Highly efficient homology‐directed repair using CRISPR/Cpf1‐geminiviral replicon in tomato
Summary Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR‐based genome editing efficiency approximately threefold compared with a Cas9‐based single‐repl...
Saved in:
Published in | Plant biotechnology journal Vol. 18; no. 10; pp. 2133 - 2143 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.10.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR‐based genome editing efficiency approximately threefold compared with a Cas9‐based single‐replicon system via the use of de novo multi‐replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon‐free but stable HDR alleles. The efficiency of CRISPR/LbCpf1‐based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium‐mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single‐replicon system into a multi‐replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR‐based genome editing of a salt‐tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self‐pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene‐free editing of alleles of interest in asexually and sexually reproducing plants. |
---|---|
AbstractList | Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR‐based genome editing efficiency approximately threefold compared with a Cas9‐based single‐replicon system via the use of
de novo
multi‐replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon‐free but stable HDR alleles. The efficiency of CRISPR/LbCpf1‐based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after
Agrobacterium
‐mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single‐replicon system into a multi‐replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR‐based genome editing of a salt‐tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self‐pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 m
m
NaCl. Our work may pave the way for transgene‐free editing of alleles of interest in asexually and sexually reproducing plants. Summary Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR‐based genome editing efficiency approximately threefold compared with a Cas9‐based single‐replicon system via the use of de novo multi‐replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon‐free but stable HDR alleles. The efficiency of CRISPR/LbCpf1‐based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium‐mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single‐replicon system into a multi‐replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR‐based genome editing of a salt‐tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self‐pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene‐free editing of alleles of interest in asexually and sexually reproducing plants. Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR‐based genome editing efficiency approximately threefold compared with a Cas9‐based single‐replicon system via the use of de novo multi‐replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon‐free but stable HDR alleles. The efficiency of CRISPR/LbCpf1‐based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium‐mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single‐replicon system into a multi‐replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR‐based genome editing of a salt‐tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self‐pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene‐free editing of alleles of interest in asexually and sexually reproducing plants. Genome editing via the homology-directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error-prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR-based genome editing efficiency approximately threefold compared with a Cas9-based single-replicon system via the use of de novo multi-replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon-free but stable HDR alleles. The efficiency of CRISPR/LbCpf1-based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium-mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single-replicon system into a multi-replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR-based genome editing of a salt-tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self-pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene-free editing of alleles of interest in asexually and sexually reproducing plants.Genome editing via the homology-directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error-prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR-based genome editing efficiency approximately threefold compared with a Cas9-based single-replicon system via the use of de novo multi-replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon-free but stable HDR alleles. The efficiency of CRISPR/LbCpf1-based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium-mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single-replicon system into a multi-replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR-based genome editing of a salt-tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self-pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene-free editing of alleles of interest in asexually and sexually reproducing plants. Genome editing via the homology-directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error-prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR-based genome editing efficiency approximately threefold compared with a Cas9-based single-replicon system via the use of de novo multi-replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon-free but stable HDR alleles. The efficiency of CRISPR/LbCpf1-based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium-mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single-replicon system into a multi-replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR-based genome editing of a salt-tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self-pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene-free editing of alleles of interest in asexually and sexually reproducing plants. |
Author | Sivankalyani, Velu Tran, Mil Thi Park, Minwoo Sung, Yeon Woo Kim, Eun‐Jung Kang, Yang Jae Kim, Jae‐Yean Doan, Duong Thi Hai Vu, Tien Van Kim, Jihae |
AuthorAffiliation | 3 Hyundai Seed Co., LTD. Yeoju Korea 2 National Key Laboratory for Plant Cell Biotechnology Agricultural Genetics Institute Bac Tu Liem Vietnam 1 Division of Applied Life Science (BK21 Plus Program) Plant Molecular Biology and Biotechnology Research Center Gyeongsang National University Jinju Korea 4 Division of Life Science Gyeongsang National University Jinju Korea |
AuthorAffiliation_xml | – name: 3 Hyundai Seed Co., LTD. Yeoju Korea – name: 1 Division of Applied Life Science (BK21 Plus Program) Plant Molecular Biology and Biotechnology Research Center Gyeongsang National University Jinju Korea – name: 2 National Key Laboratory for Plant Cell Biotechnology Agricultural Genetics Institute Bac Tu Liem Vietnam – name: 4 Division of Life Science Gyeongsang National University Jinju Korea |
Author_xml | – sequence: 1 givenname: Tien Van surname: Vu fullname: Vu, Tien Van organization: Agricultural Genetics Institute – sequence: 2 givenname: Velu surname: Sivankalyani fullname: Sivankalyani, Velu organization: Gyeongsang National University – sequence: 3 givenname: Eun‐Jung surname: Kim fullname: Kim, Eun‐Jung organization: Gyeongsang National University – sequence: 4 givenname: Duong Thi Hai surname: Doan fullname: Doan, Duong Thi Hai organization: Gyeongsang National University – sequence: 5 givenname: Mil Thi surname: Tran fullname: Tran, Mil Thi organization: Gyeongsang National University – sequence: 6 givenname: Jihae surname: Kim fullname: Kim, Jihae organization: Gyeongsang National University – sequence: 7 givenname: Yeon Woo surname: Sung fullname: Sung, Yeon Woo organization: Gyeongsang National University – sequence: 8 givenname: Minwoo surname: Park fullname: Park, Minwoo organization: Hyundai Seed Co., LTD – sequence: 9 givenname: Yang Jae surname: Kang fullname: Kang, Yang Jae organization: Gyeongsang National University – sequence: 10 givenname: Jae‐Yean orcidid: 0000-0002-1180-6232 surname: Kim fullname: Kim, Jae‐Yean email: kimjy@gnu.ac.kr organization: Gyeongsang National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32176419$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URH9gwQugSGxgMR3_xpMNEoyAjlSJqsAWy3aczK0cO3WSotnxCDwjT4KHmVZQgYQ3tq6_e3SufY7RQYjBIfSU4FOS17w3cEoYk-wBOiK8lDNZCnpwd-b8EB0PwxXGlJSifIQOGSW5TKoj9OUM2rXfFK5pwIILY7GOXfSx3fz49r2G5Ozo6iK5XkMqpgFCWywvVx8vLufLviGZaV0HAW4gab_FPNgYCgjFGDs9xsfoYaP94J7s9xP0-d3bT8uz2fmH96vl6_OZFZyymWaC2YUxTNemLpnWZcmdYbVjpLLYEE6MwQ4v5MJaXVaVoY3kTGhqhMHY1uwEvdrp9pPpXG3zINmQ6hN0Om1U1KD-vAmwVm28UVJwjDnPAi_2AileT24YVQeDdd7r4OI0KCooZ7QS8j9QJmW54BUnGX1-D72KUwr5JRTlnNCKY44z9ex383eub38pA_MdYFMchuQaZWHUI8TtLOAVwWqbA5VzoH7lIHe8vNdxK_o3dq_-Fbzb_BtUF29Wu46f6fvEOQ |
CitedBy_id | crossref_primary_10_1111_pbi_13426 crossref_primary_10_1111_pbi_13546 crossref_primary_10_1007_s12374_023_09383_8 crossref_primary_10_1016_j_tplants_2021_07_018 crossref_primary_10_1093_hr_uhae294 crossref_primary_10_3389_fpls_2023_1186932 crossref_primary_10_1007_s11240_021_02177_1 crossref_primary_10_1093_hr_uhac154 crossref_primary_10_3389_fpls_2022_868027 crossref_primary_10_5483_BMBRep_2023_0210 crossref_primary_10_1002_biot_202100673 crossref_primary_10_1016_j_ymthe_2023_11_013 crossref_primary_10_1007_s00299_021_02708_2 crossref_primary_10_3389_fpls_2022_883421 crossref_primary_10_3390_foods12193681 crossref_primary_10_1002_cpz1_608 crossref_primary_10_1093_pcp_pcab123 crossref_primary_10_1007_s11248_021_00240_3 crossref_primary_10_7717_peerj_17402 crossref_primary_10_18006_2024_12_4__537_556 crossref_primary_10_1007_s11248_021_00253_y crossref_primary_10_1007_s11248_021_00238_x crossref_primary_10_3389_fgeed_2021_663380 crossref_primary_10_1007_s00344_022_10760_9 crossref_primary_10_3390_plants12091892 crossref_primary_10_3389_fgene_2022_932859 crossref_primary_10_3389_fpls_2023_1121209 crossref_primary_10_1270_jsbbs_23049 crossref_primary_10_1002_fft2_70005 crossref_primary_10_1007_s42994_024_00195_z crossref_primary_10_1016_j_copbio_2022_102856 crossref_primary_10_1093_jxb_erac352 crossref_primary_10_1007_s11033_023_09086_w crossref_primary_10_1038_s41580_025_00834_3 crossref_primary_10_1007_s00425_022_03894_3 crossref_primary_10_3389_fgene_2022_1037091 crossref_primary_10_3389_fpls_2023_1122926 crossref_primary_10_3390_app122111275 crossref_primary_10_1016_j_biotechadv_2024_108382 crossref_primary_10_3389_fpls_2020_584151 crossref_primary_10_3389_fpls_2024_1304381 crossref_primary_10_1111_pbi_13613 crossref_primary_10_3390_ijms25020760 crossref_primary_10_3390_ijms22168752 crossref_primary_10_1016_j_nbt_2021_12_002 crossref_primary_10_3389_fgeed_2023_1138843 crossref_primary_10_1007_s11033_023_08239_1 crossref_primary_10_34133_bdr_0001 crossref_primary_10_1134_S1021443722010137 crossref_primary_10_1016_j_molp_2020_11_002 crossref_primary_10_3390_ijms241511920 crossref_primary_10_1021_acsagscitech_1c00279 crossref_primary_10_1093_plphys_kiac037 crossref_primary_10_3390_plants13192768 crossref_primary_10_1038_s41598_024_55088_4 crossref_primary_10_9787_PBB_2022_10_3_186 crossref_primary_10_3390_ijms25052606 crossref_primary_10_3389_fgene_2022_859437 crossref_primary_10_1093_pcp_pcab034 crossref_primary_10_3390_biology10121255 crossref_primary_10_3390_ijms22084206 crossref_primary_10_1007_s00425_022_03906_2 crossref_primary_10_3389_fgene_2022_866121 crossref_primary_10_3390_plants12020305 crossref_primary_10_1007_s11032_024_01452_1 crossref_primary_10_3389_fpls_2023_1271368 crossref_primary_10_1007_s00344_022_10890_0 crossref_primary_10_1111_tpj_70099 crossref_primary_10_1016_j_sajb_2024_07_038 crossref_primary_10_3390_agronomy13082038 crossref_primary_10_1016_j_plgene_2022_100369 crossref_primary_10_1111_pbi_13916 crossref_primary_10_3389_fcell_2020_622103 crossref_primary_10_1016_j_jgg_2021_04_003 crossref_primary_10_1016_j_plantsci_2023_111746 crossref_primary_10_3390_cells11182902 crossref_primary_10_3389_fpls_2020_586027 crossref_primary_10_1007_s00425_023_04187_z crossref_primary_10_3389_fgeed_2022_830178 crossref_primary_10_3389_fpls_2021_681367 crossref_primary_10_1007_s44307_024_00041_9 crossref_primary_10_1073_pnas_2004834117 crossref_primary_10_1016_j_scienta_2025_113957 crossref_primary_10_1089_crispr_2021_0045 crossref_primary_10_3389_fpls_2023_1111680 crossref_primary_10_3389_fgeed_2020_612137 crossref_primary_10_1186_s12870_022_03519_7 crossref_primary_10_3389_frsus_2024_1378712 crossref_primary_10_3389_fnut_2021_751512 crossref_primary_10_1111_tpj_16943 crossref_primary_10_1360_TB_2023_1138 crossref_primary_10_1007_s00299_020_02622_z crossref_primary_10_3389_fpls_2021_722552 crossref_primary_10_3389_fpls_2023_1260102 crossref_primary_10_3389_fpls_2023_1133036 crossref_primary_10_1111_pbi_14188 crossref_primary_10_1007_s11627_021_10187_z crossref_primary_10_1111_pbi_13490 crossref_primary_10_3390_antiox9121225 crossref_primary_10_1093_jxb_erad072 crossref_primary_10_1007_s42994_024_00147_7 crossref_primary_10_1111_pbi_13417 crossref_primary_10_1093_hr_uhae187 crossref_primary_10_1111_jipb_13063 crossref_primary_10_1111_ppl_13547 crossref_primary_10_1007_s00122_021_03874_3 crossref_primary_10_1111_pce_14861 crossref_primary_10_1016_j_plaphy_2024_108507 crossref_primary_10_3390_biology12111400 crossref_primary_10_1038_s44222_023_00115_8 crossref_primary_10_3390_antiox12112014 crossref_primary_10_1038_s41477_024_01786_w |
Cites_doi | 10.1104/pp.16.00569 10.1038/nbt.3659 10.1038/nrmicro3117 10.1104/pp.111.193110 10.1101/gad.12.24.3831 10.1016/j.cell.2014.05.010 10.1093/nar/21.22.5034 10.1073/pnas.93.10.5055 10.1111/tpj.13446 10.1111/pbi.12868 10.1038/nbt.4202 10.1021/sb4001504 10.1073/pnas.1202191109 10.1007/s00705-013-1675-x 10.3389/fpls.2016.01683 10.1104/pp.15.01663 10.1096/fj.11-188508 10.1186/s12915-019-0629-5 10.1002/bit.20695 10.1093/jxb/ery245 10.1038/nbt.2655 10.3389/fpls.2016.01045 10.1111/j.1365-313X.2011.04676.x 10.1016/j.dnarep.2005.05.004 10.1038/sj.onc.1204767 10.1002/bit.10483 10.1093/nar/9.20.5233 10.1105/tpc.113.119792 10.1093/nar/gkt780 10.1007/s002990050456 10.1016/j.virol.2016.03.014 10.1093/jxb/eri123 10.1111/pbi.13275 10.1006/viro.1996.8353 10.1111/tpj.13932 10.1038/nature26155 10.1038/nature07845 10.1371/journal.pgen.1003529 10.1016/0092-8674(83)90331-8 10.1016/j.virol.2014.01.024 10.1186/s13059-015-0796-9 10.1038/s41467-017-01836-2 10.1016/j.cell.2015.09.038 10.1186/1746-4811-9-39 10.1371/journal.pone.0016765 10.1007/s000180050433 10.1126/science.1225829 10.1016/j.mrfmmm.2004.12.011 10.1111/tpj.13782 10.1101/251082 10.1074/jbc.274.41.29453 10.1093/nar/gkr606 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd – notice: 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.13373 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Advancement of plant HDR by multi‐replicons |
EISSN | 1467-7652 |
EndPage | 2143 |
ExternalDocumentID | PMC7540044 32176419 10_1111_pbi_13373 PBI13373 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Rural Development Administration (RDA), Korea – fundername: Program for New Plant Breeding Techniques funderid: PJ01478401 – fundername: National Research Foundation of Korea funderid: NRF 2017R1A4A1015515 – fundername: Next‐Generation BioGreen 21 Program funderid: PJ01322601 – fundername: Next-Generation BioGreen 21 Program grantid: PJ01322601 – fundername: National Research Foundation of Korea grantid: NRF 2017R1A4A1015515 – fundername: Program for New Plant Breeding Techniques grantid: PJ01478401 – fundername: Next‐Generation BioGreen 21 Program grantid: PJ01322601 – fundername: ; grantid: NRF 2017R1A4A1015515 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM PQGLB 7QO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5423-a353c8bb3adbd63aa664eb3de319c0b141bb0e0878cca699b2f7435a2b5b00cd3 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 18:16:35 EDT 2025 Fri Jul 11 18:31:25 EDT 2025 Fri Jul 11 03:28:49 EDT 2025 Wed Aug 13 04:37:16 EDT 2025 Mon Jul 21 06:00:56 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 02:34:45 EDT 2025 Wed Jan 22 16:32:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | CRISPR/Cpf1 gene targeting genome editing multi-replicon CRISPR/Cas9 homology-directed repair |
Language | English |
License | Attribution 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5423-a353c8bb3adbd63aa664eb3de319c0b141bb0e0878cca699b2f7435a2b5b00cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1180-6232 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13373 |
PMID | 32176419 |
PQID | 2441294040 |
PQPubID | 1096352 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7540044 proquest_miscellaneous_2524329574 proquest_miscellaneous_2377684941 proquest_journals_2441294040 pubmed_primary_32176419 crossref_citationtrail_10_1111_pbi_13373 crossref_primary_10_1111_pbi_13373 wiley_primary_10_1111_pbi_13373_PBI13373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2017; 8 2014; 452–453 2005; 572 1993; 21 2017; 89 2019; 17 2014; 26 2013; 9 2016; 34 1998; 17 1997; 227 2014; 3 2013; 11 1999; 56 2013; 158 2011; 68 2012; 26 2012; 337 1998; 12 2018; 36 2015; 163 2006; 93 2015; 16 2003; 81 2013; 41 1996; 93 1981; 9 2011; 39 2009; 459 2011; 6 2012; 109 2001; 20 2018; 69 1983; 33 2014; 157 2016; 7 2018; 556 2013; 31 1999; 274 2019 2005; 4 2018; 95 2018; 93 2012; 158 2016; 171 2016; 170 2018; 16 2005; 56 2016; 493 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 39 start-page: 9275 year: 2011 end-page: 9282 article-title: The CRISPR/Cas system provides immunity in publication-title: Nucleic Acids Res. – volume: 11 start-page: 777 year: 2013 end-page: 788 article-title: Geminiviruses: masters at redirecting and reprogramming plant processes publication-title: Nat. Rev. Microbiol. – volume: 8 start-page: 2024 year: 2017 article-title: CRISPR‐Cpf1 mediates efficient homology‐directed repair and temperature‐controlled genome editing publication-title: Nat. Commun. – volume: 95 start-page: 5 year: 2018 end-page: 16 article-title: Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system publication-title: Plant J. – volume: 171 start-page: 2112 year: 2016 end-page: 2126 article-title: A single amino‐acid substitution in the sodium transporter HKT1 associated with plant salt tolerance publication-title: Plant Physiol. – start-page: 251082 year: 2019 – volume: 9 start-page: 5233 year: 1981 end-page: 5252 article-title: Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes publication-title: Nucleic Acids Res. – year: 2019 article-title: Engineering CRISPR/LbCas12a for highly efficient, temperature‐tolerant plant gene editing publication-title: Plant Biotechnol. J – volume: 163 start-page: 759 year: 2015 end-page: 771 article-title: Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system publication-title: Cell – volume: 31 start-page: 691 year: 2013 end-page: 693 article-title: Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA‐guided endonuclease publication-title: Nat. Biotechnol. – volume: 93 start-page: 271 year: 2006 end-page: 279 article-title: Bean Yellow Dwarf Virus replicons for high‐level transgene expression in transgenic plants and cell cultures publication-title: Biotechnol. Bioeng. – volume: 6 year: 2011 article-title: A modular cloning system for standardized assembly of multigene constructs publication-title: PLoS ONE – volume: 337 start-page: 816 year: 2012 end-page: 821 article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 4 start-page: 1038 year: 2005 end-page: 1046 article-title: Chromosomal aberrations induced by double strand DNA breaks publication-title: DNA Repair (Amst) – volume: 41 year: 2013 article-title: Demonstration of CRISPR/Cas9/sgRNA‐mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice publication-title: Nucleic Acids Res. – volume: 556 start-page: 57 year: 2018 end-page: 63 article-title: Evolved Cas9 variants with broad PAM compatibility and high DNA specificity publication-title: Nature – volume: 33 start-page: 25 year: 1983 end-page: 35 article-title: The double‐strand‐break repair model for recombination publication-title: Cell – volume: 56 start-page: 313 year: 1999 end-page: 329 article-title: Geminivirus DNA replication publication-title: Cell. Mol. Life Sci. – volume: 56 start-page: 1 year: 2005 end-page: 14 article-title: The repair of double‐strand breaks in plants: mechanisms and consequences for genome evolution publication-title: J. Exp. Bot. – volume: 493 start-page: 113 year: 2016 end-page: 127 article-title: The recombination mediator RAD51D promotes geminiviral infection publication-title: Virology – volume: 227 start-page: 389 year: 1997 end-page: 399 article-title: DNA replication of wheat dwarf geminivirus vectors: effects of origin structure and size publication-title: Virology – volume: 3 start-page: 839 year: 2014 end-page: 843 article-title: A golden gate modular cloning toolbox for plants publication-title: ACS Synth. Biol. – volume: 36 start-page: 894 year: 2018 end-page: 898 article-title: Genome editing of upstream open reading frames enables translational control in plants publication-title: Nat. Biotechnol. – volume: 17 start-page: 631 year: 1998 end-page: 639 article-title: GUS expression patterns from a tobacco yellow dwarf virus‐based episomal vector publication-title: Plant Cell. Rep. – volume: 81 start-page: 430 year: 2003 end-page: 437 article-title: Geminivirus vectors for high‐level expression of foreign proteins in plant cells publication-title: Biotechnol. Bioeng. – volume: 20 start-page: 5572 year: 2001 end-page: 5579 article-title: DNA double strand break repair and chromosomal translocation: lessons from animal models publication-title: Oncogene – volume: 109 start-page: 7535 year: 2012 end-page: 7540 article-title: In planta gene targeting publication-title: Proc. Natl Acad. Sci. USA – volume: 16 start-page: 232 year: 2015 article-title: High‐frequency, precise modification of the tomato genome publication-title: Genome Biol. – volume: 9 year: 2013 article-title: Gene expression regulation by upstream open reading frames and human disease publication-title: PLoS Genet. – volume: 21 start-page: 5034 year: 1993 end-page: 5040 article-title: Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site‐specific endonuclease publication-title: Nucleic Acids Res. – volume: 93 start-page: 377 year: 2018 end-page: 386 article-title: Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress publication-title: Plant J. – volume: 274 start-page: 29453 year: 1999 end-page: 29462 article-title: Yeast Rad54 promotes Rad51‐dependent homologous DNA pairing via ATP hydrolysis‐driven change in DNA double helix conformation publication-title: J. Biol. Chem. – volume: 158 start-page: 1931 year: 2013 end-page: 1941 article-title: The host factor RAD51 is involved in mungbean yellow mosaic India virus (MYMIV) DNA replication publication-title: Arch. Virol. – volume: 17 start-page: 9 issue: 1 year: 2019 article-title: Application of CRISPRCas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis publication-title: BMC Biol – volume: 26 start-page: 1142 year: 2012 end-page: 1160 article-title: A novel role for RAD54: this host protein modulates geminiviral DNA replication publication-title: FASEB J. – volume: 158 start-page: 1463 year: 2012 end-page: 1474 article-title: TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative , shows K(+) specificity in the presence of NaCl publication-title: Plant Physiol. – volume: 68 start-page: 159 year: 2011 end-page: 167 article-title: Intron splicing suppresses RNA silencing in Arabidopsis publication-title: Plant J. – volume: 26 start-page: 151 year: 2014 end-page: 163 article-title: DNA replicons for plant genome engineering publication-title: Plant Cell – volume: 69 start-page: 4715 year: 2018 end-page: 4721 article-title: Synthesis‐dependent repair of Cpf1‐induced double strand DNA breaks enables targeted gene replacement in rice publication-title: J. Exp. Bot. – volume: 170 start-page: 667 year: 2016 end-page: 677 article-title: Biallelic gene targeting in rice publication-title: Plant Physiol. – volume: 7 start-page: 1045 year: 2016 article-title: Geminivirus‐mediated genome editing in potato ( L.) using sequence‐specific nucleases publication-title: Front. Plant Sci. – volume: 16 start-page: 1275 year: 2018 end-page: 1282 article-title: Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava publication-title: Plant Biotechnol. J. – volume: 34 start-page: 933 year: 2016 end-page: 941 article-title: Applications of CRISPR technologies in research and beyond publication-title: Nat. Biotechnol. – volume: 452–453 start-page: 287 year: 2014 end-page: 296 article-title: Somatic homologous recombination in plants is promoted by a geminivirus in a tissue‐selective manner publication-title: Virology – volume: 572 start-page: 73 year: 2005 end-page: 83 article-title: Homologous recombination in plants is temperature and day‐length dependent publication-title: Mutat. Res. – volume: 7 start-page: 1683 year: 2016 article-title: Rapid evolution of manifold CRISPR systems for plant genome editing publication-title: Front. Plant Sci. – volume: 459 start-page: 442 year: 2009 end-page: 445 article-title: High‐frequency modification of plant genes using engineered zinc‐finger nucleases publication-title: Nature – volume: 89 start-page: 1251 year: 2017 end-page: 1262 article-title: High‐efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9 publication-title: Plant J – volume: 157 start-page: 1262 year: 2014 end-page: 1278 article-title: Development and applications of CRISPR‐Cas9 for genome engineering publication-title: Cell – volume: 12 start-page: 3831 year: 1998 end-page: 3842 article-title: Double‐strand break repair by interchromosomal recombination: suppression of chromosomal translocations publication-title: Genes Dev. – volume: 9 start-page: 39 year: 2013 article-title: Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system publication-title: Plant Methods – volume: 93 start-page: 5055 year: 1996 end-page: 5060 article-title: Two different but related mechanisms are used in plants for the repair of genomic double‐strand breaks by homologous recombination publication-title: Proc. Natl Acad. Sci. USA – ident: e_1_2_7_3_1 doi: 10.1104/pp.16.00569 – ident: e_1_2_7_6_1 doi: 10.1038/nbt.3659 – ident: e_1_2_7_19_1 doi: 10.1038/nrmicro3117 – ident: e_1_2_7_2_1 doi: 10.1104/pp.111.193110 – ident: e_1_2_7_40_1 doi: 10.1101/gad.12.24.3831 – ident: e_1_2_7_21_1 doi: 10.1016/j.cell.2014.05.010 – ident: e_1_2_7_38_1 doi: 10.1093/nar/21.22.5034 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.93.10.5055 – ident: e_1_2_7_17_1 doi: 10.1111/tpj.13446 – ident: e_1_2_7_23_1 doi: 10.1111/pbi.12868 – ident: e_1_2_7_53_1 doi: 10.1038/nbt.4202 – ident: e_1_2_7_14_1 doi: 10.1021/sb4001504 – ident: e_1_2_7_15_1 doi: 10.1073/pnas.1202191109 – ident: e_1_2_7_46_1 doi: 10.1007/s00705-013-1675-x – ident: e_1_2_7_30_1 doi: 10.3389/fpls.2016.01683 – ident: e_1_2_7_13_1 doi: 10.1104/pp.15.01663 – ident: e_1_2_7_26_1 doi: 10.1096/fj.11-188508 – ident: e_1_2_7_31_1 doi: 10.1186/s12915-019-0629-5 – ident: e_1_2_7_52_1 doi: 10.1002/bit.20695 – ident: e_1_2_7_29_1 doi: 10.1093/jxb/ery245 – ident: e_1_2_7_35_1 doi: 10.1038/nbt.2655 – ident: e_1_2_7_9_1 doi: 10.3389/fpls.2016.01045 – ident: e_1_2_7_11_1 doi: 10.1111/j.1365-313X.2011.04676.x – ident: e_1_2_7_49_1 doi: 10.1016/j.dnarep.2005.05.004 – ident: e_1_2_7_16_1 doi: 10.1038/sj.onc.1204767 – ident: e_1_2_7_32_1 doi: 10.1002/bit.10483 – ident: e_1_2_7_27_1 doi: 10.1093/nar/9.20.5233 – ident: e_1_2_7_4_1 doi: 10.1105/tpc.113.119792 – ident: e_1_2_7_24_1 doi: 10.1093/nar/gkt780 – ident: e_1_2_7_34_1 doi: 10.1007/s002990050456 – ident: e_1_2_7_42_1 doi: 10.1016/j.virol.2016.03.014 – ident: e_1_2_7_37_1 doi: 10.1093/jxb/eri123 – ident: e_1_2_7_44_1 doi: 10.1111/pbi.13275 – ident: e_1_2_7_45_1 doi: 10.1006/viro.1996.8353 – ident: e_1_2_7_12_1 doi: 10.1111/tpj.13932 – ident: e_1_2_7_22_1 doi: 10.1038/nature26155 – ident: e_1_2_7_48_1 doi: 10.1038/nature07845 – ident: e_1_2_7_5_1 doi: 10.1371/journal.pgen.1003529 – ident: e_1_2_7_47_1 doi: 10.1016/0092-8674(83)90331-8 – ident: e_1_2_7_41_1 doi: 10.1016/j.virol.2014.01.024 – ident: e_1_2_7_10_1 doi: 10.1186/s13059-015-0796-9 – ident: e_1_2_7_33_1 doi: 10.1038/s41467-017-01836-2 – ident: e_1_2_7_51_1 doi: 10.1016/j.cell.2015.09.038 – ident: e_1_2_7_7_1 doi: 10.1186/1746-4811-9-39 – ident: e_1_2_7_50_1 doi: 10.1371/journal.pone.0016765 – ident: e_1_2_7_18_1 doi: 10.1007/s000180050433 – ident: e_1_2_7_25_1 doi: 10.1126/science.1225829 – ident: e_1_2_7_8_1 doi: 10.1016/j.mrfmmm.2004.12.011 – ident: e_1_2_7_28_1 doi: 10.1111/tpj.13782 – ident: e_1_2_7_20_1 doi: 10.1101/251082 – ident: e_1_2_7_36_1 doi: 10.1074/jbc.274.41.29453 – ident: e_1_2_7_43_1 doi: 10.1093/nar/gkr606 |
SSID | ssj0021656 |
Score | 2.5921247 |
Snippet | Summary
Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by... Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end... Genome editing via the homology-directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error-prone repair by nonhomologous end... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2133 |
SubjectTerms | Alleles Antibiotics Binding sites biotechnology Cell culture Cloning CRISPR CRISPR/Cas9 CRISPR/Cpf1 Deoxyribonucleic acid DNA Editing Efficiency gene targeting Genetic transformation genome editing Genomes genomics Germination Heredity Homology homology‐directed repair multi‐replicon Mutation Non-homologous end joining Offspring phenotypic selection Plant cells progeny Proteins Repair replicon Reproduction (biology) salt tolerance self-pollination Sodium chloride temperature Tomatoes |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGkPqG_S0spUHLikJPErPiFYgYADWm1B4tQojp1lpSXZLsuht_6E_sb-EsaON-2Kllskj0aJ521PvgHYyU0tc6NMzA2vY6a5iLWq0RlKVteMJpp3DbLn4uSSnV3xq3DgdhvaKpc-0Ttq01bujHwPwxCGJoY6tz_7HrupUe52NYzQeArr6IJzLL7WD4_Oh6O-5HLYMt3_RTKWGPoDtpDr5ZnpyRcs0CRdjUgP0syH3ZJ_Z7E-DB2_gI2QP5KDTuAv4YltXsHzg_E8YGjY1_DN9W5MfxDr0SGQHblub_zp-e-fv7oQZg2ZYxyazInrex-Twej063C0N5jVKdKMPeCI6_6dOrIpKktDJg1ZtJjetm_g8vjoYnAShzEKccUxWYpLymmVa01Lo42gZSkEwxLaWLS-KtEpS7VObJLLHKUplNJZjWkFLzPN0SYrQ9_CWtM2dhOITbPaCuXYMWTNcpXZRFRUGMaZSMoIdpdbWVQBY9yNupgWy1oDd73wux7B55501gFr_ItoaymPItjWbfFHEyLY7pfRKtxVR9nY9g5pqHQ3jIqlj9DwjNFMcckieNeJuH8TipWaYKmKQK4IvydwqNyrK83k2qNzS-7cIvLc9Wry_48rhoen_uH941_5AZ5lrsj3HYRbsLaY39mPmAkt9Keg7vch4Qr2 priority: 102 providerName: ProQuest |
Title | Highly efficient homology‐directed repair using CRISPR/Cpf1‐geminiviral replicon in tomato |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13373 https://www.ncbi.nlm.nih.gov/pubmed/32176419 https://www.proquest.com/docview/2441294040 https://www.proquest.com/docview/2377684941 https://www.proquest.com/docview/2524329574 https://pubmed.ncbi.nlm.nih.gov/PMC7540044 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9gKH8qYuJTKIQy8OtvflFac2atpyqKJApR4Qlte7TiNSO0qTA5z4CfxGfgmz64caCghxsSx5vNq1Z3a-2f38GeB1oguRaKkDplkRUMV4oGSBk6GgRUFJqFhNkD3jJ-f03QW72IC37bcwtT5Et-BmI8PN1zbAM3V9I8jnatrHAktYpU_L1bKAaNxJR8VWVab-skgEApN-oypkWTzdneu56BbAvM2TvIlfXQIa3oePbddr3snn_mqp-vnXX1Qd_3NsD2C7Aab-Qe1JD2HDlI_g3sFk0YhzmMfwyZJCZl9842QnsLf-ZXXlluV_fPte50aj_QUmuOnCt4T6iT8Yn74fjd8M5kWENhOnZGJpxTNrNkMvLP1p6S8rxM3VEzgfHn0YnATN_xmCnCEKCzLCSJ4oRTKtNCdZxjnF2lwbDOs8VBGNlApNmIgE3YRLqeIC8QrLYsUw2HNNnsJmWZVmB3wTxYXh0jZHsWmayNiEPCdcU0Z5mHmw376pNG_Ey-0_NGZpW8TgI0vdI_PgVWc6rxU7fme0177utAna6xSRDqIfitOaBy-7yxhudg8lK021Qhsi7NalpNFfbFhMSSyZoB48qz2o6wnBEpDTSHog1nyrM7By3-tXyumlk_0WzM632Oa-c50_Dy4dHZ66k91_N30Od2O7kuBoinuwuVyszAuEW0vVgzsxHeExGR73YOvw6Gw07rmli56LuJ9RMS30 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiP8GChgEUi9pk_gvOSBUFpZdWqqqtFJPpHHsbFdakmW7FeqNR-BJeCiehLHzA6tCb71F8mgUez57ZuzxZ4AXsS5krBPtc80LnykufJUUuBhKVhSMBorXBbI7YnDAPhzywyX42d6FsWWV7ZroFmpd5XaPfAPdELomhph7Pf3q21ej7Olq-4RGDYstc_YNU7aTV8O3aN-XUdR_t98b-M2rAn7OMXbwM8ppHitFM620oFkmBMOMUhsEYx6okIVKBSaIZYydE0miogK9LM8ixRGiuaao9wpcZZQmdkbF_fddgmeZbOrbTNKXGGg0TEa2cmiqxuuYDkq66P_OBbXnazP_jpmd0-vfgptNtEo2a3jdhiVT3oEbm6NZw9hh7sJnWykyOSPGcVGgOnJcfXF79b--_6gdptFkhl5vPCO2yn5EenvDT7t7G71pEaLMyNGb2FrjiRWbIDRLMi7JvMJguroHB5cyvPdhuaxKswLEhFFhRGLVMVTN4iQygcip0IwzEWQerLVDmeYNo7l9WGOStpkNjnrqRt2D553otKbx-JfQamuPtJnJJ-kf3HnwrGvGOWgPVrLSVKcoQ6U9z0xYeIEMjxiNEi6ZBw9qE3d_QjEvFCxMPJALxu8ELAf4Yks5PnZc4JLbRRh1rjmY_L9z6e6boft4eHEvn8K1wf7H7XR7uLP1CK5HdnvB1S6uwvJ8dmoeYww2V08c8AkcXfZM-w0QVEdK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEL0gPjHUMAgkHoxsb1_9gGhNm3UUBRFgUo91Xi96zRSaoc0FeqNR-B5eByehNn1D0SF3nqz5NHIu_vtzszu528BXkcqF5GKlccUyz0qGfdknONiKGieU-JLVhFkh3z_kH44Ykdr8LP5F8bQKps10S7UqszMHnkXwxCGJoqY6-Y1LWK0238__-qZG6TMSWtznUYFkQN98Q3Lt7N3g10c6zdh2N_73Nv36hsGvIxhHuGlhJEskpKkSipO0pRzitWl0gjMzJcBDaT0tR-JCBvK41iGOUZcloaSIVwzRdDvDVgXWBX5HVjf2RuOxm25Z3Rtqn-bhCcw7ah1jQyPaC6nb7E4FGQ1Gl5KcS8zNf_OoG0I7N-B23Xu6m5XYLsLa7q4Bxvbk0Wt36Hvw7HhjcwuXG2VKdCde1Ke2p37X99_VOFTK3eBMXC6cA3nfuL2xoNPo3G3N88DtJlYsRPDPJ4ZsxkCtXCnhbssMbUuH8DhtXTwQ-gUZaEfg6uDMNc8Nu4ouqZRHGqfZ4Qryij3Uwe2mq5Mslrf3FyzMUuaOgd7PbG97sCr1nReiXr8y2izGY-kntdnyR8UOvCyfY0z0hyzpIUuz9GGCHO6GdPgChsWUhLGTFAHHlVD3H4JwSqR0yB2QKwMfmtgFMFX3xTTE6sMLphZktHnloXJ_xuXjHYG9uHJ1a18ATdxliUfB8ODp3ArNHsNlsi4CZ3l4lw_w4RsKZ_XyHfhy3VPtt-H2Uzc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+homology%E2%80%90directed+repair+using+CRISPR%2FCpf1%E2%80%90geminiviral+replicon+in+tomato&rft.jtitle=Plant+biotechnology+journal&rft.au=Vu%2C+Tien+Van&rft.au=Sivankalyani%2C+Velu&rft.au=Kim%2C+Eun%E2%80%90Jung&rft.au=Doan%2C+Duong+Thi+Hai&rft.date=2020-10-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=18&rft.issue=10&rft.spage=2133&rft.epage=2143&rft_id=info:doi/10.1111%2Fpbi.13373&rft_id=info%3Apmid%2F32176419&rft.externalDocID=PMC7540044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |