Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus
Summary Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors contr...
Saved in:
Published in | Plant biotechnology journal Vol. 19; no. 4; pp. 671 - 688 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.04.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)‐naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference‐induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration‐responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB‐RAV transcriptional complex regulating flavonoid production. |
---|---|
AbstractList | Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)‐naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference‐induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration‐responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB‐RAV transcriptional complex regulating flavonoid production. Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production.Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production. Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to ( 2S )‐naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference‐induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration‐responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB‐RAV transcriptional complex regulating flavonoid production. Summary Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)‐naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference‐induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration‐responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB‐RAV transcriptional complex regulating flavonoid production. |
Author | Shen, Wanxia Chen, Kunsong Li, Xian Zhang, Bo Gong, Qin Zhao, Chenning Yin, Xueren Sun, Chongde Liu, Xiaojuan Xu, Changjie Grierson, Donald Cao, Jinping |
AuthorAffiliation | 2 Citrus Research Institute Southwest University/Chinese Academy of Agricultural Sciences Chongqing China 1 Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth Development and Quality Improvement Zhejiang University Hangzhou China 3 Division of Plant and Crop Sciences School of Biosciences University of Nottingham Loughborough UK |
AuthorAffiliation_xml | – name: 1 Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth Development and Quality Improvement Zhejiang University Hangzhou China – name: 3 Division of Plant and Crop Sciences School of Biosciences University of Nottingham Loughborough UK – name: 2 Citrus Research Institute Southwest University/Chinese Academy of Agricultural Sciences Chongqing China |
Author_xml | – sequence: 1 givenname: Chenning surname: Zhao fullname: Zhao, Chenning organization: Zhejiang University – sequence: 2 givenname: Xiaojuan surname: Liu fullname: Liu, Xiaojuan organization: Zhejiang University – sequence: 3 givenname: Qin surname: Gong fullname: Gong, Qin organization: Zhejiang University – sequence: 4 givenname: Jinping surname: Cao fullname: Cao, Jinping organization: Zhejiang University – sequence: 5 givenname: Wanxia surname: Shen fullname: Shen, Wanxia organization: Southwest University/Chinese Academy of Agricultural Sciences – sequence: 6 givenname: Xueren orcidid: 0000-0002-1282-4432 surname: Yin fullname: Yin, Xueren organization: Zhejiang University – sequence: 7 givenname: Donald surname: Grierson fullname: Grierson, Donald organization: University of Nottingham – sequence: 8 givenname: Bo surname: Zhang fullname: Zhang, Bo organization: Zhejiang University – sequence: 9 givenname: Changjie orcidid: 0000-0001-6284-6878 surname: Xu fullname: Xu, Changjie organization: Zhejiang University – sequence: 10 givenname: Xian surname: Li fullname: Li, Xian organization: Zhejiang University – sequence: 11 givenname: Kunsong orcidid: 0000-0003-2874-2383 surname: Chen fullname: Chen, Kunsong organization: Zhejiang University – sequence: 12 givenname: Chongde orcidid: 0000-0002-2874-0292 surname: Sun fullname: Sun, Chongde email: adesun2006@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33089636$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1rFDEQwINU7Ic--A9IwBd9uF4-97IvQi2tHhQscvgastnZu5Rscia7lf3vzXnXokUxLwnMb35MZuYUHYUYAKHXlJzTcubbxp1TLmrxDJ1QUS1mi0qyo8e3EMfoNOc7QhitZPUCHXNOVF3x6gT51SYB4ItbNr_6eo070zs_4R76BlLGfWxHbwbAnTf3MUTX4jyFYQPZZdxMOMF6F3dhjYdpC3j5DduN8baUh12OPSSTyytg64Y05pfoeWd8hleH-wytrq9Wl59nN18-LS8vbmZWCiZmDVjDhRIK2lpYK2xlZau4orWylPBFB9x2Aioua6OkqjtSC2IJNFxayxp-hj7stdux6aG1EIZkvN4m15s06Wic_jMS3Eav471WRNKKiCJ4dxCk-H2EPOjeZQvemwBxzJpJSWu2oIr9HxWSV4ozpQr69gl6F8cUSiOKkHK2KEpZqDe_F_9Y9cPICjDfAzbFnBN0ujS3zCDu_uK8pkTvlkKXpdC_lqJkvH-S8SD9G3uw_3Aepn-D-vbjcp_xEztGxpg |
CitedBy_id | crossref_primary_10_3389_fpls_2024_1435154 crossref_primary_10_3390_ijms25073587 crossref_primary_10_1016_j_ijbiomac_2024_135752 crossref_primary_10_1016_j_stress_2024_100392 crossref_primary_10_1016_j_postharvbio_2024_113023 crossref_primary_10_1016_j_scienta_2023_112716 crossref_primary_10_32604_phyton_2024_054449 crossref_primary_10_1016_j_fbio_2024_103606 crossref_primary_10_1016_j_plantsci_2024_112084 crossref_primary_10_1016_j_plaphy_2025_109722 crossref_primary_10_1186_s12864_024_10676_6 crossref_primary_10_3389_fpls_2023_1325961 crossref_primary_10_1080_10408398_2020_1870035 crossref_primary_10_1016_j_plaphy_2025_109674 crossref_primary_10_3389_fpls_2022_841191 crossref_primary_10_1093_fqsafe_fyad036 crossref_primary_10_1007_s00299_023_02993_z crossref_primary_10_3390_f13081249 crossref_primary_10_1016_j_ygeno_2022_110446 crossref_primary_10_3390_biology11071078 crossref_primary_10_1016_j_indcrop_2023_116837 crossref_primary_10_1038_s41598_022_06794_4 crossref_primary_10_1093_hr_uhad113 crossref_primary_10_3389_fpls_2022_1119384 crossref_primary_10_3390_antiox13020243 crossref_primary_10_1016_j_indcrop_2024_118482 crossref_primary_10_3389_fpls_2023_1182284 crossref_primary_10_1111_tpj_16866 crossref_primary_10_1093_hr_uhac130 crossref_primary_10_1007_s11240_024_02925_z crossref_primary_10_3390_molecules28062582 crossref_primary_10_1016_j_xplc_2024_101065 crossref_primary_10_1007_s10142_023_01110_3 crossref_primary_10_1016_j_plantsci_2024_112026 crossref_primary_10_1016_j_plaphy_2023_107722 crossref_primary_10_3390_app15052319 crossref_primary_10_1016_j_plaphy_2024_108413 crossref_primary_10_3390_jof9121155 crossref_primary_10_1016_j_jare_2024_11_019 crossref_primary_10_1021_acs_jafc_4c11116 crossref_primary_10_3389_fpls_2022_900030 crossref_primary_10_1093_jxb_erae361 crossref_primary_10_3390_biom13010041 crossref_primary_10_1016_j_stress_2024_100384 crossref_primary_10_1016_j_postharvbio_2022_111994 crossref_primary_10_1016_j_postharvbio_2024_112888 crossref_primary_10_3390_horticulturae10030263 crossref_primary_10_3390_agronomy12051036 crossref_primary_10_1186_s12863_023_01159_w crossref_primary_10_1111_pbi_70041 crossref_primary_10_1093_plphys_kiad249 crossref_primary_10_1111_tpj_16284 crossref_primary_10_1016_j_scienta_2023_112765 crossref_primary_10_1007_s44281_024_00029_4 crossref_primary_10_3389_fpls_2022_832669 crossref_primary_10_1111_mpp_13296 crossref_primary_10_3389_fpls_2023_1220062 crossref_primary_10_1111_pbi_14278 crossref_primary_10_3390_plants12102054 crossref_primary_10_1016_j_foodchem_2023_136089 crossref_primary_10_3389_fgene_2022_848141 crossref_primary_10_3390_antiox10101634 crossref_primary_10_1021_acs_jafc_2c08607 crossref_primary_10_1016_j_plantsci_2022_111234 crossref_primary_10_1038_s41598_023_40918_8 crossref_primary_10_1093_plphys_kiac307 crossref_primary_10_1093_plphys_kiac428 crossref_primary_10_1016_j_fbp_2024_09_016 crossref_primary_10_48130_mpb_0024_0005 crossref_primary_10_3389_fpls_2022_826780 crossref_primary_10_3389_fpls_2023_1082245 crossref_primary_10_3389_fpls_2023_1218426 crossref_primary_10_1007_s00425_023_04217_w crossref_primary_10_3390_molecules28083599 crossref_primary_10_3390_plants13111524 crossref_primary_10_1016_j_scienta_2023_112359 crossref_primary_10_1016_j_gene_2023_147739 crossref_primary_10_3390_metabo13040464 crossref_primary_10_1007_s00299_023_03087_6 crossref_primary_10_1111_tpj_15800 crossref_primary_10_1016_j_ijbiomac_2025_139897 crossref_primary_10_1016_j_scienta_2024_113464 crossref_primary_10_1093_plphys_kiab606 crossref_primary_10_3390_ijms252211903 crossref_primary_10_3390_ijms252011247 crossref_primary_10_1038_s41438_021_00694_w crossref_primary_10_1007_s10265_022_01426_4 crossref_primary_10_1016_j_plantsci_2022_111489 crossref_primary_10_1111_mpp_70002 crossref_primary_10_1111_tpj_70084 crossref_primary_10_2174_0115680266303704240524080333 crossref_primary_10_1093_hr_uhac223 crossref_primary_10_1016_j_jia_2024_03_049 crossref_primary_10_3390_horticulturae9070814 crossref_primary_10_1007_s11103_024_01540_y crossref_primary_10_3389_fpls_2023_1249142 crossref_primary_10_1016_j_postharvbio_2021_111817 crossref_primary_10_3389_fpls_2022_891066 crossref_primary_10_1111_tpj_15977 crossref_primary_10_3389_fgene_2022_972990 crossref_primary_10_1016_j_biotechadv_2023_108107 crossref_primary_10_1021_acs_jafc_3c01883 crossref_primary_10_1021_acs_jafc_1c04373 crossref_primary_10_3389_fpls_2022_1042084 crossref_primary_10_3390_ijms22094945 crossref_primary_10_3389_fpls_2022_979348 crossref_primary_10_1002_fft2_236 crossref_primary_10_1111_ppl_14185 crossref_primary_10_3389_fpls_2023_1216826 crossref_primary_10_1021_acs_jafc_4c07454 crossref_primary_10_3390_nano14191598 crossref_primary_10_3390_plants13162259 crossref_primary_10_1111_mpp_13206 crossref_primary_10_3390_ijms25126632 crossref_primary_10_1093_hr_uhac283 crossref_primary_10_1002_cbdv_202401899 crossref_primary_10_1093_hr_uhae065 crossref_primary_10_1093_plphys_kiac516 crossref_primary_10_1016_j_postharvbio_2024_112848 crossref_primary_10_1016_j_plantsci_2023_111762 crossref_primary_10_1016_j_synbio_2022_05_003 crossref_primary_10_1093_hr_uhac049 crossref_primary_10_1016_j_ecoenv_2025_118022 crossref_primary_10_1038_s41467_024_48235_y crossref_primary_10_3390_ijms252011021 crossref_primary_10_1111_ppl_14476 crossref_primary_10_3390_molecules28134982 |
Cites_doi | 10.1007/s11033-014-3297-0 10.1016/j.tplants.2014.12.001 10.1105/tpc.10.8.1391 10.1111/tpj.13487 10.1093/oxfordjournals.pcp.a029589 10.1038/sj.cr.7290197 10.1093/nar/27.2.470 10.1038/s41598-017-10970-2 10.1111/tpj.12670 10.1016/j.cell.2016.04.038 10.1093/jxb/erx316 10.1104/pp.104.054502 10.1093/jxb/erq206 10.1111/j.1467-7652.2010.00547.x 10.1111/nph.12526 10.1111/j.1469-8137.2010.03421.x 10.1111/tpj.13864 10.1046/j.1365-313x.1998.00343.x 10.1046/j.1365-313X.2003.01661.x 10.1111/pbi.12725 10.3389/fpls.2017.00782 10.1111/tpj.13178 10.1111/nph.14389 10.1093/jxb/erv413 10.1104/pp.126.2.485 10.1038/nature11009 10.1093/mp/ssp118 10.1104/pp.109.142059 10.1111/pbi.12351 10.1038/s41589-018-0042-3 10.1007/s11103-009-9565-z 10.1111/pbi.13382 10.1093/jxb/eraa083 10.1002/ptr.5256 10.1016/j.foodchem.2006.11.054 10.1104/pp.16.01701 10.3389/fpls.2018.01042 10.1007/BF02670468 10.1093/pcp/pcu118 10.1111/pbi.13252 10.3390/molecules22071114 10.1073/pnas.1802223115 10.1111/nph.12620 10.1006/bbrc.2001.6299 10.1038/srep25352 10.1111/tpj.12469 10.1105/tpc.108.058040 10.1111/nph.12017 10.1111/j.1365-313X.2006.02964.x 10.1104/pp.104.058032 10.1034/j.1399-3054.2001.1110109.x 10.1038/s41467-020-14558-9 10.1038/s41438-019-0147-1 10.1080/10408398.2014.906382 10.1111/nph.14852 10.3390/nu11040791 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.13494 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | CitCHIL1 and three TFs enhance flavonoid synthesis |
EISSN | 1467-7652 |
EndPage | 688 |
ExternalDocumentID | PMC8051604 33089636 10_1111_pbi_13494 PBI13494 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31571838 – fundername: ; grantid: 31571838 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5424-beca34848ed94cc4c6c5d838198c1037fe3cf4e6359a8589f0940c0eb35cc2b3 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 18:03:34 EDT 2025 Fri Jul 11 18:30:54 EDT 2025 Wed Jul 30 10:40:00 EDT 2025 Wed Aug 13 07:45:17 EDT 2025 Wed Feb 19 02:25:53 EST 2025 Thu Apr 24 22:56:14 EDT 2025 Tue Jul 01 02:34:46 EDT 2025 Wed Jan 22 16:29:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | flavanone DREB type IV chalcone isomerase RAV flavone citrus |
Language | English |
License | Attribution 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5424-beca34848ed94cc4c6c5d838198c1037fe3cf4e6359a8589f0940c0eb35cc2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2874-0292 0000-0003-2874-2383 0000-0002-1282-4432 0000-0001-6284-6878 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13494 |
PMID | 33089636 |
PQID | 2513279275 |
PQPubID | 1096352 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8051604 proquest_miscellaneous_2551927182 proquest_miscellaneous_2453683288 proquest_journals_2513279275 pubmed_primary_33089636 crossref_citationtrail_10_1111_pbi_13494 crossref_primary_10_1111_pbi_13494 wiley_primary_10_1111_pbi_13494_PBI13494 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2007; 104 2017a; 8 2012; 485 2019; 11 2017c; 90 2005; 137 2005; 138 2010; 188 2019; 18 2009; 151 1999; 40 2020; 11 2010; 61 2020; 18 1998; 16 2018; 9 2017b; 15 2018; 217 2016; 86 2000; 60 2013; 197 2008; 20 2010; 3 1998; 10 2014; 202 2014; 55 2010; 72 2014; 201 2015; 13 2002; 290 2019; 6 1999; 27 2017; 68 2016; 165 2017; 173 2014; 41 2017; 214 2001; 126 2003; 33 2011; 9 2001; 111 2016; 6 2014; 80 2015; 29 2017e; 22 2017d; 7 1993; 11 2004; 14 2020; 71 2015; 20 2018; 115 2015; 66 2017; 57 2019; 48 2018; 94 2014; 78 2018; 14 2007; 49 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 Tian F. (e_1_2_8_39_1) 2019; 48 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 Wenzel U. (e_1_2_8_48_1) 2000; 60 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 10 start-page: 1391 year: 1998 end-page: 1406 article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought‐and low‐temperature‐responsive gene expression, respectively, in Arabidopsis publication-title: Plant Cell, – volume: 197 start-page: 454 year: 2013 end-page: 467 article-title: Identification and characterization of MYB‐bHLH‐WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria× ananassa) fruits publication-title: New Phytol. – volume: 11 start-page: 791 year: 2019 article-title: Three polymethoxyflavones purified from Ougan (Citrus reticulata Cv. Suavissima) inhibited LPS‐induced NO elevation in the Neuroglia BV‐2 cell line via the JAK2/STAT3 pathway publication-title: Nutrients, – volume: 202 start-page: 132 year: 2014 end-page: 144 article-title: Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed publication-title: New Phytol. – volume: 201 start-page: 733 year: 2014 end-page: 750 article-title: Explaining intraspecific diversity in plant secondary metabolites in an ecological context publication-title: New Phytol. – volume: 485 start-page: 530 year: 2012 end-page: 533 article-title: Evolution of the chalcone‐isomerase fold from fatty‐acid binding to stereospecific catalysis publication-title: Nature, – volume: 78 start-page: 294 year: 2014 end-page: 304 article-title: A chalcone isomerase‐like protein enhances flavonoid production and flower pigmentation publication-title: Plant J. – volume: 49 start-page: 414 year: 2007 end-page: 427 article-title: Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10 publication-title: Plant J. – volume: 68 start-page: 4929 year: 2017 end-page: 4938 article-title: Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E‐geraniol in sweet orange fruit publication-title: J. Exp. Bot. – volume: 14 start-page: 8 year: 2004 end-page: 15 article-title: Arabidopsis RAV1 is down‐regulated by brassinosteroid and may act as a negative regulator during plant development publication-title: Cell Res. – volume: 29 start-page: 323 year: 2015 end-page: 331 article-title: Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models publication-title: Phytother. Res. – volume: 13 start-page: 1325 year: 2015 end-page: 1334 article-title: EjAP2‐1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors publication-title: Plant Biotechnol. J. – volume: 60 start-page: 3823 year: 2000 end-page: 3831 article-title: Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells publication-title: Can. Res. – volume: 48 start-page: D1104 year: 2019 end-page: D1113 article-title: PlantRegMap: charting functional regulatory maps in plants publication-title: Nucleic Acids Res. – volume: 11 start-page: 113 year: 1993 end-page: 116 article-title: A simple and efficient method for isolating RNA from pine trees publication-title: Plant Mol. Biol. Reporter, – volume: 3 start-page: 509 year: 2010 end-page: 523 article-title: The basic helix‐loop‐helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine publication-title: Mol. Plant, – volume: 217 start-page: 909 year: 2018 end-page: 924 article-title: Identification of chalcone isomerase in the basal land plants reveals an ancient evolution of enzymatic cyclization activity for synthesis of flavonoids publication-title: New Phytol. – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana publication-title: Plant J. – volume: 111 start-page: 66 year: 2001 end-page: 74 article-title: Gene expression in flavonoid biosynthesis: Correlation with flavonoid accumulation in developing citrus fruit publication-title: Physiol. Plant. – volume: 15 start-page: 1409 year: 2017b end-page: 1419 article-title: Hypoxia‐responsive ERFs involved in postdeastringency softening of persimmon fruit publication-title: Plant Biotechnol. J. – volume: 40 start-page: 651 year: 1999 end-page: 655 article-title: One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures publication-title: Plant Cell Physiol. – volume: 27 start-page: 470 year: 1999 end-page: 478 article-title: RAV1, a novel DNA‐binding protein, binds to bipartite recognition sequence through two distinct DNA‐binding domains uniquely found in higher plants publication-title: Nucleic Acids Res. – volume: 14 start-page: 548 year: 2018 end-page: 555 article-title: Evolution of chalcone isomerase from a noncatalytic ancestor publication-title: Nat. Chem. Biol. – volume: 94 start-page: 372 year: 2018 end-page: 392 article-title: Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species publication-title: Plant J. – volume: 115 start-page: E5223 year: 2018 end-page: E5232 article-title: Noncatalytic chalcone isomerase‐fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis publication-title: Proc. Natl Acad. Sci. USA – volume: 18 start-page: 829 year: 2019 end-page: 844 article-title: DREB/CBF expression in wheat and barley using the stress‐inducible promoters of HD‐Zip I genes: impact on plant development, stress tolerance and yield publication-title: Plant Biotechnol. J. – volume: 33 start-page: 751 year: 2003 end-page: 763 article-title: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression publication-title: Plant J. – volume: 188 start-page: 985 year: 2010 end-page: 1000 article-title: Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES‐dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11‐, MYB12‐ and MYB111‐independent flavonol glycoside accumulation publication-title: New Phytol. – volume: 41 start-page: 4261 year: 2014 end-page: 4271 article-title: Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus publication-title: Mol. Biol. Rep. – volume: 214 start-page: 762 year: 2017 end-page: 781 article-title: The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration‐responsive element binding (MaDREB) transcription factors in fruit ripening publication-title: New Phytol. – volume: 104 start-page: 466 year: 2007 end-page: 479 article-title: Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review publication-title: Food Chem. – volume: 71 start-page: 3066 year: 2020 end-page: 3079 article-title: Characterization of a caffeoyl‐CoA O‐methyltransferase‐like enzyme involved in biosynthesis of polymethoxylated flavones in Citrus reticulata publication-title: J. Exp. Bot. – volume: 80 start-page: 654 year: 2014 end-page: 668 article-title: Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development publication-title: Plant J. – volume: 9 start-page: 230 year: 2011 end-page: 249 article-title: Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors publication-title: Plant Biotechnol. J. – volume: 22 start-page: 1114 year: 2017e article-title: Antioxidant capacity, anticancer ability and flavonoids composition of 35 citrus (Citrus reticulata Blanco) varieties publication-title: Molecules, – volume: 8 start-page: 782 year: 2017a article-title: Identification of putative genes involved in limonoids biosynthesis in citrus by comparative transcriptomic analysis publication-title: Front. Plant Sci. – volume: 57 start-page: 613 year: 2017 end-page: 631 article-title: Health‐promoting effects of the citrus flavanone hesperidin publication-title: Crit. Rev. Food Sci. Nutr. – volume: 9 start-page: 1042 year: 2018 article-title: Modulation of phytohormone signaling: a primary function of flavonoids in plant–environment interactions publication-title: Front. Plant Sci. – volume: 151 start-page: 1513 year: 2009 end-page: 1530 article-title: The grapevine R2R3‐MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries publication-title: Plant Physiol. – volume: 7 start-page: 10549 year: 2017d article-title: Characterization and metabolic diversity of flavonoids in citrus species publication-title: Sci. Rep. – volume: 290 start-page: 998 year: 2002 end-page: 1009 article-title: DNA‐binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration‐ and cold‐inducible gene expression publication-title: Biochem. Biophys. Res. Comm. – volume: 66 start-page: 7165 year: 2015 end-page: 7179 article-title: Role of a chalcone isomerase‐like protein in flavonoid biosynthesis in Arabidopsis thaliana publication-title: J. Exp. Bot. – volume: 18 start-page: 2267 year: 2020 end-page: 2279 article-title: The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes publication-title: Plant Biotechnol. J. – volume: 126 start-page: 485 year: 2001 end-page: 493 article-title: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology publication-title: Plant Physiol. – volume: 61 start-page: 3947 year: 2010 end-page: 3957 article-title: The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis publication-title: J. Exp. Bot. – volume: 20 start-page: 176 year: 2015 end-page: 185 article-title: Transcriptional control of flavonoid biosynthesis by MYB‐bHLH‐WDR complexes publication-title: Trends Plant Sci. – volume: 6 start-page: 25352 year: 2016 article-title: Characterization of a citrus R2R3‐MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis publication-title: Sci. Rep. – volume: 165 start-page: 1280 year: 2016 end-page: 1292 article-title: Cistrome and epicistrome features shape the regulatory DNA landscape publication-title: Cell, – volume: 173 start-page: 2225 year: 2017 end-page: 2242 article-title: Changes in anthocyanin production during domestication of citrus publication-title: Plant Physiol. – volume: 55 start-page: 1892 year: 2014 end-page: 1904 article-title: A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA publication-title: Plant Cell Physiol. – volume: 90 start-page: 276 year: 2017c end-page: 292 article-title: MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red‐fleshed apple (Malus sieversii f. niedzwetzkyana) publication-title: Plant J. – volume: 6 start-page: 1 year: 2019 end-page: 16 article-title: The MdWRKY31 transcription factor binds to the MdRAV1 promoter to mediate ABA sensitivity publication-title: Hortic. Res. – volume: 137 start-page: 1375 year: 2005 end-page: 1388 article-title: Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases publication-title: Plant Physiol. – volume: 86 start-page: 403 year: 2016 end-page: 412 article-title: Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening publication-title: Plant J. – volume: 11 start-page: 1 year: 2020 end-page: 14 article-title: A conserved strategy of chalcone isomerase‐like protein to rectify promiscuous chalcone synthase specificity publication-title: Nat. Commun. – volume: 138 start-page: 1083 year: 2005 end-page: 1096 article-title: The Arabidopsis transcription factor MYB12 is a flavonol‐specific regulator of phenylpropanoid biosynthesis publication-title: Plant Physiol. – volume: 20 start-page: 2160 year: 2008 end-page: 2176 article-title: Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in Arabidopsis publication-title: Plant Cell – volume: 72 start-page: 247 year: 2010 end-page: 263 article-title: Genome‐wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens publication-title: Plant Mol. Biol. – ident: e_1_2_8_51_1 doi: 10.1007/s11033-014-3297-0 – ident: e_1_2_8_52_1 doi: 10.1016/j.tplants.2014.12.001 – ident: e_1_2_8_23_1 doi: 10.1105/tpc.10.8.1391 – ident: e_1_2_8_44_1 doi: 10.1111/tpj.13487 – ident: e_1_2_8_28_1 doi: 10.1093/oxfordjournals.pcp.a029589 – volume: 48 start-page: D1104 year: 2019 ident: e_1_2_8_39_1 article-title: PlantRegMap: charting functional regulatory maps in plants publication-title: Nucleic Acids Res. – ident: e_1_2_8_15_1 doi: 10.1038/sj.cr.7290197 – ident: e_1_2_8_17_1 doi: 10.1093/nar/27.2.470 – ident: e_1_2_8_45_1 doi: 10.1038/s41598-017-10970-2 – ident: e_1_2_8_11_1 doi: 10.1111/tpj.12670 – ident: e_1_2_8_33_1 doi: 10.1016/j.cell.2016.04.038 – ident: e_1_2_8_22_1 doi: 10.1093/jxb/erx316 – ident: e_1_2_8_35_1 doi: 10.1104/pp.104.054502 – ident: e_1_2_8_50_1 doi: 10.1093/jxb/erq206 – ident: e_1_2_8_31_1 doi: 10.1111/j.1467-7652.2010.00547.x – ident: e_1_2_8_27_1 doi: 10.1111/nph.12526 – ident: e_1_2_8_38_1 doi: 10.1111/j.1469-8137.2010.03421.x – ident: e_1_2_8_13_1 doi: 10.1111/tpj.13864 – ident: e_1_2_8_7_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_8_9_1 doi: 10.1046/j.1365-313X.2003.01661.x – ident: e_1_2_8_47_1 doi: 10.1111/pbi.12725 – ident: e_1_2_8_43_1 doi: 10.3389/fpls.2017.00782 – ident: e_1_2_8_55_1 doi: 10.1111/tpj.13178 – ident: e_1_2_8_20_1 doi: 10.1111/nph.14389 – ident: e_1_2_8_16_1 doi: 10.1093/jxb/erv413 – ident: e_1_2_8_49_1 doi: 10.1104/pp.126.2.485 – ident: e_1_2_8_32_1 doi: 10.1038/nature11009 – ident: e_1_2_8_14_1 doi: 10.1093/mp/ssp118 – ident: e_1_2_8_8_1 doi: 10.1104/pp.109.142059 – ident: e_1_2_8_57_1 doi: 10.1111/pbi.12351 – ident: e_1_2_8_18_1 doi: 10.1038/s41589-018-0042-3 – ident: e_1_2_8_19_1 doi: 10.1007/s11103-009-9565-z – ident: e_1_2_8_58_1 doi: 10.1111/pbi.13382 – ident: e_1_2_8_25_1 doi: 10.1093/jxb/eraa083 – ident: e_1_2_8_34_1 doi: 10.1002/ptr.5256 – ident: e_1_2_8_40_1 doi: 10.1016/j.foodchem.2006.11.054 – ident: e_1_2_8_4_1 doi: 10.1104/pp.16.01701 – ident: e_1_2_8_3_1 doi: 10.3389/fpls.2018.01042 – ident: e_1_2_8_5_1 doi: 10.1007/BF02670468 – ident: e_1_2_8_12_1 doi: 10.1093/pcp/pcu118 – ident: e_1_2_8_54_1 doi: 10.1111/pbi.13252 – ident: e_1_2_8_42_1 doi: 10.3390/molecules22071114 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.1802223115 – ident: e_1_2_8_53_1 doi: 10.1111/nph.12620 – ident: e_1_2_8_36_1 doi: 10.1006/bbrc.2001.6299 – volume: 60 start-page: 3823 year: 2000 ident: e_1_2_8_48_1 article-title: Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells publication-title: Can. Res. – ident: e_1_2_8_24_1 doi: 10.1038/srep25352 – ident: e_1_2_8_30_1 doi: 10.1111/tpj.12469 – ident: e_1_2_8_56_1 doi: 10.1105/tpc.108.058040 – ident: e_1_2_8_37_1 doi: 10.1111/nph.12017 – ident: e_1_2_8_10_1 doi: 10.1111/j.1365-313X.2006.02964.x – ident: e_1_2_8_26_1 doi: 10.1104/pp.104.058032 – ident: e_1_2_8_29_1 doi: 10.1034/j.1399-3054.2001.1110109.x – ident: e_1_2_8_41_1 doi: 10.1038/s41467-020-14558-9 – ident: e_1_2_8_59_1 doi: 10.1038/s41438-019-0147-1 – ident: e_1_2_8_21_1 doi: 10.1080/10408398.2014.906382 – ident: e_1_2_8_6_1 doi: 10.1111/nph.14852 – ident: e_1_2_8_46_1 doi: 10.3390/nu11040791 |
SSID | ssj0021656 |
Score | 2.6205175 |
Snippet | Summary
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive.... Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 671 |
SubjectTerms | Accumulation Arabidopsis Binding Bioactive compounds Biosynthesis biotechnology catalytic activity chalcone Chalcone isomerase Chalcone synthase Citrus Citrus - genetics Citrus - metabolism Citrus fruits Dehydration DREB Enzymes flavanone flavone Flavones Flavonoids Fruits Gene expression Gene Expression Regulation, Plant Genomes Intramolecular Lyases Naringenin naringenin-chalcone synthase Phylogenetics Plant Proteins - genetics Plant Proteins - metabolism Proteins RAV Regulatory sequences RNA RNA-mediated interference Substrates transcription (genetics) Transcription factors type IV chalcone isomerase |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDKu9Aiwzi0ItpsrET51Rt0a5aJKpVtaDeImfitJG2ydK0SP33nXG8gVWhN0sZ5fXZ8_L4G8Y-W2kigCgSZJ2FrGIlsrKIhK3SLDEp2MhVE34_SY5-yG9n6swn3DpfVrnWiU5Rly1Qjnwf7XBMZHepOlj9EtQ1inZXfQuNx2wLVbDWI7Z1OD2Znw4hF3HL9OeLUpGi6ffcQlTLsyrqL8TNJzct0j0383615N9erDNDs232zPuPfNID_pw9ss0L9nRyfuU5NOxLtlwgPpZP5uP96emM9ykMfmmp9UfHL9uSOnZZXi3N77Zp65J3tw26gV3d8eKWX_XN6dGicUrP8uOfHC4MbVtZXnct5bA6HDUc3HmNV2wxmy6-HgnfVEGAkmMpEDMTSy21LTMJICEBVWqK2zTQmcHKxlBJi35IZrTSWUUEexBizK0AxkX8mo0afOJbxpPUqLBEOI22MrGFDosSI15TQWSyUOmA7a3_aw6ecJz6XizzdeCBEOQOgoB9GkRXPcvGv4R21uDkfqF1-Z9pEbCPw2VcIrTvYRrb3qCMVHGCmkvrB2TQc8S7YLQVsDc93sObxHGoUU8lAUs3ZsIgQBTdm1ea-sJRdWvUeUmIr77n5sz_Py6fHx67wbuHv_I9ezKmqhpXO7TDRoi03UW36Lr44Of-HdOrDio priority: 102 providerName: ProQuest |
Title | Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13494 https://www.ncbi.nlm.nih.gov/pubmed/33089636 https://www.proquest.com/docview/2513279275 https://www.proquest.com/docview/2453683288 https://www.proquest.com/docview/2551927182 https://pubmed.ncbi.nlm.nih.gov/PMC8051604 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoEDb2igrAzi0EuWPOzEUU9btEuLRLVaLagHpMhxHBp1m1RNi1R-fWech7oUEOISRcrsxolnPN9Mxt8AvDNc-Vr7vkve2eVFKNwkz3zXFHESqVgb31YTfj6M9r_wT0fiaAN2-70wLT_EkHAjy7DrNRm4ypobRn6WlWPi1iMuUKrVIkC0GKijAmKVaXcWxW6MTr9jFaIqnuGX677oFsC8XSd5E79aBzR7CN_6obd1Jyfjy4tsrH_-wur4n8_2CB50wJRNWk16DBumegL3J9_PO3IO8xRWS5x4wybz4P10MWNtboSdGuop0rDTOqdWYIYVK_WjruoyZ81VhfiyKRuWXbHztus9ukpGeV928JXpY0Xfwwwrm5qSYw2eVUzbjSDPYDmbLj_su123BlcLHnAXlUGFXHJp8oRrzXWkRS4pIJSaNiMWJtQFNwhwEiWFTApi7tMeBvNC6yALn8NmhXfcAhbFSng56omShkcmk16WYyitCu2rxBPSgZ1-2lLdMZlTQ41V2kc0-P5S-_4ceDuInrX0Hb8T2u7nPu0suEkR94VErhgLB94Ml9H26IOKqkx9iTJchBEuiVL-RQYhKf4LhnEOvGjVaRhJGHoSF8DIgXhN0QYB4v5ev1KVx5YDXOJiGnk49B2rR39-uHS-d2BPXv676Cu4F1Dpji1Q2oZNnHXzGrHXRTaCOwGf41HOPo7g7t70cL4Y2TzGyJrfNcLuMR0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFW9SChgEUi-hediJc0BogS679KEKLVVvkeM420jbZGl4aH8U_5EZJ1lYFXrrzZJHiZMZz8Oe-QbgpeHK19r3XbLOLi9C4SZ55rumiJNIxdr4Npvw4DAafeGfTsTJGvzqa2EorbLXiVZR57WmM_IdtMMhgd3F4u38q0tdo-h2tW-h0YrFnln8xJCteTP-gPx9FQTD3cn7kdt1FXC14AF3cdEq5JJLkydca64jLXJJgYvUVDRXmFAX3KAhTpQUMikIYU57GHQKrYMsxMdeg-s8RENOhenDj8v4joBs2mKm2I3Rz-iAjChxaJ6VrwkIkK-avws-7cXUzL9dZmvzhrdho3NW2aCVrjuwZqq7cGswPe8AO8w9mE1QGAwbHAU7u5-HrD0vYWeG-ow07KzOqT2YYcVM_airusxZs6jQ52zKhmULdm6mtn1YNWV0FszGx0yfKrojM6xsajowa3BUMW2LQ-7D5Cr-9QNYr_CNj4BFsRJejrKjpOGRyaSX5Rheq0L7KvGEdGC7_6-p7tDNqcnGLO2jHGRBalngwIsl6byF9PgX0VbPnLTb1U36RwYdeL6cxv1IlyyqMvV3pOEijFBNSnkJDbqp-BQM7Rx42PJ7uZIw9CQqxciBeEUSlgSEB746U5WnFhdcooKNPFz6tpWZ_39cevRubAebl3_lM7gxmhzsp_vjw73HcDOgdB6btLQF68h18wT9sW_ZU7sLGKRXvOt-A3TeSQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqHjjUmBBIPVi4sfaXh8QSmmihkIUVQH1Zq3X6zRSaoeah_LT-HfMrB8QFXrrbaUd2V7Pe3f2G4BXmktXKde1yTvbPPcDO85S19Z5FIcyUto11YSfJuHRZ_7hNDjdgl_tXRgqq2xtojHUWaloj7yPftgnsLso6OdNWcT0cPRu9dWmDlJ00tq206hF5Fivf2L6Vr0dHyKvX3veaDh7f2Q3HQZsFXCP27gA6XPBhc5irhRXoQoyQUmMUHSBLte-yrlGpxxLEYg4J7Q55WACGijlpT4-9gZsR5QU9WD7YDiZnnTZHsHa1FebIjvCqKOBNaIyolW6eEOwgHzTGV6KcC8Xav4dQBsPOLoDO03oyga1rN2FLV3cg9uD-UUD36Hvw3KGoqHZYOr1hycjVu-esHNNXUcqdl5m1CxMs3wpf5RFuchYtS4wAq0WFUvX7ELPTTOxYs5oZ5iNvzB1JunETLNFVdL2WYWjgilzVeQBzK7jbz-EXoFvfAwsjGTgZChJUmge6lQ4aYbJtsyVK2MnEBbst_81UQ3WObXcWCZtzoMsSAwLLHjZka5qgI9_Ee21zEkaHa-SPxJpwYtuGrWTjlxkocvvSMMDP0SjKcQVNBi04lMw0bPgUc3v7kt83xFoIkMLog1J6AgIHXxzplicGZRwgeY2dPDT943M_H9xyfRgbAa7V6_yOdxEjUs-jifHT-CWR7U9poJpD3rIdP0Ug7Nv6bNGDRgk16x4vwElkE6a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+AP2%2FERF+family+members+modulate+flavonoid+synthesis+by+regulating+type+IV+chalcone+isomerase+in+citrus&rft.jtitle=Plant+biotechnology+journal&rft.au=Zhao%2C+Chenning&rft.au=Liu%2C+Xiaojuan&rft.au=Gong%2C+Qin&rft.au=Cao%2C+Jinping&rft.date=2021-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=19&rft.issue=4&rft.spage=671&rft.epage=688&rft_id=info:doi/10.1111%2Fpbi.13494&rft_id=info%3Apmid%2F33089636&rft.externalDocID=PMC8051604 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |