Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus

Summary Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors contr...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 19; no. 4; pp. 671 - 688
Main Authors Zhao, Chenning, Liu, Xiaojuan, Gong, Qin, Cao, Jinping, Shen, Wanxia, Yin, Xueren, Grierson, Donald, Zhang, Bo, Xu, Changjie, Li, Xian, Chen, Kunsong, Sun, Chongde
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.04.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)‐naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference‐induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration‐responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB‐RAV transcriptional complex regulating flavonoid production.
AbstractList Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)‐naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference‐induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration‐responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB‐RAV transcriptional complex regulating flavonoid production.
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production.Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production.
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to ( 2S )‐naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference‐induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration‐responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB‐RAV transcriptional complex regulating flavonoid production.
Summary Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)‐naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference‐induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration‐responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB‐RAV transcriptional complex regulating flavonoid production.
Author Shen, Wanxia
Chen, Kunsong
Li, Xian
Zhang, Bo
Gong, Qin
Zhao, Chenning
Yin, Xueren
Sun, Chongde
Liu, Xiaojuan
Xu, Changjie
Grierson, Donald
Cao, Jinping
AuthorAffiliation 2 Citrus Research Institute Southwest University/Chinese Academy of Agricultural Sciences Chongqing China
1 Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth Development and Quality Improvement Zhejiang University Hangzhou China
3 Division of Plant and Crop Sciences School of Biosciences University of Nottingham Loughborough UK
AuthorAffiliation_xml – name: 1 Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth Development and Quality Improvement Zhejiang University Hangzhou China
– name: 3 Division of Plant and Crop Sciences School of Biosciences University of Nottingham Loughborough UK
– name: 2 Citrus Research Institute Southwest University/Chinese Academy of Agricultural Sciences Chongqing China
Author_xml – sequence: 1
  givenname: Chenning
  surname: Zhao
  fullname: Zhao, Chenning
  organization: Zhejiang University
– sequence: 2
  givenname: Xiaojuan
  surname: Liu
  fullname: Liu, Xiaojuan
  organization: Zhejiang University
– sequence: 3
  givenname: Qin
  surname: Gong
  fullname: Gong, Qin
  organization: Zhejiang University
– sequence: 4
  givenname: Jinping
  surname: Cao
  fullname: Cao, Jinping
  organization: Zhejiang University
– sequence: 5
  givenname: Wanxia
  surname: Shen
  fullname: Shen, Wanxia
  organization: Southwest University/Chinese Academy of Agricultural Sciences
– sequence: 6
  givenname: Xueren
  orcidid: 0000-0002-1282-4432
  surname: Yin
  fullname: Yin, Xueren
  organization: Zhejiang University
– sequence: 7
  givenname: Donald
  surname: Grierson
  fullname: Grierson, Donald
  organization: University of Nottingham
– sequence: 8
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
  organization: Zhejiang University
– sequence: 9
  givenname: Changjie
  orcidid: 0000-0001-6284-6878
  surname: Xu
  fullname: Xu, Changjie
  organization: Zhejiang University
– sequence: 10
  givenname: Xian
  surname: Li
  fullname: Li, Xian
  organization: Zhejiang University
– sequence: 11
  givenname: Kunsong
  orcidid: 0000-0003-2874-2383
  surname: Chen
  fullname: Chen, Kunsong
  organization: Zhejiang University
– sequence: 12
  givenname: Chongde
  orcidid: 0000-0002-2874-0292
  surname: Sun
  fullname: Sun, Chongde
  email: adesun2006@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33089636$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1rFDEQwINU7Ic--A9IwBd9uF4-97IvQi2tHhQscvgastnZu5Rscia7lf3vzXnXokUxLwnMb35MZuYUHYUYAKHXlJzTcubbxp1TLmrxDJ1QUS1mi0qyo8e3EMfoNOc7QhitZPUCHXNOVF3x6gT51SYB4ItbNr_6eo070zs_4R76BlLGfWxHbwbAnTf3MUTX4jyFYQPZZdxMOMF6F3dhjYdpC3j5DduN8baUh12OPSSTyytg64Y05pfoeWd8hleH-wytrq9Wl59nN18-LS8vbmZWCiZmDVjDhRIK2lpYK2xlZau4orWylPBFB9x2Aioua6OkqjtSC2IJNFxayxp-hj7stdux6aG1EIZkvN4m15s06Wic_jMS3Eav471WRNKKiCJ4dxCk-H2EPOjeZQvemwBxzJpJSWu2oIr9HxWSV4ozpQr69gl6F8cUSiOKkHK2KEpZqDe_F_9Y9cPICjDfAzbFnBN0ujS3zCDu_uK8pkTvlkKXpdC_lqJkvH-S8SD9G3uw_3Aepn-D-vbjcp_xEztGxpg
CitedBy_id crossref_primary_10_3389_fpls_2024_1435154
crossref_primary_10_3390_ijms25073587
crossref_primary_10_1016_j_ijbiomac_2024_135752
crossref_primary_10_1016_j_stress_2024_100392
crossref_primary_10_1016_j_postharvbio_2024_113023
crossref_primary_10_1016_j_scienta_2023_112716
crossref_primary_10_32604_phyton_2024_054449
crossref_primary_10_1016_j_fbio_2024_103606
crossref_primary_10_1016_j_plantsci_2024_112084
crossref_primary_10_1016_j_plaphy_2025_109722
crossref_primary_10_1186_s12864_024_10676_6
crossref_primary_10_3389_fpls_2023_1325961
crossref_primary_10_1080_10408398_2020_1870035
crossref_primary_10_1016_j_plaphy_2025_109674
crossref_primary_10_3389_fpls_2022_841191
crossref_primary_10_1093_fqsafe_fyad036
crossref_primary_10_1007_s00299_023_02993_z
crossref_primary_10_3390_f13081249
crossref_primary_10_1016_j_ygeno_2022_110446
crossref_primary_10_3390_biology11071078
crossref_primary_10_1016_j_indcrop_2023_116837
crossref_primary_10_1038_s41598_022_06794_4
crossref_primary_10_1093_hr_uhad113
crossref_primary_10_3389_fpls_2022_1119384
crossref_primary_10_3390_antiox13020243
crossref_primary_10_1016_j_indcrop_2024_118482
crossref_primary_10_3389_fpls_2023_1182284
crossref_primary_10_1111_tpj_16866
crossref_primary_10_1093_hr_uhac130
crossref_primary_10_1007_s11240_024_02925_z
crossref_primary_10_3390_molecules28062582
crossref_primary_10_1016_j_xplc_2024_101065
crossref_primary_10_1007_s10142_023_01110_3
crossref_primary_10_1016_j_plantsci_2024_112026
crossref_primary_10_1016_j_plaphy_2023_107722
crossref_primary_10_3390_app15052319
crossref_primary_10_1016_j_plaphy_2024_108413
crossref_primary_10_3390_jof9121155
crossref_primary_10_1016_j_jare_2024_11_019
crossref_primary_10_1021_acs_jafc_4c11116
crossref_primary_10_3389_fpls_2022_900030
crossref_primary_10_1093_jxb_erae361
crossref_primary_10_3390_biom13010041
crossref_primary_10_1016_j_stress_2024_100384
crossref_primary_10_1016_j_postharvbio_2022_111994
crossref_primary_10_1016_j_postharvbio_2024_112888
crossref_primary_10_3390_horticulturae10030263
crossref_primary_10_3390_agronomy12051036
crossref_primary_10_1186_s12863_023_01159_w
crossref_primary_10_1111_pbi_70041
crossref_primary_10_1093_plphys_kiad249
crossref_primary_10_1111_tpj_16284
crossref_primary_10_1016_j_scienta_2023_112765
crossref_primary_10_1007_s44281_024_00029_4
crossref_primary_10_3389_fpls_2022_832669
crossref_primary_10_1111_mpp_13296
crossref_primary_10_3389_fpls_2023_1220062
crossref_primary_10_1111_pbi_14278
crossref_primary_10_3390_plants12102054
crossref_primary_10_1016_j_foodchem_2023_136089
crossref_primary_10_3389_fgene_2022_848141
crossref_primary_10_3390_antiox10101634
crossref_primary_10_1021_acs_jafc_2c08607
crossref_primary_10_1016_j_plantsci_2022_111234
crossref_primary_10_1038_s41598_023_40918_8
crossref_primary_10_1093_plphys_kiac307
crossref_primary_10_1093_plphys_kiac428
crossref_primary_10_1016_j_fbp_2024_09_016
crossref_primary_10_48130_mpb_0024_0005
crossref_primary_10_3389_fpls_2022_826780
crossref_primary_10_3389_fpls_2023_1082245
crossref_primary_10_3389_fpls_2023_1218426
crossref_primary_10_1007_s00425_023_04217_w
crossref_primary_10_3390_molecules28083599
crossref_primary_10_3390_plants13111524
crossref_primary_10_1016_j_scienta_2023_112359
crossref_primary_10_1016_j_gene_2023_147739
crossref_primary_10_3390_metabo13040464
crossref_primary_10_1007_s00299_023_03087_6
crossref_primary_10_1111_tpj_15800
crossref_primary_10_1016_j_ijbiomac_2025_139897
crossref_primary_10_1016_j_scienta_2024_113464
crossref_primary_10_1093_plphys_kiab606
crossref_primary_10_3390_ijms252211903
crossref_primary_10_3390_ijms252011247
crossref_primary_10_1038_s41438_021_00694_w
crossref_primary_10_1007_s10265_022_01426_4
crossref_primary_10_1016_j_plantsci_2022_111489
crossref_primary_10_1111_mpp_70002
crossref_primary_10_1111_tpj_70084
crossref_primary_10_2174_0115680266303704240524080333
crossref_primary_10_1093_hr_uhac223
crossref_primary_10_1016_j_jia_2024_03_049
crossref_primary_10_3390_horticulturae9070814
crossref_primary_10_1007_s11103_024_01540_y
crossref_primary_10_3389_fpls_2023_1249142
crossref_primary_10_1016_j_postharvbio_2021_111817
crossref_primary_10_3389_fpls_2022_891066
crossref_primary_10_1111_tpj_15977
crossref_primary_10_3389_fgene_2022_972990
crossref_primary_10_1016_j_biotechadv_2023_108107
crossref_primary_10_1021_acs_jafc_3c01883
crossref_primary_10_1021_acs_jafc_1c04373
crossref_primary_10_3389_fpls_2022_1042084
crossref_primary_10_3390_ijms22094945
crossref_primary_10_3389_fpls_2022_979348
crossref_primary_10_1002_fft2_236
crossref_primary_10_1111_ppl_14185
crossref_primary_10_3389_fpls_2023_1216826
crossref_primary_10_1021_acs_jafc_4c07454
crossref_primary_10_3390_nano14191598
crossref_primary_10_3390_plants13162259
crossref_primary_10_1111_mpp_13206
crossref_primary_10_3390_ijms25126632
crossref_primary_10_1093_hr_uhac283
crossref_primary_10_1002_cbdv_202401899
crossref_primary_10_1093_hr_uhae065
crossref_primary_10_1093_plphys_kiac516
crossref_primary_10_1016_j_postharvbio_2024_112848
crossref_primary_10_1016_j_plantsci_2023_111762
crossref_primary_10_1016_j_synbio_2022_05_003
crossref_primary_10_1093_hr_uhac049
crossref_primary_10_1016_j_ecoenv_2025_118022
crossref_primary_10_1038_s41467_024_48235_y
crossref_primary_10_3390_ijms252011021
crossref_primary_10_1111_ppl_14476
crossref_primary_10_3390_molecules28134982
Cites_doi 10.1007/s11033-014-3297-0
10.1016/j.tplants.2014.12.001
10.1105/tpc.10.8.1391
10.1111/tpj.13487
10.1093/oxfordjournals.pcp.a029589
10.1038/sj.cr.7290197
10.1093/nar/27.2.470
10.1038/s41598-017-10970-2
10.1111/tpj.12670
10.1016/j.cell.2016.04.038
10.1093/jxb/erx316
10.1104/pp.104.054502
10.1093/jxb/erq206
10.1111/j.1467-7652.2010.00547.x
10.1111/nph.12526
10.1111/j.1469-8137.2010.03421.x
10.1111/tpj.13864
10.1046/j.1365-313x.1998.00343.x
10.1046/j.1365-313X.2003.01661.x
10.1111/pbi.12725
10.3389/fpls.2017.00782
10.1111/tpj.13178
10.1111/nph.14389
10.1093/jxb/erv413
10.1104/pp.126.2.485
10.1038/nature11009
10.1093/mp/ssp118
10.1104/pp.109.142059
10.1111/pbi.12351
10.1038/s41589-018-0042-3
10.1007/s11103-009-9565-z
10.1111/pbi.13382
10.1093/jxb/eraa083
10.1002/ptr.5256
10.1016/j.foodchem.2006.11.054
10.1104/pp.16.01701
10.3389/fpls.2018.01042
10.1007/BF02670468
10.1093/pcp/pcu118
10.1111/pbi.13252
10.3390/molecules22071114
10.1073/pnas.1802223115
10.1111/nph.12620
10.1006/bbrc.2001.6299
10.1038/srep25352
10.1111/tpj.12469
10.1105/tpc.108.058040
10.1111/nph.12017
10.1111/j.1365-313X.2006.02964.x
10.1104/pp.104.058032
10.1034/j.1399-3054.2001.1110109.x
10.1038/s41467-020-14558-9
10.1038/s41438-019-0147-1
10.1080/10408398.2014.906382
10.1111/nph.14852
10.3390/nu11040791
ContentType Journal Article
Copyright 2020 The Authors. Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.13494
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
MEDLINE - Academic
AGRICOLA
CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate CitCHIL1 and three TFs enhance flavonoid synthesis
EISSN 1467-7652
EndPage 688
ExternalDocumentID PMC8051604
33089636
10_1111_pbi_13494
PBI13494
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31571838
– fundername: ;
  grantid: 31571838
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5424-beca34848ed94cc4c6c5d838198c1037fe3cf4e6359a8589f0940c0eb35cc2b3
IEDL.DBID DR2
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 18:03:34 EDT 2025
Fri Jul 11 18:30:54 EDT 2025
Wed Jul 30 10:40:00 EDT 2025
Wed Aug 13 07:45:17 EDT 2025
Wed Feb 19 02:25:53 EST 2025
Thu Apr 24 22:56:14 EDT 2025
Tue Jul 01 02:34:46 EDT 2025
Wed Jan 22 16:29:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords flavanone
DREB
type IV chalcone isomerase
RAV
flavone
citrus
Language English
License Attribution
2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5424-beca34848ed94cc4c6c5d838198c1037fe3cf4e6359a8589f0940c0eb35cc2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2874-0292
0000-0003-2874-2383
0000-0002-1282-4432
0000-0001-6284-6878
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13494
PMID 33089636
PQID 2513279275
PQPubID 1096352
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8051604
proquest_miscellaneous_2551927182
proquest_miscellaneous_2453683288
proquest_journals_2513279275
pubmed_primary_33089636
crossref_citationtrail_10_1111_pbi_13494
crossref_primary_10_1111_pbi_13494
wiley_primary_10_1111_pbi_13494_PBI13494
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2007; 104
2017a; 8
2012; 485
2019; 11
2017c; 90
2005; 137
2005; 138
2010; 188
2019; 18
2009; 151
1999; 40
2020; 11
2010; 61
2020; 18
1998; 16
2018; 9
2017b; 15
2018; 217
2016; 86
2000; 60
2013; 197
2008; 20
2010; 3
1998; 10
2014; 202
2014; 55
2010; 72
2014; 201
2015; 13
2002; 290
2019; 6
1999; 27
2017; 68
2016; 165
2017; 173
2014; 41
2017; 214
2001; 126
2003; 33
2011; 9
2001; 111
2016; 6
2014; 80
2015; 29
2017e; 22
2017d; 7
1993; 11
2004; 14
2020; 71
2015; 20
2018; 115
2015; 66
2017; 57
2019; 48
2018; 94
2014; 78
2018; 14
2007; 49
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
Tian F. (e_1_2_8_39_1) 2019; 48
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Wenzel U. (e_1_2_8_48_1) 2000; 60
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 10
  start-page: 1391
  year: 1998
  end-page: 1406
  article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought‐and low‐temperature‐responsive gene expression, respectively, in Arabidopsis
  publication-title: Plant Cell,
– volume: 197
  start-page: 454
  year: 2013
  end-page: 467
  article-title: Identification and characterization of MYB‐bHLH‐WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria× ananassa) fruits
  publication-title: New Phytol.
– volume: 11
  start-page: 791
  year: 2019
  article-title: Three polymethoxyflavones purified from Ougan (Citrus reticulata Cv. Suavissima) inhibited LPS‐induced NO elevation in the Neuroglia BV‐2 cell line via the JAK2/STAT3 pathway
  publication-title: Nutrients,
– volume: 202
  start-page: 132
  year: 2014
  end-page: 144
  article-title: Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed
  publication-title: New Phytol.
– volume: 201
  start-page: 733
  year: 2014
  end-page: 750
  article-title: Explaining intraspecific diversity in plant secondary metabolites in an ecological context
  publication-title: New Phytol.
– volume: 485
  start-page: 530
  year: 2012
  end-page: 533
  article-title: Evolution of the chalcone‐isomerase fold from fatty‐acid binding to stereospecific catalysis
  publication-title: Nature,
– volume: 78
  start-page: 294
  year: 2014
  end-page: 304
  article-title: A chalcone isomerase‐like protein enhances flavonoid production and flower pigmentation
  publication-title: Plant J.
– volume: 49
  start-page: 414
  year: 2007
  end-page: 427
  article-title: Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10
  publication-title: Plant J.
– volume: 68
  start-page: 4929
  year: 2017
  end-page: 4938
  article-title: Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E‐geraniol in sweet orange fruit
  publication-title: J. Exp. Bot.
– volume: 14
  start-page: 8
  year: 2004
  end-page: 15
  article-title: Arabidopsis RAV1 is down‐regulated by brassinosteroid and may act as a negative regulator during plant development
  publication-title: Cell Res.
– volume: 29
  start-page: 323
  year: 2015
  end-page: 331
  article-title: Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models
  publication-title: Phytother. Res.
– volume: 13
  start-page: 1325
  year: 2015
  end-page: 1334
  article-title: EjAP2‐1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors
  publication-title: Plant Biotechnol. J.
– volume: 60
  start-page: 3823
  year: 2000
  end-page: 3831
  article-title: Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells
  publication-title: Can. Res.
– volume: 48
  start-page: D1104
  year: 2019
  end-page: D1113
  article-title: PlantRegMap: charting functional regulatory maps in plants
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 113
  year: 1993
  end-page: 116
  article-title: A simple and efficient method for isolating RNA from pine trees
  publication-title: Plant Mol. Biol. Reporter,
– volume: 3
  start-page: 509
  year: 2010
  end-page: 523
  article-title: The basic helix‐loop‐helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine
  publication-title: Mol. Plant,
– volume: 217
  start-page: 909
  year: 2018
  end-page: 924
  article-title: Identification of chalcone isomerase in the basal land plants reveals an ancient evolution of enzymatic cyclization activity for synthesis of flavonoids
  publication-title: New Phytol.
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana
  publication-title: Plant J.
– volume: 111
  start-page: 66
  year: 2001
  end-page: 74
  article-title: Gene expression in flavonoid biosynthesis: Correlation with flavonoid accumulation in developing citrus fruit
  publication-title: Physiol. Plant.
– volume: 15
  start-page: 1409
  year: 2017b
  end-page: 1419
  article-title: Hypoxia‐responsive ERFs involved in postdeastringency softening of persimmon fruit
  publication-title: Plant Biotechnol. J.
– volume: 40
  start-page: 651
  year: 1999
  end-page: 655
  article-title: One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures
  publication-title: Plant Cell Physiol.
– volume: 27
  start-page: 470
  year: 1999
  end-page: 478
  article-title: RAV1, a novel DNA‐binding protein, binds to bipartite recognition sequence through two distinct DNA‐binding domains uniquely found in higher plants
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 548
  year: 2018
  end-page: 555
  article-title: Evolution of chalcone isomerase from a noncatalytic ancestor
  publication-title: Nat. Chem. Biol.
– volume: 94
  start-page: 372
  year: 2018
  end-page: 392
  article-title: Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species
  publication-title: Plant J.
– volume: 115
  start-page: E5223
  year: 2018
  end-page: E5232
  article-title: Noncatalytic chalcone isomerase‐fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 18
  start-page: 829
  year: 2019
  end-page: 844
  article-title: DREB/CBF expression in wheat and barley using the stress‐inducible promoters of HD‐Zip I genes: impact on plant development, stress tolerance and yield
  publication-title: Plant Biotechnol. J.
– volume: 33
  start-page: 751
  year: 2003
  end-page: 763
  article-title: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression
  publication-title: Plant J.
– volume: 188
  start-page: 985
  year: 2010
  end-page: 1000
  article-title: Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES‐dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11‐, MYB12‐ and MYB111‐independent flavonol glycoside accumulation
  publication-title: New Phytol.
– volume: 41
  start-page: 4261
  year: 2014
  end-page: 4271
  article-title: Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus
  publication-title: Mol. Biol. Rep.
– volume: 214
  start-page: 762
  year: 2017
  end-page: 781
  article-title: The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration‐responsive element binding (MaDREB) transcription factors in fruit ripening
  publication-title: New Phytol.
– volume: 104
  start-page: 466
  year: 2007
  end-page: 479
  article-title: Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review
  publication-title: Food Chem.
– volume: 71
  start-page: 3066
  year: 2020
  end-page: 3079
  article-title: Characterization of a caffeoyl‐CoA O‐methyltransferase‐like enzyme involved in biosynthesis of polymethoxylated flavones in Citrus reticulata
  publication-title: J. Exp. Bot.
– volume: 80
  start-page: 654
  year: 2014
  end-page: 668
  article-title: Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development
  publication-title: Plant J.
– volume: 9
  start-page: 230
  year: 2011
  end-page: 249
  article-title: Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors
  publication-title: Plant Biotechnol. J.
– volume: 22
  start-page: 1114
  year: 2017e
  article-title: Antioxidant capacity, anticancer ability and flavonoids composition of 35 citrus (Citrus reticulata Blanco) varieties
  publication-title: Molecules,
– volume: 8
  start-page: 782
  year: 2017a
  article-title: Identification of putative genes involved in limonoids biosynthesis in citrus by comparative transcriptomic analysis
  publication-title: Front. Plant Sci.
– volume: 57
  start-page: 613
  year: 2017
  end-page: 631
  article-title: Health‐promoting effects of the citrus flavanone hesperidin
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 9
  start-page: 1042
  year: 2018
  article-title: Modulation of phytohormone signaling: a primary function of flavonoids in plant–environment interactions
  publication-title: Front. Plant Sci.
– volume: 151
  start-page: 1513
  year: 2009
  end-page: 1530
  article-title: The grapevine R2R3‐MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries
  publication-title: Plant Physiol.
– volume: 7
  start-page: 10549
  year: 2017d
  article-title: Characterization and metabolic diversity of flavonoids in citrus species
  publication-title: Sci. Rep.
– volume: 290
  start-page: 998
  year: 2002
  end-page: 1009
  article-title: DNA‐binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration‐ and cold‐inducible gene expression
  publication-title: Biochem. Biophys. Res. Comm.
– volume: 66
  start-page: 7165
  year: 2015
  end-page: 7179
  article-title: Role of a chalcone isomerase‐like protein in flavonoid biosynthesis in Arabidopsis thaliana
  publication-title: J. Exp. Bot.
– volume: 18
  start-page: 2267
  year: 2020
  end-page: 2279
  article-title: The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes
  publication-title: Plant Biotechnol. J.
– volume: 126
  start-page: 485
  year: 2001
  end-page: 493
  article-title: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology
  publication-title: Plant Physiol.
– volume: 61
  start-page: 3947
  year: 2010
  end-page: 3957
  article-title: The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis
  publication-title: J. Exp. Bot.
– volume: 20
  start-page: 176
  year: 2015
  end-page: 185
  article-title: Transcriptional control of flavonoid biosynthesis by MYB‐bHLH‐WDR complexes
  publication-title: Trends Plant Sci.
– volume: 6
  start-page: 25352
  year: 2016
  article-title: Characterization of a citrus R2R3‐MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis
  publication-title: Sci. Rep.
– volume: 165
  start-page: 1280
  year: 2016
  end-page: 1292
  article-title: Cistrome and epicistrome features shape the regulatory DNA landscape
  publication-title: Cell,
– volume: 173
  start-page: 2225
  year: 2017
  end-page: 2242
  article-title: Changes in anthocyanin production during domestication of citrus
  publication-title: Plant Physiol.
– volume: 55
  start-page: 1892
  year: 2014
  end-page: 1904
  article-title: A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA
  publication-title: Plant Cell Physiol.
– volume: 90
  start-page: 276
  year: 2017c
  end-page: 292
  article-title: MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red‐fleshed apple (Malus sieversii f. niedzwetzkyana)
  publication-title: Plant J.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 16
  article-title: The MdWRKY31 transcription factor binds to the MdRAV1 promoter to mediate ABA sensitivity
  publication-title: Hortic. Res.
– volume: 137
  start-page: 1375
  year: 2005
  end-page: 1388
  article-title: Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases
  publication-title: Plant Physiol.
– volume: 86
  start-page: 403
  year: 2016
  end-page: 412
  article-title: Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening
  publication-title: Plant J.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 14
  article-title: A conserved strategy of chalcone isomerase‐like protein to rectify promiscuous chalcone synthase specificity
  publication-title: Nat. Commun.
– volume: 138
  start-page: 1083
  year: 2005
  end-page: 1096
  article-title: The Arabidopsis transcription factor MYB12 is a flavonol‐specific regulator of phenylpropanoid biosynthesis
  publication-title: Plant Physiol.
– volume: 20
  start-page: 2160
  year: 2008
  end-page: 2176
  article-title: Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in Arabidopsis
  publication-title: Plant Cell
– volume: 72
  start-page: 247
  year: 2010
  end-page: 263
  article-title: Genome‐wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens
  publication-title: Plant Mol. Biol.
– ident: e_1_2_8_51_1
  doi: 10.1007/s11033-014-3297-0
– ident: e_1_2_8_52_1
  doi: 10.1016/j.tplants.2014.12.001
– ident: e_1_2_8_23_1
  doi: 10.1105/tpc.10.8.1391
– ident: e_1_2_8_44_1
  doi: 10.1111/tpj.13487
– ident: e_1_2_8_28_1
  doi: 10.1093/oxfordjournals.pcp.a029589
– volume: 48
  start-page: D1104
  year: 2019
  ident: e_1_2_8_39_1
  article-title: PlantRegMap: charting functional regulatory maps in plants
  publication-title: Nucleic Acids Res.
– ident: e_1_2_8_15_1
  doi: 10.1038/sj.cr.7290197
– ident: e_1_2_8_17_1
  doi: 10.1093/nar/27.2.470
– ident: e_1_2_8_45_1
  doi: 10.1038/s41598-017-10970-2
– ident: e_1_2_8_11_1
  doi: 10.1111/tpj.12670
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cell.2016.04.038
– ident: e_1_2_8_22_1
  doi: 10.1093/jxb/erx316
– ident: e_1_2_8_35_1
  doi: 10.1104/pp.104.054502
– ident: e_1_2_8_50_1
  doi: 10.1093/jxb/erq206
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1467-7652.2010.00547.x
– ident: e_1_2_8_27_1
  doi: 10.1111/nph.12526
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1469-8137.2010.03421.x
– ident: e_1_2_8_13_1
  doi: 10.1111/tpj.13864
– ident: e_1_2_8_7_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_8_9_1
  doi: 10.1046/j.1365-313X.2003.01661.x
– ident: e_1_2_8_47_1
  doi: 10.1111/pbi.12725
– ident: e_1_2_8_43_1
  doi: 10.3389/fpls.2017.00782
– ident: e_1_2_8_55_1
  doi: 10.1111/tpj.13178
– ident: e_1_2_8_20_1
  doi: 10.1111/nph.14389
– ident: e_1_2_8_16_1
  doi: 10.1093/jxb/erv413
– ident: e_1_2_8_49_1
  doi: 10.1104/pp.126.2.485
– ident: e_1_2_8_32_1
  doi: 10.1038/nature11009
– ident: e_1_2_8_14_1
  doi: 10.1093/mp/ssp118
– ident: e_1_2_8_8_1
  doi: 10.1104/pp.109.142059
– ident: e_1_2_8_57_1
  doi: 10.1111/pbi.12351
– ident: e_1_2_8_18_1
  doi: 10.1038/s41589-018-0042-3
– ident: e_1_2_8_19_1
  doi: 10.1007/s11103-009-9565-z
– ident: e_1_2_8_58_1
  doi: 10.1111/pbi.13382
– ident: e_1_2_8_25_1
  doi: 10.1093/jxb/eraa083
– ident: e_1_2_8_34_1
  doi: 10.1002/ptr.5256
– ident: e_1_2_8_40_1
  doi: 10.1016/j.foodchem.2006.11.054
– ident: e_1_2_8_4_1
  doi: 10.1104/pp.16.01701
– ident: e_1_2_8_3_1
  doi: 10.3389/fpls.2018.01042
– ident: e_1_2_8_5_1
  doi: 10.1007/BF02670468
– ident: e_1_2_8_12_1
  doi: 10.1093/pcp/pcu118
– ident: e_1_2_8_54_1
  doi: 10.1111/pbi.13252
– ident: e_1_2_8_42_1
  doi: 10.3390/molecules22071114
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.1802223115
– ident: e_1_2_8_53_1
  doi: 10.1111/nph.12620
– ident: e_1_2_8_36_1
  doi: 10.1006/bbrc.2001.6299
– volume: 60
  start-page: 3823
  year: 2000
  ident: e_1_2_8_48_1
  article-title: Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells
  publication-title: Can. Res.
– ident: e_1_2_8_24_1
  doi: 10.1038/srep25352
– ident: e_1_2_8_30_1
  doi: 10.1111/tpj.12469
– ident: e_1_2_8_56_1
  doi: 10.1105/tpc.108.058040
– ident: e_1_2_8_37_1
  doi: 10.1111/nph.12017
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1365-313X.2006.02964.x
– ident: e_1_2_8_26_1
  doi: 10.1104/pp.104.058032
– ident: e_1_2_8_29_1
  doi: 10.1034/j.1399-3054.2001.1110109.x
– ident: e_1_2_8_41_1
  doi: 10.1038/s41467-020-14558-9
– ident: e_1_2_8_59_1
  doi: 10.1038/s41438-019-0147-1
– ident: e_1_2_8_21_1
  doi: 10.1080/10408398.2014.906382
– ident: e_1_2_8_6_1
  doi: 10.1111/nph.14852
– ident: e_1_2_8_46_1
  doi: 10.3390/nu11040791
SSID ssj0021656
Score 2.6205175
Snippet Summary Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive....
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 671
SubjectTerms Accumulation
Arabidopsis
Binding
Bioactive compounds
Biosynthesis
biotechnology
catalytic activity
chalcone
Chalcone isomerase
Chalcone synthase
Citrus
Citrus - genetics
Citrus - metabolism
Citrus fruits
Dehydration
DREB
Enzymes
flavanone
flavone
Flavones
Flavonoids
Fruits
Gene expression
Gene Expression Regulation, Plant
Genomes
Intramolecular Lyases
Naringenin
naringenin-chalcone synthase
Phylogenetics
Plant Proteins - genetics
Plant Proteins - metabolism
Proteins
RAV
Regulatory sequences
RNA
RNA-mediated interference
Substrates
transcription (genetics)
Transcription factors
type IV chalcone isomerase
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDKu9Aiwzi0ItpsrET51Rt0a5aJKpVtaDeImfitJG2ydK0SP33nXG8gVWhN0sZ5fXZ8_L4G8Y-W2kigCgSZJ2FrGIlsrKIhK3SLDEp2MhVE34_SY5-yG9n6swn3DpfVrnWiU5Rly1Qjnwf7XBMZHepOlj9EtQ1inZXfQuNx2wLVbDWI7Z1OD2Znw4hF3HL9OeLUpGi6ffcQlTLsyrqL8TNJzct0j0383615N9erDNDs232zPuPfNID_pw9ss0L9nRyfuU5NOxLtlwgPpZP5uP96emM9ykMfmmp9UfHL9uSOnZZXi3N77Zp65J3tw26gV3d8eKWX_XN6dGicUrP8uOfHC4MbVtZXnct5bA6HDUc3HmNV2wxmy6-HgnfVEGAkmMpEDMTSy21LTMJICEBVWqK2zTQmcHKxlBJi35IZrTSWUUEexBizK0AxkX8mo0afOJbxpPUqLBEOI22MrGFDosSI15TQWSyUOmA7a3_aw6ecJz6XizzdeCBEOQOgoB9GkRXPcvGv4R21uDkfqF1-Z9pEbCPw2VcIrTvYRrb3qCMVHGCmkvrB2TQc8S7YLQVsDc93sObxHGoUU8lAUs3ZsIgQBTdm1ea-sJRdWvUeUmIr77n5sz_Py6fHx67wbuHv_I9ezKmqhpXO7TDRoi03UW36Lr44Of-HdOrDio
  priority: 102
  providerName: ProQuest
Title Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13494
https://www.ncbi.nlm.nih.gov/pubmed/33089636
https://www.proquest.com/docview/2513279275
https://www.proquest.com/docview/2453683288
https://www.proquest.com/docview/2551927182
https://pubmed.ncbi.nlm.nih.gov/PMC8051604
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoEDb2igrAzi0EuWPOzEUU9btEuLRLVaLagHpMhxHBp1m1RNi1R-fWech7oUEOISRcrsxolnPN9Mxt8AvDNc-Vr7vkve2eVFKNwkz3zXFHESqVgb31YTfj6M9r_wT0fiaAN2-70wLT_EkHAjy7DrNRm4ypobRn6WlWPi1iMuUKrVIkC0GKijAmKVaXcWxW6MTr9jFaIqnuGX677oFsC8XSd5E79aBzR7CN_6obd1Jyfjy4tsrH_-wur4n8_2CB50wJRNWk16DBumegL3J9_PO3IO8xRWS5x4wybz4P10MWNtboSdGuop0rDTOqdWYIYVK_WjruoyZ81VhfiyKRuWXbHztus9ukpGeV928JXpY0Xfwwwrm5qSYw2eVUzbjSDPYDmbLj_su123BlcLHnAXlUGFXHJp8oRrzXWkRS4pIJSaNiMWJtQFNwhwEiWFTApi7tMeBvNC6yALn8NmhXfcAhbFSng56omShkcmk16WYyitCu2rxBPSgZ1-2lLdMZlTQ41V2kc0-P5S-_4ceDuInrX0Hb8T2u7nPu0suEkR94VErhgLB94Ml9H26IOKqkx9iTJchBEuiVL-RQYhKf4LhnEOvGjVaRhJGHoSF8DIgXhN0QYB4v5ev1KVx5YDXOJiGnk49B2rR39-uHS-d2BPXv676Cu4F1Dpji1Q2oZNnHXzGrHXRTaCOwGf41HOPo7g7t70cL4Y2TzGyJrfNcLuMR0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFW9SChgEUi-hediJc0BogS679KEKLVVvkeM420jbZGl4aH8U_5EZJ1lYFXrrzZJHiZMZz8Oe-QbgpeHK19r3XbLOLi9C4SZ55rumiJNIxdr4Npvw4DAafeGfTsTJGvzqa2EorbLXiVZR57WmM_IdtMMhgd3F4u38q0tdo-h2tW-h0YrFnln8xJCteTP-gPx9FQTD3cn7kdt1FXC14AF3cdEq5JJLkydca64jLXJJgYvUVDRXmFAX3KAhTpQUMikIYU57GHQKrYMsxMdeg-s8RENOhenDj8v4joBs2mKm2I3Rz-iAjChxaJ6VrwkIkK-avws-7cXUzL9dZmvzhrdho3NW2aCVrjuwZqq7cGswPe8AO8w9mE1QGAwbHAU7u5-HrD0vYWeG-ow07KzOqT2YYcVM_airusxZs6jQ52zKhmULdm6mtn1YNWV0FszGx0yfKrojM6xsajowa3BUMW2LQ-7D5Cr-9QNYr_CNj4BFsRJejrKjpOGRyaSX5Rheq0L7KvGEdGC7_6-p7tDNqcnGLO2jHGRBalngwIsl6byF9PgX0VbPnLTb1U36RwYdeL6cxv1IlyyqMvV3pOEijFBNSnkJDbqp-BQM7Rx42PJ7uZIw9CQqxciBeEUSlgSEB746U5WnFhdcooKNPFz6tpWZ_39cevRubAebl3_lM7gxmhzsp_vjw73HcDOgdB6btLQF68h18wT9sW_ZU7sLGKRXvOt-A3TeSQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqHjjUmBBIPVi4sfaXh8QSmmihkIUVQH1Zq3X6zRSaoeah_LT-HfMrB8QFXrrbaUd2V7Pe3f2G4BXmktXKde1yTvbPPcDO85S19Z5FIcyUto11YSfJuHRZ_7hNDjdgl_tXRgqq2xtojHUWaloj7yPftgnsLso6OdNWcT0cPRu9dWmDlJ00tq206hF5Fivf2L6Vr0dHyKvX3veaDh7f2Q3HQZsFXCP27gA6XPBhc5irhRXoQoyQUmMUHSBLte-yrlGpxxLEYg4J7Q55WACGijlpT4-9gZsR5QU9WD7YDiZnnTZHsHa1FebIjvCqKOBNaIyolW6eEOwgHzTGV6KcC8Xav4dQBsPOLoDO03oyga1rN2FLV3cg9uD-UUD36Hvw3KGoqHZYOr1hycjVu-esHNNXUcqdl5m1CxMs3wpf5RFuchYtS4wAq0WFUvX7ELPTTOxYs5oZ5iNvzB1JunETLNFVdL2WYWjgilzVeQBzK7jbz-EXoFvfAwsjGTgZChJUmge6lQ4aYbJtsyVK2MnEBbst_81UQ3WObXcWCZtzoMsSAwLLHjZka5qgI9_Ee21zEkaHa-SPxJpwYtuGrWTjlxkocvvSMMDP0SjKcQVNBi04lMw0bPgUc3v7kt83xFoIkMLog1J6AgIHXxzplicGZRwgeY2dPDT943M_H9xyfRgbAa7V6_yOdxEjUs-jifHT-CWR7U9poJpD3rIdP0Ug7Nv6bNGDRgk16x4vwElkE6a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+AP2%2FERF+family+members+modulate+flavonoid+synthesis+by+regulating+type+IV+chalcone+isomerase+in+citrus&rft.jtitle=Plant+biotechnology+journal&rft.au=Zhao%2C+Chenning&rft.au=Liu%2C+Xiaojuan&rft.au=Gong%2C+Qin&rft.au=Cao%2C+Jinping&rft.date=2021-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=19&rft.issue=4&rft.spage=671&rft.epage=688&rft_id=info:doi/10.1111%2Fpbi.13494&rft_id=info%3Apmid%2F33089636&rft.externalDocID=PMC8051604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon