A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity

Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrog...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 25; no. 8; pp. 2530 - 2543
Main Authors Abdalla, Mohamed, Hastings, Astley, Cheng, Kun, Yue, Qian, Chadwick, Dave, Espenberg, Mikk, Truu, Jaak, Rees, Robert M., Smith, Pete
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. Cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased soil organic carbon sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate net greenhouse gas balance by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of the cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting legume–non‐legume mixed cover crops. However, cover crop management need to be adapted to specific soil, management and regional climatic conditions.
AbstractList Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. Cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased soil organic carbon sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate net greenhouse gas balance by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of the cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting legume–non‐legume mixed cover crops. However, cover crop management need to be adapted to specific soil, management and regional climatic conditions.
Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2 -eq ha-1 year-1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2 -eq ha-1 year-1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N 2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly ( p  < 0.001) decreased N leaching and significantly ( p  < 0.001) increased SOC sequestration without having significant ( p  > 0.05) effects on direct N 2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO 2 ‐eq ha −1  year −1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. Cover crops significantly ( p  < 0.001) decreased N leaching and significantly ( p  < 0.001) increased soil organic carbon sequestration without having significant ( p  > 0.05) effects on direct N 2 O emissions. Cover crops could mitigate net greenhouse gas balance by 2.06 ± 2.10 Mg CO 2 ‐eq ha −1  year −1 . One of the potential disadvantages of the cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting legume–non‐legume mixed cover crops. However, cover crop management need to be adapted to specific soil, management and regional climatic conditions.
Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N₂O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N₂O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO₂‐eq ha⁻¹ year⁻¹. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N 2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly ( p  < 0.001) decreased N leaching and significantly ( p  < 0.001) increased SOC sequestration without having significant ( p  > 0.05) effects on direct N 2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO 2 ‐eq ha −1  year −1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO -eq ha  year . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
Author Abdalla, Mohamed
Rees, Robert M.
Truu, Jaak
Smith, Pete
Espenberg, Mikk
Hastings, Astley
Yue, Qian
Chadwick, Dave
Cheng, Kun
AuthorAffiliation 1 Institute of Biological and Environmental Sciences, School of Biological Sciences University of Aberdeen Aberdeen UK
2 Institute of Resource, Ecosystem and Environment of Agriculture, Centre of Climate Change and Agriculture Nanjing Agricultural University Nanjing Jiangsu China
4 Faculty of Science and Technology University of Tartu Tartu Estonia
3 School of Natural Resources Bangor University Bangor Gwynedd UK
5 Scotland's Rural College (SRUC) Edinburgh Edinburgh UK
AuthorAffiliation_xml – name: 4 Faculty of Science and Technology University of Tartu Tartu Estonia
– name: 5 Scotland's Rural College (SRUC) Edinburgh Edinburgh UK
– name: 1 Institute of Biological and Environmental Sciences, School of Biological Sciences University of Aberdeen Aberdeen UK
– name: 2 Institute of Resource, Ecosystem and Environment of Agriculture, Centre of Climate Change and Agriculture Nanjing Agricultural University Nanjing Jiangsu China
– name: 3 School of Natural Resources Bangor University Bangor Gwynedd UK
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0001-8403-327X
  surname: Abdalla
  fullname: Abdalla, Mohamed
  email: mabdalla@abdn.ac.uk
  organization: University of Aberdeen
– sequence: 2
  givenname: Astley
  surname: Hastings
  fullname: Hastings, Astley
  organization: University of Aberdeen
– sequence: 3
  givenname: Kun
  orcidid: 0000-0002-6101-0558
  surname: Cheng
  fullname: Cheng, Kun
  organization: Nanjing Agricultural University
– sequence: 4
  givenname: Qian
  surname: Yue
  fullname: Yue, Qian
  organization: Nanjing Agricultural University
– sequence: 5
  givenname: Dave
  surname: Chadwick
  fullname: Chadwick, Dave
  organization: Bangor University
– sequence: 6
  givenname: Mikk
  orcidid: 0000-0003-0469-6394
  surname: Espenberg
  fullname: Espenberg, Mikk
  organization: University of Tartu
– sequence: 7
  givenname: Jaak
  surname: Truu
  fullname: Truu, Jaak
  organization: University of Tartu
– sequence: 8
  givenname: Robert M.
  surname: Rees
  fullname: Rees, Robert M.
  organization: Scotland's Rural College (SRUC) Edinburgh
– sequence: 9
  givenname: Pete
  orcidid: 0000-0002-3784-1124
  surname: Smith
  fullname: Smith, Pete
  organization: University of Aberdeen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30955227$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9v1SAUx4mZcT_0wX_AkPiiid2gBUpfTOaNTpMlvugzofS0l6UXKtAu97-X7s5Fl2jkBU74nC_nezin6Mh5Bwi9pOSc5nUxmPacMsHYE3RCK8GLkklxtJ45Kyih1TE6jfGGEFKVRDxDxxVpOC_L-gQtl9gEm6zRIw6wWLjFvsdpC9juJm1SXEPjFwiZ81MOHXY2BT-AwyNos7VueIcdJDwEALf1cwQ86IhbPWpnAGvX3aXiKfhuNskuNu2fo6e9HiO8uN_P0PdPH79tPhfXX6--bC6vC8NZyQqQRFAglaaSSE17RrqG96bturqqSMtqQyU3QldlT_qm11DzWmS4MQ1tKLTVGXp_0J3mdgedAZeCHtUU7E6HvfLaqj9vnN2qwS9KSE5rIbPAm3uB4H_MEJPa2WhgzN4gW1VlKYVkDa35f6CEM8rrkmb09SP0xs_B5U5kilNBCCXr269-L_6h6l-_l4G3ByD3N8YA_QNCiVonQ-XJUHeTkdmLR6yxSSfrV992_FfGrR1h_3dpdbX5cMj4CTYbye4
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_138881
crossref_primary_10_1016_j_catena_2024_108180
crossref_primary_10_3390_fermentation9100912
crossref_primary_10_3390_su16135622
crossref_primary_10_1002_jeq2_20474
crossref_primary_10_3389_fmicb_2022_868862
crossref_primary_10_1007_s13593_024_00986_0
crossref_primary_10_1016_j_nbsj_2023_100071
crossref_primary_10_1016_j_fcr_2019_107603
crossref_primary_10_1016_j_fcr_2020_108034
crossref_primary_10_1016_j_agee_2024_108895
crossref_primary_10_1016_j_scitotenv_2021_152532
crossref_primary_10_1016_j_apsoil_2023_105199
crossref_primary_10_1016_j_eja_2021_126302
crossref_primary_10_3390_nitrogen5040056
crossref_primary_10_1016_j_apsoil_2022_104727
crossref_primary_10_1029_2022GL100249
crossref_primary_10_3390_su16188170
crossref_primary_10_1016_j_agsy_2024_104036
crossref_primary_10_1016_j_geoderma_2022_115952
crossref_primary_10_1007_s00374_020_01475_8
crossref_primary_10_3389_fagro_2024_1416379
crossref_primary_10_1007_s42729_023_01192_9
crossref_primary_10_3390_agronomy13082027
crossref_primary_10_3390_agronomy14030551
crossref_primary_10_1016_j_fcr_2022_108803
crossref_primary_10_3390_agronomy13030900
crossref_primary_10_3390_agronomy12123002
crossref_primary_10_3390_f11030325
crossref_primary_10_1016_j_fcr_2022_108807
crossref_primary_10_1073_pnas_2321245121
crossref_primary_10_3390_environments10020019
crossref_primary_10_1002_saj2_20730
crossref_primary_10_1111_gcb_15747
crossref_primary_10_1016_j_fcr_2024_109393
crossref_primary_10_3389_fenvs_2022_971261
crossref_primary_10_1016_j_eja_2024_127114
crossref_primary_10_3389_fsufs_2021_624203
crossref_primary_10_3389_fclim_2021_742320
crossref_primary_10_3390_agriculture10040134
crossref_primary_10_3390_plants12061329
crossref_primary_10_1007_s11104_022_05585_0
crossref_primary_10_1111_ejss_13532
crossref_primary_10_1002_eap_2278
crossref_primary_10_1080_13504509_2022_2124552
crossref_primary_10_1016_j_jenvman_2024_122700
crossref_primary_10_1038_s41587_023_01932_3
crossref_primary_10_1016_j_agee_2024_108985
crossref_primary_10_1016_j_cosust_2023_101275
crossref_primary_10_1002_jeq2_20316
crossref_primary_10_1016_j_landusepol_2021_105791
crossref_primary_10_3390_rs16050834
crossref_primary_10_1002_agj2_21246
crossref_primary_10_1007_s10705_024_10395_0
crossref_primary_10_3390_land13060834
crossref_primary_10_3923_pjbs_2021_888_894
crossref_primary_10_1002_ael2_20103
crossref_primary_10_1515_opag_2022_0181
crossref_primary_10_1111_ejss_13488
crossref_primary_10_1016_j_scitotenv_2023_167143
crossref_primary_10_1080_14735903_2024_2335106
crossref_primary_10_3389_fsoil_2022_970380
crossref_primary_10_1177_03091333221114732
crossref_primary_10_1111_gcb_14951
crossref_primary_10_3390_f14051048
crossref_primary_10_1016_j_still_2021_105063
crossref_primary_10_3390_cli13010015
crossref_primary_10_1016_j_scitotenv_2024_177592
crossref_primary_10_3390_agriculture13020241
crossref_primary_10_3389_fenvs_2022_1059800
crossref_primary_10_3390_en16104225
crossref_primary_10_1002_agg2_20305
crossref_primary_10_1007_s11270_024_07106_4
crossref_primary_10_7717_peerj_14170
crossref_primary_10_1007_s13593_023_00911_x
crossref_primary_10_1016_j_agwat_2024_109246
crossref_primary_10_3390_agronomy10070977
crossref_primary_10_3390_agronomy13061634
crossref_primary_10_1002_saj2_20642
crossref_primary_10_3390_plants14050726
crossref_primary_10_1111_gcb_14989
crossref_primary_10_1002_csc2_20920
crossref_primary_10_1002_agj2_21028
crossref_primary_10_1002_saj2_20409
crossref_primary_10_3389_fenvs_2022_868410
crossref_primary_10_1016_j_agee_2021_107750
crossref_primary_10_1002_jeq2_20330
crossref_primary_10_1111_jac_12761
crossref_primary_10_1134_S1064229322090125
crossref_primary_10_1007_s11367_023_02150_4
crossref_primary_10_1016_j_spc_2023_02_003
crossref_primary_10_1016_j_fcr_2024_109343
crossref_primary_10_1038_s41598_020_70224_6
crossref_primary_10_1073_pnas_2217481120
crossref_primary_10_1111_ejss_13582
crossref_primary_10_1002_jeq2_20445
crossref_primary_10_1007_s42106_025_00336_4
crossref_primary_10_1016_j_scitotenv_2023_168440
crossref_primary_10_3733_ca_2023a0001
crossref_primary_10_1016_j_eja_2021_126407
crossref_primary_10_1016_j_rhisph_2020_100297
crossref_primary_10_1111_gcb_16917
crossref_primary_10_1007_s11368_021_02930_1
crossref_primary_10_1016_j_agsy_2024_104182
crossref_primary_10_3390_plants11091164
crossref_primary_10_3390_su11247119
crossref_primary_10_3389_fsoil_2024_1345073
crossref_primary_10_1093_oxfclm_kgab006
crossref_primary_10_1016_j_envres_2023_116925
crossref_primary_10_1111_cobi_14009
crossref_primary_10_1007_s11104_021_04853_9
crossref_primary_10_1080_00103624_2020_1784923
crossref_primary_10_1007_s42729_023_01464_4
crossref_primary_10_1016_j_scitotenv_2022_154388
crossref_primary_10_1016_j_geoderma_2024_116997
crossref_primary_10_1111_jpn_13409
crossref_primary_10_1007_s11104_023_06431_7
crossref_primary_10_1021_acsengineeringau_3c00031
crossref_primary_10_1007_s13199_022_00888_3
crossref_primary_10_1139_cjps_2021_0133
crossref_primary_10_3389_fpls_2022_920531
crossref_primary_10_1016_j_still_2023_105959
crossref_primary_10_1007_s10668_023_03597_z
crossref_primary_10_1007_s11104_021_05076_8
crossref_primary_10_3389_fpls_2023_1250903
crossref_primary_10_3390_land12081526
crossref_primary_10_1002_ppp3_10481
crossref_primary_10_1071_SR21105
crossref_primary_10_3390_microorganisms12112241
crossref_primary_10_3390_plants14020246
crossref_primary_10_1038_s43017_022_00366_w
crossref_primary_10_1016_j_atech_2024_100621
crossref_primary_10_5194_bg_19_2145_2022
crossref_primary_10_1016_j_fcr_2021_108264
crossref_primary_10_1016_j_agee_2021_107339
crossref_primary_10_1016_j_jclepro_2022_131691
crossref_primary_10_3390_agronomy12092126
crossref_primary_10_1016_j_fcr_2021_108268
crossref_primary_10_3389_fenvs_2022_857625
crossref_primary_10_1016_j_agsy_2023_103723
crossref_primary_10_3390_agriculture11030218
crossref_primary_10_1002_agj2_21340
crossref_primary_10_1038_s41598_023_44104_8
crossref_primary_10_1002_aepp_13442
crossref_primary_10_1016_j_apsoil_2023_105104
crossref_primary_10_1139_cjps_2024_0091
crossref_primary_10_1007_s11104_024_06494_0
crossref_primary_10_1002_agj2_20377
crossref_primary_10_1016_j_tifs_2024_104477
crossref_primary_10_1111_gcbb_12898
crossref_primary_10_1111_1365_2435_14592
crossref_primary_10_1016_j_agwat_2021_107216
crossref_primary_10_3390_agriculture13091714
crossref_primary_10_3390_agronomy11050882
crossref_primary_10_1016_j_resconrec_2023_107025
crossref_primary_10_1016_j_scitotenv_2024_175637
crossref_primary_10_1007_s13593_021_00750_8
crossref_primary_10_1016_j_scitotenv_2022_159990
crossref_primary_10_5194_bg_19_957_2022
crossref_primary_10_1016_j_envpol_2022_119616
crossref_primary_10_1111_gcb_15342
crossref_primary_10_1002_ael2_20070
crossref_primary_10_3390_agriculture12122076
crossref_primary_10_1007_s13593_022_00760_0
crossref_primary_10_3390_su15086517
crossref_primary_10_3390_agronomy15020267
crossref_primary_10_1021_acs_est_3c02161
crossref_primary_10_1038_s41893_023_01112_w
crossref_primary_10_1016_j_agsy_2022_103415
crossref_primary_10_1016_j_fcr_2021_108237
crossref_primary_10_1002_csc2_20991
crossref_primary_10_1016_j_csag_2024_100026
crossref_primary_10_1016_j_apsoil_2024_105573
crossref_primary_10_1016_j_micres_2020_126505
crossref_primary_10_1007_s11104_023_06464_y
crossref_primary_10_1016_j_resconrec_2024_107428
crossref_primary_10_1016_j_scitotenv_2021_149960
crossref_primary_10_1016_j_scitotenv_2021_146457
crossref_primary_10_3389_fenvs_2022_955142
crossref_primary_10_3389_fenrg_2022_837883
crossref_primary_10_3390_rs15133231
crossref_primary_10_3390_nitrogen4010005
crossref_primary_10_1111_ejss_13515
crossref_primary_10_5194_soil_8_269_2022
crossref_primary_10_1016_j_agee_2020_107191
crossref_primary_10_1016_j_scitotenv_2020_142815
crossref_primary_10_1016_j_agee_2024_109097
crossref_primary_10_1002_jeq2_20294
crossref_primary_10_1088_2976_601X_ad7bbe
crossref_primary_10_1016_j_scitotenv_2024_174572
crossref_primary_10_1016_j_jclepro_2020_124255
crossref_primary_10_1007_s44378_025_00035_6
crossref_primary_10_1016_j_agsy_2021_103151
crossref_primary_10_3390_agronomy13071721
crossref_primary_10_1029_2022JG007113
crossref_primary_10_1016_j_fcr_2021_108217
crossref_primary_10_1111_sum_12800
crossref_primary_10_1111_gcb_16884
crossref_primary_10_3390_agronomy11010064
crossref_primary_10_1002_agj2_20340
crossref_primary_10_1007_s11119_024_10162_9
crossref_primary_10_3390_agriculture14122123
crossref_primary_10_3389_fenvs_2022_897221
crossref_primary_10_1016_j_soisec_2024_100170
crossref_primary_10_1186_s13021_024_00256_2
crossref_primary_10_1111_gcb_16632
crossref_primary_10_3390_horticulturae10101066
crossref_primary_10_1016_j_jhydrol_2021_127037
crossref_primary_10_1016_j_still_2024_106369
crossref_primary_10_1080_00380768_2024_2360022
crossref_primary_10_1016_j_still_2021_105311
crossref_primary_10_3390_agronomy13020311
crossref_primary_10_1002_agj2_20999
crossref_primary_10_1016_j_scitotenv_2023_164630
crossref_primary_10_1007_s00374_021_01599_5
crossref_primary_10_1016_j_pedsph_2023_03_011
crossref_primary_10_1111_gcb_16269
crossref_primary_10_1016_j_heliyon_2024_e30400
crossref_primary_10_1007_s11104_022_05438_w
crossref_primary_10_3390_plants12162966
crossref_primary_10_1016_j_tplants_2025_01_009
crossref_primary_10_2139_ssrn_3985893
crossref_primary_10_1016_j_tplants_2022_03_014
crossref_primary_10_1038_s41467_023_44464_9
crossref_primary_10_1038_s41893_023_01131_7
crossref_primary_10_3390_agriculture11090830
crossref_primary_10_3390_agronomy11020387
crossref_primary_10_1016_j_agsy_2023_103684
crossref_primary_10_1002_agj2_21735
crossref_primary_10_1016_j_landusepol_2023_106831
crossref_primary_10_3390_fermentation8110617
crossref_primary_10_3389_fagro_2022_907507
crossref_primary_10_3390_agriculture14091601
crossref_primary_10_1016_j_scitotenv_2024_171781
crossref_primary_10_1016_j_oneear_2023_04_010
crossref_primary_10_1016_j_agee_2024_109178
crossref_primary_10_1016_j_agee_2024_109054
crossref_primary_10_1016_j_eja_2023_126878
crossref_primary_10_1111_gcb_17372
crossref_primary_10_1080_14735903_2023_2211484
crossref_primary_10_3390_plants11233255
crossref_primary_10_1016_j_catena_2024_108649
crossref_primary_10_3390_agronomy15030565
crossref_primary_10_1007_s11368_024_03816_8
crossref_primary_10_3390_rs14184525
crossref_primary_10_3390_agriculture11050394
crossref_primary_10_3390_agronomy14071356
crossref_primary_10_1016_j_agee_2024_109167
crossref_primary_10_3390_agronomy11081501
crossref_primary_10_1016_j_agsy_2023_103663
crossref_primary_10_1556_0088_2022_00117
crossref_primary_10_3390_agriculture10090394
crossref_primary_10_1016_j_agwat_2023_108353
crossref_primary_10_1038_s44264_025_00050_8
crossref_primary_10_1080_15324982_2022_2130114
crossref_primary_10_3389_fmicb_2019_01931
crossref_primary_10_3390_agronomy13051388
crossref_primary_10_1016_j_agee_2024_109274
crossref_primary_10_1007_s10705_021_10126_9
crossref_primary_10_1016_j_soilbio_2024_109548
crossref_primary_10_3390_agronomy14092104
crossref_primary_10_1139_cjps_2021_0177
crossref_primary_10_1016_j_landusepol_2022_106002
crossref_primary_10_3390_su151612183
crossref_primary_10_3390_agriculture11090903
crossref_primary_10_1016_j_fcr_2022_108470
crossref_primary_10_1016_j_fcr_2022_108472
crossref_primary_10_1016_j_envres_2024_118719
crossref_primary_10_3390_agriculture10080329
crossref_primary_10_1016_j_agee_2023_108873
crossref_primary_10_1029_2022EF003142
crossref_primary_10_1016_j_jclepro_2024_140878
crossref_primary_10_1016_j_agee_2023_108755
crossref_primary_10_1016_j_geoderma_2025_117195
crossref_primary_10_1371_journal_pone_0285586
crossref_primary_10_1007_s13593_022_00790_8
crossref_primary_10_48077_scihor7_2023_149
crossref_primary_10_3390_su14020805
crossref_primary_10_1016_j_scitotenv_2023_162007
crossref_primary_10_1016_j_agwat_2022_108039
crossref_primary_10_1016_j_catena_2024_108538
crossref_primary_10_1016_j_soilbio_2021_108343
crossref_primary_10_46830_wrirpt_20_00006
crossref_primary_10_1098_rstb_2022_0397
crossref_primary_10_3389_fagro_2023_1244057
crossref_primary_10_1139_cjss_2022_0079
crossref_primary_10_1515_opag_2021_0041
crossref_primary_10_1016_j_eja_2023_126796
crossref_primary_10_1016_j_jenvman_2022_117212
crossref_primary_10_1007_s10533_022_00942_8
crossref_primary_10_1007_s13593_024_01004_z
crossref_primary_10_5194_bg_17_5243_2020
crossref_primary_10_2139_ssrn_4176660
crossref_primary_10_1016_j_agee_2024_109374
crossref_primary_10_3390_agronomy11020232
crossref_primary_10_1016_j_agsy_2024_103873
crossref_primary_10_3389_fsufs_2024_1369571
crossref_primary_10_1111_gcb_16489
crossref_primary_10_1016_j_agee_2025_109529
crossref_primary_10_3390_agronomy12092011
crossref_primary_10_1016_j_geoderma_2021_115192
crossref_primary_10_1016_j_scitotenv_2022_154316
crossref_primary_10_1007_s11104_023_05895_x
crossref_primary_10_1038_s41467_023_41504_2
crossref_primary_10_1016_j_jenvman_2025_124633
crossref_primary_10_3390_agronomy10111760
crossref_primary_10_1002_csc2_21455
crossref_primary_10_1038_s41598_023_41307_x
crossref_primary_10_3390_su16093565
crossref_primary_10_1038_s41598_022_16719_w
crossref_primary_10_5194_soil_8_177_2022
crossref_primary_10_2135_cropsci2019_04_0234
crossref_primary_10_7717_peerj_15754
crossref_primary_10_1007_s42452_020_2631_5
crossref_primary_10_3390_agronomy13051344
crossref_primary_10_1002_saj2_20429
crossref_primary_10_1016_j_cosust_2020_06_003
crossref_primary_10_1007_s42398_025_00338_y
crossref_primary_10_1016_j_scitotenv_2024_170629
crossref_primary_10_1111_agec_12805
crossref_primary_10_1016_j_fcr_2024_109400
crossref_primary_10_1139_cjss_2024_0024
crossref_primary_10_1016_j_jclepro_2023_138350
crossref_primary_10_1002_saj2_20311
crossref_primary_10_1016_j_jclepro_2021_128426
crossref_primary_10_1016_j_jenvman_2021_112097
crossref_primary_10_1016_j_jclepro_2022_130924
crossref_primary_10_1016_j_soilbio_2024_109616
crossref_primary_10_1016_j_eja_2023_126944
crossref_primary_10_1016_j_agwat_2024_109209
crossref_primary_10_1016_j_fcr_2023_109238
crossref_primary_10_1086_733661
crossref_primary_10_3390_agronomy12112734
crossref_primary_10_1080_09064710_2021_1973083
crossref_primary_10_1016_j_soilbio_2023_109110
crossref_primary_10_3389_fpls_2023_1305600
crossref_primary_10_1016_j_resconrec_2021_105661
crossref_primary_10_1016_j_scitotenv_2022_153955
crossref_primary_10_1016_j_agee_2024_109335
crossref_primary_10_1016_j_soisec_2022_100072
crossref_primary_10_3390_agronomy13051361
crossref_primary_10_1007_s11104_024_06764_x
crossref_primary_10_1080_01904167_2024_2380482
crossref_primary_10_3390_agriculture15010096
crossref_primary_10_1007_s10452_023_10008_y
crossref_primary_10_1016_j_soilbio_2024_109404
crossref_primary_10_1002_jeq2_20406
crossref_primary_10_1111_ejss_13147
crossref_primary_10_3390_agronomy12112622
crossref_primary_10_1016_j_agee_2024_109446
crossref_primary_10_1016_j_envint_2023_108245
crossref_primary_10_1016_j_scitotenv_2024_169991
crossref_primary_10_1080_17583004_2023_2268071
crossref_primary_10_1016_j_fcr_2023_109019
crossref_primary_10_1016_j_pedsph_2022_11_009
crossref_primary_10_1016_j_scitotenv_2024_171827
crossref_primary_10_1007_s00374_021_01547_3
crossref_primary_10_3390_agronomy14030603
crossref_primary_10_1016_j_scitotenv_2024_170854
crossref_primary_10_3390_soilsystems6040087
crossref_primary_10_1016_j_ecolind_2023_110155
crossref_primary_10_1038_s41598_024_51768_3
crossref_primary_10_1016_j_eti_2024_103779
crossref_primary_10_1016_j_agrformet_2021_108521
crossref_primary_10_3390_plants14050661
crossref_primary_10_1007_s11104_023_06283_1
crossref_primary_10_1016_j_agee_2022_108188
crossref_primary_10_1002_agg2_20036
crossref_primary_10_1088_1748_9326_ac8609
crossref_primary_10_2139_ssrn_3981241
crossref_primary_10_1088_1748_9326_acd708
crossref_primary_10_1016_j_apsoil_2021_104341
crossref_primary_10_1038_s41598_024_66030_z
crossref_primary_10_1038_s43247_025_02001_0
crossref_primary_10_1016_j_agee_2023_108598
crossref_primary_10_1016_j_agee_2022_108050
crossref_primary_10_1038_s41467_024_54536_z
crossref_primary_10_3390_hydrology11040058
crossref_primary_10_3390_su17010339
crossref_primary_10_1016_j_agee_2023_108591
crossref_primary_10_1016_j_agee_2021_107813
crossref_primary_10_1038_s43016_024_01076_w
crossref_primary_10_1111_pce_14247
crossref_primary_10_1111_gcbb_70010
crossref_primary_10_1016_j_scitotenv_2020_144770
crossref_primary_10_1007_s10705_025_10400_0
crossref_primary_10_1016_j_agee_2024_109418
crossref_primary_10_3390_agriculture13010176
crossref_primary_10_1007_s11104_022_05420_6
crossref_primary_10_1039_D3VA00296A
crossref_primary_10_1016_j_pedsph_2022_06_002
crossref_primary_10_5194_soil_11_1_2025
crossref_primary_10_1007_s13593_021_00703_1
crossref_primary_10_3390_agriculture12091383
crossref_primary_10_1007_s11119_024_10159_4
crossref_primary_10_1007_s10457_023_00874_8
crossref_primary_10_1002_saj2_20378
crossref_primary_10_1002_agg2_20481
crossref_primary_10_1007_s13199_021_00785_1
crossref_primary_10_1088_2515_7620_ad9141
crossref_primary_10_1007_s13199_022_00870_z
crossref_primary_10_1016_j_jaridenv_2023_105028
crossref_primary_10_1016_j_jenvman_2022_114466
crossref_primary_10_3390_agriculture14091597
crossref_primary_10_1016_j_scitotenv_2024_172954
crossref_primary_10_3390_su12187630
crossref_primary_10_1016_j_catena_2023_107205
Cites_doi 10.1016/j.geoderma.2014.01.030
10.1111/j.1475-2743.2002.tb00261.x
10.2134/agronj2004.0071
10.1016/j.fcr.2006.07.001
10.1016/j.agee.2015.01.023
10.2134/agronj2012.0185
10.1080/09064719609413129
10.1007/s11104-013-1876-9
10.18637/jss.v067.i01
10.1016/j.still.2015.06.015
10.1111/j.1475-2743.2010.00311.x
10.2134/agronj2005.0035
10.1080/00103624.2016.1147047
10.1016/j.agee.2005.05.001
10.1016/j.scitotenv.2010.12.006
10.1016/j.wasman.2007.09.015
10.1016/S1161-0301(00)00075-7
10.1007/s11104-005-0193-3
10.1016/j.scitotenv.2015.04.098
10.1016/j.still.2009.05.007
10.1098/rstb.2007.2184
10.21273/HORTSCI.43.6.1770
10.2134/agronj15.0182
10.1016/j.apsoil.2010.09.006
10.1080/09064719809362475
10.1016/j.fcr.2016.11.001
10.2134/agronj2002.3650
10.1016/j.geoderma.2017.01.002
10.2134/jeq2006.0547
10.2136/sssaj2012.0256
10.2136/sssaj2004.0216
10.1002/(SICI)1099-1085(200005)14:7<1289::AID-HYP43>3.0.CO;2-R
10.2134/agronj2005.0322a
10.1016/j.agee.2017.10.023
10.2489/jswc.72.3.226
10.1021/acs.est.7b01427
10.1016/j.scitotenv.2013.10.057
10.1016/j.compag.2008.02.009
10.1079/AJAA200345
10.2134/agronj2016.05.0288
10.1111/gfs.12124
10.33584/jnzg.2011.73.2834
10.1038/nclimate2292
10.1007/s10584-005-5951-y
10.2136/sssaj2005.0350
10.1007/s11119-006-9000-2
10.1590/S0100-06832014000100032
10.1111/sum.12030
10.18637/jss.v064.i04
10.2134/jeq2005.0337
10.1111/gcb.14091
10.1007/s10705-014-9650-9
10.5194/bg-13-5245-2016
10.2136/sssaj2012.0008
10.1016/j.agee.2013.04.018
10.4141/cjss96-049
10.1016/j.geoderma.2005.01.019
10.1016/j.apsoil.2008.06.004
10.1016/j.proenv.2015.07.130
10.1023/A:1010760720215
10.2134/agronj13.0402
10.1016/j.agee.2005.07.003
10.23986/afsci.5693
10.1016/j.scitotenv.2019.01.095
10.2489/jswc.69.6.471
10.23986/afsci.5750
10.1016/j.apsoil.2017.04.003
10.1111/gcb.12350
10.1016/j.agee.2014.10.024
10.1016/j.still.2012.03.001
10.2134/agronj15.0086
10.1051/agro:2008028
10.18637/jss.v082.i13
10.2136/sssaj2002.1930
10.2136/sssaj2013.02.0074
10.1038/s41467-017-01321-w
10.1016/j.agwat.2012.03.010
10.2134/agronj15.0146
10.2136/sssaj1982.03615995004600060019x
10.2136/2011.soilmanagement.c21
10.1016/j.agee.2018.01.005
10.1016/j.agsy.2013.11.004
10.1017/S1742170517000096
10.1111/sum.12083
10.1111/j.1475-2743.2005.tb00123.x
10.1046/j.1354-1013.2002.00486.x
10.1016/S0065-2113(02)79005-6
10.1016/j.eja.2012.03.006
10.4236/ojss.2014.48030
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.2134/agronj2010.0180
10.4141/CJSS09105
10.2135/cropsci2017.06.0375
10.1016/j.agee.2011.04.014
10.1007/s10705-010-9404-2
10.1016/j.agee.2007.05.008
10.1038/srep41911
10.2134/agronj2016.10.0613
10.1023/A:1009821519042
10.1016/j.eja.2009.05.006
10.1016/j.agee.2014.02.014
10.2136/sssaj2016.04.0120
10.1111/j.1475-2743.2000.tb00220.x
ContentType Journal Article
Copyright 2019 The Authors. Published by John Wiley & Sons Ltd
2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by John Wiley & Sons Ltd
– notice: 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
DOI 10.1111/gcb.14644
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Agriculture
DocumentTitleAlternate ABDALLA et al
EISSN 1365-2486
EndPage 2543
ExternalDocumentID PMC6851768
30955227
10_1111_gcb_14644
GCB14644
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: UK‐China Virtual joint Centre for Agricultural Nitrogen
  funderid: BB/N013468/1
– fundername: ADVENT
  funderid: NE/M019691/1
– fundername: UK‐Brazil Virtual Joint Centre to deliver enhanced N‐use efficiency via an integrated soil‐plant systems approach
– fundername: Estonian Research Council
  funderid: PRG548
– fundername: SuperG Project
– fundername: UK‐China Virtual Joint Centre N‐Circle
  funderid: BB/N013484/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N013484/1
– fundername: Wellcome Trust
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N013468/1
– fundername: UK‐China Virtual Joint Centre N‐Circle
  grantid: BB/N013484/1
– fundername: UK‐China Virtual joint Centre for Agricultural Nitrogen
  grantid: BB/N013468/1
– fundername: ADVENT
  grantid: NE/M019691/1
– fundername: ;
  grantid: PRG548
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5424-e8061e03a1808a1f40d95fcbdd7330b47c185c6a32f0f9fae7576a189c9191eb3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Thu Aug 21 17:52:08 EDT 2025
Fri Jul 11 18:29:27 EDT 2025
Fri Jul 11 13:42:38 EDT 2025
Fri Jul 25 19:40:24 EDT 2025
Mon Jul 21 06:02:40 EDT 2025
Tue Jul 01 03:53:01 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Wed Jan 22 16:41:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords N content
N in grain
cover crop
green manure
nitrous oxide emissions
yield
soil organic carbon
catch crop
N leaching
nitrate
net greenhouse gas balance
C sequestration
Language English
License Attribution
2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5424-e8061e03a1808a1f40d95fcbdd7330b47c185c6a32f0f9fae7576a189c9191eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0469-6394
0000-0002-3784-1124
0000-0002-6101-0558
0000-0001-8403-327X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14644
PMID 30955227
PQID 2251600108
PQPubID 30327
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851768
proquest_miscellaneous_2286849175
proquest_miscellaneous_2205415721
proquest_journals_2251600108
pubmed_primary_30955227
crossref_primary_10_1111_gcb_14644
crossref_citationtrail_10_1111_gcb_14644
wiley_primary_10_1111_gcb_14644_GCB14644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2019
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2012; 122
2002; 18
2017; 82
2006; 35
2002; 94
2007; 100
2010; 102
2008; 37
1972
1996; 76
2014; 20
2005; 69
2017; 72
2000; 16
2000; 14
2011; 409
2000; 13
2000; 10
2011; 73
2008; 28
2005; 70
1982
2016; 47
2014; 125
2001; 53
2005; 111
2002; 8
2015; 529
2007; 92
2008; 123
2014; 470–471
2012; 104
2008; 363
2006; 112
2016; 13
2018; 24
2017; 51
2015; 67
1982; 46
2012; 110
2010; 46
2013; 77
2015; 64
2002; 66
2014; 38
2005; 97
2013; 174
2008; 43
2011; 89
2014; 30
2008; 40
2009; 105
2011; 142
2006; 70
2013; 29
1998; 48
2017; 7
2017; 8
2016; 108
2006; 130
2014; 69
2005; 21
1994; 24
2003; 18
2015; 107
2003; 12
2018; 253
2014; 4
2000; 56
2018; 256
2017; 33
2008; 63
2016; 80
2011; 27
1998; 53
2001; 10
2017; 20
2005; 273
2013; 44
2012
2011
2015; 203
2006; 98
2010
2015; 200
2006; 7
2003; 79
2017; 292
2006
2017; 117–118
2012; 76
2019; 660
2017; 109
2014; 106
2015; 29
2009; 31
2015; 154
2018
2016
2013; 374
2013
2014; 100
2014; 188
1996; 46
2010; 90
2018; 58
2014; 223
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
Wallgren B. (e_1_2_7_110_1) 1994; 24
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
IPCC (e_1_2_7_52_1) 2006
Unger P. W. (e_1_2_7_106_1) 1998; 53
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
Leith H (e_1_2_7_66_1) 1972
e_1_2_7_71_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
Grieser J. (e_1_2_7_43_1) 2006
Defra (e_1_2_7_30_1) 2010
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
Hoyle F. (e_1_2_7_51_1) 2013
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Dabney S. M. (e_1_2_7_29_1) 2011
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
R Core Team (e_1_2_7_88_1) 2018
e_1_2_7_39_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
Akima H. (e_1_2_7_6_1) 2016
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_76_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Stevenson F. J. (e_1_2_7_99_1) 1982
Drinkwater L. E. (e_1_2_7_38_1) 2007; 92
IPCC (e_1_2_7_53_1) 2013
References_xml – volume: 16
  start-page: 157
  year: 2000
  end-page: 166
  article-title: Strategies to encourage better use of nitrogen in animal manures
  publication-title: Soil Use and Management
– year: 2011
– volume: 77
  start-page: 1765
  year: 2013
  end-page: 1773
  article-title: Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon
  publication-title: Soil Science Society of America Journal
– volume: 110
  start-page: 25
  year: 2012
  end-page: 33
  article-title: Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water
  publication-title: Agricultural Water Management
– volume: 13
  start-page: 207
  year: 2000
  end-page: 223
  article-title: Nitrogen fluxes in three arable soils in the UK
  publication-title: European Journal of Agronomy
– volume: 24
  start-page: 2513
  issue: 6
  year: 2018
  end-page: 2529
  article-title: Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers
  publication-title: Global Change Biology
– volume: 66
  start-page: 1930
  issue: 6
  year: 2002
  end-page: 1946
  article-title: Soil organic carbon sequestration rates by tillage and crop rotation
  publication-title: Soil Science Society of America Journal
– volume: 27
  start-page: 54
  year: 2011
  end-page: 68
  article-title: Leaching of N, P and glyphosate from two soils after herbicide treatment and incorporation of a ryegrass catch crop
  publication-title: Soil Use and Management
– volume: 28
  start-page: 716
  issue: 4
  year: 2008
  end-page: 722
  article-title: The mineralization of fresh and humified soil organic matter by the soil microbial biomass
  publication-title: Waste Management
– volume: 122
  start-page: 52
  year: 2012
  end-page: 60
  article-title: Meta‐analysis on atmospheric carbon capture in Spain through the use of conservation agriculture
  publication-title: Soil and Tillage Research
– volume: 90
  start-page: 429
  year: 2010
  end-page: 440
  article-title: Accumulation of nitrate‐N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review
  publication-title: Canadian Journal of Soil Science
– volume: 102
  start-page: 1700
  year: 2010
  end-page: 1709
  article-title: Winter cover crops affect monoculture maize yield and nitrogen leaching under irrigated mediterranean conditions
  publication-title: Agronomy Journal
– volume: 76
  start-page: 411
  year: 1996
  end-page: 416
  article-title: Economics of reduced tillage in crop‐fallow systems
  publication-title: Canadian Journal of Soil Science
– volume: 470–471
  start-page: 967
  year: 2014
  end-page: 974
  article-title: Effects of over‐winter green cover on soil solution nitrate concentrations beneath tillage land
  publication-title: Science of the Total Environment
– volume: 7
  start-page: 65
  year: 2006
  end-page: 83
  article-title: Algorithms for sensor‐based redistribution of nitrogen fertilizer in winter wheat
  publication-title: Precision Agriculture
– volume: 111
  start-page: 21
  year: 2005
  end-page: 29
  article-title: Nitrate leaching under spring barley is influenced by the presence of a ryegrass catch crop: Results from a lysimeter experiment
  publication-title: Agriculture Ecosystems, and Environment
– volume: 58
  start-page: 863
  year: 2018
  end-page: 873
  article-title: Establishment and function of cover crops inter‐seeded into corn
  publication-title: Crop Science
– volume: 4
  start-page: 284
  year: 2014
  end-page: 292
  article-title: Long‐term effects of cover crops on crop yields, soil organic carbon stocks and sequestration
  publication-title: Open Journal of Soil Science
– volume: 13
  start-page: 5245
  year: 2016
  end-page: 5257
  article-title: Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management
  publication-title: Biogeosciences
– volume: 28
  start-page: 551
  year: 2008
  end-page: 558
  article-title: Effect of catch crops on N dynamics and following crops in organic farming
  publication-title: Agronomy for Sustainable Development
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 112
  start-page: 58
  year: 2006
  end-page: 72
  article-title: Replacing bare fallow with cover crops in fertilizer‐intensive cropping systems: A meta‐analysis of crop yield and N dynamics
  publication-title: Agriculture Ecosystems, and Environment
– volume: 117–118
  start-page: 21
  year: 2017
  end-page: 31
  article-title: Influence of cover crops on arthropods, free‐living nematodes, and yield in a succeeding no‐till soybean crop
  publication-title: Applied Soil Ecology
– volume: 8
  start-page: 1416
  year: 2017
  article-title: Global patterns of nitrate storage in the vadose zone
  publication-title: Nature Communications
– volume: 53
  start-page: 51
  year: 2001
  end-page: 77
  article-title: The distribution of soil nutrients with depth: Global patterns and the imprint of plants
  publication-title: Biogeochemistry
– volume: 29
  start-page: 13
  year: 2015
  end-page: 14
  article-title: Cover crop management effects on soil physical and biological properties
  publication-title: Procedia Environmental Sciences
– volume: 130
  start-page: 229
  year: 2006
  end-page: 239
  article-title: Effect of cover crop management on soil organic matter
  publication-title: Geoderma
– volume: 63
  start-page: 193
  year: 2008
  end-page: 206
  article-title: Assessment of nitrogen losses to the environment with a Nitrogen Trading Tool (NTT)
  publication-title: Computer and Electronics in Agriculture
– volume: 223
  start-page: 9
  year: 2014
  end-page: 20
  article-title: Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem
  publication-title: Geoderma
– volume: 97
  start-page: 322
  year: 2005
  end-page: 332
  article-title: Evaluating cover crops for benefits, costs and performance within cropping system niches
  publication-title: Agronomy Journal
– volume: 105
  start-page: 55
  year: 2009
  end-page: 62
  article-title: Effect of long‐term conservation tillage on soil biochemical properties in Mediterranean Spanish areas
  publication-title: Soil and Tillage Research
– volume: 53
  start-page: 200
  year: 1998
  end-page: 207
  article-title: Cover crop effects on soil water relationships
  publication-title: Journal of Soil and Water Conservation
– volume: 24
  start-page: 67
  year: 1994
  end-page: 75
  article-title: Effect of catch crops and ploughing times on soil mineral nitrogen
  publication-title: Swedish Journal of Agricultural Research
– volume: 123
  start-page: 99
  year: 2008
  end-page: 108
  article-title: Residual effect and leaching of N and K in cropping systems with clover and ryegrass catch crops on coarse sand
  publication-title: Agriculture, Ecosystems and Environment
– volume: 69
  start-page: 206
  issue: 2
  year: 2014
  end-page: 228
  article-title: Potential of legume‐based grassland‐livestock systems in Europe: A review
  publication-title: Grass Forage Science
– start-page: 230
  year: 2011
  end-page: 281
– year: 2016
– year: 2010
– volume: 660
  start-page: 913
  year: 2019
  end-page: 922
  article-title: The cover crop determines the AMF community composition in soil and in roots of maize after a ten‐year continuous crop rotation
  publication-title: Science of the Total Environment
– volume: 98
  start-page: 302
  year: 2006
  end-page: 319
  article-title: Green manure approaches to crop production: A synthesis
  publication-title: Agronomy Journal
– volume: 18
  start-page: 421
  year: 2002
  end-page: 427
  article-title: Nitrate leaching losses and their control in a mixed farm system in the Cotswold Hills, England
  publication-title: Soil Use and Management
– volume: 43
  start-page: 1770
  issue: 6
  year: 2008
  end-page: 1774
  article-title: Integration of cover crop, conservation tillage, and low herbicide rate for machine‐harvested pickling cucumbers
  publication-title: HortScience
– volume: 100
  start-page: 168
  year: 2007
  end-page: 178
  article-title: The value of catch crops and organic manure for spring barley in organic arable farming
  publication-title: Field Crop Research
– volume: 56
  start-page: 139
  year: 2000
  end-page: 152
  article-title: Nitrogen leaching and crop availability in manured catch crop systems in Sweden
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 4
  start-page: 678
  issue: 8
  year: 2014
  end-page: 83
  article-title: Limited potential of no‐till agriculture for climate change mitigation
  publication-title: Nature Climate Change
– volume: 200
  start-page: 33
  year: 2015
  end-page: 41
  article-title: Carbon sequestration in agricultural soils via cultivation of cover crops‐A meta‐analysis
  publication-title: Agriculture, Ecosystems and Environment
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecological Applications
– volume: 108
  start-page: 39
  issue: 1
  year: 2016
  end-page: 52
  article-title: Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures
  publication-title: Agronomy Journal
– volume: 70
  start-page: 283
  year: 2005
  end-page: 297
  article-title: Management strategies to sequester carbon in agricultural soils and to mitigate greenhouse gas emissions
  publication-title: Climatic Change
– start-page: 2108
  year: 2006
  end-page: 2111
– volume: 82
  start-page: 1
  issue: 13
  year: 2017
  end-page: 26
  article-title: lmerTest package: Tests in linear mixed effects models
  publication-title: Journal of Statistical Software
– volume: 203
  start-page: 93
  year: 2015
  end-page: 101
  article-title: Meta‐analysis of the effects of under‐sown catch crops on nitrogen leaching loss and grain yields in the Nordic countries
  publication-title: Agriculture Ecosystems, and Environment
– volume: 80
  start-page: 1551
  year: 2016
  end-page: 1559
  article-title: Rye cover crop effects on direct and indirect nitrous oxide emissions
  publication-title: Soil Science Society of America Journal
– year: 2013
– volume: 69
  start-page: 471
  year: 2014
  end-page: 482
  article-title: Do cover crops increase or decrease nitrous oxide emissions? A meta‐analysis
  publication-title: Journal of Soil and Water Conservation
– volume: 46
  start-page: 1212
  year: 1982
  end-page: 1217
  article-title: Leaching of fertilizer ions in a Kaolinitic Ultisol in the high rain fall tropics: Leaching of nitrate in field plots under cropping and bare fallow
  publication-title: Soil Science Society of America Journal
– volume: 529
  start-page: 40
  year: 2015
  end-page: 53
  article-title: Estimation and mitigation of N O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea
  publication-title: Science of the Total Environment
– volume: 97
  start-page: 684
  year: 2005
  end-page: 689
  article-title: Legume green fallow effect on soil water content at wheat planting and wheat yield
  publication-title: Agronomy Journal
– volume: 107
  start-page: 2449
  year: 2015
  end-page: 2474
  article-title: Cover crops and ecosystem services: Insights from studies in temperate regions
  publication-title: Agronomy Journal
– volume: 72
  start-page: 226
  issue: 3
  year: 2017
  end-page: 239
  article-title: Corn yield response to winter cover crops: An updated meta‐analysis
  publication-title: Journal of Soil and Water Conservation
– volume: 46
  start-page: 161
  issue: 3
  year: 1996
  end-page: 168
  article-title: Yield of catch crops and spring barley as affected by time of under-sowing
  publication-title: Acta Agriculturae Scandinavica, Section B-Soil & Plant Science
– start-page: 5
  year: 1972
  end-page: 10
– volume: 37
  start-page: 138
  year: 2008
  end-page: 145
  article-title: Evaluation of cover crop and reduced cultivation for reducing nitrate leaching in Ireland
  publication-title: Journal of Environmental Quality
– volume: 21
  start-page: 181
  year: 2005
  end-page: 188
  article-title: Nitrate leaching from organic arable crop rotations: Effects of location, manure and catch crop
  publication-title: Soil Use and Management
– volume: 29
  start-page: 199
  year: 2013
  end-page: 209
  article-title: Conservation tillage systems: A review of its consequences for greenhouse gas emissions
  publication-title: Soil Use and Management
– volume: 374
  start-page: 977
  year: 2013
  end-page: 991
  article-title: Assessment of nitrate leaching loss on a yield‐scaled basis from maize and wheat cropping systems
  publication-title: Plant and Soil
– volume: 69
  start-page: 640
  year: 2005
  end-page: 648
  article-title: Recovery of fertilizer nitrogen in crop residues and cover crops on an irrigated sandy soil
  publication-title: Soil Science Society of America Journal
– volume: 253
  start-page: 62
  year: 2018
  end-page: 81
  article-title: Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands
  publication-title: Agriculture Ecosystems & Environment
– volume: 89
  start-page: 399
  year: 2011
  end-page: 412
  article-title: Legume cover crops and mulches: Effects on nitrate leaching and nitrogen input in a pepper crop
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 10
  start-page: 197
  year: 2001
  end-page: 208
  article-title: Effect of annually repeated under‐sowing on cereal grain yields
  publication-title: Agricultural and Food Science in Finland
– volume: 20
  start-page: 265
  year: 2014
  end-page: 275
  article-title: Plant species identity surpasses species richness as a key driver of N O emissions from grassland
  publication-title: Global Change Biology
– year: 2018
– volume: 51
  start-page: 4738
  issue: 9
  year: 2017
  end-page: 4739
  article-title: Sequestering soil organic carbon: A nitrogen dilemma
  publication-title: Environmental Science and Technology
– volume: 40
  start-page: 370
  year: 2008
  end-page: 380
  article-title: Cover crops and cultivation: Impacts on soil N dynamics and Micro‐biological function in a Mediterranean vineyard agroecosystem
  publication-title: Applied Soil Ecology
– volume: 188
  start-page: 134
  year: 2014
  end-page: 146
  article-title: Long‐term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years
  publication-title: Agriculture, Ecosystems and Environment
– volume: 48
  start-page: 26
  year: 1998
  end-page: 33
  article-title: Strategy for catch crop development II. Screening of species undersown in spring barley ( L.) with respect to catch crop growth and grain yield
  publication-title: Acta Agricultrae Scandinavica
– volume: 14
  start-page: 1289
  year: 2000
  end-page: 1304
  article-title: Rainfall runoff and erosion in Napa Valley vineyards: Effects of slope, cover and surface roughness
  publication-title: Hydrological Processes
– volume: 38
  start-page: 315
  year: 2014
  end-page: 326
  article-title: Impacts of land levelling on lowland soil physical properties
  publication-title: Revista Brasileira de Ciência do Solo
– year: 1982
– volume: 174
  start-page: 1
  year: 2013
  end-page: 10
  article-title: Meta‐analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield
  publication-title: Agriculture, Ecosystems and Environment
– volume: 30
  start-page: 48
  year: 2014
  end-page: 57
  article-title: Cover crop growth and impact on N leaching as affected by pre‐ and postharvest sowing and time of incorporation
  publication-title: Soil Use and Management
– volume: 7
  start-page: 41911
  year: 2017
  article-title: Cover crops support ecological intensification of arable cropping systems
  publication-title: Scientific Reports
– volume: 108
  start-page: 2527
  year: 2016
  end-page: 2540
  article-title: A model‐data fusion approach for predicting cover crop nitrogen supply to corn
  publication-title: Agronomy Journal
– volume: 273
  start-page: 355
  year: 2005
  end-page: 373
  article-title: The use of cover crops in cereal based cropping systems to control nitrate leaching in SE England
  publication-title: Plant and Soil
– volume: 33
  start-page: 322
  year: 2017
  end-page: 333
  article-title: The trouble with cover crops: Farmers' experiences with overcoming barriers to adoption
  publication-title: Renewable Agriculture and Food Systems
– volume: 20
  start-page: 75
  year: 2017
  end-page: 85
  article-title: Legume cover crop management on nitrogen dynamics and yield in grain corn systems
  publication-title: Field Crops Research
– volume: 77
  start-page: 1391
  year: 2013
  end-page: 1401
  article-title: Winter nitrate leaching under different tillage and winter cover crop management practices
  publication-title: Soil Science Society of America Journal
– volume: 47
  start-page: 863
  issue: 7
  year: 2016
  end-page: 874
  article-title: Effect of fertilizer nitrogen (N) on soil organic carbon, total N, and soil pH in long‐term continuous winter wheat ( L.)
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 142
  start-page: 149
  year: 2011
  end-page: 160
  article-title: Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management
  publication-title: Agriculture, Ecosystems and Environment
– volume: 31
  start-page: 103
  year: 2009
  end-page: 109
  article-title: Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of maize
  publication-title: European Journal of Agronomy
– volume: 35
  start-page: 714
  year: 2006
  end-page: 725
  article-title: Tillage and field scale controls on greenhouse gas emissions
  publication-title: Journal of Environmental Quality
– volume: 104
  start-page: 1425
  year: 2012
  end-page: 1435
  article-title: Optimizing cover crop benefits with diverse mixtures and an alternative termination method
  publication-title: Agronomy Journal
– volume: 8
  start-page: 345
  year: 2002
  end-page: 360
  article-title: Soil carbon stocks and land use change: A meta‐analysis
  publication-title: Global Change Biology
– volume: 44
  start-page: 98
  year: 2013
  end-page: 108
  article-title: The role of catch crop in the ecological intensification of spring cereals in organic farming under Nordic climate
  publication-title: European Journal of Agronomy
– volume: 79
  start-page: 227
  year: 2003
  end-page: 302
  article-title: Catch crops and green manures as biological tools in nitrogen management in temperate zone
  publication-title: Advances in Agronomy
– volume: 154
  start-page: 64
  year: 2015
  end-page: 74
  article-title: Cover crop and tillage systems effect on soil CO and N O fluxes in contrasting topographic positions
  publication-title: Soil and Tillage Research
– volume: 363
  start-page: 789
  year: 2008
  end-page: 813
  article-title: Greenhouse gas mitigation in agriculture
  publication-title: Philosophical Transactions of the Royal Society B
– year: 2012
– volume: 107
  start-page: 2011
  year: 2015
  end-page: 2019
  article-title: Short‐term soil responses to late‐seeded cover crops in a semi‐arid environment
  publication-title: Agronomy Journal
– volume: 76
  start-page: 2164
  year: 2012
  end-page: 2173
  article-title: Winter annual cover crop impacts on no‐till soil physical properties and organic matter
  publication-title: Soil Science Society of America Journal
– volume: 18
  start-page: 146
  year: 2003
  end-page: 154
  article-title: The performance of organic and conventional cropping systems in an extreme climate year
  publication-title: American Journal of Alternative Agriculture
– volume: 12
  start-page: 165
  issue: 3–4
  year: 2003
  end-page: 176
  article-title: Soil nitrate N as influenced by annually undersown cover crops in spring cereals
  publication-title: Agricultural and Food Science in Finland
– start-page: 321
  year: 2011
  end-page: 337
– volume: 125
  start-page: 12
  year: 2014
  end-page: 22
  article-title: A framework for evaluating ecosystem services provided by cover crops in agroecosystems
  publication-title: Agricultural Systems
– volume: 409
  start-page: 1104
  issue: 3–4
  year: 2011
  end-page: 1115
  article-title: Cost effectiveness of nitrate leaching mitigation measures for grassland livestock systems at locations in England and Wales
  publication-title: Science of the Total Environment
– volume: 292
  start-page: 59
  year: 2017
  end-page: 86
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
– volume: 70
  start-page: 1936
  year: 2006
  article-title: No‐till corn/soybean systems including winter cover crops
  publication-title: Soil Science Society of America Journal
– volume: 100
  start-page: 285
  year: 2014
  end-page: 299
  article-title: Nitrate leaching from organic and conventional arable crop farms in the Seine Basin (France)
  publication-title: Nutrient Cycling in Agroecosystems
– year: 2006
– volume: 46
  start-page: 432
  year: 2010
  end-page: 442
  article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input?
  publication-title: Applied Soil Ecology
– volume: 94
  start-page: 365
  year: 2002
  end-page: 372
  article-title: Nitrogen recycling by non‐leguminous winter cover crops to reduce leaching in potato rotations
  publication-title: Agronomy Journal
– volume: 64
  start-page: 1
  issue: 4
  year: 2015
  end-page: 34
  article-title: fitdistrplus: An R package for fitting distributions
  publication-title: Journal of Statistical Software
– volume: 109
  start-page: 1261
  year: 2017
  end-page: 1270
  article-title: Tillage and cover cropping effects on soil properties and crop production in Illinois
  publication-title: Agronomy Journal
– volume: 106
  start-page: 1193
  year: 2014
  end-page: 1204
  article-title: Selecting cover crop mulches for organic rotational no‐till systems in Manitoba, Canada
  publication-title: Agronomy Journal
– volume: 73
  start-page: 57
  year: 2011
  end-page: 62
  article-title: Relationships between farm productivity, profitability, N leaching and GHG emissions: A modelling approach
  publication-title: New Zealand Grasslands Association
– volume: 92
  start-page: 63
  year: 2007
  end-page: 186
  article-title: Nutrients in agroecosystems: Rethinking the management paradigm
  publication-title: Advances in Agronomy
– volume: 256
  start-page: 94
  year: 2018
  end-page: 104
  article-title: Importance of cover crop in alleviating negative effects of reduced soil tillage and promoting soil fertility in a winter wheat cropping system
  publication-title: Agriculture, Ecosystems and Environment
– ident: e_1_2_7_4_1
  doi: 10.1016/j.geoderma.2014.01.030
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1475-2743.2002.tb00261.x
– ident: e_1_2_7_77_1
  doi: 10.2134/agronj2004.0071
– ident: e_1_2_7_80_1
  doi: 10.1016/j.fcr.2006.07.001
– ident: e_1_2_7_107_1
  doi: 10.1016/j.agee.2015.01.023
– ident: e_1_2_7_117_1
  doi: 10.2134/agronj2012.0185
– ident: e_1_2_7_79_1
  doi: 10.1080/09064719609413129
– ident: e_1_2_7_119_1
  doi: 10.1007/s11104-013-1876-9
– ident: e_1_2_7_56_1
– ident: e_1_2_7_15_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_7_76_1
  doi: 10.1016/j.still.2015.06.015
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1475-2743.2010.00311.x
– volume: 53
  start-page: 200
  year: 1998
  ident: e_1_2_7_106_1
  article-title: Cover crop effects on soil water relationships
  publication-title: Journal of Soil and Water Conservation
– ident: e_1_2_7_26_1
  doi: 10.2134/agronj2005.0035
– ident: e_1_2_7_13_1
  doi: 10.1080/00103624.2016.1147047
– ident: e_1_2_7_100_1
  doi: 10.1016/j.agee.2005.05.001
– ident: e_1_2_7_24_1
  doi: 10.1016/j.scitotenv.2010.12.006
– ident: e_1_2_7_20_1
  doi: 10.1016/j.wasman.2007.09.015
– ident: e_1_2_7_112_1
  doi: 10.1016/S1161-0301(00)00075-7
– ident: e_1_2_7_71_1
  doi: 10.1007/s11104-005-0193-3
– ident: e_1_2_7_62_1
  doi: 10.1016/j.scitotenv.2015.04.098
– ident: e_1_2_7_72_1
  doi: 10.1016/j.still.2009.05.007
– ident: e_1_2_7_95_1
  doi: 10.1098/rstb.2007.2184
– ident: e_1_2_7_111_1
  doi: 10.21273/HORTSCI.43.6.1770
– ident: e_1_2_7_40_1
  doi: 10.2134/agronj15.0182
– ident: e_1_2_7_45_1
  doi: 10.1016/j.apsoil.2010.09.006
– ident: e_1_2_7_59_1
  doi: 10.1080/09064719809362475
– ident: e_1_2_7_27_1
  doi: 10.1016/j.fcr.2016.11.001
– ident: e_1_2_7_113_1
  doi: 10.2134/agronj2002.3650
– ident: e_1_2_7_74_1
  doi: 10.1016/j.geoderma.2017.01.002
– ident: e_1_2_7_50_1
  doi: 10.2134/jeq2006.0547
– ident: e_1_2_7_41_1
  doi: 10.2136/sssaj2012.0256
– volume-title: R: A language and environment for statistical computing
  year: 2018
  ident: e_1_2_7_88_1
– ident: e_1_2_7_22_1
  doi: 10.2136/sssaj2004.0216
– ident: e_1_2_7_16_1
  doi: 10.1002/(SICI)1099-1085(200005)14:7<1289::AID-HYP43>3.0.CO;2-R
– ident: e_1_2_7_96_1
  doi: 10.2134/agronj2005.0322a
– ident: e_1_2_7_3_1
  doi: 10.1016/j.agee.2017.10.023
– ident: e_1_2_7_73_1
  doi: 10.2489/jswc.72.3.226
– ident: e_1_2_7_108_1
  doi: 10.1021/acs.est.7b01427
– ident: e_1_2_7_86_1
  doi: 10.1016/j.scitotenv.2013.10.057
– ident: e_1_2_7_31_1
  doi: 10.1016/j.compag.2008.02.009
– ident: e_1_2_7_69_1
  doi: 10.1079/AJAA200345
– ident: e_1_2_7_115_1
  doi: 10.2134/agronj2016.05.0288
– ident: e_1_2_7_70_1
  doi: 10.1111/gfs.12124
– ident: e_1_2_7_93_1
  doi: 10.33584/jnzg.2011.73.2834
– ident: e_1_2_7_85_1
  doi: 10.1038/nclimate2292
– volume-title: Fertiliser manual (RB209)
  year: 2010
  ident: e_1_2_7_30_1
– ident: e_1_2_7_33_1
  doi: 10.1007/s10584-005-5951-y
– ident: e_1_2_7_109_1
  doi: 10.2136/sssaj2005.0350
– ident: e_1_2_7_18_1
  doi: 10.1007/s11119-006-9000-2
– ident: e_1_2_7_82_1
  doi: 10.1590/S0100-06832014000100032
– ident: e_1_2_7_5_1
  doi: 10.1111/sum.12030
– ident: e_1_2_7_32_1
  doi: 10.18637/jss.v064.i04
– ident: e_1_2_7_65_1
  doi: 10.2134/jeq2005.0337
– volume-title: The Miami model of climatic net primary production of biomass
  year: 2006
  ident: e_1_2_7_43_1
– ident: e_1_2_7_105_1
  doi: 10.1111/gcb.14091
– ident: e_1_2_7_17_1
  doi: 10.1007/s10705-014-9650-9
– ident: e_1_2_7_44_1
  doi: 10.5194/bg-13-5245-2016
– volume-title: akima: Interpolation of irregularly and regularly spaced data
  year: 2016
  ident: e_1_2_7_6_1
– ident: e_1_2_7_97_1
  doi: 10.2136/sssaj2012.0008
– ident: e_1_2_7_87_1
  doi: 10.1016/j.agee.2013.04.018
– ident: e_1_2_7_94_1
  doi: 10.4141/cjss96-049
– volume: 24
  start-page: 67
  year: 1994
  ident: e_1_2_7_110_1
  article-title: Effect of catch crops and ploughing times on soil mineral nitrogen
  publication-title: Swedish Journal of Agricultural Research
– ident: e_1_2_7_35_1
  doi: 10.1016/j.geoderma.2005.01.019
– ident: e_1_2_7_98_1
  doi: 10.1016/j.apsoil.2008.06.004
– ident: e_1_2_7_48_1
  doi: 10.1016/j.proenv.2015.07.130
– volume-title: Climate change 2013: The physical science basis
  year: 2013
  ident: e_1_2_7_53_1
– ident: e_1_2_7_55_1
  doi: 10.1023/A:1010760720215
– ident: e_1_2_7_47_1
  doi: 10.2134/agronj13.0402
– ident: e_1_2_7_103_1
  doi: 10.1016/j.agee.2005.07.003
– ident: e_1_2_7_57_1
  doi: 10.23986/afsci.5693
– ident: e_1_2_7_49_1
  doi: 10.1016/j.scitotenv.2019.01.095
– ident: e_1_2_7_14_1
  doi: 10.2489/jswc.69.6.471
– ident: e_1_2_7_58_1
  doi: 10.23986/afsci.5750
– ident: e_1_2_7_67_1
  doi: 10.1016/j.apsoil.2017.04.003
– ident: e_1_2_7_2_1
  doi: 10.1111/gcb.12350
– start-page: 2108
  volume-title: IPCC guidelines for national greenhouse gas inventories
  year: 2006
  ident: e_1_2_7_52_1
– ident: e_1_2_7_84_1
  doi: 10.1016/j.agee.2014.10.024
– ident: e_1_2_7_42_1
  doi: 10.1016/j.still.2012.03.001
– ident: e_1_2_7_19_1
  doi: 10.2134/agronj15.0086
– volume-title: Humus chemistry: Genesis, composition, reactions
  year: 1982
  ident: e_1_2_7_99_1
– ident: e_1_2_7_89_1
  doi: 10.1051/agro:2008028
– ident: e_1_2_7_64_1
  doi: 10.18637/jss.v082.i13
– ident: e_1_2_7_114_1
  doi: 10.2136/sssaj2002.1930
– volume-title: Managing soil organic matter: A practical guide
  year: 2013
  ident: e_1_2_7_51_1
– ident: e_1_2_7_75_1
  doi: 10.2136/sssaj2013.02.0074
– ident: e_1_2_7_9_1
  doi: 10.1038/s41467-017-01321-w
– ident: e_1_2_7_60_1
  doi: 10.1016/j.agwat.2012.03.010
– ident: e_1_2_7_28_1
– ident: e_1_2_7_68_1
  doi: 10.2134/agronj15.0146
– ident: e_1_2_7_118_1
  doi: 10.2136/sssaj1982.03615995004600060019x
– ident: e_1_2_7_61_1
  doi: 10.2136/2011.soilmanagement.c21
– volume: 92
  start-page: 63
  year: 2007
  ident: e_1_2_7_38_1
  article-title: Nutrients in agroecosystems: Rethinking the management paradigm
  publication-title: Advances in Agronomy
– start-page: 5
  volume-title: Modeling the primary productivity of the world
  year: 1972
  ident: e_1_2_7_66_1
– ident: e_1_2_7_21_1
  doi: 10.1016/j.agee.2018.01.005
– ident: e_1_2_7_92_1
  doi: 10.1016/j.agsy.2013.11.004
– ident: e_1_2_7_90_1
  doi: 10.1017/S1742170517000096
– ident: e_1_2_7_101_1
  doi: 10.1111/sum.12083
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1475-2743.2005.tb00123.x
– ident: e_1_2_7_46_1
  doi: 10.1046/j.1354-1013.2002.00486.x
– ident: e_1_2_7_102_1
  doi: 10.1016/S0065-2113(02)79005-6
– ident: e_1_2_7_36_1
  doi: 10.1016/j.eja.2012.03.006
– ident: e_1_2_7_81_1
  doi: 10.4236/ojss.2014.48030
– ident: e_1_2_7_54_1
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– ident: e_1_2_7_91_1
  doi: 10.2134/agronj2010.0180
– start-page: 230
  volume-title: Advances in nitrogen management for water quality
  year: 2011
  ident: e_1_2_7_29_1
– ident: e_1_2_7_39_1
  doi: 10.4141/CJSS09105
– ident: e_1_2_7_78_1
  doi: 10.2135/cropsci2017.06.0375
– ident: e_1_2_7_12_1
  doi: 10.1016/j.agee.2011.04.014
– ident: e_1_2_7_23_1
  doi: 10.1007/s10705-010-9404-2
– ident: e_1_2_7_10_1
  doi: 10.1016/j.agee.2007.05.008
– ident: e_1_2_7_116_1
  doi: 10.1038/srep41911
– ident: e_1_2_7_37_1
  doi: 10.2134/agronj2016.10.0613
– ident: e_1_2_7_104_1
  doi: 10.1023/A:1009821519042
– ident: e_1_2_7_63_1
  doi: 10.1016/j.eja.2009.05.006
– ident: e_1_2_7_34_1
  doi: 10.1016/j.agee.2014.02.014
– ident: e_1_2_7_83_1
  doi: 10.2136/sssaj2016.04.0120
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1475-2743.2000.tb00220.x
SSID ssj0003206
Score 2.6931114
SecondaryResourceType review_article
Snippet Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2530
SubjectTerms Agricultural practices
Agricultural production
Agriculture
C sequestration
Carbon dioxide
carbon sequestration
catch crop
Climatic conditions
climatic factors
Climatic zones
cover crop
Cover crops
Crop Production
Crop yield
Crops
Crops, Agricultural
environmental sustainability
Grain
grain yield
green manure
Greenhouse effect
greenhouse gas emissions
Greenhouse Gases
Leaching
Legumes
N content
N in grain
N leaching
net greenhouse gas balance
nitrate
Nitrogen
Nitrous oxide
nitrous oxide emissions
Organic carbon
Productivity
Research Review
Soil
Soil improvement
soil organic carbon
Soil quality
Sustainability
yield
Title A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14644
https://www.ncbi.nlm.nih.gov/pubmed/30955227
https://www.proquest.com/docview/2251600108
https://www.proquest.com/docview/2205415721
https://www.proquest.com/docview/2286849175
https://pubmed.ncbi.nlm.nih.gov/PMC6851768
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qQfDFH6e1sbWsIuKDKUl2k2zwqR6tRVBELPRBCNnN7rV4JOVyJ9S_3pndJO1ZFfHpsmRyJJuZzTfJN98AvJA1Ry-wWcjrKA-F1SIsTGxDKStuTZTW-ENsi4_Z8Yl4f5qebsCboRbG60OML9woMtx6TQFeqe5akM-0ojAXpAVKXC0CRJ-vpKN44vpqxjwVuNTEvFcVIhbPeOT6s-gGwLzJk7yOX90D6OgefB1O3fNOvu2vlmpf__hF1fE_r-0-3O2BKTvwnvQANkwzgdu-VeXlBLYOryri0KxfEroJBB8QdrcLZ8Zesun8HDGwGz2E7wdM960UmK-RYa1lCDmZL87saKiJRMqokxgOG4ZLzKJFr2bznuf5mjVmyWbEDzprV51hs6pjihiZ2rCqqd2h7MIr17pWGI_g5Ojwy_Q47Bs9hDoViQiNRFRhIl7FMpJVbEVUF6nVqq5zziMlco2oQmcVT2xkC1uZHLMkNC50gemmUXwLNpu2MdvAOH32EwVXVY1_rTIpbaZwLAuTYbKmA3g13PJS9yro1IxjXg7ZEM596eY-gOej6YWX_vid0e7gN2Uf_V2Ja2RMQDKSATwbd2Pc0seYqjE4WSUVOCN4wgT8bzYykwIT6jSAx94VxzPhpB2YJHkA-ZqTjgakG76-pzk_c_rhGaJszDJxKpwP_vniynfTt27jyb-b7sAdxJSF50juwuZysTJPEbct1R7cSsSnPRemPwHct0DX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5RAEJ7UGqMv_jitolVXY4wP0gC7wJL4Us_WU9s-mDbpiyGw7F4bL9Acdyb61zuzC7Rn1RifYMNAlmVm-AZmvgF4ISuOWmASn1dB6gujhJ_p0PhSFtzoIK5wQ9kWB8nkSHw8jo_X4E1fC-P4IYYPbmQZ1l-TgdMH6QtWPlUl2bkQV-AqdfQm5vx3n8_Jo3hkO2uGPBbobELe8QpRHs9w6urb6BLEvJwpeRHB2lfQ7i340k_eZZ583Vouyi314xdex_-9u9tws8OmbNsp0x1Y0_UIrrluld9HsLFzXhSHYp1XaEfg7SPybuZWjL1k49kpwmA7ugvftpnquikwVybDGsMQdTJXn9nSUFEeKaNmYjisGXqZeYOKzWZdqudrVusFm1KK0EmzbDWbFi0rKSlTaVbUlT2VnTnyWtsN4x4c7e4cjid-1-vBV7GIhK8lAgsd8CKUgSxCI4Iqi40qqyrlPChFqhBYqKTgkQlMZgqdYqCEwpnKMOLUJd-A9bqp9QNgnP78iYyXRYWXLhMpTVLiWGY6wXhNefCqf-a56ojQqR_HLO8DIlz73K69B88H0TPH_vE7oc1ecfLOAbQ5usmQsGQgPXg2HEbTpf8xRa1xsXKqcUb8hDH432RkIgXG1LEH950uDjPhRB8YRakH6YqWDgJEHb56pD49sRTiCQJtDDRxKawS_vnm8vfjt3bn4b-LPoXrk8P9vXzvw8GnR3ADIWbmUiY3YX0xX-rHCOMW5RNrrT8BL5JEHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIRAvaBQ2AgMMQogHIiWxkzja0-hWxte0BybtLXIcu5tUJVXTTdp_z52dhlVjiKfWyqVqcx_-Xf27O4D3suZoBTYLeR3lobBahIWJbSil4tZEaY0vxLY4zo5Oxbez9GwD9la1ML4_xPCHG3mGi9fk4PPa3nDyqa7IzYW4B_fpsI_4XIk4GcIwT9xgzZinAmNNzPu2QkTjGW5d34xuIczbRMmbANbtQJMteNxDR7bvdf0ENkwzggd-mOT1CLYP_9SsoVjvtN0Igp8IjNuFE2Mf2Hh2gSjVrZ7C1T7T_bAD5qtYWGsZgkLmyyc7WmqieTKa9YXLhmEQWLRod2zWMzE_scYs2ZQYPOftZWfYVHWsIs6kNkw1tbuVzX1vWTes4hmcTg5_jY_CfhRDqFORiNBI3PdNxFUsI6liK6K6SK2u6jrnPKpErnHf15niiY1sYZXJMY9B4UIXmBBiwr4Nm03bmOfAOB3MiYJXqsaPrjIpbVbhWhYmw3RKB_BxpZNS933KaVzGrFzlK6i-0qkvgHeD6Nw35_ib0O5KsWXvn12JUSwmqBfJAN4Ol9Gz6LhENQYfVkklyAhvMEX-l4zMpMCUNw1gx9vK8E04dfdLkjyAfM2KBgHq7L1-pbk4dx2-M8TBmAfio3D2dvePK7-MP7s3L_5f9A08PDmYlD--Hn9_CY8QABae0LgLm8vFpXmFIGtZvXbO9BuAYCKq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+review+of+the+impacts+of+cover+crops+on+nitrogen+leaching%2C+net+greenhouse+gas+balance+and+crop+productivity&rft.jtitle=Global+change+biology&rft.au=Abdalla%2C+Mohamed&rft.au=Hastings%2C+Astley&rft.au=Cheng%2C+Kun&rft.au=Qian+Yue&rft.date=2019-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=25&rft.issue=8&rft.spage=2530&rft.epage=2543&rft_id=info:doi/10.1111%2Fgcb.14644&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon