A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity
Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrog...
Saved in:
Published in | Global change biology Vol. 25; no. 8; pp. 2530 - 2543 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.08.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
Cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased soil organic carbon sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate net greenhouse gas balance by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of the cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting legume–non‐legume mixed cover crops. However, cover crop management need to be adapted to specific soil, management and regional climatic conditions. |
---|---|
AbstractList | Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
Cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased soil organic carbon sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate net greenhouse gas balance by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of the cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting legume–non‐legume mixed cover crops. However, cover crop management need to be adapted to specific soil, management and regional climatic conditions. Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2 -eq ha-1 year-1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2 -eq ha-1 year-1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N 2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly ( p < 0.001) decreased N leaching and significantly ( p < 0.001) increased SOC sequestration without having significant ( p > 0.05) effects on direct N 2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO 2 ‐eq ha −1 year −1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. Cover crops significantly ( p < 0.001) decreased N leaching and significantly ( p < 0.001) increased soil organic carbon sequestration without having significant ( p > 0.05) effects on direct N 2 O emissions. Cover crops could mitigate net greenhouse gas balance by 2.06 ± 2.10 Mg CO 2 ‐eq ha −1 year −1 . One of the potential disadvantages of the cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting legume–non‐legume mixed cover crops. However, cover crop management need to be adapted to specific soil, management and regional climatic conditions. Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N₂O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N₂O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO₂‐eq ha⁻¹ year⁻¹. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N 2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly ( p < 0.001) decreased N leaching and significantly ( p < 0.001) increased SOC sequestration without having significant ( p > 0.05) effects on direct N 2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO 2 ‐eq ha −1 year −1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO -eq ha year . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions. |
Author | Abdalla, Mohamed Rees, Robert M. Truu, Jaak Smith, Pete Espenberg, Mikk Hastings, Astley Yue, Qian Chadwick, Dave Cheng, Kun |
AuthorAffiliation | 1 Institute of Biological and Environmental Sciences, School of Biological Sciences University of Aberdeen Aberdeen UK 2 Institute of Resource, Ecosystem and Environment of Agriculture, Centre of Climate Change and Agriculture Nanjing Agricultural University Nanjing Jiangsu China 4 Faculty of Science and Technology University of Tartu Tartu Estonia 3 School of Natural Resources Bangor University Bangor Gwynedd UK 5 Scotland's Rural College (SRUC) Edinburgh Edinburgh UK |
AuthorAffiliation_xml | – name: 4 Faculty of Science and Technology University of Tartu Tartu Estonia – name: 5 Scotland's Rural College (SRUC) Edinburgh Edinburgh UK – name: 1 Institute of Biological and Environmental Sciences, School of Biological Sciences University of Aberdeen Aberdeen UK – name: 2 Institute of Resource, Ecosystem and Environment of Agriculture, Centre of Climate Change and Agriculture Nanjing Agricultural University Nanjing Jiangsu China – name: 3 School of Natural Resources Bangor University Bangor Gwynedd UK |
Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0000-0001-8403-327X surname: Abdalla fullname: Abdalla, Mohamed email: mabdalla@abdn.ac.uk organization: University of Aberdeen – sequence: 2 givenname: Astley surname: Hastings fullname: Hastings, Astley organization: University of Aberdeen – sequence: 3 givenname: Kun orcidid: 0000-0002-6101-0558 surname: Cheng fullname: Cheng, Kun organization: Nanjing Agricultural University – sequence: 4 givenname: Qian surname: Yue fullname: Yue, Qian organization: Nanjing Agricultural University – sequence: 5 givenname: Dave surname: Chadwick fullname: Chadwick, Dave organization: Bangor University – sequence: 6 givenname: Mikk orcidid: 0000-0003-0469-6394 surname: Espenberg fullname: Espenberg, Mikk organization: University of Tartu – sequence: 7 givenname: Jaak surname: Truu fullname: Truu, Jaak organization: University of Tartu – sequence: 8 givenname: Robert M. surname: Rees fullname: Rees, Robert M. organization: Scotland's Rural College (SRUC) Edinburgh – sequence: 9 givenname: Pete orcidid: 0000-0002-3784-1124 surname: Smith fullname: Smith, Pete organization: University of Aberdeen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30955227$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9v1SAUx4mZcT_0wX_AkPiiid2gBUpfTOaNTpMlvugzofS0l6UXKtAu97-X7s5Fl2jkBU74nC_nezin6Mh5Bwi9pOSc5nUxmPacMsHYE3RCK8GLkklxtJ45Kyih1TE6jfGGEFKVRDxDxxVpOC_L-gQtl9gEm6zRIw6wWLjFvsdpC9juJm1SXEPjFwiZ81MOHXY2BT-AwyNos7VueIcdJDwEALf1cwQ86IhbPWpnAGvX3aXiKfhuNskuNu2fo6e9HiO8uN_P0PdPH79tPhfXX6--bC6vC8NZyQqQRFAglaaSSE17RrqG96bturqqSMtqQyU3QldlT_qm11DzWmS4MQ1tKLTVGXp_0J3mdgedAZeCHtUU7E6HvfLaqj9vnN2qwS9KSE5rIbPAm3uB4H_MEJPa2WhgzN4gW1VlKYVkDa35f6CEM8rrkmb09SP0xs_B5U5kilNBCCXr269-L_6h6l-_l4G3ByD3N8YA_QNCiVonQ-XJUHeTkdmLR6yxSSfrV992_FfGrR1h_3dpdbX5cMj4CTYbye4 |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_138881 crossref_primary_10_1016_j_catena_2024_108180 crossref_primary_10_3390_fermentation9100912 crossref_primary_10_3390_su16135622 crossref_primary_10_1002_jeq2_20474 crossref_primary_10_3389_fmicb_2022_868862 crossref_primary_10_1007_s13593_024_00986_0 crossref_primary_10_1016_j_nbsj_2023_100071 crossref_primary_10_1016_j_fcr_2019_107603 crossref_primary_10_1016_j_fcr_2020_108034 crossref_primary_10_1016_j_agee_2024_108895 crossref_primary_10_1016_j_scitotenv_2021_152532 crossref_primary_10_1016_j_apsoil_2023_105199 crossref_primary_10_1016_j_eja_2021_126302 crossref_primary_10_3390_nitrogen5040056 crossref_primary_10_1016_j_apsoil_2022_104727 crossref_primary_10_1029_2022GL100249 crossref_primary_10_3390_su16188170 crossref_primary_10_1016_j_agsy_2024_104036 crossref_primary_10_1016_j_geoderma_2022_115952 crossref_primary_10_1007_s00374_020_01475_8 crossref_primary_10_3389_fagro_2024_1416379 crossref_primary_10_1007_s42729_023_01192_9 crossref_primary_10_3390_agronomy13082027 crossref_primary_10_3390_agronomy14030551 crossref_primary_10_1016_j_fcr_2022_108803 crossref_primary_10_3390_agronomy13030900 crossref_primary_10_3390_agronomy12123002 crossref_primary_10_3390_f11030325 crossref_primary_10_1016_j_fcr_2022_108807 crossref_primary_10_1073_pnas_2321245121 crossref_primary_10_3390_environments10020019 crossref_primary_10_1002_saj2_20730 crossref_primary_10_1111_gcb_15747 crossref_primary_10_1016_j_fcr_2024_109393 crossref_primary_10_3389_fenvs_2022_971261 crossref_primary_10_1016_j_eja_2024_127114 crossref_primary_10_3389_fsufs_2021_624203 crossref_primary_10_3389_fclim_2021_742320 crossref_primary_10_3390_agriculture10040134 crossref_primary_10_3390_plants12061329 crossref_primary_10_1007_s11104_022_05585_0 crossref_primary_10_1111_ejss_13532 crossref_primary_10_1002_eap_2278 crossref_primary_10_1080_13504509_2022_2124552 crossref_primary_10_1016_j_jenvman_2024_122700 crossref_primary_10_1038_s41587_023_01932_3 crossref_primary_10_1016_j_agee_2024_108985 crossref_primary_10_1016_j_cosust_2023_101275 crossref_primary_10_1002_jeq2_20316 crossref_primary_10_1016_j_landusepol_2021_105791 crossref_primary_10_3390_rs16050834 crossref_primary_10_1002_agj2_21246 crossref_primary_10_1007_s10705_024_10395_0 crossref_primary_10_3390_land13060834 crossref_primary_10_3923_pjbs_2021_888_894 crossref_primary_10_1002_ael2_20103 crossref_primary_10_1515_opag_2022_0181 crossref_primary_10_1111_ejss_13488 crossref_primary_10_1016_j_scitotenv_2023_167143 crossref_primary_10_1080_14735903_2024_2335106 crossref_primary_10_3389_fsoil_2022_970380 crossref_primary_10_1177_03091333221114732 crossref_primary_10_1111_gcb_14951 crossref_primary_10_3390_f14051048 crossref_primary_10_1016_j_still_2021_105063 crossref_primary_10_3390_cli13010015 crossref_primary_10_1016_j_scitotenv_2024_177592 crossref_primary_10_3390_agriculture13020241 crossref_primary_10_3389_fenvs_2022_1059800 crossref_primary_10_3390_en16104225 crossref_primary_10_1002_agg2_20305 crossref_primary_10_1007_s11270_024_07106_4 crossref_primary_10_7717_peerj_14170 crossref_primary_10_1007_s13593_023_00911_x crossref_primary_10_1016_j_agwat_2024_109246 crossref_primary_10_3390_agronomy10070977 crossref_primary_10_3390_agronomy13061634 crossref_primary_10_1002_saj2_20642 crossref_primary_10_3390_plants14050726 crossref_primary_10_1111_gcb_14989 crossref_primary_10_1002_csc2_20920 crossref_primary_10_1002_agj2_21028 crossref_primary_10_1002_saj2_20409 crossref_primary_10_3389_fenvs_2022_868410 crossref_primary_10_1016_j_agee_2021_107750 crossref_primary_10_1002_jeq2_20330 crossref_primary_10_1111_jac_12761 crossref_primary_10_1134_S1064229322090125 crossref_primary_10_1007_s11367_023_02150_4 crossref_primary_10_1016_j_spc_2023_02_003 crossref_primary_10_1016_j_fcr_2024_109343 crossref_primary_10_1038_s41598_020_70224_6 crossref_primary_10_1073_pnas_2217481120 crossref_primary_10_1111_ejss_13582 crossref_primary_10_1002_jeq2_20445 crossref_primary_10_1007_s42106_025_00336_4 crossref_primary_10_1016_j_scitotenv_2023_168440 crossref_primary_10_3733_ca_2023a0001 crossref_primary_10_1016_j_eja_2021_126407 crossref_primary_10_1016_j_rhisph_2020_100297 crossref_primary_10_1111_gcb_16917 crossref_primary_10_1007_s11368_021_02930_1 crossref_primary_10_1016_j_agsy_2024_104182 crossref_primary_10_3390_plants11091164 crossref_primary_10_3390_su11247119 crossref_primary_10_3389_fsoil_2024_1345073 crossref_primary_10_1093_oxfclm_kgab006 crossref_primary_10_1016_j_envres_2023_116925 crossref_primary_10_1111_cobi_14009 crossref_primary_10_1007_s11104_021_04853_9 crossref_primary_10_1080_00103624_2020_1784923 crossref_primary_10_1007_s42729_023_01464_4 crossref_primary_10_1016_j_scitotenv_2022_154388 crossref_primary_10_1016_j_geoderma_2024_116997 crossref_primary_10_1111_jpn_13409 crossref_primary_10_1007_s11104_023_06431_7 crossref_primary_10_1021_acsengineeringau_3c00031 crossref_primary_10_1007_s13199_022_00888_3 crossref_primary_10_1139_cjps_2021_0133 crossref_primary_10_3389_fpls_2022_920531 crossref_primary_10_1016_j_still_2023_105959 crossref_primary_10_1007_s10668_023_03597_z crossref_primary_10_1007_s11104_021_05076_8 crossref_primary_10_3389_fpls_2023_1250903 crossref_primary_10_3390_land12081526 crossref_primary_10_1002_ppp3_10481 crossref_primary_10_1071_SR21105 crossref_primary_10_3390_microorganisms12112241 crossref_primary_10_3390_plants14020246 crossref_primary_10_1038_s43017_022_00366_w crossref_primary_10_1016_j_atech_2024_100621 crossref_primary_10_5194_bg_19_2145_2022 crossref_primary_10_1016_j_fcr_2021_108264 crossref_primary_10_1016_j_agee_2021_107339 crossref_primary_10_1016_j_jclepro_2022_131691 crossref_primary_10_3390_agronomy12092126 crossref_primary_10_1016_j_fcr_2021_108268 crossref_primary_10_3389_fenvs_2022_857625 crossref_primary_10_1016_j_agsy_2023_103723 crossref_primary_10_3390_agriculture11030218 crossref_primary_10_1002_agj2_21340 crossref_primary_10_1038_s41598_023_44104_8 crossref_primary_10_1002_aepp_13442 crossref_primary_10_1016_j_apsoil_2023_105104 crossref_primary_10_1139_cjps_2024_0091 crossref_primary_10_1007_s11104_024_06494_0 crossref_primary_10_1002_agj2_20377 crossref_primary_10_1016_j_tifs_2024_104477 crossref_primary_10_1111_gcbb_12898 crossref_primary_10_1111_1365_2435_14592 crossref_primary_10_1016_j_agwat_2021_107216 crossref_primary_10_3390_agriculture13091714 crossref_primary_10_3390_agronomy11050882 crossref_primary_10_1016_j_resconrec_2023_107025 crossref_primary_10_1016_j_scitotenv_2024_175637 crossref_primary_10_1007_s13593_021_00750_8 crossref_primary_10_1016_j_scitotenv_2022_159990 crossref_primary_10_5194_bg_19_957_2022 crossref_primary_10_1016_j_envpol_2022_119616 crossref_primary_10_1111_gcb_15342 crossref_primary_10_1002_ael2_20070 crossref_primary_10_3390_agriculture12122076 crossref_primary_10_1007_s13593_022_00760_0 crossref_primary_10_3390_su15086517 crossref_primary_10_3390_agronomy15020267 crossref_primary_10_1021_acs_est_3c02161 crossref_primary_10_1038_s41893_023_01112_w crossref_primary_10_1016_j_agsy_2022_103415 crossref_primary_10_1016_j_fcr_2021_108237 crossref_primary_10_1002_csc2_20991 crossref_primary_10_1016_j_csag_2024_100026 crossref_primary_10_1016_j_apsoil_2024_105573 crossref_primary_10_1016_j_micres_2020_126505 crossref_primary_10_1007_s11104_023_06464_y crossref_primary_10_1016_j_resconrec_2024_107428 crossref_primary_10_1016_j_scitotenv_2021_149960 crossref_primary_10_1016_j_scitotenv_2021_146457 crossref_primary_10_3389_fenvs_2022_955142 crossref_primary_10_3389_fenrg_2022_837883 crossref_primary_10_3390_rs15133231 crossref_primary_10_3390_nitrogen4010005 crossref_primary_10_1111_ejss_13515 crossref_primary_10_5194_soil_8_269_2022 crossref_primary_10_1016_j_agee_2020_107191 crossref_primary_10_1016_j_scitotenv_2020_142815 crossref_primary_10_1016_j_agee_2024_109097 crossref_primary_10_1002_jeq2_20294 crossref_primary_10_1088_2976_601X_ad7bbe crossref_primary_10_1016_j_scitotenv_2024_174572 crossref_primary_10_1016_j_jclepro_2020_124255 crossref_primary_10_1007_s44378_025_00035_6 crossref_primary_10_1016_j_agsy_2021_103151 crossref_primary_10_3390_agronomy13071721 crossref_primary_10_1029_2022JG007113 crossref_primary_10_1016_j_fcr_2021_108217 crossref_primary_10_1111_sum_12800 crossref_primary_10_1111_gcb_16884 crossref_primary_10_3390_agronomy11010064 crossref_primary_10_1002_agj2_20340 crossref_primary_10_1007_s11119_024_10162_9 crossref_primary_10_3390_agriculture14122123 crossref_primary_10_3389_fenvs_2022_897221 crossref_primary_10_1016_j_soisec_2024_100170 crossref_primary_10_1186_s13021_024_00256_2 crossref_primary_10_1111_gcb_16632 crossref_primary_10_3390_horticulturae10101066 crossref_primary_10_1016_j_jhydrol_2021_127037 crossref_primary_10_1016_j_still_2024_106369 crossref_primary_10_1080_00380768_2024_2360022 crossref_primary_10_1016_j_still_2021_105311 crossref_primary_10_3390_agronomy13020311 crossref_primary_10_1002_agj2_20999 crossref_primary_10_1016_j_scitotenv_2023_164630 crossref_primary_10_1007_s00374_021_01599_5 crossref_primary_10_1016_j_pedsph_2023_03_011 crossref_primary_10_1111_gcb_16269 crossref_primary_10_1016_j_heliyon_2024_e30400 crossref_primary_10_1007_s11104_022_05438_w crossref_primary_10_3390_plants12162966 crossref_primary_10_1016_j_tplants_2025_01_009 crossref_primary_10_2139_ssrn_3985893 crossref_primary_10_1016_j_tplants_2022_03_014 crossref_primary_10_1038_s41467_023_44464_9 crossref_primary_10_1038_s41893_023_01131_7 crossref_primary_10_3390_agriculture11090830 crossref_primary_10_3390_agronomy11020387 crossref_primary_10_1016_j_agsy_2023_103684 crossref_primary_10_1002_agj2_21735 crossref_primary_10_1016_j_landusepol_2023_106831 crossref_primary_10_3390_fermentation8110617 crossref_primary_10_3389_fagro_2022_907507 crossref_primary_10_3390_agriculture14091601 crossref_primary_10_1016_j_scitotenv_2024_171781 crossref_primary_10_1016_j_oneear_2023_04_010 crossref_primary_10_1016_j_agee_2024_109178 crossref_primary_10_1016_j_agee_2024_109054 crossref_primary_10_1016_j_eja_2023_126878 crossref_primary_10_1111_gcb_17372 crossref_primary_10_1080_14735903_2023_2211484 crossref_primary_10_3390_plants11233255 crossref_primary_10_1016_j_catena_2024_108649 crossref_primary_10_3390_agronomy15030565 crossref_primary_10_1007_s11368_024_03816_8 crossref_primary_10_3390_rs14184525 crossref_primary_10_3390_agriculture11050394 crossref_primary_10_3390_agronomy14071356 crossref_primary_10_1016_j_agee_2024_109167 crossref_primary_10_3390_agronomy11081501 crossref_primary_10_1016_j_agsy_2023_103663 crossref_primary_10_1556_0088_2022_00117 crossref_primary_10_3390_agriculture10090394 crossref_primary_10_1016_j_agwat_2023_108353 crossref_primary_10_1038_s44264_025_00050_8 crossref_primary_10_1080_15324982_2022_2130114 crossref_primary_10_3389_fmicb_2019_01931 crossref_primary_10_3390_agronomy13051388 crossref_primary_10_1016_j_agee_2024_109274 crossref_primary_10_1007_s10705_021_10126_9 crossref_primary_10_1016_j_soilbio_2024_109548 crossref_primary_10_3390_agronomy14092104 crossref_primary_10_1139_cjps_2021_0177 crossref_primary_10_1016_j_landusepol_2022_106002 crossref_primary_10_3390_su151612183 crossref_primary_10_3390_agriculture11090903 crossref_primary_10_1016_j_fcr_2022_108470 crossref_primary_10_1016_j_fcr_2022_108472 crossref_primary_10_1016_j_envres_2024_118719 crossref_primary_10_3390_agriculture10080329 crossref_primary_10_1016_j_agee_2023_108873 crossref_primary_10_1029_2022EF003142 crossref_primary_10_1016_j_jclepro_2024_140878 crossref_primary_10_1016_j_agee_2023_108755 crossref_primary_10_1016_j_geoderma_2025_117195 crossref_primary_10_1371_journal_pone_0285586 crossref_primary_10_1007_s13593_022_00790_8 crossref_primary_10_48077_scihor7_2023_149 crossref_primary_10_3390_su14020805 crossref_primary_10_1016_j_scitotenv_2023_162007 crossref_primary_10_1016_j_agwat_2022_108039 crossref_primary_10_1016_j_catena_2024_108538 crossref_primary_10_1016_j_soilbio_2021_108343 crossref_primary_10_46830_wrirpt_20_00006 crossref_primary_10_1098_rstb_2022_0397 crossref_primary_10_3389_fagro_2023_1244057 crossref_primary_10_1139_cjss_2022_0079 crossref_primary_10_1515_opag_2021_0041 crossref_primary_10_1016_j_eja_2023_126796 crossref_primary_10_1016_j_jenvman_2022_117212 crossref_primary_10_1007_s10533_022_00942_8 crossref_primary_10_1007_s13593_024_01004_z crossref_primary_10_5194_bg_17_5243_2020 crossref_primary_10_2139_ssrn_4176660 crossref_primary_10_1016_j_agee_2024_109374 crossref_primary_10_3390_agronomy11020232 crossref_primary_10_1016_j_agsy_2024_103873 crossref_primary_10_3389_fsufs_2024_1369571 crossref_primary_10_1111_gcb_16489 crossref_primary_10_1016_j_agee_2025_109529 crossref_primary_10_3390_agronomy12092011 crossref_primary_10_1016_j_geoderma_2021_115192 crossref_primary_10_1016_j_scitotenv_2022_154316 crossref_primary_10_1007_s11104_023_05895_x crossref_primary_10_1038_s41467_023_41504_2 crossref_primary_10_1016_j_jenvman_2025_124633 crossref_primary_10_3390_agronomy10111760 crossref_primary_10_1002_csc2_21455 crossref_primary_10_1038_s41598_023_41307_x crossref_primary_10_3390_su16093565 crossref_primary_10_1038_s41598_022_16719_w crossref_primary_10_5194_soil_8_177_2022 crossref_primary_10_2135_cropsci2019_04_0234 crossref_primary_10_7717_peerj_15754 crossref_primary_10_1007_s42452_020_2631_5 crossref_primary_10_3390_agronomy13051344 crossref_primary_10_1002_saj2_20429 crossref_primary_10_1016_j_cosust_2020_06_003 crossref_primary_10_1007_s42398_025_00338_y crossref_primary_10_1016_j_scitotenv_2024_170629 crossref_primary_10_1111_agec_12805 crossref_primary_10_1016_j_fcr_2024_109400 crossref_primary_10_1139_cjss_2024_0024 crossref_primary_10_1016_j_jclepro_2023_138350 crossref_primary_10_1002_saj2_20311 crossref_primary_10_1016_j_jclepro_2021_128426 crossref_primary_10_1016_j_jenvman_2021_112097 crossref_primary_10_1016_j_jclepro_2022_130924 crossref_primary_10_1016_j_soilbio_2024_109616 crossref_primary_10_1016_j_eja_2023_126944 crossref_primary_10_1016_j_agwat_2024_109209 crossref_primary_10_1016_j_fcr_2023_109238 crossref_primary_10_1086_733661 crossref_primary_10_3390_agronomy12112734 crossref_primary_10_1080_09064710_2021_1973083 crossref_primary_10_1016_j_soilbio_2023_109110 crossref_primary_10_3389_fpls_2023_1305600 crossref_primary_10_1016_j_resconrec_2021_105661 crossref_primary_10_1016_j_scitotenv_2022_153955 crossref_primary_10_1016_j_agee_2024_109335 crossref_primary_10_1016_j_soisec_2022_100072 crossref_primary_10_3390_agronomy13051361 crossref_primary_10_1007_s11104_024_06764_x crossref_primary_10_1080_01904167_2024_2380482 crossref_primary_10_3390_agriculture15010096 crossref_primary_10_1007_s10452_023_10008_y crossref_primary_10_1016_j_soilbio_2024_109404 crossref_primary_10_1002_jeq2_20406 crossref_primary_10_1111_ejss_13147 crossref_primary_10_3390_agronomy12112622 crossref_primary_10_1016_j_agee_2024_109446 crossref_primary_10_1016_j_envint_2023_108245 crossref_primary_10_1016_j_scitotenv_2024_169991 crossref_primary_10_1080_17583004_2023_2268071 crossref_primary_10_1016_j_fcr_2023_109019 crossref_primary_10_1016_j_pedsph_2022_11_009 crossref_primary_10_1016_j_scitotenv_2024_171827 crossref_primary_10_1007_s00374_021_01547_3 crossref_primary_10_3390_agronomy14030603 crossref_primary_10_1016_j_scitotenv_2024_170854 crossref_primary_10_3390_soilsystems6040087 crossref_primary_10_1016_j_ecolind_2023_110155 crossref_primary_10_1038_s41598_024_51768_3 crossref_primary_10_1016_j_eti_2024_103779 crossref_primary_10_1016_j_agrformet_2021_108521 crossref_primary_10_3390_plants14050661 crossref_primary_10_1007_s11104_023_06283_1 crossref_primary_10_1016_j_agee_2022_108188 crossref_primary_10_1002_agg2_20036 crossref_primary_10_1088_1748_9326_ac8609 crossref_primary_10_2139_ssrn_3981241 crossref_primary_10_1088_1748_9326_acd708 crossref_primary_10_1016_j_apsoil_2021_104341 crossref_primary_10_1038_s41598_024_66030_z crossref_primary_10_1038_s43247_025_02001_0 crossref_primary_10_1016_j_agee_2023_108598 crossref_primary_10_1016_j_agee_2022_108050 crossref_primary_10_1038_s41467_024_54536_z crossref_primary_10_3390_hydrology11040058 crossref_primary_10_3390_su17010339 crossref_primary_10_1016_j_agee_2023_108591 crossref_primary_10_1016_j_agee_2021_107813 crossref_primary_10_1038_s43016_024_01076_w crossref_primary_10_1111_pce_14247 crossref_primary_10_1111_gcbb_70010 crossref_primary_10_1016_j_scitotenv_2020_144770 crossref_primary_10_1007_s10705_025_10400_0 crossref_primary_10_1016_j_agee_2024_109418 crossref_primary_10_3390_agriculture13010176 crossref_primary_10_1007_s11104_022_05420_6 crossref_primary_10_1039_D3VA00296A crossref_primary_10_1016_j_pedsph_2022_06_002 crossref_primary_10_5194_soil_11_1_2025 crossref_primary_10_1007_s13593_021_00703_1 crossref_primary_10_3390_agriculture12091383 crossref_primary_10_1007_s11119_024_10159_4 crossref_primary_10_1007_s10457_023_00874_8 crossref_primary_10_1002_saj2_20378 crossref_primary_10_1002_agg2_20481 crossref_primary_10_1007_s13199_021_00785_1 crossref_primary_10_1088_2515_7620_ad9141 crossref_primary_10_1007_s13199_022_00870_z crossref_primary_10_1016_j_jaridenv_2023_105028 crossref_primary_10_1016_j_jenvman_2022_114466 crossref_primary_10_3390_agriculture14091597 crossref_primary_10_1016_j_scitotenv_2024_172954 crossref_primary_10_3390_su12187630 crossref_primary_10_1016_j_catena_2023_107205 |
Cites_doi | 10.1016/j.geoderma.2014.01.030 10.1111/j.1475-2743.2002.tb00261.x 10.2134/agronj2004.0071 10.1016/j.fcr.2006.07.001 10.1016/j.agee.2015.01.023 10.2134/agronj2012.0185 10.1080/09064719609413129 10.1007/s11104-013-1876-9 10.18637/jss.v067.i01 10.1016/j.still.2015.06.015 10.1111/j.1475-2743.2010.00311.x 10.2134/agronj2005.0035 10.1080/00103624.2016.1147047 10.1016/j.agee.2005.05.001 10.1016/j.scitotenv.2010.12.006 10.1016/j.wasman.2007.09.015 10.1016/S1161-0301(00)00075-7 10.1007/s11104-005-0193-3 10.1016/j.scitotenv.2015.04.098 10.1016/j.still.2009.05.007 10.1098/rstb.2007.2184 10.21273/HORTSCI.43.6.1770 10.2134/agronj15.0182 10.1016/j.apsoil.2010.09.006 10.1080/09064719809362475 10.1016/j.fcr.2016.11.001 10.2134/agronj2002.3650 10.1016/j.geoderma.2017.01.002 10.2134/jeq2006.0547 10.2136/sssaj2012.0256 10.2136/sssaj2004.0216 10.1002/(SICI)1099-1085(200005)14:7<1289::AID-HYP43>3.0.CO;2-R 10.2134/agronj2005.0322a 10.1016/j.agee.2017.10.023 10.2489/jswc.72.3.226 10.1021/acs.est.7b01427 10.1016/j.scitotenv.2013.10.057 10.1016/j.compag.2008.02.009 10.1079/AJAA200345 10.2134/agronj2016.05.0288 10.1111/gfs.12124 10.33584/jnzg.2011.73.2834 10.1038/nclimate2292 10.1007/s10584-005-5951-y 10.2136/sssaj2005.0350 10.1007/s11119-006-9000-2 10.1590/S0100-06832014000100032 10.1111/sum.12030 10.18637/jss.v064.i04 10.2134/jeq2005.0337 10.1111/gcb.14091 10.1007/s10705-014-9650-9 10.5194/bg-13-5245-2016 10.2136/sssaj2012.0008 10.1016/j.agee.2013.04.018 10.4141/cjss96-049 10.1016/j.geoderma.2005.01.019 10.1016/j.apsoil.2008.06.004 10.1016/j.proenv.2015.07.130 10.1023/A:1010760720215 10.2134/agronj13.0402 10.1016/j.agee.2005.07.003 10.23986/afsci.5693 10.1016/j.scitotenv.2019.01.095 10.2489/jswc.69.6.471 10.23986/afsci.5750 10.1016/j.apsoil.2017.04.003 10.1111/gcb.12350 10.1016/j.agee.2014.10.024 10.1016/j.still.2012.03.001 10.2134/agronj15.0086 10.1051/agro:2008028 10.18637/jss.v082.i13 10.2136/sssaj2002.1930 10.2136/sssaj2013.02.0074 10.1038/s41467-017-01321-w 10.1016/j.agwat.2012.03.010 10.2134/agronj15.0146 10.2136/sssaj1982.03615995004600060019x 10.2136/2011.soilmanagement.c21 10.1016/j.agee.2018.01.005 10.1016/j.agsy.2013.11.004 10.1017/S1742170517000096 10.1111/sum.12083 10.1111/j.1475-2743.2005.tb00123.x 10.1046/j.1354-1013.2002.00486.x 10.1016/S0065-2113(02)79005-6 10.1016/j.eja.2012.03.006 10.4236/ojss.2014.48030 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.2134/agronj2010.0180 10.4141/CJSS09105 10.2135/cropsci2017.06.0375 10.1016/j.agee.2011.04.014 10.1007/s10705-010-9404-2 10.1016/j.agee.2007.05.008 10.1038/srep41911 10.2134/agronj2016.10.0613 10.1023/A:1009821519042 10.1016/j.eja.2009.05.006 10.1016/j.agee.2014.02.014 10.2136/sssaj2016.04.0120 10.1111/j.1475-2743.2000.tb00220.x |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by John Wiley & Sons Ltd 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. Published by John Wiley & Sons Ltd – notice: 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 5PM |
DOI | 10.1111/gcb.14644 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences Agriculture |
DocumentTitleAlternate | ABDALLA et al |
EISSN | 1365-2486 |
EndPage | 2543 |
ExternalDocumentID | PMC6851768 30955227 10_1111_gcb_14644 GCB14644 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: UK‐China Virtual joint Centre for Agricultural Nitrogen funderid: BB/N013468/1 – fundername: ADVENT funderid: NE/M019691/1 – fundername: UK‐Brazil Virtual Joint Centre to deliver enhanced N‐use efficiency via an integrated soil‐plant systems approach – fundername: Estonian Research Council funderid: PRG548 – fundername: SuperG Project – fundername: UK‐China Virtual Joint Centre N‐Circle funderid: BB/N013484/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/N013484/1 – fundername: Wellcome Trust – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/N013468/1 – fundername: UK‐China Virtual Joint Centre N‐Circle grantid: BB/N013484/1 – fundername: UK‐China Virtual joint Centre for Agricultural Nitrogen grantid: BB/N013468/1 – fundername: ADVENT grantid: NE/M019691/1 – fundername: ; grantid: PRG548 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5424-e8061e03a1808a1f40d95fcbdd7330b47c185c6a32f0f9fae7576a189c9191eb3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Thu Aug 21 17:52:08 EDT 2025 Fri Jul 11 18:29:27 EDT 2025 Fri Jul 11 13:42:38 EDT 2025 Fri Jul 25 19:40:24 EDT 2025 Mon Jul 21 06:02:40 EDT 2025 Tue Jul 01 03:53:01 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Wed Jan 22 16:41:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | N content N in grain cover crop green manure nitrous oxide emissions yield soil organic carbon catch crop N leaching nitrate net greenhouse gas balance C sequestration |
Language | English |
License | Attribution 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5424-e8061e03a1808a1f40d95fcbdd7330b47c185c6a32f0f9fae7576a189c9191eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0469-6394 0000-0002-3784-1124 0000-0002-6101-0558 0000-0001-8403-327X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14644 |
PMID | 30955227 |
PQID | 2251600108 |
PQPubID | 30327 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851768 proquest_miscellaneous_2286849175 proquest_miscellaneous_2205415721 proquest_journals_2251600108 pubmed_primary_30955227 crossref_primary_10_1111_gcb_14644 crossref_citationtrail_10_1111_gcb_14644 wiley_primary_10_1111_gcb_14644_GCB14644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2012; 122 2002; 18 2017; 82 2006; 35 2002; 94 2007; 100 2010; 102 2008; 37 1972 1996; 76 2014; 20 2005; 69 2017; 72 2000; 16 2000; 14 2011; 409 2000; 13 2000; 10 2011; 73 2008; 28 2005; 70 1982 2016; 47 2014; 125 2001; 53 2005; 111 2002; 8 2015; 529 2007; 92 2008; 123 2014; 470–471 2012; 104 2008; 363 2006; 112 2016; 13 2018; 24 2017; 51 2015; 67 1982; 46 2012; 110 2010; 46 2013; 77 2015; 64 2002; 66 2014; 38 2005; 97 2013; 174 2008; 43 2011; 89 2014; 30 2008; 40 2009; 105 2011; 142 2006; 70 2013; 29 1998; 48 2017; 7 2017; 8 2016; 108 2006; 130 2014; 69 2005; 21 1994; 24 2003; 18 2015; 107 2003; 12 2018; 253 2014; 4 2000; 56 2018; 256 2017; 33 2008; 63 2016; 80 2011; 27 1998; 53 2001; 10 2017; 20 2005; 273 2013; 44 2012 2011 2015; 203 2006; 98 2010 2015; 200 2006; 7 2003; 79 2017; 292 2006 2017; 117–118 2012; 76 2019; 660 2017; 109 2014; 106 2015; 29 2009; 31 2015; 154 2018 2016 2013; 374 2013 2014; 100 2014; 188 1996; 46 2010; 90 2018; 58 2014; 223 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 Wallgren B. (e_1_2_7_110_1) 1994; 24 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 IPCC (e_1_2_7_52_1) 2006 Unger P. W. (e_1_2_7_106_1) 1998; 53 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 Leith H (e_1_2_7_66_1) 1972 e_1_2_7_71_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 Grieser J. (e_1_2_7_43_1) 2006 Defra (e_1_2_7_30_1) 2010 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 Hoyle F. (e_1_2_7_51_1) 2013 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Dabney S. M. (e_1_2_7_29_1) 2011 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 R Core Team (e_1_2_7_88_1) 2018 e_1_2_7_39_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 Akima H. (e_1_2_7_6_1) 2016 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_76_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Stevenson F. J. (e_1_2_7_99_1) 1982 Drinkwater L. E. (e_1_2_7_38_1) 2007; 92 IPCC (e_1_2_7_53_1) 2013 |
References_xml | – volume: 16 start-page: 157 year: 2000 end-page: 166 article-title: Strategies to encourage better use of nitrogen in animal manures publication-title: Soil Use and Management – year: 2011 – volume: 77 start-page: 1765 year: 2013 end-page: 1773 article-title: Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon publication-title: Soil Science Society of America Journal – volume: 110 start-page: 25 year: 2012 end-page: 33 article-title: Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water publication-title: Agricultural Water Management – volume: 13 start-page: 207 year: 2000 end-page: 223 article-title: Nitrogen fluxes in three arable soils in the UK publication-title: European Journal of Agronomy – volume: 24 start-page: 2513 issue: 6 year: 2018 end-page: 2529 article-title: Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers publication-title: Global Change Biology – volume: 66 start-page: 1930 issue: 6 year: 2002 end-page: 1946 article-title: Soil organic carbon sequestration rates by tillage and crop rotation publication-title: Soil Science Society of America Journal – volume: 27 start-page: 54 year: 2011 end-page: 68 article-title: Leaching of N, P and glyphosate from two soils after herbicide treatment and incorporation of a ryegrass catch crop publication-title: Soil Use and Management – volume: 28 start-page: 716 issue: 4 year: 2008 end-page: 722 article-title: The mineralization of fresh and humified soil organic matter by the soil microbial biomass publication-title: Waste Management – volume: 122 start-page: 52 year: 2012 end-page: 60 article-title: Meta‐analysis on atmospheric carbon capture in Spain through the use of conservation agriculture publication-title: Soil and Tillage Research – volume: 90 start-page: 429 year: 2010 end-page: 440 article-title: Accumulation of nitrate‐N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review publication-title: Canadian Journal of Soil Science – volume: 102 start-page: 1700 year: 2010 end-page: 1709 article-title: Winter cover crops affect monoculture maize yield and nitrogen leaching under irrigated mediterranean conditions publication-title: Agronomy Journal – volume: 76 start-page: 411 year: 1996 end-page: 416 article-title: Economics of reduced tillage in crop‐fallow systems publication-title: Canadian Journal of Soil Science – volume: 470–471 start-page: 967 year: 2014 end-page: 974 article-title: Effects of over‐winter green cover on soil solution nitrate concentrations beneath tillage land publication-title: Science of the Total Environment – volume: 7 start-page: 65 year: 2006 end-page: 83 article-title: Algorithms for sensor‐based redistribution of nitrogen fertilizer in winter wheat publication-title: Precision Agriculture – volume: 111 start-page: 21 year: 2005 end-page: 29 article-title: Nitrate leaching under spring barley is influenced by the presence of a ryegrass catch crop: Results from a lysimeter experiment publication-title: Agriculture Ecosystems, and Environment – volume: 58 start-page: 863 year: 2018 end-page: 873 article-title: Establishment and function of cover crops inter‐seeded into corn publication-title: Crop Science – volume: 4 start-page: 284 year: 2014 end-page: 292 article-title: Long‐term effects of cover crops on crop yields, soil organic carbon stocks and sequestration publication-title: Open Journal of Soil Science – volume: 13 start-page: 5245 year: 2016 end-page: 5257 article-title: Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management publication-title: Biogeosciences – volume: 28 start-page: 551 year: 2008 end-page: 558 article-title: Effect of catch crops on N dynamics and following crops in organic farming publication-title: Agronomy for Sustainable Development – volume: 67 start-page: 1 issue: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – volume: 112 start-page: 58 year: 2006 end-page: 72 article-title: Replacing bare fallow with cover crops in fertilizer‐intensive cropping systems: A meta‐analysis of crop yield and N dynamics publication-title: Agriculture Ecosystems, and Environment – volume: 117–118 start-page: 21 year: 2017 end-page: 31 article-title: Influence of cover crops on arthropods, free‐living nematodes, and yield in a succeeding no‐till soybean crop publication-title: Applied Soil Ecology – volume: 8 start-page: 1416 year: 2017 article-title: Global patterns of nitrate storage in the vadose zone publication-title: Nature Communications – volume: 53 start-page: 51 year: 2001 end-page: 77 article-title: The distribution of soil nutrients with depth: Global patterns and the imprint of plants publication-title: Biogeochemistry – volume: 29 start-page: 13 year: 2015 end-page: 14 article-title: Cover crop management effects on soil physical and biological properties publication-title: Procedia Environmental Sciences – volume: 130 start-page: 229 year: 2006 end-page: 239 article-title: Effect of cover crop management on soil organic matter publication-title: Geoderma – volume: 63 start-page: 193 year: 2008 end-page: 206 article-title: Assessment of nitrogen losses to the environment with a Nitrogen Trading Tool (NTT) publication-title: Computer and Electronics in Agriculture – volume: 223 start-page: 9 year: 2014 end-page: 20 article-title: Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem publication-title: Geoderma – volume: 97 start-page: 322 year: 2005 end-page: 332 article-title: Evaluating cover crops for benefits, costs and performance within cropping system niches publication-title: Agronomy Journal – volume: 105 start-page: 55 year: 2009 end-page: 62 article-title: Effect of long‐term conservation tillage on soil biochemical properties in Mediterranean Spanish areas publication-title: Soil and Tillage Research – volume: 53 start-page: 200 year: 1998 end-page: 207 article-title: Cover crop effects on soil water relationships publication-title: Journal of Soil and Water Conservation – volume: 24 start-page: 67 year: 1994 end-page: 75 article-title: Effect of catch crops and ploughing times on soil mineral nitrogen publication-title: Swedish Journal of Agricultural Research – volume: 123 start-page: 99 year: 2008 end-page: 108 article-title: Residual effect and leaching of N and K in cropping systems with clover and ryegrass catch crops on coarse sand publication-title: Agriculture, Ecosystems and Environment – volume: 69 start-page: 206 issue: 2 year: 2014 end-page: 228 article-title: Potential of legume‐based grassland‐livestock systems in Europe: A review publication-title: Grass Forage Science – start-page: 230 year: 2011 end-page: 281 – year: 2016 – year: 2010 – volume: 660 start-page: 913 year: 2019 end-page: 922 article-title: The cover crop determines the AMF community composition in soil and in roots of maize after a ten‐year continuous crop rotation publication-title: Science of the Total Environment – volume: 98 start-page: 302 year: 2006 end-page: 319 article-title: Green manure approaches to crop production: A synthesis publication-title: Agronomy Journal – volume: 18 start-page: 421 year: 2002 end-page: 427 article-title: Nitrate leaching losses and their control in a mixed farm system in the Cotswold Hills, England publication-title: Soil Use and Management – volume: 43 start-page: 1770 issue: 6 year: 2008 end-page: 1774 article-title: Integration of cover crop, conservation tillage, and low herbicide rate for machine‐harvested pickling cucumbers publication-title: HortScience – volume: 100 start-page: 168 year: 2007 end-page: 178 article-title: The value of catch crops and organic manure for spring barley in organic arable farming publication-title: Field Crop Research – volume: 56 start-page: 139 year: 2000 end-page: 152 article-title: Nitrogen leaching and crop availability in manured catch crop systems in Sweden publication-title: Nutrient Cycling in Agroecosystems – volume: 4 start-page: 678 issue: 8 year: 2014 end-page: 83 article-title: Limited potential of no‐till agriculture for climate change mitigation publication-title: Nature Climate Change – volume: 200 start-page: 33 year: 2015 end-page: 41 article-title: Carbon sequestration in agricultural soils via cultivation of cover crops‐A meta‐analysis publication-title: Agriculture, Ecosystems and Environment – volume: 10 start-page: 423 year: 2000 end-page: 436 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecological Applications – volume: 108 start-page: 39 issue: 1 year: 2016 end-page: 52 article-title: Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures publication-title: Agronomy Journal – volume: 70 start-page: 283 year: 2005 end-page: 297 article-title: Management strategies to sequester carbon in agricultural soils and to mitigate greenhouse gas emissions publication-title: Climatic Change – start-page: 2108 year: 2006 end-page: 2111 – volume: 82 start-page: 1 issue: 13 year: 2017 end-page: 26 article-title: lmerTest package: Tests in linear mixed effects models publication-title: Journal of Statistical Software – volume: 203 start-page: 93 year: 2015 end-page: 101 article-title: Meta‐analysis of the effects of under‐sown catch crops on nitrogen leaching loss and grain yields in the Nordic countries publication-title: Agriculture Ecosystems, and Environment – volume: 80 start-page: 1551 year: 2016 end-page: 1559 article-title: Rye cover crop effects on direct and indirect nitrous oxide emissions publication-title: Soil Science Society of America Journal – year: 2013 – volume: 69 start-page: 471 year: 2014 end-page: 482 article-title: Do cover crops increase or decrease nitrous oxide emissions? A meta‐analysis publication-title: Journal of Soil and Water Conservation – volume: 46 start-page: 1212 year: 1982 end-page: 1217 article-title: Leaching of fertilizer ions in a Kaolinitic Ultisol in the high rain fall tropics: Leaching of nitrate in field plots under cropping and bare fallow publication-title: Soil Science Society of America Journal – volume: 529 start-page: 40 year: 2015 end-page: 53 article-title: Estimation and mitigation of N O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea publication-title: Science of the Total Environment – volume: 97 start-page: 684 year: 2005 end-page: 689 article-title: Legume green fallow effect on soil water content at wheat planting and wheat yield publication-title: Agronomy Journal – volume: 107 start-page: 2449 year: 2015 end-page: 2474 article-title: Cover crops and ecosystem services: Insights from studies in temperate regions publication-title: Agronomy Journal – volume: 72 start-page: 226 issue: 3 year: 2017 end-page: 239 article-title: Corn yield response to winter cover crops: An updated meta‐analysis publication-title: Journal of Soil and Water Conservation – volume: 46 start-page: 161 issue: 3 year: 1996 end-page: 168 article-title: Yield of catch crops and spring barley as affected by time of under-sowing publication-title: Acta Agriculturae Scandinavica, Section B-Soil & Plant Science – start-page: 5 year: 1972 end-page: 10 – volume: 37 start-page: 138 year: 2008 end-page: 145 article-title: Evaluation of cover crop and reduced cultivation for reducing nitrate leaching in Ireland publication-title: Journal of Environmental Quality – volume: 21 start-page: 181 year: 2005 end-page: 188 article-title: Nitrate leaching from organic arable crop rotations: Effects of location, manure and catch crop publication-title: Soil Use and Management – volume: 29 start-page: 199 year: 2013 end-page: 209 article-title: Conservation tillage systems: A review of its consequences for greenhouse gas emissions publication-title: Soil Use and Management – volume: 374 start-page: 977 year: 2013 end-page: 991 article-title: Assessment of nitrate leaching loss on a yield‐scaled basis from maize and wheat cropping systems publication-title: Plant and Soil – volume: 69 start-page: 640 year: 2005 end-page: 648 article-title: Recovery of fertilizer nitrogen in crop residues and cover crops on an irrigated sandy soil publication-title: Soil Science Society of America Journal – volume: 253 start-page: 62 year: 2018 end-page: 81 article-title: Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands publication-title: Agriculture Ecosystems & Environment – volume: 89 start-page: 399 year: 2011 end-page: 412 article-title: Legume cover crops and mulches: Effects on nitrate leaching and nitrogen input in a pepper crop publication-title: Nutrient Cycling in Agroecosystems – volume: 10 start-page: 197 year: 2001 end-page: 208 article-title: Effect of annually repeated under‐sowing on cereal grain yields publication-title: Agricultural and Food Science in Finland – volume: 20 start-page: 265 year: 2014 end-page: 275 article-title: Plant species identity surpasses species richness as a key driver of N O emissions from grassland publication-title: Global Change Biology – year: 2018 – volume: 51 start-page: 4738 issue: 9 year: 2017 end-page: 4739 article-title: Sequestering soil organic carbon: A nitrogen dilemma publication-title: Environmental Science and Technology – volume: 40 start-page: 370 year: 2008 end-page: 380 article-title: Cover crops and cultivation: Impacts on soil N dynamics and Micro‐biological function in a Mediterranean vineyard agroecosystem publication-title: Applied Soil Ecology – volume: 188 start-page: 134 year: 2014 end-page: 146 article-title: Long‐term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years publication-title: Agriculture, Ecosystems and Environment – volume: 48 start-page: 26 year: 1998 end-page: 33 article-title: Strategy for catch crop development II. Screening of species undersown in spring barley ( L.) with respect to catch crop growth and grain yield publication-title: Acta Agricultrae Scandinavica – volume: 14 start-page: 1289 year: 2000 end-page: 1304 article-title: Rainfall runoff and erosion in Napa Valley vineyards: Effects of slope, cover and surface roughness publication-title: Hydrological Processes – volume: 38 start-page: 315 year: 2014 end-page: 326 article-title: Impacts of land levelling on lowland soil physical properties publication-title: Revista Brasileira de Ciência do Solo – year: 1982 – volume: 174 start-page: 1 year: 2013 end-page: 10 article-title: Meta‐analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield publication-title: Agriculture, Ecosystems and Environment – volume: 30 start-page: 48 year: 2014 end-page: 57 article-title: Cover crop growth and impact on N leaching as affected by pre‐ and postharvest sowing and time of incorporation publication-title: Soil Use and Management – volume: 7 start-page: 41911 year: 2017 article-title: Cover crops support ecological intensification of arable cropping systems publication-title: Scientific Reports – volume: 108 start-page: 2527 year: 2016 end-page: 2540 article-title: A model‐data fusion approach for predicting cover crop nitrogen supply to corn publication-title: Agronomy Journal – volume: 273 start-page: 355 year: 2005 end-page: 373 article-title: The use of cover crops in cereal based cropping systems to control nitrate leaching in SE England publication-title: Plant and Soil – volume: 33 start-page: 322 year: 2017 end-page: 333 article-title: The trouble with cover crops: Farmers' experiences with overcoming barriers to adoption publication-title: Renewable Agriculture and Food Systems – volume: 20 start-page: 75 year: 2017 end-page: 85 article-title: Legume cover crop management on nitrogen dynamics and yield in grain corn systems publication-title: Field Crops Research – volume: 77 start-page: 1391 year: 2013 end-page: 1401 article-title: Winter nitrate leaching under different tillage and winter cover crop management practices publication-title: Soil Science Society of America Journal – volume: 47 start-page: 863 issue: 7 year: 2016 end-page: 874 article-title: Effect of fertilizer nitrogen (N) on soil organic carbon, total N, and soil pH in long‐term continuous winter wheat ( L.) publication-title: Communications in Soil Science and Plant Analysis – volume: 142 start-page: 149 year: 2011 end-page: 160 article-title: Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management publication-title: Agriculture, Ecosystems and Environment – volume: 31 start-page: 103 year: 2009 end-page: 109 article-title: Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of maize publication-title: European Journal of Agronomy – volume: 35 start-page: 714 year: 2006 end-page: 725 article-title: Tillage and field scale controls on greenhouse gas emissions publication-title: Journal of Environmental Quality – volume: 104 start-page: 1425 year: 2012 end-page: 1435 article-title: Optimizing cover crop benefits with diverse mixtures and an alternative termination method publication-title: Agronomy Journal – volume: 8 start-page: 345 year: 2002 end-page: 360 article-title: Soil carbon stocks and land use change: A meta‐analysis publication-title: Global Change Biology – volume: 44 start-page: 98 year: 2013 end-page: 108 article-title: The role of catch crop in the ecological intensification of spring cereals in organic farming under Nordic climate publication-title: European Journal of Agronomy – volume: 79 start-page: 227 year: 2003 end-page: 302 article-title: Catch crops and green manures as biological tools in nitrogen management in temperate zone publication-title: Advances in Agronomy – volume: 154 start-page: 64 year: 2015 end-page: 74 article-title: Cover crop and tillage systems effect on soil CO and N O fluxes in contrasting topographic positions publication-title: Soil and Tillage Research – volume: 363 start-page: 789 year: 2008 end-page: 813 article-title: Greenhouse gas mitigation in agriculture publication-title: Philosophical Transactions of the Royal Society B – year: 2012 – volume: 107 start-page: 2011 year: 2015 end-page: 2019 article-title: Short‐term soil responses to late‐seeded cover crops in a semi‐arid environment publication-title: Agronomy Journal – volume: 76 start-page: 2164 year: 2012 end-page: 2173 article-title: Winter annual cover crop impacts on no‐till soil physical properties and organic matter publication-title: Soil Science Society of America Journal – volume: 18 start-page: 146 year: 2003 end-page: 154 article-title: The performance of organic and conventional cropping systems in an extreme climate year publication-title: American Journal of Alternative Agriculture – volume: 12 start-page: 165 issue: 3–4 year: 2003 end-page: 176 article-title: Soil nitrate N as influenced by annually undersown cover crops in spring cereals publication-title: Agricultural and Food Science in Finland – start-page: 321 year: 2011 end-page: 337 – volume: 125 start-page: 12 year: 2014 end-page: 22 article-title: A framework for evaluating ecosystem services provided by cover crops in agroecosystems publication-title: Agricultural Systems – volume: 409 start-page: 1104 issue: 3–4 year: 2011 end-page: 1115 article-title: Cost effectiveness of nitrate leaching mitigation measures for grassland livestock systems at locations in England and Wales publication-title: Science of the Total Environment – volume: 292 start-page: 59 year: 2017 end-page: 86 article-title: Soil carbon 4 per mille publication-title: Geoderma – volume: 70 start-page: 1936 year: 2006 article-title: No‐till corn/soybean systems including winter cover crops publication-title: Soil Science Society of America Journal – volume: 100 start-page: 285 year: 2014 end-page: 299 article-title: Nitrate leaching from organic and conventional arable crop farms in the Seine Basin (France) publication-title: Nutrient Cycling in Agroecosystems – year: 2006 – volume: 46 start-page: 432 year: 2010 end-page: 442 article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input? publication-title: Applied Soil Ecology – volume: 94 start-page: 365 year: 2002 end-page: 372 article-title: Nitrogen recycling by non‐leguminous winter cover crops to reduce leaching in potato rotations publication-title: Agronomy Journal – volume: 64 start-page: 1 issue: 4 year: 2015 end-page: 34 article-title: fitdistrplus: An R package for fitting distributions publication-title: Journal of Statistical Software – volume: 109 start-page: 1261 year: 2017 end-page: 1270 article-title: Tillage and cover cropping effects on soil properties and crop production in Illinois publication-title: Agronomy Journal – volume: 106 start-page: 1193 year: 2014 end-page: 1204 article-title: Selecting cover crop mulches for organic rotational no‐till systems in Manitoba, Canada publication-title: Agronomy Journal – volume: 73 start-page: 57 year: 2011 end-page: 62 article-title: Relationships between farm productivity, profitability, N leaching and GHG emissions: A modelling approach publication-title: New Zealand Grasslands Association – volume: 92 start-page: 63 year: 2007 end-page: 186 article-title: Nutrients in agroecosystems: Rethinking the management paradigm publication-title: Advances in Agronomy – volume: 256 start-page: 94 year: 2018 end-page: 104 article-title: Importance of cover crop in alleviating negative effects of reduced soil tillage and promoting soil fertility in a winter wheat cropping system publication-title: Agriculture, Ecosystems and Environment – ident: e_1_2_7_4_1 doi: 10.1016/j.geoderma.2014.01.030 – ident: e_1_2_7_7_1 doi: 10.1111/j.1475-2743.2002.tb00261.x – ident: e_1_2_7_77_1 doi: 10.2134/agronj2004.0071 – ident: e_1_2_7_80_1 doi: 10.1016/j.fcr.2006.07.001 – ident: e_1_2_7_107_1 doi: 10.1016/j.agee.2015.01.023 – ident: e_1_2_7_117_1 doi: 10.2134/agronj2012.0185 – ident: e_1_2_7_79_1 doi: 10.1080/09064719609413129 – ident: e_1_2_7_119_1 doi: 10.1007/s11104-013-1876-9 – ident: e_1_2_7_56_1 – ident: e_1_2_7_15_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_7_76_1 doi: 10.1016/j.still.2015.06.015 – ident: e_1_2_7_8_1 doi: 10.1111/j.1475-2743.2010.00311.x – volume: 53 start-page: 200 year: 1998 ident: e_1_2_7_106_1 article-title: Cover crop effects on soil water relationships publication-title: Journal of Soil and Water Conservation – ident: e_1_2_7_26_1 doi: 10.2134/agronj2005.0035 – ident: e_1_2_7_13_1 doi: 10.1080/00103624.2016.1147047 – ident: e_1_2_7_100_1 doi: 10.1016/j.agee.2005.05.001 – ident: e_1_2_7_24_1 doi: 10.1016/j.scitotenv.2010.12.006 – ident: e_1_2_7_20_1 doi: 10.1016/j.wasman.2007.09.015 – ident: e_1_2_7_112_1 doi: 10.1016/S1161-0301(00)00075-7 – ident: e_1_2_7_71_1 doi: 10.1007/s11104-005-0193-3 – ident: e_1_2_7_62_1 doi: 10.1016/j.scitotenv.2015.04.098 – ident: e_1_2_7_72_1 doi: 10.1016/j.still.2009.05.007 – ident: e_1_2_7_95_1 doi: 10.1098/rstb.2007.2184 – ident: e_1_2_7_111_1 doi: 10.21273/HORTSCI.43.6.1770 – ident: e_1_2_7_40_1 doi: 10.2134/agronj15.0182 – ident: e_1_2_7_45_1 doi: 10.1016/j.apsoil.2010.09.006 – ident: e_1_2_7_59_1 doi: 10.1080/09064719809362475 – ident: e_1_2_7_27_1 doi: 10.1016/j.fcr.2016.11.001 – ident: e_1_2_7_113_1 doi: 10.2134/agronj2002.3650 – ident: e_1_2_7_74_1 doi: 10.1016/j.geoderma.2017.01.002 – ident: e_1_2_7_50_1 doi: 10.2134/jeq2006.0547 – ident: e_1_2_7_41_1 doi: 10.2136/sssaj2012.0256 – volume-title: R: A language and environment for statistical computing year: 2018 ident: e_1_2_7_88_1 – ident: e_1_2_7_22_1 doi: 10.2136/sssaj2004.0216 – ident: e_1_2_7_16_1 doi: 10.1002/(SICI)1099-1085(200005)14:7<1289::AID-HYP43>3.0.CO;2-R – ident: e_1_2_7_96_1 doi: 10.2134/agronj2005.0322a – ident: e_1_2_7_3_1 doi: 10.1016/j.agee.2017.10.023 – ident: e_1_2_7_73_1 doi: 10.2489/jswc.72.3.226 – ident: e_1_2_7_108_1 doi: 10.1021/acs.est.7b01427 – ident: e_1_2_7_86_1 doi: 10.1016/j.scitotenv.2013.10.057 – ident: e_1_2_7_31_1 doi: 10.1016/j.compag.2008.02.009 – ident: e_1_2_7_69_1 doi: 10.1079/AJAA200345 – ident: e_1_2_7_115_1 doi: 10.2134/agronj2016.05.0288 – ident: e_1_2_7_70_1 doi: 10.1111/gfs.12124 – ident: e_1_2_7_93_1 doi: 10.33584/jnzg.2011.73.2834 – ident: e_1_2_7_85_1 doi: 10.1038/nclimate2292 – volume-title: Fertiliser manual (RB209) year: 2010 ident: e_1_2_7_30_1 – ident: e_1_2_7_33_1 doi: 10.1007/s10584-005-5951-y – ident: e_1_2_7_109_1 doi: 10.2136/sssaj2005.0350 – ident: e_1_2_7_18_1 doi: 10.1007/s11119-006-9000-2 – ident: e_1_2_7_82_1 doi: 10.1590/S0100-06832014000100032 – ident: e_1_2_7_5_1 doi: 10.1111/sum.12030 – ident: e_1_2_7_32_1 doi: 10.18637/jss.v064.i04 – ident: e_1_2_7_65_1 doi: 10.2134/jeq2005.0337 – volume-title: The Miami model of climatic net primary production of biomass year: 2006 ident: e_1_2_7_43_1 – ident: e_1_2_7_105_1 doi: 10.1111/gcb.14091 – ident: e_1_2_7_17_1 doi: 10.1007/s10705-014-9650-9 – ident: e_1_2_7_44_1 doi: 10.5194/bg-13-5245-2016 – volume-title: akima: Interpolation of irregularly and regularly spaced data year: 2016 ident: e_1_2_7_6_1 – ident: e_1_2_7_97_1 doi: 10.2136/sssaj2012.0008 – ident: e_1_2_7_87_1 doi: 10.1016/j.agee.2013.04.018 – ident: e_1_2_7_94_1 doi: 10.4141/cjss96-049 – volume: 24 start-page: 67 year: 1994 ident: e_1_2_7_110_1 article-title: Effect of catch crops and ploughing times on soil mineral nitrogen publication-title: Swedish Journal of Agricultural Research – ident: e_1_2_7_35_1 doi: 10.1016/j.geoderma.2005.01.019 – ident: e_1_2_7_98_1 doi: 10.1016/j.apsoil.2008.06.004 – ident: e_1_2_7_48_1 doi: 10.1016/j.proenv.2015.07.130 – volume-title: Climate change 2013: The physical science basis year: 2013 ident: e_1_2_7_53_1 – ident: e_1_2_7_55_1 doi: 10.1023/A:1010760720215 – ident: e_1_2_7_47_1 doi: 10.2134/agronj13.0402 – ident: e_1_2_7_103_1 doi: 10.1016/j.agee.2005.07.003 – ident: e_1_2_7_57_1 doi: 10.23986/afsci.5693 – ident: e_1_2_7_49_1 doi: 10.1016/j.scitotenv.2019.01.095 – ident: e_1_2_7_14_1 doi: 10.2489/jswc.69.6.471 – ident: e_1_2_7_58_1 doi: 10.23986/afsci.5750 – ident: e_1_2_7_67_1 doi: 10.1016/j.apsoil.2017.04.003 – ident: e_1_2_7_2_1 doi: 10.1111/gcb.12350 – start-page: 2108 volume-title: IPCC guidelines for national greenhouse gas inventories year: 2006 ident: e_1_2_7_52_1 – ident: e_1_2_7_84_1 doi: 10.1016/j.agee.2014.10.024 – ident: e_1_2_7_42_1 doi: 10.1016/j.still.2012.03.001 – ident: e_1_2_7_19_1 doi: 10.2134/agronj15.0086 – volume-title: Humus chemistry: Genesis, composition, reactions year: 1982 ident: e_1_2_7_99_1 – ident: e_1_2_7_89_1 doi: 10.1051/agro:2008028 – ident: e_1_2_7_64_1 doi: 10.18637/jss.v082.i13 – ident: e_1_2_7_114_1 doi: 10.2136/sssaj2002.1930 – volume-title: Managing soil organic matter: A practical guide year: 2013 ident: e_1_2_7_51_1 – ident: e_1_2_7_75_1 doi: 10.2136/sssaj2013.02.0074 – ident: e_1_2_7_9_1 doi: 10.1038/s41467-017-01321-w – ident: e_1_2_7_60_1 doi: 10.1016/j.agwat.2012.03.010 – ident: e_1_2_7_28_1 – ident: e_1_2_7_68_1 doi: 10.2134/agronj15.0146 – ident: e_1_2_7_118_1 doi: 10.2136/sssaj1982.03615995004600060019x – ident: e_1_2_7_61_1 doi: 10.2136/2011.soilmanagement.c21 – volume: 92 start-page: 63 year: 2007 ident: e_1_2_7_38_1 article-title: Nutrients in agroecosystems: Rethinking the management paradigm publication-title: Advances in Agronomy – start-page: 5 volume-title: Modeling the primary productivity of the world year: 1972 ident: e_1_2_7_66_1 – ident: e_1_2_7_21_1 doi: 10.1016/j.agee.2018.01.005 – ident: e_1_2_7_92_1 doi: 10.1016/j.agsy.2013.11.004 – ident: e_1_2_7_90_1 doi: 10.1017/S1742170517000096 – ident: e_1_2_7_101_1 doi: 10.1111/sum.12083 – ident: e_1_2_7_11_1 doi: 10.1111/j.1475-2743.2005.tb00123.x – ident: e_1_2_7_46_1 doi: 10.1046/j.1354-1013.2002.00486.x – ident: e_1_2_7_102_1 doi: 10.1016/S0065-2113(02)79005-6 – ident: e_1_2_7_36_1 doi: 10.1016/j.eja.2012.03.006 – ident: e_1_2_7_81_1 doi: 10.4236/ojss.2014.48030 – ident: e_1_2_7_54_1 doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – ident: e_1_2_7_91_1 doi: 10.2134/agronj2010.0180 – start-page: 230 volume-title: Advances in nitrogen management for water quality year: 2011 ident: e_1_2_7_29_1 – ident: e_1_2_7_39_1 doi: 10.4141/CJSS09105 – ident: e_1_2_7_78_1 doi: 10.2135/cropsci2017.06.0375 – ident: e_1_2_7_12_1 doi: 10.1016/j.agee.2011.04.014 – ident: e_1_2_7_23_1 doi: 10.1007/s10705-010-9404-2 – ident: e_1_2_7_10_1 doi: 10.1016/j.agee.2007.05.008 – ident: e_1_2_7_116_1 doi: 10.1038/srep41911 – ident: e_1_2_7_37_1 doi: 10.2134/agronj2016.10.0613 – ident: e_1_2_7_104_1 doi: 10.1023/A:1009821519042 – ident: e_1_2_7_63_1 doi: 10.1016/j.eja.2009.05.006 – ident: e_1_2_7_34_1 doi: 10.1016/j.agee.2014.02.014 – ident: e_1_2_7_83_1 doi: 10.2136/sssaj2016.04.0120 – ident: e_1_2_7_25_1 doi: 10.1111/j.1475-2743.2000.tb00220.x |
SSID | ssj0003206 |
Score | 2.6931114 |
SecondaryResourceType | review_article |
Snippet | Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2530 |
SubjectTerms | Agricultural practices Agricultural production Agriculture C sequestration Carbon dioxide carbon sequestration catch crop Climatic conditions climatic factors Climatic zones cover crop Cover crops Crop Production Crop yield Crops Crops, Agricultural environmental sustainability Grain grain yield green manure Greenhouse effect greenhouse gas emissions Greenhouse Gases Leaching Legumes N content N in grain N leaching net greenhouse gas balance nitrate Nitrogen Nitrous oxide nitrous oxide emissions Organic carbon Productivity Research Review Soil Soil improvement soil organic carbon Soil quality Sustainability yield |
Title | A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14644 https://www.ncbi.nlm.nih.gov/pubmed/30955227 https://www.proquest.com/docview/2251600108 https://www.proquest.com/docview/2205415721 https://www.proquest.com/docview/2286849175 https://pubmed.ncbi.nlm.nih.gov/PMC6851768 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qQfDFH6e1sbWsIuKDKUl2k2zwqR6tRVBELPRBCNnN7rV4JOVyJ9S_3pndJO1ZFfHpsmRyJJuZzTfJN98AvJA1Ry-wWcjrKA-F1SIsTGxDKStuTZTW-ENsi4_Z8Yl4f5qebsCboRbG60OML9woMtx6TQFeqe5akM-0ojAXpAVKXC0CRJ-vpKN44vpqxjwVuNTEvFcVIhbPeOT6s-gGwLzJk7yOX90D6OgefB1O3fNOvu2vlmpf__hF1fE_r-0-3O2BKTvwnvQANkwzgdu-VeXlBLYOryri0KxfEroJBB8QdrcLZ8Zesun8HDGwGz2E7wdM960UmK-RYa1lCDmZL87saKiJRMqokxgOG4ZLzKJFr2bznuf5mjVmyWbEDzprV51hs6pjihiZ2rCqqd2h7MIr17pWGI_g5Ojwy_Q47Bs9hDoViQiNRFRhIl7FMpJVbEVUF6nVqq5zziMlco2oQmcVT2xkC1uZHLMkNC50gemmUXwLNpu2MdvAOH32EwVXVY1_rTIpbaZwLAuTYbKmA3g13PJS9yro1IxjXg7ZEM596eY-gOej6YWX_vid0e7gN2Uf_V2Ja2RMQDKSATwbd2Pc0seYqjE4WSUVOCN4wgT8bzYykwIT6jSAx94VxzPhpB2YJHkA-ZqTjgakG76-pzk_c_rhGaJszDJxKpwP_vniynfTt27jyb-b7sAdxJSF50juwuZysTJPEbct1R7cSsSnPRemPwHct0DX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5RAEJ7UGqMv_jitolVXY4wP0gC7wJL4Us_WU9s-mDbpiyGw7F4bL9Acdyb61zuzC7Rn1RifYMNAlmVm-AZmvgF4ISuOWmASn1dB6gujhJ_p0PhSFtzoIK5wQ9kWB8nkSHw8jo_X4E1fC-P4IYYPbmQZ1l-TgdMH6QtWPlUl2bkQV-AqdfQm5vx3n8_Jo3hkO2uGPBbobELe8QpRHs9w6urb6BLEvJwpeRHB2lfQ7i340k_eZZ583Vouyi314xdex_-9u9tws8OmbNsp0x1Y0_UIrrluld9HsLFzXhSHYp1XaEfg7SPybuZWjL1k49kpwmA7ugvftpnquikwVybDGsMQdTJXn9nSUFEeKaNmYjisGXqZeYOKzWZdqudrVusFm1KK0EmzbDWbFi0rKSlTaVbUlT2VnTnyWtsN4x4c7e4cjid-1-vBV7GIhK8lAgsd8CKUgSxCI4Iqi40qqyrlPChFqhBYqKTgkQlMZgqdYqCEwpnKMOLUJd-A9bqp9QNgnP78iYyXRYWXLhMpTVLiWGY6wXhNefCqf-a56ojQqR_HLO8DIlz73K69B88H0TPH_vE7oc1ecfLOAbQ5usmQsGQgPXg2HEbTpf8xRa1xsXKqcUb8hDH432RkIgXG1LEH950uDjPhRB8YRakH6YqWDgJEHb56pD49sRTiCQJtDDRxKawS_vnm8vfjt3bn4b-LPoXrk8P9vXzvw8GnR3ADIWbmUiY3YX0xX-rHCOMW5RNrrT8BL5JEHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIRAvaBQ2AgMMQogHIiWxkzja0-hWxte0BybtLXIcu5tUJVXTTdp_z52dhlVjiKfWyqVqcx_-Xf27O4D3suZoBTYLeR3lobBahIWJbSil4tZEaY0vxLY4zo5Oxbez9GwD9la1ML4_xPCHG3mGi9fk4PPa3nDyqa7IzYW4B_fpsI_4XIk4GcIwT9xgzZinAmNNzPu2QkTjGW5d34xuIczbRMmbANbtQJMteNxDR7bvdf0ENkwzggd-mOT1CLYP_9SsoVjvtN0Igp8IjNuFE2Mf2Hh2gSjVrZ7C1T7T_bAD5qtYWGsZgkLmyyc7WmqieTKa9YXLhmEQWLRod2zWMzE_scYs2ZQYPOftZWfYVHWsIs6kNkw1tbuVzX1vWTes4hmcTg5_jY_CfhRDqFORiNBI3PdNxFUsI6liK6K6SK2u6jrnPKpErnHf15niiY1sYZXJMY9B4UIXmBBiwr4Nm03bmOfAOB3MiYJXqsaPrjIpbVbhWhYmw3RKB_BxpZNS933KaVzGrFzlK6i-0qkvgHeD6Nw35_ib0O5KsWXvn12JUSwmqBfJAN4Ol9Gz6LhENQYfVkklyAhvMEX-l4zMpMCUNw1gx9vK8E04dfdLkjyAfM2KBgHq7L1-pbk4dx2-M8TBmAfio3D2dvePK7-MP7s3L_5f9A08PDmYlD--Hn9_CY8QABae0LgLm8vFpXmFIGtZvXbO9BuAYCKq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+review+of+the+impacts+of+cover+crops+on+nitrogen+leaching%2C+net+greenhouse+gas+balance+and+crop+productivity&rft.jtitle=Global+change+biology&rft.au=Abdalla%2C+Mohamed&rft.au=Hastings%2C+Astley&rft.au=Cheng%2C+Kun&rft.au=Qian+Yue&rft.date=2019-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=25&rft.issue=8&rft.spage=2530&rft.epage=2543&rft_id=info:doi/10.1111%2Fgcb.14644&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |