication-title: Nature Geoscience
– volume: 419
  start-page: 201
  year: 2017
  end-page: 218
  article-title: The fate of C N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems
  publication-title: Plant and Soil
– volume: 180
  start-page: 853
  year: 2008
  end-page: 863
  article-title: Climatic warming increases isoprene emission from a subarctic heath
  publication-title: New Phytologist
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 27
  article-title: Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere
  publication-title: ISRN Atmospheric Sciences
– volume: 153
  start-page: 376
  year: 1981
  end-page: 387
  article-title: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves
  publication-title: Planta
– volume: 16
  start-page: 2901
  year: 2016
  end-page: 2920
  article-title: Urban stress‐induced biogenic VOC emissions and SOA‐forming potentials in Beijing
  publication-title: Atmospheric Chemistry and Physics
– volume: 553
  start-page: 297
  year: 2016
  end-page: 304
  article-title: Warming increases isoprene emissions from an arctic fen
  publication-title: Science of the Total Environment
– volume: 6
  start-page: 237
  year: 2001
  end-page: 249
  article-title: Variation of the VOC emission rates of birch species during the growing season
  publication-title: Boreal Environment Research
– volume: 15
  start-page: 154
  year: 2010
  end-page: 166
  article-title: Abiotic stresses and induced BVOCs
  publication-title: Trends in Plant Science
– volume: 165
  start-page: 382
  year: 2002
  end-page: 396
  article-title: Review: Factors affecting rhizosphere priming effects
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 40
  start-page: 4649
  year: 2006
  end-page: 4662
  article-title: Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico‐chemical characteristics
  publication-title: Atmospheric Environment
– volume: 8
  start-page: 3457
  year: 2011
  end-page: 3489
  article-title: Carbon allocation and carbon isotope fluxes in the plant‐soil‐atmosphere continuum: A review
  publication-title: Biogeosciences
– volume: 421
  start-page: 256
  year: 2003
  end-page: 259
  article-title: Increased CO uncouples growth from isoprene emission in an agriforest ecosystem
  publication-title: Nature
– volume: 184
  start-page: 950
  year: 2009
  end-page: 961
  article-title: Effects of drought on allocation of recent carbon: From beech leaves to soil CO efflux
  publication-title: New Phytologist
– volume: 506
  start-page: 476
  year: 2014
  end-page: 479
  article-title: A large source of low‐volatility secondary organic aerosol
  publication-title: Nature
– volume: 165
  start-page: 37
  year: 2014
  end-page: 51
  article-title: Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene
  publication-title: Plant Physiology
– volume: 178
  start-page: 41
  year: 2008
  end-page: 61
  article-title: Indirect defence via tritrophic interactions
  publication-title: New Phytologist
– volume: 7
  start-page: 531
  year: 2001
  end-page: 544
  article-title: Impact of global warming on the tree species composition of boreal forest in Finland and effects on emissions of isoprenoids
  publication-title: Global Change Biology
– volume: 29
  start-page: 1440
  year: 2017
  end-page: 1459
  article-title: Monoterpenes support systemic acquired resistance within and between plants
  publication-title: The Plant Cell
– volume: 115
  start-page: 4051
  year: 2018
  end-page: 4056
  article-title: Shifting plant species composition in response to climate change stabilizes grassland primary production
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 15
  start-page: 133
  year: 2010
  end-page: 144
  article-title: BVOCs and global change
  publication-title: Trends in Plant Science
– volume: 24
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale
  publication-title: Global Change Biology
– volume: 6
  start-page: 1
  year: 2016
  end-page: 12
  article-title: Sesquiterpene emissions from and : Effects of age, nutrient availability, and co‐cultivation
  publication-title: Scientific Reports
– volume: 8
  start-page: 9435
  year: 2008
  end-page: 9475
  article-title: Technical Note: Quantitative long‐term measurements of VOC concentrations by PTR‐MS – Measurement, calibration, and volume mixing ratio calculation methods
  publication-title: Atmospheric Chemistry and Physics Discussions
– volume: 560
  start-page: 80
  year: 2018
  end-page: 83
  article-title: Globally rising soil heterotrophic respiration over recent decades
  publication-title: Nature
– volume: 40
  start-page: 17
  year: 2011
  end-page: 31
  article-title: The changing face of arctic snow cover: A synthesis of observed and projected changes
  publication-title: Ambio
– volume: 148
  start-page: 115
  year: 1996
  end-page: 119
  article-title: Spectral shaping of artificial UV‐B irradiation for vegetation stress research
  publication-title: Journal of Plant Physiology
– volume: 115
  start-page: G03015
  year: 2010
  article-title: Emissions of volatile organic compounds during the decomposition of plant litter
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 111
  start-page: 15
  year: 2017
  end-page: 24
  article-title: Impact of decade‐long warming, nutrient addition and shading on emission and carbon isotopic composition of CO from two subarctic dwarf shrub heaths
  publication-title: Soil Biology and Biochemistry
– volume: 303
  start-page: 1173
  year: 2004
  end-page: 1176
  article-title: Formation of secondary organic aerosols through photooxidation of isoprene
  publication-title: Science
– volume: 95
  start-page: 113
  year: 2015
  end-page: 120
  article-title: Metabolic cross‐talk between pathways of terpenoid backbone biosynthesis in spike lavender
  publication-title: Plant Physiology and Biochemistry
– volume: 10
  start-page: 1
  year: 2019
  end-page: 15
  article-title: Trichoderma species differ in their volatile profiles and in antagonism toward ectomycorrhiza
  publication-title: Frontiers in Microbiology
– volume: 18
  start-page: 2260
  year: 2004
  end-page: 2266
  article-title: A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 120
  start-page: 117
  year: 2015
  end-page: 126
  article-title: Volatile organic compound emission profiles of four common arctic plants
  publication-title: Atmospheric Environment
– volume: 5
  start-page: 1471
  year: 2012
  end-page: 1492
  article-title: The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions
  publication-title: Geoscientific Model Development
– volume: 65
  start-page: 755
  year: 2014
  end-page: 766
  article-title: The attracts insects by the release of volatile organic compounds
  publication-title: Journal of Experimental Botany
– volume: 19
  start-page: 525
  year: 2005
  end-page: 532
  article-title: Early prediction of wheat quality: Analysis during grain development using mass spectrometry and multivariate data analysis
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 197
  start-page: 49
  year: 2013
  end-page: 57
  article-title: Volatile isoprenoid emissions from plastid to planet
  publication-title: The New Phytologist
– volume: 187
  start-page: 199
  year: 2010
  end-page: 208
  article-title: Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming
  publication-title: The New Phytologist
– volume: 21
  start-page: 3478
  year: 2015
  end-page: 3488
  article-title: Climate change‐induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions
  publication-title: Global Change Biology
– volume: 2
  start-page: 453
  year: 2012
  end-page: 457
  article-title: Plot‐scale evidence of tundra vegetation change and links to recent summer warming
  publication-title: Nature Climate Change
– volume: 21
  start-page: 2349
  year: 2015
  end-page: 2356
  article-title: Convergent ecosystem responses to 23‐year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long‐term climate‐soil carbon feedback
  publication-title: Global Change Biology
– volume: 195
  start-page: 541
  year: 2012
  end-page: 559
  article-title: Modeling the isoprene emission rate from leaves
  publication-title: The New Phytologist
– volume: 5
  start-page: 237
  year: 2002
  end-page: 243
  article-title: The formation and function of plant volatiles: Perfumes for pollinator attraction and defense
  publication-title: Current Opinion in Plant Biology
– volume: 10
  start-page: 8
  year: 2008
  end-page: 28
  article-title: Modeling volatile isoprenoid emissions – A story with split ends
  publication-title: Plant Biology
– volume: 15
  start-page: 1189
  year: 2009
  end-page: 1200
  article-title: Leaf isoprene emission rate as a function of atmospheric CO concentration
  publication-title: Global Change Biology
– volume: 13
  start-page: 6651
  year: 2016
  end-page: 6667
  article-title: Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: A case study from a subarctic tundra heath
  publication-title: Biogeosciences
– volume: 59
  start-page: 526
  year: 2007
  end-page: 534
  article-title: Towards a comprehensive emission inventory of terpenoids from boreal ecosystems
  publication-title: Tellus
– volume: 323
  start-page: 47
  issue: 1–2
  year: 2009
  end-page: 60
  article-title: Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech ( ) and Norway spruce ( )
  publication-title: Plant and Soil
– volume: 37
  start-page: 197
  year: 2003
  end-page: 219
  article-title: Gas‐phase tropospheric chemistry of biogenic volatile organic compounds: A review
  publication-title: Atmospheric Environment
– volume: 40
  start-page: 152
  year: 2006
  end-page: 165
  article-title: Process‐based modelling of isoprenoid emissions from evergreen leaves of (L.)
  publication-title: Atmospheric Environment
– volume: 540
  start-page: 104
  year: 2016
  end-page: 108
  article-title: Quantifying global soil carbon losses in response to warming
  publication-title: Nature
– volume: 58
  start-page: 1175
  year: 2007
  end-page: 1185
  article-title: Determination of the fate of C labelled maize and wheat exudates in an agricultural soil during a short‐term incubation
  publication-title: European Journal of Soil Science
– year: 2013
– volume: 6
  start-page: 237
  year: 2001
  ident: e_1_2_6_30_1
  article-title: Variation of the VOC emission rates of birch species during the growing season
  publication-title: Boreal Environment Research
– ident: e_1_2_6_81_1
  doi: 10.5194/bg-8-2247-2011
– ident: e_1_2_6_25_1
  doi: 10.1111/pce.12326
– ident: e_1_2_6_62_1
  doi: 10.1111/gcb.13850
– ident: e_1_2_6_20_1
  doi: 10.1104/pp.114.236018
– ident: e_1_2_6_24_1
  doi: 10.1016/j.atmosenv.2005.10.071
– ident: e_1_2_6_5_1
  doi: 10.1038/s41467-018-04658-y
– ident: e_1_2_6_78_1
  doi: 10.1016/1011-1344(93)80180-H
– ident: e_1_2_6_77_1
  doi: 10.1007/s00300-013-1427-0
– ident: e_1_2_6_83_1
  doi: 10.5194/bg-13-6651-2016
– ident: e_1_2_6_86_1
  doi: 10.1111/j.1469-8137.2008.02587.x
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1365-3040.2009.02104.x
– ident: e_1_2_6_61_1
  doi: 10.1016/j.atmosenv.2006.04.049
– ident: e_1_2_6_68_1
  doi: 10.1016/j.soilbio.2017.03.016
– ident: e_1_2_6_92_1
  doi: 10.1038/srep22152
– ident: e_1_2_6_74_1
  doi: 10.1038/nature01312
– ident: e_1_2_6_84_1
  doi: 10.1111/j.1600-0889.2007.00263.x
– ident: e_1_2_6_29_1
  doi: 10.3389/fmicb.2019.00891
– ident: e_1_2_6_12_1
  doi: 10.1038/nature13032
– ident: e_1_2_6_41_1
  doi: 10.1111/pce.12643
– ident: e_1_2_6_11_1
  doi: 10.1016/S0176-1617(96)80302-6
– ident: e_1_2_6_7_1
  doi: 10.1007/s13280-011-0212-y
– ident: e_1_2_6_9_1
  doi: 10.1038/nature20150
– ident: e_1_2_6_15_1
  doi: 10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2
– ident: e_1_2_6_67_1
  doi: 10.1021/es015872v
– ident: e_1_2_6_31_1
  doi: 10.1007/s00442-014-3008-5
– ident: e_1_2_6_33_1
  doi: 10.1111/gcb.12831
– ident: e_1_2_6_44_1
  doi: 10.1023/A:1006127516791
– ident: e_1_2_6_48_1
  doi: 10.1002/rcm.1620
– ident: e_1_2_6_66_1
  doi: 10.1016/S1369-5266(02)00251-0
– ident: e_1_2_6_51_1
  doi: 10.1002/2015JG003295
– ident: e_1_2_6_53_1
  doi: 10.1073/pnas.1700299114
– ident: e_1_2_6_73_1
  doi: 10.1111/pce.12320
– ident: e_1_2_6_46_1
  doi: 10.1038/ngeo2692
– ident: e_1_2_6_47_1
  doi: 10.1093/jxb/ert455
– ident: e_1_2_6_36_1
  doi: 10.1890/09-0102.1
– ident: e_1_2_6_88_1
  doi: 10.1104/pp.15.00871
– volume-title: Working Group I Contribution to the IPCC Fifth Assessment Report – Summary for policymakers. Climate change 2013: The physical science basis
  year: 2013
  ident: e_1_2_6_37_1
– ident: e_1_2_6_52_1
  doi: 10.1016/j.scitotenv.2016.02.111
– ident: e_1_2_6_54_1
  doi: 10.1046/j.1365-3040.2000.00536.x
– ident: e_1_2_6_27_1
  doi: 10.1155/2013/786290
– ident: e_1_2_6_2_1
  doi: 10.1016/j.tplants.2009.12.004
– ident: e_1_2_6_43_1
  doi: 10.1046/j.1365-2486.2001.00414.x
– ident: e_1_2_6_75_1
  doi: 10.1111/j.1469-8137.2009.03044.x
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.0904128106
– ident: e_1_2_6_49_1
  doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
– ident: e_1_2_6_63_1
  doi: 10.1111/pce.12340
– ident: e_1_2_6_38_1
  doi: 10.1016/S1352-2310(98)00250-7
– ident: e_1_2_6_26_1
  doi: 10.1055/s-2007-964975
– ident: e_1_2_6_85_1
  doi: 10.1016/S0176-1617(96)80279-3
– ident: e_1_2_6_59_1
  doi: 10.1016/j.plaphy.2015.07.029
– ident: e_1_2_6_90_1
  doi: 10.1007/BF00384257
– ident: e_1_2_6_94_1
  doi: 10.5194/bg-2017-260
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ijms.2009.07.005
– ident: e_1_2_6_32_1
  doi: 10.1111/nph.12021
– volume: 48
  start-page: 3
  year: 1995
  ident: e_1_2_6_39_1
  article-title: The fumigation‐extraction method to estimate soil microbial biomass: Extraction with 0.01 M CaCl2
  publication-title: Agribiological Research
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1469-8137.2000.00612.x
– ident: e_1_2_6_80_1
  doi: 10.1016/j.soilbio.2018.02.001
– ident: e_1_2_6_91_1
  doi: 10.1111/nph.12391
– ident: e_1_2_6_42_1
  doi: 10.1007/s00425-002-0825-2
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1092805
– ident: e_1_2_6_35_1
  doi: 10.1074/jbc.M302526200
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1469-8137.2007.02330.x
– ident: e_1_2_6_3_1
  doi: 10.1016/S1352-2310(03)00391-1
– ident: e_1_2_6_13_1
  doi: 10.1038/nclimate1465
– ident: e_1_2_6_64_1
  doi: 10.1111/gcb.12143
– ident: e_1_2_6_93_1
  doi: 10.1111/j.1365-2486.2008.01803.x
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1469-8137.2012.04204.x
– ident: e_1_2_6_82_1
  doi: 10.5194/acpd-8-9435-2008
– ident: e_1_2_6_16_1
  doi: 10.1371/journal.pone.0017393
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1469-8137.2010.03270.x
– ident: e_1_2_6_76_1
  doi: 10.1104/pp.103.037374
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1365-2486.2005.00993.x
– ident: e_1_2_6_56_1
  doi: 10.1016/j.tplants.2009.12.006
– ident: e_1_2_6_79_1
  doi: 10.5194/bg-8-2757-2011
– ident: e_1_2_6_72_1
  doi: 10.1016/j.apsoil.2007.12.014
– ident: e_1_2_6_89_1
  doi: 10.1016/j.atmosenv.2015.08.082
– ident: e_1_2_6_23_1
  doi: 10.1029/2010JG001291
– ident: e_1_2_6_19_1
  doi: 10.1002/rcm.1823
– ident: e_1_2_6_21_1
  doi: 10.5194/acp-16-2901-2016
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365-2389.2007.00911.x
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-3040.2012.02545.x
– ident: e_1_2_6_4_1
  doi: 10.1038/s41586-018-0358-x
– ident: e_1_2_6_87_1
  doi: 10.1111/gcb.12953
– ident: e_1_2_6_71_1
  doi: 10.1111/j.1365-2486.2006.01263.x
– ident: e_1_2_6_28_1
  doi: 10.5194/gmd-5-1471-2012
– ident: e_1_2_6_57_1
  doi: 10.1007/s11104-009-9945-9
– ident: e_1_2_6_70_1
  doi: 10.1105/tpc.16.00898
– ident: e_1_2_6_69_1
  doi: 10.1007/s11104-017-3322-x
– ident: e_1_2_6_6_1
  doi: 10.5194/bg-8-3457-2011
– ident: e_1_2_6_50_1
  doi: 10.1007/s11104-014-2031-y
– ident: e_1_2_6_65_1
  doi: 10.1016/j.tplants.2009.12.005
– ident: e_1_2_6_55_1
  doi: 10.1104/pp.110.1.267
SSID ssj0003206
Score 2.5095098
Snippet Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1908
SubjectTerms 13CO2
Arctic
Arctic region
Arctic Regions
Atmosphere
Atmospheric chemistry
Atmospheric models
Betula
biochemical mechanisms
Biosynthesis
carbon
Carbon dioxide
carbon sequestration
Chemical composition
Climate
Climate change
Computer simulation
Current data
de novo biosynthesis
Ecosystem
Ecosystems
Emissions
Environment models
Global climate
Global Warming
Heat exchange
Hydrocarbons
Isomers
monoterpenoids
net ecosystem exchange
Organic compounds
plant communities
Plant species
prediction
Primary
Primary s
Salix
sesquiterpenoids
Shrubs
Soil
Soils
Species composition
species diversity
stable isotopes
subarctic heath
summer
Taiga & tundra
Temperature
Temperature dependence
terpene
Terpenes
Terrestrial ecosystems
Tundra
Vegetation
VOCs
Volatile compounds
volatile organic compound
Volatile Organic Compounds
Volatiles
Willow
Title Origin of volatile organic compound emissions from subarctic tundra under global warming
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14935
https://www.ncbi.nlm.nih.gov/pubmed/31957145
https://www.proquest.com/docview/2371047927
https://www.proquest.com/docview/2342361066
https://www.proquest.com/docview/2400484154
https://pubmed.ncbi.nlm.nih.gov/PMC7078956
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS-QwEB88Qbgvp67nWV_k5DjuS8WmSR_4SRcfHKiHKOwHoSRpq-LSle0uon-9M-lD1xdyX0pLppCkM9NfkpnfAPwimjIqrepyrZUreIo2Fyii3I-1lrGQxh4XHB0Hh-fib0_2pmC7yYWp-CHaDTeyDOuvycCVLp8Z-aXRaOaxTwnmFKtFgOj0iTrK57aupudLga7G82tWIYriad-c_Be9Apiv4ySf41f7A9qfhYum61Xcyc3meKQ3zcMLVsf_HNscfKuBKdupNGkeprKiAzNVqcr7DizuPWXEoVjtEsoOOEcIuwdDK8Z-s27_GjGwfVqA3oktu8UGOUMviDrQz1hVRsowimWnkk6MCs7Rll3JKNWFlWONtoedYCNsHSpGWW5DVhGXsDtFsTuX3-F8f--se-jWpRxcI9EruHkmuTKRjvBLiSBKU6kErmS0MTliOC8VnOderkWM-JTrUG2lfpQKIxA_iYhnxl-E6WJQZEvA6N3cS3XAQyNklkcBXhGnbaXGR9XKHfjTfNTE1DznVG6jnzTrHZzdxM6uAxut6G1F7vGW0GqjGUlt32XC_ZA4LmIeOvCzbcb5ouMWVWSDMckIYrZBTPeBjHWhCKKEAz8qZWt7gs5Rhp7ADoQTatgKEDP4ZEtxfWUZwonCCRe-OBVWy94fXHLQ3bU3y58XXYGvnDYdbCDeKkyPhuNsDZHZSK_DFy7-rVtDfAQC0DZ5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5YpdQXq9uqsbaORUpfImYuuYAvdr1sq6tQFPZFQmaSWOmSlb1Q6q_3nMlFV9tSfAkJcwKTyTkn30zOfB_AFtGUkbSqy7VOXMlTjDk_Icr9SGsVSWXs74Luqd-5kN96qjcDu_VemJIfollwo8iw-ZoCnBakH0T5ldEY55FQL2COFL2JOX__-z15lOBWWdMTSmKy8UTFK0R1PM2t01-jJxDzaaXkQwRrP0GHr-Gy7nxZefJzezLW2-b2Ea_jc59uERYqbMr2SmdagpmsaMHLUq3ydwuWD-43xaFZlRVGLXC6iLwHQ2vGPrF2_xphsL16A70zq7zFBjnDRIhu0M9YqSRlGJWzk6oTI805WrUbMdrtwkYTjeGHnWBjbB0mjDa6DVnJXcJ-JVS-c_UWLg4Pztsdt1JzcI3CxODmmeKJCXXoCV_6YZqqROJkRhuTI4zzUsl57uVaRghRuQ6SnVSEqTQSIZQMeWbEMswWgyJbBUb35l6qfR4YqbI89PGIUG0nNQK9K3fgc_1WY1NRnZPiRj-upzw4urEdXQc-NqY3Jb_Hn4zWa9eIqxAfxVwERHMR8cCBzaYZx4v-uCRFNpiQjSRyG4R1_7CxWRRxlHRgpfS2pieYH1XgSexAMOWHjQGRg0-3FNc_LEk4sTjh3BeHwrrZ3x8uPmp_sSdr_2-6Aa86592T-OTr6fE7mOe0BmHr8tZhdjycZO8RqI31BxuPd_D-Ob4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RVFRcEA2lLE2pi6qql5VYP_YhTpAS6IPHoUi5rdb2miJFG5SHEP--M97NlohScYkSeVZyPP5mP9vjbwA-kUwZlVYNudZFKLlFzMUFSe5nWqtMKuOPC87O49Mr-X2ohitwsLgLU-tDtBtuhAwfrwngt9Y9APm10QjzTKgX8JIO-yifi8vLNgwL7gtrRkJJjDWRaGSFKI2nfXT5ZfSIYT5OlHxIYP0baLAB6w11ZIe1r1_DSll1YbUuJnnfha3jv3fW0KwB7bQLwRkS4_HEm7HPrD-6QZbqf23C8MIXxmJjxzBOoZdGJasLPRlG2eZUdIlRSTjaVJsyuozCpnON6MBOsBm2TgpG99AmrJYWYXcFZddcv4GrwfGv_mnYFFsIjULchq5UvDCpTiMRyzi1VhUS1xraGIcsK7KScxc5LTNkkFwnxb4VqZVGIsORKS-N2IJONa7KbWD0rIusjnlipCpdGuMnMql9awQ63wXwZTHquWmUyKkgxihfrEjQQbl3UAB7reltLb_xL6PewnV5g8BpzkVCKhQZTwL42DbjeNGBSFGV4znZSNKeQdb1Hxsf5JDmyADe1rOh7QmGL5VEEjuQLM2T1oC0u5dbqpvfXsObRJZwaYpD4WfU038uP-kf-S87zzf9AK8uvw7yn9_Of7yDNU47BD5rrged2WRevkcaNdO7Hi5_AIXnGEk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origin+of+volatile+organic+compound+emissions+from+subarctic+tundra+under+global+warming&rft.jtitle=Global+change+biology&rft.au=Ghirardo%2C+Andrea&rft.au=Lindstein%2C+Frida&rft.au=Koch%2C+Kerstin&rft.au=Buegger%2C+Franz&rft.date=2020-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=26&rft.issue=3&rft.spage=1908&rft.epage=1925&rft_id=info:doi/10.1111%2Fgcb.14935&rft_id=info%3Apmid%2F31957145&rft.externalDocID=PMC7078956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon