Understanding sheath blight resistance in rice: the road behind and the road ahead
Summary Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host ra...
Saved in:
Published in | Plant biotechnology journal Vol. 18; no. 4; pp. 895 - 915 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.04.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani–rice pathosystem research with gap analysis are provided. |
---|---|
AbstractList | Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani–rice pathosystem research with gap analysis are provided. Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani , became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani –rice pathosystem research with gap analysis are provided. Summary Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani–rice pathosystem research with gap analysis are provided. Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host-pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani-rice pathosystem research with gap analysis are provided. Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host-pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani-rice pathosystem research with gap analysis are provided.Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host-pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani-rice pathosystem research with gap analysis are provided. |
Author | Molla, Kutubuddin A. Datta, Karabi Molla, Johiruddin Datta, Swapan K. Bajaj, Prasad Varshney, Rajeev K. Karmakar, Subhasis |
AuthorAffiliation | 3 The Huck Institute of the Life Sciences The Pennsylvania State University University Park PA USA 5 Center of Excellence in Genomics & Systems Biology (CEGSB) International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) Hyderabad India 4 Department of Plant Pathology and Environmental Microbiology The Pennsylvania State University University Park PA USA 1 ICAR‐National Rice Research Institute Cuttack India 2 Laboratory of Translational Research on Transgenic Crops Department of Botany University of Calcutta Kolkata India |
AuthorAffiliation_xml | – name: 4 Department of Plant Pathology and Environmental Microbiology The Pennsylvania State University University Park PA USA – name: 1 ICAR‐National Rice Research Institute Cuttack India – name: 5 Center of Excellence in Genomics & Systems Biology (CEGSB) International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) Hyderabad India – name: 3 The Huck Institute of the Life Sciences The Pennsylvania State University University Park PA USA – name: 2 Laboratory of Translational Research on Transgenic Crops Department of Botany University of Calcutta Kolkata India |
Author_xml | – sequence: 1 givenname: Kutubuddin A. orcidid: 0000-0002-9897-7906 surname: Molla fullname: Molla, Kutubuddin A. organization: The Pennsylvania State University – sequence: 2 givenname: Subhasis surname: Karmakar fullname: Karmakar, Subhasis organization: University of Calcutta – sequence: 3 givenname: Johiruddin surname: Molla fullname: Molla, Johiruddin organization: International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) – sequence: 4 givenname: Prasad surname: Bajaj fullname: Bajaj, Prasad organization: International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) – sequence: 5 givenname: Rajeev K. orcidid: 0000-0002-4562-9131 surname: Varshney fullname: Varshney, Rajeev K. organization: International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) – sequence: 6 givenname: Swapan K. surname: Datta fullname: Datta, Swapan K. organization: University of Calcutta – sequence: 7 givenname: Karabi orcidid: 0000-0003-1464-2680 surname: Datta fullname: Datta, Karabi email: krbdatta@yahoo.com organization: University of Calcutta |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31811745$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLJDEUhYMovhf-gSEwG2fRWnlXuRiYEV8gKKLrkKrc6opUJz1JtYP_ftK2tg9QJpuE3O8c7r1nC6364AGhPVIckHwOp7U7IIwRuoI2CZdqpKSgq8s35xtoK6X7oqBECrmONhgpCVFcbKKbO28hpsF46_wYpw7M0OG6d-NuwBGSm5cawM7j6Bo4wkMHOAZjcQ2d8xZn4eufyXK7g9Za0yfYfb630d3pye3x-ejy6uzi-NflqBGc0hFrW2VKZUDyQvBWKWKIAinKSrS15U1lrCg545JxY_M8rGYkty1NVbSVLGu2jX4ufKezegK2AT9E0-tpdBMTH3UwTr-veNfpcXjQqpCkVCob7D8bxPBnBmnQE5ca6HvjIcySpoLyvDFe_QfKKFWskpJk9PsH9D7Mos-byJTiRFFezqlvb5tfdv2STAZ-LIAmhpQitEuEFHqeus6p66fUM3v4gW3cYAYX5nO7_ivFX9fD4-fW-vr3xULxDxsUu7E |
CitedBy_id | crossref_primary_10_1111_pbi_13789 crossref_primary_10_17352_2455_815X_000222 crossref_primary_10_1007_s42106_021_00150_8 crossref_primary_10_1016_j_jia_2023_05_031 crossref_primary_10_1016_j_cj_2022_07_020 crossref_primary_10_1016_j_jare_2024_05_032 crossref_primary_10_1021_acs_jafc_3c05350 crossref_primary_10_1111_mpp_13130 crossref_primary_10_1007_s10681_022_03091_z crossref_primary_10_1007_s42976_024_00533_3 crossref_primary_10_1111_1751_7915_14441 crossref_primary_10_1002_jobm_202200399 crossref_primary_10_3390_ijms23158214 crossref_primary_10_1021_acs_jafc_3c02117 crossref_primary_10_1007_s40858_023_00622_4 crossref_primary_10_1186_s13007_022_00882_2 crossref_primary_10_1002_cbdv_202400337 crossref_primary_10_3389_fpls_2022_841228 crossref_primary_10_3390_ijms21217974 crossref_primary_10_1111_nph_19809 crossref_primary_10_1017_S1479262123000801 crossref_primary_10_1016_j_jece_2023_109688 crossref_primary_10_1007_s11033_024_09889_5 crossref_primary_10_3390_genes14091673 crossref_primary_10_1007_s11240_022_02439_6 crossref_primary_10_3390_plants9111491 crossref_primary_10_1016_j_pmpp_2023_102152 crossref_primary_10_1186_s12284_020_00381_9 crossref_primary_10_3389_fpls_2024_1499785 crossref_primary_10_3390_agronomy12071493 crossref_primary_10_1002_tpg2_20140 crossref_primary_10_1007_s42535_023_00803_1 crossref_primary_10_1007_s00438_024_02220_8 crossref_primary_10_1007_s42994_023_00126_4 crossref_primary_10_1016_j_ijbiomac_2023_127747 crossref_primary_10_1094_PHYTO_08_20_0356_R crossref_primary_10_1080_07060661_2022_2053588 crossref_primary_10_1111_pce_15407 crossref_primary_10_3389_fmicb_2024_1371850 crossref_primary_10_3389_fpls_2023_1115614 crossref_primary_10_1111_pbi_13715 crossref_primary_10_1007_s00122_023_04482_z crossref_primary_10_1111_jph_13141 crossref_primary_10_5423_PPJ_OA_04_2022_0054 crossref_primary_10_1021_acs_jafc_4c02865 crossref_primary_10_3390_su131910806 crossref_primary_10_1007_s00203_022_03136_w crossref_primary_10_1186_s12915_023_01526_0 crossref_primary_10_1007_s00299_023_03132_4 crossref_primary_10_1111_pbi_13569 crossref_primary_10_1002_ps_7394 crossref_primary_10_1007_s42485_022_00093_2 crossref_primary_10_1111_mpp_13470 crossref_primary_10_3390_bioengineering9100589 crossref_primary_10_3390_genes15070919 crossref_primary_10_1016_j_pmpp_2022_101916 crossref_primary_10_1080_02772248_2023_2254440 crossref_primary_10_1111_nph_19184 crossref_primary_10_1007_s42485_020_00053_8 crossref_primary_10_1016_j_plantsci_2022_111376 crossref_primary_10_1111_jph_13194 crossref_primary_10_1371_journal_pone_0291939 crossref_primary_10_1007_s10681_022_03101_0 crossref_primary_10_1111_pbi_14540 crossref_primary_10_1094_PHYTOFR_05_21_0035_R crossref_primary_10_3390_jof7070561 crossref_primary_10_1016_j_synbio_2022_06_009 crossref_primary_10_1016_j_plaphy_2021_05_045 crossref_primary_10_3390_genes14091739 crossref_primary_10_1002_ps_8490 crossref_primary_10_3390_ijms221910451 crossref_primary_10_3390_jof10010033 crossref_primary_10_1007_s10142_022_00899_9 crossref_primary_10_3389_fpls_2020_577063 crossref_primary_10_36953_ECJ_021918_2167 crossref_primary_10_1111_nph_19570 crossref_primary_10_1021_acs_jafc_1c04064 crossref_primary_10_3390_ijms25115787 crossref_primary_10_1007_s00294_020_01118_3 crossref_primary_10_1111_ppa_13558 crossref_primary_10_3389_fpls_2021_693521 crossref_primary_10_1094_PDIS_11_20_2391_RE crossref_primary_10_1016_j_crmicr_2022_100109 crossref_primary_10_3389_fpls_2022_881116 crossref_primary_10_1186_s42483_024_00297_y crossref_primary_10_1002_ps_8378 crossref_primary_10_1094_MPMI_05_20_0121_R crossref_primary_10_1111_tpj_17254 crossref_primary_10_1016_j_rsci_2024_12_014 crossref_primary_10_1111_tpj_16046 crossref_primary_10_1016_j_cropro_2024_107004 crossref_primary_10_34133_2020_8954085 crossref_primary_10_1016_j_bbrc_2023_06_041 crossref_primary_10_3390_ijms23094735 crossref_primary_10_1016_j_plaphy_2023_02_009 crossref_primary_10_3389_fpls_2020_591457 crossref_primary_10_1094_MPMI_34_1 crossref_primary_10_3390_molecules27248811 crossref_primary_10_1016_j_cej_2023_142190 crossref_primary_10_1111_mpp_13291 crossref_primary_10_1007_s42161_025_01892_4 crossref_primary_10_1002_ps_6400 crossref_primary_10_1002_ps_8153 crossref_primary_10_1099_mgen_0_000948 crossref_primary_10_1007_s44154_022_00049_y crossref_primary_10_3390_agronomy11122532 crossref_primary_10_1093_plcell_koad118 crossref_primary_10_1186_s12284_024_00722_y crossref_primary_10_1186_s12870_021_02930_w crossref_primary_10_1007_s11033_023_08361_0 crossref_primary_10_1016_j_devcel_2024_03_033 crossref_primary_10_1016_j_micres_2020_126588 crossref_primary_10_3390_agronomy13030711 crossref_primary_10_1080_17429145_2022_2094003 crossref_primary_10_1039_D3EN00500C crossref_primary_10_1186_s12864_022_08816_x crossref_primary_10_3390_pathogens11091026 crossref_primary_10_3389_fgene_2022_869465 crossref_primary_10_1007_s11103_024_01442_z crossref_primary_10_1111_pbr_13210 crossref_primary_10_3390_ijms26052249 crossref_primary_10_3390_plants14010136 crossref_primary_10_3390_plants13243554 crossref_primary_10_1016_j_gene_2022_146468 crossref_primary_10_1186_s12284_021_00466_z crossref_primary_10_1016_j_pmpp_2024_102295 crossref_primary_10_1094_PDIS_08_20_1681_RE crossref_primary_10_1038_s41598_023_49918_0 crossref_primary_10_3389_fpls_2023_1141697 crossref_primary_10_1007_s11033_023_09194_7 crossref_primary_10_1016_j_pestbp_2023_105525 crossref_primary_10_1021_acsnano_4c01835 crossref_primary_10_3389_fgene_2022_882836 crossref_primary_10_1016_j_pmpp_2024_102337 crossref_primary_10_1021_acs_jafc_4c09461 crossref_primary_10_1007_s11816_020_00652_3 crossref_primary_10_1016_j_carbpol_2024_122149 crossref_primary_10_1111_ppa_13804 crossref_primary_10_1186_s12284_022_00574_4 crossref_primary_10_3390_bioengineering10111244 crossref_primary_10_3390_life13102101 crossref_primary_10_61186_pps_13_1_42 crossref_primary_10_1016_j_postharvbio_2022_112075 crossref_primary_10_56093_ijas_v95i2_162339 crossref_primary_10_1016_j_jhazmat_2024_134807 crossref_primary_10_1094_PBIOMES_03_24_0034_R crossref_primary_10_1111_mpp_13391 crossref_primary_10_1007_s10681_021_02958_x crossref_primary_10_1016_S2095_3119_20_63499_2 crossref_primary_10_3390_antibiotics11030363 crossref_primary_10_3390_rs16122047 crossref_primary_10_1007_s10681_020_02702_x crossref_primary_10_1016_j_aac_2024_11_001 crossref_primary_10_1111_pbi_13530 crossref_primary_10_3389_fpls_2023_1247014 crossref_primary_10_1007_s00709_021_01637_x crossref_primary_10_1007_s42161_021_00974_3 crossref_primary_10_1038_s41467_024_52855_9 crossref_primary_10_1111_tpj_16437 crossref_primary_10_1016_j_pmpp_2021_101669 crossref_primary_10_1038_s41598_024_81143_1 crossref_primary_10_3390_ijms221910412 crossref_primary_10_1111_pce_14502 crossref_primary_10_3389_fmicb_2021_707281 crossref_primary_10_1007_s10681_024_03325_2 crossref_primary_10_1094_PHYTO_10_23_0390_KC crossref_primary_10_1002_pld3_540 crossref_primary_10_1186_s12284_023_00678_5 crossref_primary_10_3390_ijms232112922 crossref_primary_10_1016_j_plaphy_2022_07_018 crossref_primary_10_1007_s11356_022_24835_3 crossref_primary_10_1111_ppl_14475 |
Cites_doi | 10.1111/j.1365-2672.2004.02291.x 10.1016/S0092-8674(00)81858-9 10.1094/Phyto-70-947 10.1046/j.1365-313x.2001.01070.x 10.1016/S0168-9452(00)00413-1 10.1007/s00425-015-2398-x 10.4161/psb.5.12.13982 10.1371/journal.pgen.1004281 10.1007/s11274-007-9476-6 10.1038/s41580-019-0131-5 10.1111/nph.12292 10.5424/sjar/2006041-178 10.1111/mpp.12178 10.1007/s001220051517 10.1016/S0958-1669(03)00035-1 10.1016/j.plantsci.2017.09.014 10.1093/emboj/16.8.1934 10.1007/s00294-014-0438-x 10.1007/BF03263168 10.1007/s10658-010-9725-7 10.1038/nbt0795-686 10.1201/9781420049299 10.1016/S1673-8527(08)60068-5 10.1007/s10681-010-0296-7 10.1155/2011/250349 10.1038/s41598-019-46885-3 10.2135/cropsci2008.03.0131 10.1023/A:1024276127001 10.2135/cropsci2008.03.0124 10.1111/hrd2.00026 10.1007/s001220051359 10.1093/pcp/pcs047 10.1094/PHYTO-99-9-1078 10.1016/j.tibtech.2019.03.008 10.1073/pnas.1213962110 10.3835/plantgenome2008.02.0089 10.1104/pp.110.163949 10.1007/s10681-014-1246-6 10.2135/cropsci2005.0503 10.1094/PHYTO.2002.92.8.893 10.1007/s10142-019-00687-y 10.1016/S0168-9452(03)00271-1 10.1016/j.tibtech.2005.04.007 10.3390/molecules23020276 10.1094/PHYTO.2002.92.1.43 10.1007/s00122-002-1014-1 10.1270/jsbbs.15154 10.1038/s41598-017-10405-y 10.1146/annurev-phyto-080508-081904 10.1186/s40064-015-0954-2 10.1104/pp.113.230052 10.1094/PHYTO.1997.87.12.1258 10.1016/j.micres.2005.02.002 10.1146/annurev.micro.61.080706.093432 10.1074/jbc.M109.036871 10.1007/s001220050864 10.1016/j.plaphy.2017.12.012 10.1007/s11274-013-1546-3 10.1038/nature03895 10.3389/fpls.2012.00088 10.1007/BF00220903 10.1007/s12223-013-0280-4 10.1034/j.1399-3054.1998.1020104.x 10.1016/j.plantsci.2016.06.005 10.1038/ncomms2427 10.1094/MPMI.2004.17.2.140 10.3389/fpls.2017.00596 10.1038/srep41610 10.1002/3527603514.ch1 10.1038/nature22372 10.1007/s10658-009-9501-8 10.1007/s11248-008-9196-1 10.1094/PDIS-11-15-1372-RE 10.1016/j.fcr.2014.03.003 10.1094/MPMI.2001.14.10.1255 10.1007/s00425-019-03246-8 10.1007/s11032-005-4736-3 10.1094/PHYTO.2001.91.11.1054 10.4238/2015.March.6.10 10.1094/Phyto-85-959 10.1007/s11248-009-9315-7 10.1146/annurev.phyto.43.040204.135923 10.1146/annurev.arplant.043008.092007 10.1093/dnares/dsl001 10.1038/s41598-017-07749-w 10.1007/s00122-014-2395-7 10.4172/2157-7471.1000241 10.1186/s12284-016-0137-y 10.1007/s00299-008-0586-x 10.1101/625509 10.1016/j.plantsci.2008.04.011 10.5511/plantbiotechnology.18.101 10.1111/j.1365-313X.2010.04264.x 10.1146/annurev-phyto-102313-045854 10.1371/journal.pone.0169582 10.1139/w00-018 10.1146/annurev-arplant-043014-114623 10.1111/pbi.12004 10.1146/annurev.py.30.090192.002451 10.1007/s11032-014-0173-5 10.4141/CJPS08112 10.1038/s41598-017-08180-x 10.1007/s11738-016-2331-3 10.1007/s10681-018-2329-6 10.1007/s11103-019-00843-9 10.1111/j.1364-3703.2006.00350.x 10.1038/s41598-018-37365-1 10.1128/genomeA.01188-17 10.1038/nature14449 10.1007/s00425-012-1698-7 10.2478/jppr-2014-0006 10.1016/j.jplph.2009.08.003 10.1007/s00299-006-0292-5 10.1270/jsbbs.53.51 10.1094/MPMI-18-0511 10.1007/s00294-017-0791-7 10.1021/pr500069r 10.1186/1471-2164-15-461 10.1146/annurev.phyto.112408.132637 10.1111/nph.14849 10.2135/cropsci2006.0143 10.3198/jpr2007.11.0601crg 10.1146/annurev-phyto-102313-045933 10.1007/s10529-008-9856-5 10.1270/jsbbs.63.301 10.1631/jzus.2004.0133 10.1007/s10681-011-0475-1 10.1111/j.1364-3703.2008.00469.x 10.1094/PD-80-1103 10.1007/s001220051178 10.1080/07060661.2017.1417915 10.1073/pnas.81.10.3059 10.1201/9781420049299.ch13 10.1007/s10681-011-0366-5 10.1007/s00122-013-2051-7 10.1016/j.plantsci.2005.08.002 10.1094/PDIS-09-13-0940-RE 10.1007/s11703-009-0062-6 10.1126/science.7732374 10.1111/j.1439-0523.2010.01806.x 10.1093/database/baw031 10.1007/s11032-011-9619-1 10.1111/mpp.12055 10.1094/PDIS-92-11-1503 10.3390/molecules191118139 10.1016/j.phytochem.2004.12.032 10.1270/jsbbs.54.265 10.1007/s00122-011-1687-4 10.1016/S2095-3119(14)60909-6 10.1007/s00122-007-0686-y 10.1007/BF02886159 10.1094/MPMI-11-12-0272-R 10.1094/PHYTO-97-10-1207 10.1093/aobpla/pls029 10.1007/s11032-009-9316-5 10.1111/pbi.12827 10.1023/A:1008736930068 10.1080/1343943X.2016.1140006 10.1007/s12284-009-9030-2 10.1007/s00299-011-1033-y 10.1093/dnares/dsw024 10.1371/journal.pone.0032703 10.1023/A:1012246406490 10.1080/07060669309501923 10.1111/j.1467-7652.2007.00243.x 10.1038/s41598-017-10804-1 10.1007/s12374-017-0209-6 10.1007/s10535-007-0027-7 10.1016/S1369-5266(99)00055-2 10.1094/PHYTO.2004.94.7.672 10.1371/journal.ppat.1002882 10.1094/PDIS-05-12-0466-RE 10.1007/s11103-014-0269-7 10.3390/genes9070339 10.1371/journal.pone.0046443 10.1016/j.pmpp.2011.11.003 10.1016/S1369-5266(02)00275-3 10.1007/s00425-019-03241-z 10.1016/j.jbiotec.2013.04.016 10.1007/s11032-013-9843-y 10.3389/fpls.2017.01422 10.1016/0040-4020(95)00423-6 10.1111/j.1365-313X.2008.03531.x 10.1016/j.fgb.2005.08.002 10.1007/s10722-008-9345-7 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.13312 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | A multifaceted picture of rice sheath blight resistance |
EISSN | 1467-7652 |
EndPage | 915 |
ExternalDocumentID | PMC7061877 31811745 10_1111_pbi_13312 PBI13312 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Indian Council of Agricultural Research (ICAR), Govt. of India funderid: CS11/7/2014‐1A‐IV dated 26.11.2014 – fundername: Department of Biotechnology (DBT), Govt. of India funderid: BT/PR12656/COE/34/22/2015 – fundername: Department of Biotechnology (DBT), Govt. of India grantid: BT/PR12656/COE/34/22/2015 – fundername: Indian Council of Agricultural Research (ICAR), Govt. of India grantid: CS11/7/2014‐1A‐IV dated 26.11.2014 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAMMB AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEFGJ AEIMD AENEX AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AGQPQ AGXDD AIDQK AIDYY ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O9- OIG OK1 P2P P2X P4D PHGZM PHGZT PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WQJ XG1 ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM PQGLB 7QO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS WIN 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5422-3ff7a87ae64054f771a17e65895fbd4c9ad58434634ad6523b311816a90f968b3 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 18:09:12 EDT 2025 Fri Jul 11 18:27:07 EDT 2025 Fri Jul 11 04:57:32 EDT 2025 Wed Aug 13 06:52:36 EDT 2025 Mon Jul 21 06:00:01 EDT 2025 Tue Jul 01 02:34:45 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Sun Jul 06 04:45:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | sheath blight rice disease resistance Rhizoctonia solani host-plant interaction transgenic rice sheath blight QTL |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5422-3ff7a87ae64054f771a17e65895fbd4c9ad58434634ad6523b311816a90f968b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1464-2680 0000-0002-9897-7906 0000-0002-4562-9131 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13312 |
PMID | 31811745 |
PQID | 2374172481 |
PQPubID | 1096352 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7061877 proquest_miscellaneous_2524216497 proquest_miscellaneous_2322739661 proquest_journals_2374172481 pubmed_primary_31811745 crossref_primary_10_1111_pbi_13312 crossref_citationtrail_10_1111_pbi_13312 wiley_primary_10_1111_pbi_13312_PBI13312 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2009; 89 2013; 4 2012; 124 2010; 19 2013; 126 2013; 63 2019; 19 1999; 44 2004; 5 2008; 35 2006; 170 2003; 53 2005; 66 2009; 99 2018; 9 2010; 25 2011; 129 2019; 20 1982; 61 2018; 217 2012a; 77 2008; 27 2015; 87 2013; 199 2014; 15 2008; 24 2014; 13 2008; 116 2007; 61 2014; 19 2008; 22 2007; 5 2013; 110 1998; 97 2009; 125 2003; 165 2014; 10 2009; 18 2003; 45 2012; 184 1995; 51 2019; 9 2016; 19 2015; 523 2001; 160 2009; 60 2002; 5 2019; 37 2010; 167 2002b; 92 2001; 27 2014; 151 1980; 70 2008; 55 1983; 70 1991 2007; 97 2018; 23 2011; 130 2019; 100 2012; 30 1992; 30 1999 2004; 54 2010; 48 2006; 46 2000; 106 2015; 66 2008; 48 2019; 215 1995; 268 2000; 100 1996; 80 2000; 101 2014; 30 2017; 265 2012; 236 1999; 996 2005; 18 2018; 16 1999b; 98 2016; 9 2017; 545 2016; 23 2017; 40 2017; 5 2001; 91 2006; 71 2017; 7 2010; 54 2009; 47 2017; 8 2013; 26 2012; 2012 1997; 88 1997; 87 2000; 3 2000; 46 2018; 123 2008; 9 2003; 14 2013; 166 2016; 100 2008; 1 2008; 2 2014; 60 2009; 49 2005; 23 2003; 12 2009; 56 2014; 5 2013; 14 2014b; 98 2013; 11 2000 2017; 39 2013; 12 2013; 97 2010; 154 2002; 106 2014; 59 1997; 16 2005; 32 2009; 284 2001; 17 2001; 18 2014; 52 2007; 21 2002a; 92 2001; 14 2014; 164 2014; 203 2007; 26 2014; 54 2015; 14 2015; 16 1995; 91 1984; 81 2015; 4 2006; 13 1995; 13 2006; 17 2005; 436 2006; 7 2011; 30 2014b; 161 2016; 243 2005; 42 2005; 43 2014a; 34 1999a 2005 2006; 4 2007; 51 2018; 61 2008; 92 2018; 64 2011; 178 2005; 45 2010b; 5 1993; 15 2011; 2011 1995; 85 2005; 160 2004; 97 2010a; 63 2004; 94 2012; 3 2002; 29 2009; 31 2004; 17 2014a; 127 2013; 31 2017; 12 2019 2016 2011; 180 2009; 3 2019; 250 2012; 7 2009; 2 1998; 102 2008; 175 2012b; 53 2012; 8 2016; 250 2016; 66 Han Y. (e_1_2_9_54_1) 2002; 29 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 Jena K.K. (e_1_2_9_60_1) 2000 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_129_1 Zuo S. (e_1_2_9_197_1) 2007; 21 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_5_1 Kunihiro Y. (e_1_2_9_80_1) 2002; 29 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 Sneh B. (e_1_2_9_150_1) 1991 e_1_2_9_77_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_66_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 Mohanty S. (e_1_2_9_103_1) 2013; 12 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 Gangopadhyay S. (e_1_2_9_43_1) 1982; 61 e_1_2_9_90_1 Han Y.‐P. (e_1_2_9_55_1) 2003; 45 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 Tan C.‐X. (e_1_2_9_167_1) 2005; 32 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 Kannaiyan S. (e_1_2_9_67_1) 1983; 70 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_201_1 e_1_2_9_65_1 Mutuku M. (e_1_2_9_108_1) 2010; 54 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 Taheri P. (e_1_2_9_164_1) 2006; 71 e_1_2_9_181_1 e_1_2_9_62_1 Bera S. (e_1_2_9_8_1) 1999; 996 e_1_2_9_24_1 e_1_2_9_85_1 Yin Y.‐J. (e_1_2_9_185_1) 2008; 22 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 61 start-page: 451 year: 1982 end-page: 460 article-title: Sheath blight of rice publication-title: Rev. Plant Pathol. – volume: 160 start-page: 405 year: 2001 end-page: 414 article-title: Enhanced resistance to sheath blight by constitutive expression of infection‐related rice chitinase in transgenic elite indica rice cultivars publication-title: Plant Sci. – volume: 12 year: 2017 article-title: Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from (L.) publication-title: PLoS ONE – volume: 250 start-page: 1505 year: 2019 end-page: 1520 article-title: Concurrent overexpression of rice G‐protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice publication-title: Planta – year: 2019 article-title: Loss of premature stop codon in the Wall‐Associated Kinase 91 (OsWAK91) gene confers sheath blight disease resistance in rice publication-title: bioRxiv – volume: 80 start-page: 1103 year: 1996 end-page: 1108 article-title: Effect of sheath blight on yield in tropical, intensive rice production system publication-title: Plant Dis. – year: 2016 article-title: RSIADB, a collective resource for genome and transcriptome analyses in AG1 IA publication-title: Database – volume: 40 start-page: 39 year: 2017 end-page: 47 article-title: Molecular cloning and functional analysis of two novel genes in publication-title: Can. J. Plant Pathol. – volume: 44 start-page: 1783 year: 1999 end-page: 1789 article-title: Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85 publication-title: Chin. Sci. Bull. – volume: 16 start-page: 210 year: 2015 end-page: 218 article-title: The circadian clock and defence signalling in plants publication-title: Mol. Plant Pathol. – volume: 34 start-page: 2191 year: 2014a end-page: 2203 article-title: Fine‐mapping of qSB‐9 TQ, a gene conferring major quantitative resistance to rice sheath blight publication-title: Mol. Breed. – volume: 7 start-page: 10410 year: 2017 article-title: Comparative secretome analysis of isolates with different host ranges reveals unique secretomes and cell death inducing effectors publication-title: Sci. Rep. – volume: 126 start-page: 1257 year: 2013 end-page: 1272 article-title: Fine mapping of qSB‐11 LE, the QTL that confers partial resistance to rice sheath blight publication-title: Theor. Appl. Genet. – volume: 51 start-page: 7907 year: 1995 end-page: 7918 article-title: Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, L publication-title: Tetrahedron – volume: 100 start-page: 832 year: 2000 end-page: 839 article-title: m‐mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems publication-title: Theor. Appl. Genet. – volume: 12 start-page: 475 year: 2003 end-page: 484 article-title: Co‐expression of a modified maize ribosome‐inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight publication-title: Transgenic Res. – volume: 217 start-page: 771 year: 2018 end-page: 783 article-title: Salicylic acid‐dependent immunity contributes to resistance against , a necrotrophic fungal agent of sheath blight, in rice and publication-title: New Phytol. – volume: 13 start-page: 686 year: 1995 end-page: 691 article-title: Genetic engineering of rice for resistance to sheath blight publication-title: Nat. Biotechnol. – volume: 4 start-page: 175 year: 2015 article-title: Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice ( L.) publication-title: SpringerPlus – volume: 161 start-page: 118 year: 2014b end-page: 127 article-title: Improvement of japonica rice resistance to sheath blight by pyramiding qSB‐9TQ and qSB‐7TQ publication-title: Field Crops Res. – volume: 13 start-page: 53 year: 2006 end-page: 63 article-title: The rice 14‐3‐3 gene family and its involvement in responses to biotic and abiotic stress publication-title: DNA Res. – volume: 151 start-page: 28 year: 2014 end-page: 37 article-title: Dissection of additive, epistatic effect and QTL× environment interaction of quantitative trait loci for sheath blight resistance in rice publication-title: Hereditas – volume: 29 start-page: 50 year: 2002 end-page: 55 article-title: QTL analysis of sheath blight resistance in rice ( L.) publication-title: Acta Genet. Sin. – volume: 130 start-page: 404 year: 2011 end-page: 406 article-title: Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population publication-title: Plant Breed. – volume: 94 start-page: 672 year: 2004 end-page: 682 article-title: Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies publication-title: Phytopathology – volume: 19 start-page: 279 year: 2016 end-page: 290 article-title: Metabolite profiling of sheath blight disease resistance in rice: in the case of positive ion mode analysis by CE/TOF‐MS publication-title: Plant Prod. Sci. – volume: 123 start-page: 149 year: 2018 end-page: 159 article-title: Osmotin: a plant defense tool against biotic and abiotic stresses publication-title: Plant Physiol. Biochem. – volume: 9 start-page: 329 year: 2008 end-page: 338 article-title: Overexpression of snakin‐1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants publication-title: Mol. Plant Pathol. – volume: 8 year: 2012 article-title: Surface α‐1, 3‐glucan facilitates fungal stealth infection by interfering with innate immunity in plants publication-title: PLoS Pathog. – volume: 199 start-page: 212 year: 2013 end-page: 227 article-title: Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance‐associated macrophage protein 6) gene involved in pathogen resistance publication-title: New phytol. – volume: 26 start-page: 791 year: 2007 end-page: 804 article-title: Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight publication-title: Plant Cell Rep. – volume: 11 start-page: 33 year: 2013 end-page: 42 article-title: Transgenic rice with inducible ethylene production exhibits broad‐spectrum disease resistance to the fungal pathogens and publication-title: Plant Biotechnol. J. – volume: 81 start-page: 3059 year: 1984 end-page: 3063 article-title: Formation of cyanide from carbon 1 of 1‐aminocyclopropane‐1‐carboxylic acid during its conversion to ethylene publication-title: Proc. Natl Acad. Sci. USA – volume: 8 start-page: 1422 year: 2017 article-title: Comparative transcriptome analyses of gene expression changes triggered by AG1 IA infection in resistant and susceptible Rice Varieties publication-title: Front. Plant Sci. – volume: 110 start-page: 2775 year: 2013 end-page: 2780 article-title: Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia publication-title: Proc. Natl Acad. Sci. USA – volume: 170 start-page: 203 year: 2006 end-page: 215 article-title: Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins publication-title: Plant Sci. – volume: 436 start-page: 793 year: 2005 end-page: 800 article-title: The map‐based sequence of the rice genome publication-title: Nature – volume: 9 start-page: 339 year: 2018 article-title: Disease resistance mechanisms in plants publication-title: Genes – volume: 5 start-page: 313 year: 2007 end-page: 324 article-title: Functional analysis of rice NPR1‐like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility publication-title: Plant Biotechnol. J. – volume: 16 start-page: 771 year: 2018 end-page: 783 article-title: Os ASR 2 regulates the expression of a defence‐related gene, Os2H16, by targeting the GT‐1 cis‐element publication-title: Plant Biotechnol. J. – volume: 46 start-page: 520 year: 2000 end-page: 524 article-title: Inactivation of phytotoxin produced by the rice sheath blight pathogen publication-title: Can. J. Microbiol. – volume: 545 start-page: 491 year: 2017 article-title: uORF‐mediated translation allows engineered plant disease resistance without fitness costs publication-title: Nature – volume: 9 start-page: 587 year: 2019 article-title: The rice CYP78A gene BSR2 confers resistance to and affects seed size and growth in Arabidopsis and rice publication-title: Sci. Rep. – volume: 91 start-page: 382 year: 1995 end-page: 388 article-title: Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight ) publication-title: Theor. Appl. Genet. – volume: 71 start-page: 255 year: 2006 end-page: 258 article-title: Riboflavin induces resistance in rice against Rhizoctonia sheath diseases by activating signal transduction pathways leading to upregulation of rice cationic peroxidase and formation of lignin as a structural barrier publication-title: Commun. Agric. Appl. Biol. Sci. – volume: 51 start-page: 142 year: 2007 end-page: 148 article-title: ‐mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance publication-title: Biol. Plant. – volume: 31 start-page: 239 year: 2009 end-page: 244 article-title: Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens publication-title: Biotechnol. Lett. – volume: 97 start-page: 1207 year: 2007 end-page: 1212 article-title: Sensitivity to a phytotoxin from correlates with sheath blight susceptibility in rice publication-title: Phytopathology – volume: 61 start-page: 143 year: 2018 end-page: 158 article-title: Comparative transcriptome analysis of ‐resistant and‐susceptible rice cultivars reveals the importance of pathogen recognition and active immune responses in host resistance publication-title: J. Plant Biol. – volume: 154 start-page: 861 year: 2010 end-page: 873 article-title: The B‐3 ethylene response factor MtERF1‐1 mediates resistance to a subset of root pathogens in without adversely affecting symbiosis with rhizobia publication-title: Plant Physiol. – volume: 22 start-page: 340 year: 2008 end-page: 346 article-title: Pyramiding effects of three quantitative trait loci for resistance to sheath blight using near‐isogenic lines of rice publication-title: Chin. J. Rice Sci. – volume: 19 start-page: 799 year: 2019 end-page: 810 article-title: Genome analysis provides insight about pathogenesis of Indian strains of Rhizoctonia solani in rice publication-title: Funct. Integr. Genomics – volume: 47 start-page: 233 year: 2009 end-page: 263 article-title: Fungal effector proteins publication-title: Annu. Rev. Phytopathol. – volume: 250 start-page: 1387 year: 2019 end-page: 1407 article-title: Sheath blight of rice: a review and identification of priorities for future research publication-title: Planta – volume: 167 start-page: 201 year: 2010 end-page: 208 article-title: Riboflavin induces resistance in rice against via jasmonate‐mediated priming of phenylpropanoid pathway publication-title: J. Plant Physiol. – volume: 17 start-page: 140 year: 2004 end-page: 151 article-title: Overexpression of in rice leads to a BTH‐and environment‐induced lesion‐mimic/cell death phenotype publication-title: Mol. Plant‐Microbe Interact. – volume: 30 start-page: 1229 year: 2014 end-page: 1238 article-title: Co‐expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight and blast e and reveals impact on seed germination publication-title: World J. Microbiol. Biotechnol. – volume: 2 start-page: 251 year: 2008 end-page: 254 article-title: Registration of TIL: 455, TIL: 514, and TIL: 642, three rice germplasm lines containing introgressed sheath blight resistance alleles publication-title: J. Plant Regist. – volume: 32 start-page: 399 year: 2005 end-page: 405 article-title: Identification and marker‐assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations publication-title: Acta. Genet. Sin. – volume: 97 start-page: 169 year: 2004 end-page: 180 article-title: Characterization of antimicrobial peptides against a US strain of the rice pathogen publication-title: J. Appl. Microbiol. – volume: 2011 start-page: 1 year: 2011 end-page: 9 article-title: Antibacterial peptides from plants: what they are and how they probably work publication-title: Biochem. Res. Int. – volume: 129 start-page: 511 year: 2011 end-page: 528 article-title: Cytomolecular aspects of rice sheath blight caused by i publication-title: Eur. J. Plant Pathol. – volume: 60 start-page: 183 year: 2009 end-page: 205 article-title: Jasmonate passes muster: a receptor and targets for the defense hormone publication-title: Annu. Rev. Plant. Biol. – volume: 14 start-page: 177 year: 2003 end-page: 193 article-title: Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding publication-title: Curr. Opin. Biotechnol. – volume: 63 start-page: 599 year: 2010a end-page: 612 article-title: A rice fungal MAMP‐responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis publication-title: Plant J. – volume: 164 start-page: 1077 year: 2014 end-page: 1092 article-title: Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae publication-title: Plant Physiol. – volume: 39 start-page: 37 year: 2017 article-title: Canavanine involvement in the interaction of rice lines and publication-title: Acta. Physiol. Plant. – volume: 23 start-page: 415 year: 2016 end-page: 425 article-title: Comprehensive analysis of microRNA‐Seq and target mRNAs of rice sheath blight pathogen provides new insights into pathogenic regulatory mechanisms publication-title: DNA Res. – volume: 523 start-page: 472 year: 2015 end-page: 476 article-title: Redox rhythm reinforces the circadian clock to gate immune response publication-title: Nature – volume: 14 start-page: 910 year: 2013 end-page: 922 article-title: Rice oxalate oxidase gene driven by green tissue‐specific promoter increases tolerance to sheath blight pathogen ( ) in transgenic rice publication-title: Mol. Plant Pathol. – volume: 99 start-page: 1078 year: 2009 end-page: 1084 article-title: Mapping quantitative trait loci responsible for resistance to sheath blight in rice publication-title: Phytopathology – volume: 106 start-page: 1 year: 2002 end-page: 8 article-title: Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight publication-title: Theor. Appl. Genet. – volume: 184 start-page: 23 year: 2012 end-page: 34 article-title: Sheath‐blight resistance QTLS in japonica rice germplasm publication-title: Euphytica – volume: 268 start-page: 661 year: 1995 end-page: 667 article-title: Molecular genetics of plant disease resistance publication-title: Science – volume: 12 start-page: 44 year: 2013 end-page: 45 article-title: Trends in global rice consumption publication-title: Rice Today – volume: 18 start-page: 59 year: 2009 end-page: 69 article-title: Expression of Dm‐AMP1 in rice confers resistance t and publication-title: Transgenic Res. – volume: 31 start-page: 889 year: 2013 end-page: 907 article-title: Identification of rice sheath blight and blast quantitative trait loci in two different advanced backcross populations publication-title: Mol. Breed. – volume: 7 year: 2012 article-title: Identification of novel miRNAs in deep sequencing‐based small RNA libraries of rice infected with Rice stripe virus publication-title: PLoS ONE – start-page: 1 year: 2005 end-page: 21 – volume: 92 start-page: 1503 year: 2008 end-page: 1509 article-title: Rice sheath blight disease resistance identified in spp. accessions publication-title: Plant Dis. – volume: 124 start-page: 63 year: 2012 end-page: 74 article-title: Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing publication-title: Theor. Appl. Genet. – volume: 70 start-page: 947 year: 1980 end-page: 950 article-title: Infection cushion formation on rice sheaths by publication-title: Phytopathology – volume: 54 start-page: 265 year: 2004 end-page: 271 article-title: Mapping QTLs for sheath blight resistance in the rice line WSS2 publication-title: Breed. Sci. – volume: 70 start-page: 135 year: 1983 end-page: 136 article-title: Effect of spacing on the spread of sheath blight disease of rice publication-title: Madras Agric. J. – volume: 23 start-page: 276 year: 2018 article-title: Xylosylated detoxification of the rice flavonoid phytoalexin sakuranetin by the rice sheath blight fungus publication-title: Molecules – start-page: 271 year: 2000 end-page: 285 – volume: 2012 year: 2012 article-title: Molecular breeding for the development of multiple disease resistance in Basmati rice publication-title: AoB Plants – volume: 18 start-page: 511 year: 2005 end-page: 520 article-title: Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light publication-title: Mol. Plant‐Microbe Interact. – volume: 250 start-page: 105 year: 2016 end-page: 114 article-title: Tissue‐specific expression of gene in rice for sheath blight resistance without compromising phenotypic cost publication-title: Plant Sci. – volume: 61 start-page: 423 year: 2007 end-page: 452 article-title: Heterotrimeric G protein signaling in filamentous fungi* publication-title: Annu. Rev. Microbiol. – volume: 85 start-page: 959 year: 1995 end-page: 965 article-title: Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread publication-title: Phytopathology – volume: 7 year: 2012 article-title: Allelic analysis of sheath blight resistance with association mapping in rice publication-title: PLoS ONE – volume: 29 start-page: 622 year: 2002 end-page: 626 article-title: Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63 publication-title: Acta Genet. Sin. – volume: 116 start-page: 501 year: 2008 end-page: 516 article-title: Identification of defense‐related genes in rice responding to challenge by publication-title: Theor. Appl. Genet. – volume: 26 start-page: 668 year: 2013 end-page: 675 article-title: Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores publication-title: Mol. Plant Microbe Interact. – volume: 16 start-page: 1934 year: 1997 end-page: 1942 article-title: G proteins in : transmission of multiple signals? publication-title: EMBO J. – volume: 35 start-page: 499 year: 2008 end-page: 505 article-title: Prospect of the QTL‐qSB‐9Tq utilized in molecular breeding program of japonica rice against sheath blight publication-title: J. Genet. Genomics – volume: 100 start-page: 59 year: 2019 end-page: 71 article-title: Pectin induced transcriptome of a Rhizoctonia solani strain causing sheath blight disease in rice reveals insights on key genes and RNAi machinery for development of pathogen derived resistance publication-title: Plant Mol. Biol. – volume: 12 start-page: 93 year: 2003 end-page: 101 article-title: Transgenic indica rice variety Pusa Basmati 1 constitutively expressing a rice gene exhibits enhanced resistance to publication-title: J Plant Biochem. Biotechnol. – volume: 243 start-page: 115 year: 2016 end-page: 130 article-title: Green tissue‐specific co‐expression of and genes in rice for enhanced resistance against sheath blight publication-title: Planta – volume: 3 start-page: 88 year: 2012 article-title: The cell wall‐associated kinases, WAKs, as pectin receptors publication-title: Front. Plant Sci. – volume: 165 start-page: 969 year: 2003 end-page: 976 article-title: A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against the sheath blight pathogen, publication-title: Plant Sci. – volume: 127 start-page: 2515 year: 2014a end-page: 2524 article-title: Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice ( L.) publication-title: Theor. Appl. Genet. – volume: 53 start-page: 51 year: 2003 end-page: 59 article-title: Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice publication-title: Breed. Sci. – year: 1991 – volume: 106 start-page: 555 year: 2000 end-page: 561 article-title: Infection of rice plants with the sheath blight fungus causes an activation of pentose phosphate and glycolytic pathways publication-title: Eur. J. Plant Pathol. – volume: 19 start-page: 18139 year: 2014 end-page: 18151 article-title: Antimicrobial activity of UV‐induced phenylamides from rice leaves publication-title: Molecules – volume: 17 start-page: 545 year: 2001 end-page: 552 article-title: Inactivation of toxin by a putative α‐glucosidase from coconut leaves for control of sheath blight disease in rice publication-title: World J. Microbiol. Biotechnol. – volume: 30 start-page: 1241 year: 2011 end-page: 1252 article-title: Transgene stacking and marker elimination in transgenic rice by sequential ‐mediated co‐transformation with the same selectable marker gene publication-title: Plant Cell Rep. – volume: 1 start-page: 5 year: 2008 end-page: 20 article-title: Status and prospects of association mapping in plants publication-title: Plant Genome – volume: 48 start-page: 247 year: 2010 end-page: 268 article-title: Quantitative disease resistance and quantitative resistance loci in breeding publication-title: Annu. Rev. Phytopathol. – volume: 166 start-page: 114 year: 2013 end-page: 121 article-title: Transgenic indica rice lines, expressing Nonexpressor of pathogenesis‐related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens publication-title: J. Biotechnol. – volume: 45 start-page: 825 year: 2003 end-page: 831 article-title: Effect of morphological traits on sheath blight resistance in rice publication-title: Acta Bot. Sin. – volume: 21 start-page: 136 year: 2007 end-page: 142 article-title: Breeding value and further mapping of a QTL qSB‐11 conferring the rice sheath blight resistance publication-title: Chin. J. Rice Sci. – volume: 19 start-page: 373 year: 2010 end-page: 384 article-title: Expression of a plant defensin in rice confers resistance to fungal phytopathogens publication-title: Transgenic Res. – volume: 53 start-page: 1017 year: 2012b end-page: 1032 article-title: Changes in the contents of metabolites and enzyme activities in rice plants responding to Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway publication-title: Plant Cell Physiol. – volume: 180 start-page: 209 year: 2011 end-page: 218 article-title: QTL mapping of sheath blight resistance in a deep‐water rice cultivar publication-title: Euphytica – start-page: 262 year: 1999a end-page: 278 – volume: 101 start-page: 569 year: 2000 end-page: 573 article-title: Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars ( L.) publication-title: Theor. Appl. Genet. – volume: 23 start-page: 275 year: 2005 end-page: 282 article-title: Engineering plants with increased disease resistance: what are we going to express? publication-title: Trends Biotechnol. – volume: 37 start-page: 1121 year: 2019 end-page: 1142 article-title: CRISPR/Cas‐mediated base editing: technical considerations and practical applications publication-title: Trends Biotechnol. – volume: 2 start-page: 143 year: 2009 end-page: 154 article-title: Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice publication-title: Rice – volume: 265 start-page: 51 year: 2017 end-page: 60 article-title: Enhanced resistance to rice blast and sheath blight in rice ( L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis publication-title: Plant Sci. – volume: 5 start-page: 241 year: 2014 article-title: Rice sheath blight: a review of disease and pathogen management approaches publication-title: J. Plant Pathol. Microbiol. – volume: 77 start-page: 41 year: 2012a end-page: 51 article-title: High activities and mRNA expression of pyrophosphate‐fructose‐6‐phosphate‐phosphotransferase and 6‐phosphofructokinase are induced as a response to infection in rice leaf sheaths publication-title: Physiol. Mol. Plant Pathol. – volume: 215 start-page: 17 year: 2019 article-title: Novel biotic stress responsive candidate gene based SSR (cgSSR) markers from rice publication-title: Euphytica – start-page: 288 year: 1999 – volume: 20 start-page: 490 year: 2019 end-page: 507 article-title: The next generation of CRISPR–Cas technologies and applications publication-title: Nat. Rev. Mol. Cell Biol. – volume: 236 start-page: 1485 year: 2012 end-page: 1498 article-title: Constitutive expression of rice gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice publication-title: Planta – volume: 63 start-page: 301 year: 2013 article-title: Mapping and validation of QTLs for rice sheath blight resistance publication-title: Breed. Sci. – volume: 3 start-page: 231 year: 2009 end-page: 239 article-title: Current progress on genetic interactions of rice with rice blast and sheath blight fungi publication-title: Front. Agri. China – volume: 203 start-page: 33 year: 2014 article-title: The way to a more precise sheath blight resistance QTL in rice publication-title: Euphytica – volume: 66 start-page: 613 year: 2016 end-page: 626 article-title: Association between QTLs and morphological traits toward sheath blight resistance in rice ( L.) publication-title: Breed. Sci. – volume: 24 start-page: 345 year: 2008 end-page: 351 article-title: Targeted disruption of a G protein α subunit gene results in reduced growth and pathogenicity in publication-title: World. J. Microbiol. Biotechnol. – volume: 87 start-page: 181 year: 2015 end-page: 191 article-title: Functional analysis of OsPGIP1 in rice sheath blight resistance publication-title: Plant Mol. Biol. – volume: 3 start-page: 147 year: 2000 end-page: 152 article-title: Novel genes for disease‐resistance breeding publication-title: Curr. Opin. Plant Biol. – volume: 175 start-page: 283 year: 2008 end-page: 290 article-title: Combined expression of and genes in indica rice ( L.) enhances resistance against publication-title: Plant Sci. – volume: 56 start-page: 65 year: 2009 end-page: 76 article-title: Exploring genetic diversity and potential novel disease resistance genes in a collection of rice ( spp.) wild relatives publication-title: Genet. Resour. Crop Evol. – volume: 91 start-page: 1054 year: 2001 end-page: 1061 article-title: Characterization of a new subgroup of anastomosis group 1 (AG‐1‐ID), causal agent of a necrotic leaf spot on coffee publication-title: Phytopathology – volume: 5 start-page: 1653 year: 2010b end-page: 1656 article-title: MAMP‐responsive MAPK cascades regulate phytoalexin biosynthesis publication-title: Plant Signal. Behav. – volume: 46 start-page: 1870 year: 2006 end-page: 1878 article-title: Identifying novel resistance genes in newly introduced blast resistant rice germplasm publication-title: Crop Sci. – volume: 10 year: 2014 article-title: Genome sequencing and comparative genomics of the broad host‐range pathogen AG8 publication-title: PLOS Genet. – volume: 52 start-page: 495 year: 2014 end-page: 516 article-title: Small RNAs: a new paradigm in plant‐microbe interactions publication-title: Annu. Rev. Phytopathol. – volume: 49 start-page: 256 year: 2009 end-page: 264 article-title: Genetic mapping of sheath blight resistance QTLs within tropical rice cultivars publication-title: Crop Sci. – volume: 7 start-page: 41610 year: 2017 article-title: Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of publication-title: Sci. Rep. – start-page: 237 year: 2000 end-page: 246 – volume: 18 start-page: 101 year: 2001 end-page: 108 article-title: Rapid development of homozygous transgenic rice using anther culture harboring rice gene for enhanced sheath blight resistance publication-title: Plant Biotechnol. – volume: 43 start-page: 205 year: 2005 end-page: 227 article-title: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens publication-title: Annu. Rev. Phytopathol. – volume: 178 start-page: 1 year: 2011 end-page: 22 article-title: Resistance to rice sheath blight ( i Kühn) [(teleomorph: (A.B. Frank) Donk.] disease: current status and perspectives publication-title: Euphytica – volume: 27 start-page: 101 year: 2001 end-page: 113 article-title: Evidence for a disease‐resistance pathway in rice similar to the NPR1‐mediated signaling pathway in Arabidopsis publication-title: Plant J. – volume: 88 start-page: 57 year: 1997 end-page: 63 article-title: The gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats publication-title: Cell – volume: 14 start-page: 1255 year: 2001 end-page: 1260 article-title: Wheat puroindolines enhance fungal disease resistance in transgenic rice publication-title: Mol. Plant‐Microbe Interact. – volume: 5 start-page: e01188 year: 2017 end-page: e01117 article-title: Draft genome sequence of anastomosis group 1 subgroup 1A strain 1802/KB isolated from rice publication-title: Genome Announc. – volume: 45 start-page: 503 year: 2005 end-page: 510 article-title: Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines publication-title: Crop Sci. – volume: 64 start-page: 729 year: 2018 end-page: 740 article-title: Identification of candidate pathogenicity determinants of AG1‐IA, which causes sheath blight disease in rice publication-title: Curr. Genet. – volume: 30 start-page: 293 year: 2012 end-page: 303 article-title: Phenotypic gain from introgression of two QTL, qSB9‐2 and qSB12‐1, for rice sheath blight resistance publication-title: Mol. Breed. – volume: 17 start-page: 159 year: 2006 end-page: 171 article-title: Transgenic indica rice expressing ns‐LTP‐like protein shows enhanced resistance to both fungal and bacterial pathogens publication-title: Mol. Breed. – volume: 66 start-page: 391 year: 2005 end-page: 411 article-title: Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi publication-title: Phytochemistry – volume: 4 start-page: 55 year: 2006 end-page: 79 article-title: Review. Biology and systematics of the form genus Rhizoctonia publication-title: Span. J. Agric. Res. – volume: 9 start-page: 63 year: 2016 article-title: OsWRKY80‐OsWRKY4 module as a positive regulatory circuit in rice resistance against publication-title: Rice – volume: 54 start-page: 36 year: 2014 end-page: 43 article-title: Expression of the pathogenesis related proteins, NH‐1, PAL, and lipoxygenase in the iranian Tarom and Khazar rice cultivars, in reaction to –the causal agent of rice sheath blight publication-title: J Plant Protect. Res. – volume: 27 start-page: 1635 year: 2008 end-page: 1644 article-title: Generation of selectable marker‐free sheath blight resistant transgenic rice plants by efficient co‐transformation of a cointegrate vector T‐DNA and a binary vector T‐DNA in one strain publication-title: Plant Cell Rep. – volume: 100 start-page: 1634 year: 2016 end-page: 1642 article-title: Overexpression of OsOSM1 enhances resistance to rice sheath blight publication-title: Plant Dis. – volume: 7 start-page: 405 year: 2006 end-page: 416 article-title: Proteomic and genetic approaches to identifying defence‐related proteins in rice challenged with the fungal pathogen publication-title: Mol. Plant Pathol. – volume: 14 start-page: 1636 year: 2015 end-page: 1649 article-title: Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice publication-title: Genet. Mol. Res. – volume: 55 start-page: 580 year: 2008 end-page: 595 article-title: The Medicago truncatula ortholog of EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations publication-title: Plant J. – volume: 60 start-page: 327 year: 2014 end-page: 341 article-title: Identification and functional analysis of AG1‐IA specific genes of Rhizoctonia solani publication-title: Curr. Genet. – volume: 13 start-page: 3277 year: 2014 end-page: 3293 article-title: Global Protein‐protein interaction network of rice sheath blight pathogen publication-title: J. Proteome Res. – volume: 98 start-page: 1138 year: 1999b end-page: 1145 article-title: Over‐expression of the cloned rice (PR‐5) gene in transgenic rice plants enhances environmental friendly resistance to causing sheath blight disease publication-title: Theor. Appl. Genet. – volume: 15 start-page: 272 year: 1993 end-page: 280 article-title: Differentiation of intraspecific groups within anastomosis group 1 of using ribosomal DNA internal transcribed spacer and isozyme comparisons publication-title: Can. J. Plant Pathol. – volume: 52 start-page: 551 year: 2014 end-page: 581 article-title: Susceptibility genes 101: how to be a good host publication-title: Ann. Rev. Phytopathol. – volume: 25 start-page: 155 year: 2010 end-page: 166 article-title: Identification of major quantitative trait loci qSBR11‐1 for sheath blight resistance in rice publication-title: Mol. Breed. – volume: 5 start-page: 325 year: 2002 end-page: 331 article-title: Cross talk between signaling pathways in pathogen defense publication-title: Curr. Opin. Plant Biol. – volume: 97 start-page: 113 year: 2013 end-page: 117 article-title: Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease publication-title: Plant Dis. – volume: 102 start-page: 21 year: 1998 end-page: 28 article-title: Induction of thaumatin‐like proteins (TLPs) in ‐infected rice and characterization of two new cDNA clones publication-title: Physiol. Plant. – volume: 42 start-page: 924 year: 2005 end-page: 934 article-title: Proteomic analysis of secreted proteins from : identification of a fungal cell wall‐induced aspartic protease publication-title: Fungal Genet. Biol. – volume: 125 start-page: 533 year: 2009 end-page: 543 article-title: Transgenic indica rice expressing a bitter melon ( ) class I chitinase gene ( ) confers enhanced resistance to and publication-title: Eur. J. Plant Pathol. – volume: 7 start-page: 10120 year: 2017 article-title: Transcriptome analysis reveals the host selection fitness mechanisms of the AG1IA pathogen publication-title: Sci. Rep. – volume: 48 start-page: 1649 year: 2008 end-page: 1664 article-title: Molecular markers and selection for complex traits in plants: learning from the last 20 years publication-title: Crop Sci. – volume: 160 start-page: 291 year: 2005 end-page: 298 article-title: Detoxification of oxalic acid by strain PfMDU2: implications for the biological control of rice sheath blight caused by publication-title: Microbiol. Res. – volume: 4 start-page: 1424 year: 2013 article-title: The evolution and pathogenic mechanisms of the rice sheath blight pathogen publication-title: Nat Commun – volume: 15 start-page: 461 year: 2014 article-title: Interaction specificity and coexpression of rice NPR1 homologs 1 and 3 (NH1 and NH3), TGA transcription factors and Negative Regulator of Resistance (NRR) proteins publication-title: BMC Genom. – volume: 97 start-page: 37 year: 1998 end-page: 44 article-title: Fine mapping of quantitative trait loci Hd‐1, Hd‐2 and Hd‐3, controlling heading date of rice, as single Mendelian factors publication-title: Theor. Appl. Genet. – volume: 87 start-page: 1258 year: 1997 end-page: 1263 article-title: Host‐specific toxin production by , the rice sheath blight pathogen publication-title: Phytopathology – volume: 7 start-page: 7900 year: 2017 article-title: Dual gene expression cassette is superior than single gene cassette for enhancing sheath blight tolerance in transgenic rice publication-title: Sci. Rep. – volume: 92 start-page: 43 year: 2002b end-page: 50 article-title: Hyphal anastomosis reactions, rDNA‐internal transcribed spacer sequences, and virulence levels among subsets of anastomosis group‐2 (AG‐2) and AG‐BI publication-title: Phytopathology – volume: 89 start-page: 731 year: 2009 end-page: 737 article-title: Evaluation of the effect of qSB‐9Tq involved in quantitative resistance to rice sheath blight using near‐isogenic lines publication-title: Can. J. Plant Sci. – volume: 98 start-page: 957 year: 2014b end-page: 964 article-title: Comparison and confirmation of quantitative trait loci conferring partial resistance to rice sheath blight on chromosome 9 publication-title: Plant Dis. – volume: 59 start-page: 181 year: 2014 end-page: 196 article-title: Plant antimicrobial peptides publication-title: Folia Microbiol. – volume: 14 start-page: 801 year: 2015 end-page: 810 article-title: Mapping resistant QTLs for rice sheath blight disease with a doubled haploid population publication-title: J. Integr. Agric. – volume: 284 start-page: 26510 year: 2009 end-page: 26518 article-title: OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice publication-title: J. Biol. Chem. – volume: 9 start-page: 10461 year: 2019 article-title: Proteo‐metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against publication-title: Sci. Rep. – volume: 66 start-page: 513 year: 2015 end-page: 545 article-title: Fungal effectors and plant susceptibility publication-title: Annu. Rev. Plant Biol. – volume: 30 start-page: 507 year: 1992 end-page: 528 article-title: Breeding rice for resistance to pests publication-title: Annu. Rev. Phytopathol. – volume: 92 start-page: 893 year: 2002a end-page: 899 article-title: Characterization of AG‐13, a newly reported anastomosis group of publication-title: Phytopathology – volume: 5 start-page: 133 year: 2004 end-page: 136 article-title: Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from publication-title: J. Zhejiang Univ. Sci. – volume: 8 start-page: 596 year: 2017 article-title: Novel chitinase gene LOC_Os11g47510 from indica rice tetep provides enhanced resistance against sheath blight pathogen in rice publication-title: Front. Plant Sci. – volume: 7 start-page: 7521 year: 2017 article-title: Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen ( ) publication-title: Sci. Rep. – volume: 54 start-page: 119 year: 2010 end-page: 131 article-title: infection in two rice lines increases mRNA expression of metabolic enzyme genes in glycolytic, oxidative pentose phosphate pathways and secondary metabolism publication-title: Tropical Agri. Dev. – volume: 996 start-page: 518 year: 1999 end-page: 527 article-title: Multicomponent coordinated defence response of rice to causing sheath blight publication-title: Appl. Phys. – ident: e_1_2_9_116_1 doi: 10.1111/j.1365-2672.2004.02291.x – ident: e_1_2_9_14_1 doi: 10.1016/S0092-8674(00)81858-9 – ident: e_1_2_9_100_1 doi: 10.1094/Phyto-70-947 – ident: e_1_2_9_24_1 doi: 10.1046/j.1365-313x.2001.01070.x – ident: e_1_2_9_34_1 doi: 10.1016/S0168-9452(00)00413-1 – ident: e_1_2_9_68_1 doi: 10.1007/s00425-015-2398-x – ident: e_1_2_9_74_1 doi: 10.4161/psb.5.12.13982 – ident: e_1_2_9_56_1 doi: 10.1371/journal.pgen.1004281 – ident: e_1_2_9_18_1 doi: 10.1007/s11274-007-9476-6 – ident: e_1_2_9_127_1 doi: 10.1038/s41580-019-0131-5 – ident: e_1_2_9_13_1 doi: 10.1111/nph.12292 – ident: e_1_2_9_44_1 doi: 10.5424/sjar/2006041-178 – ident: e_1_2_9_145_1 doi: 10.1111/mpp.12178 – ident: e_1_2_9_196_1 doi: 10.1007/s001220051517 – ident: e_1_2_9_53_1 doi: 10.1016/S0958-1669(03)00035-1 – ident: e_1_2_9_132_1 doi: 10.1016/j.plantsci.2017.09.014 – ident: e_1_2_9_135_1 doi: 10.1093/emboj/16.8.1934 – ident: e_1_2_9_45_1 doi: 10.1007/s00294-014-0438-x – ident: e_1_2_9_151_1 doi: 10.1007/BF03263168 – ident: e_1_2_9_166_1 doi: 10.1007/s10658-010-9725-7 – ident: e_1_2_9_89_1 doi: 10.1038/nbt0795-686 – ident: e_1_2_9_30_1 doi: 10.1201/9781420049299 – ident: e_1_2_9_198_1 doi: 10.1016/S1673-8527(08)60068-5 – ident: e_1_2_9_153_1 doi: 10.1007/s10681-010-0296-7 – ident: e_1_2_9_124_1 doi: 10.1155/2011/250349 – ident: e_1_2_9_70_1 doi: 10.1038/s41598-019-46885-3 – ident: e_1_2_9_9_1 doi: 10.2135/cropsci2008.03.0131 – ident: e_1_2_9_72_1 doi: 10.1023/A:1024276127001 – ident: e_1_2_9_146_1 doi: 10.2135/cropsci2008.03.0124 – ident: e_1_2_9_96_1 doi: 10.1111/hrd2.00026 – ident: e_1_2_9_33_1 doi: 10.1007/s001220051359 – ident: e_1_2_9_110_1 doi: 10.1093/pcp/pcs047 – ident: e_1_2_9_94_1 doi: 10.1094/PHYTO-99-9-1078 – volume-title: Identification of Rhizoctonia Species year: 1991 ident: e_1_2_9_150_1 – ident: e_1_2_9_104_1 doi: 10.1016/j.tibtech.2019.03.008 – ident: e_1_2_9_177_1 doi: 10.1073/pnas.1213962110 – ident: e_1_2_9_195_1 doi: 10.3835/plantgenome2008.02.0089 – ident: e_1_2_9_5_1 doi: 10.1104/pp.110.163949 – ident: e_1_2_9_189_1 doi: 10.1007/s10681-014-1246-6 – ident: e_1_2_9_128_1 doi: 10.2135/cropsci2005.0503 – ident: e_1_2_9_15_1 doi: 10.1094/PHYTO.2002.92.8.893 – ident: e_1_2_9_48_1 doi: 10.1007/s10142-019-00687-y – ident: e_1_2_9_79_1 doi: 10.1016/S0168-9452(03)00271-1 – ident: e_1_2_9_51_1 doi: 10.1016/j.tibtech.2005.04.007 – ident: e_1_2_9_71_1 doi: 10.3390/molecules23020276 – volume: 21 start-page: 136 year: 2007 ident: e_1_2_9_197_1 article-title: Breeding value and further mapping of a QTL qSB‐11 conferring the rice sheath blight resistance publication-title: Chin. J. Rice Sci. – ident: e_1_2_9_16_1 doi: 10.1094/PHYTO.2002.92.1.43 – ident: e_1_2_9_35_1 doi: 10.1007/s00122-002-1014-1 – ident: e_1_2_9_58_1 doi: 10.1270/jsbbs.15154 – ident: e_1_2_9_6_1 doi: 10.1038/s41598-017-10405-y – ident: e_1_2_9_156_1 doi: 10.1146/annurev-phyto-080508-081904 – ident: e_1_2_9_182_1 doi: 10.1186/s40064-015-0954-2 – ident: e_1_2_9_87_1 doi: 10.1104/pp.113.230052 – ident: e_1_2_9_171_1 doi: 10.1094/PHYTO.1997.87.12.1258 – ident: e_1_2_9_112_1 doi: 10.1016/j.micres.2005.02.002 – ident: e_1_2_9_85_1 doi: 10.1146/annurev.micro.61.080706.093432 – ident: e_1_2_9_118_1 doi: 10.1074/jbc.M109.036871 – ident: e_1_2_9_183_1 doi: 10.1007/s001220050864 – start-page: 271 volume-title: Rice Breeding and Genetics: Research Priorities and Challenges year: 2000 ident: e_1_2_9_60_1 – ident: e_1_2_9_52_1 doi: 10.1016/j.plaphy.2017.12.012 – ident: e_1_2_9_99_1 doi: 10.1007/s11274-013-1546-3 – ident: e_1_2_9_59_1 doi: 10.1038/nature03895 – ident: e_1_2_9_76_1 doi: 10.3389/fpls.2012.00088 – ident: e_1_2_9_84_1 doi: 10.1007/BF00220903 – ident: e_1_2_9_114_1 doi: 10.1007/s12223-013-0280-4 – ident: e_1_2_9_170_1 doi: 10.1034/j.1399-3054.1998.1020104.x – ident: e_1_2_9_106_1 doi: 10.1016/j.plantsci.2016.06.005 – ident: e_1_2_9_193_1 doi: 10.1038/ncomms2427 – ident: e_1_2_9_40_1 doi: 10.1094/MPMI.2004.17.2.140 – ident: e_1_2_9_136_1 doi: 10.3389/fpls.2017.00596 – ident: e_1_2_9_46_1 doi: 10.1038/srep41610 – ident: e_1_2_9_142_1 doi: 10.1002/3527603514.ch1 – ident: e_1_2_9_180_1 doi: 10.1038/nature22372 – ident: e_1_2_9_86_1 doi: 10.1007/s10658-009-9501-8 – ident: e_1_2_9_63_1 doi: 10.1007/s11248-008-9196-1 – ident: e_1_2_9_181_1 doi: 10.1094/PDIS-11-15-1372-RE – ident: e_1_2_9_21_1 doi: 10.1016/j.fcr.2014.03.003 – ident: e_1_2_9_78_1 doi: 10.1094/MPMI.2001.14.10.1255 – ident: e_1_2_9_149_1 doi: 10.1007/s00425-019-03246-8 – ident: e_1_2_9_121_1 doi: 10.1007/s11032-005-4736-3 – ident: e_1_2_9_131_1 doi: 10.1094/PHYTO.2001.91.11.1054 – ident: e_1_2_9_175_1 doi: 10.4238/2015.March.6.10 – ident: e_1_2_9_139_1 doi: 10.1094/Phyto-85-959 – ident: e_1_2_9_62_1 doi: 10.1007/s11248-009-9315-7 – ident: e_1_2_9_49_1 doi: 10.1146/annurev.phyto.43.040204.135923 – ident: e_1_2_9_12_1 doi: 10.1146/annurev.arplant.043008.092007 – ident: e_1_2_9_19_1 doi: 10.1093/dnares/dsl001 – ident: e_1_2_9_168_1 doi: 10.1038/s41598-017-07749-w – ident: e_1_2_9_20_1 doi: 10.1007/s00122-014-2395-7 – ident: e_1_2_9_184_1 doi: 10.4172/2157-7471.1000241 – ident: e_1_2_9_126_1 doi: 10.1186/s12284-016-0137-y – ident: e_1_2_9_154_1 doi: 10.1007/s00299-008-0586-x – ident: e_1_2_9_2_1 doi: 10.1101/625509 – ident: e_1_2_9_152_1 doi: 10.1016/j.plantsci.2008.04.011 – ident: e_1_2_9_7_1 doi: 10.5511/plantbiotechnology.18.101 – ident: e_1_2_9_73_1 doi: 10.1111/j.1365-313X.2010.04264.x – ident: e_1_2_9_141_1 doi: 10.1146/annurev-phyto-102313-045854 – ident: e_1_2_9_39_1 doi: 10.1371/journal.pone.0169582 – ident: e_1_2_9_155_1 doi: 10.1139/w00-018 – ident: e_1_2_9_29_1 – ident: e_1_2_9_97_1 doi: 10.1146/annurev-arplant-043014-114623 – ident: e_1_2_9_57_1 doi: 10.1111/pbi.12004 – ident: e_1_2_9_10_1 doi: 10.1146/annurev.py.30.090192.002451 – ident: e_1_2_9_200_1 doi: 10.1007/s11032-014-0173-5 – ident: e_1_2_9_186_1 doi: 10.4141/CJPS08112 – ident: e_1_2_9_69_1 doi: 10.1038/s41598-017-08180-x – volume: 71 start-page: 255 year: 2006 ident: e_1_2_9_164_1 article-title: Riboflavin induces resistance in rice against Rhizoctonia sheath diseases by activating signal transduction pathways leading to upregulation of rice cationic peroxidase and formation of lignin as a structural barrier publication-title: Commun. Agric. Appl. Biol. Sci. – ident: e_1_2_9_161_1 doi: 10.1007/s11738-016-2331-3 – ident: e_1_2_9_107_1 doi: 10.1007/s10681-018-2329-6 – volume: 54 start-page: 119 year: 2010 ident: e_1_2_9_108_1 article-title: Rhizoctonia solani infection in two rice lines increases mRNA expression of metabolic enzyme genes in glycolytic, oxidative pentose phosphate pathways and secondary metabolism publication-title: Tropical Agri. Dev. – ident: e_1_2_9_134_1 doi: 10.1007/s11103-019-00843-9 – ident: e_1_2_9_82_1 doi: 10.1111/j.1364-3703.2006.00350.x – ident: e_1_2_9_98_1 doi: 10.1038/s41598-018-37365-1 – ident: e_1_2_9_111_1 doi: 10.1128/genomeA.01188-17 – ident: e_1_2_9_194_1 doi: 10.1038/nature14449 – ident: e_1_2_9_125_1 doi: 10.1007/s00425-012-1698-7 – ident: e_1_2_9_140_1 doi: 10.2478/jppr-2014-0006 – ident: e_1_2_9_165_1 doi: 10.1016/j.jplph.2009.08.003 – ident: e_1_2_9_101_1 doi: 10.1007/s00299-006-0292-5 – ident: e_1_2_9_90_1 doi: 10.1270/jsbbs.53.51 – ident: e_1_2_9_25_1 doi: 10.1094/MPMI-18-0511 – ident: e_1_2_9_47_1 doi: 10.1007/s00294-017-0791-7 – ident: e_1_2_9_83_1 doi: 10.1021/pr500069r – ident: e_1_2_9_26_1 doi: 10.1186/1471-2164-15-461 – ident: e_1_2_9_158_1 doi: 10.1146/annurev.phyto.112408.132637 – ident: e_1_2_9_77_1 doi: 10.1111/nph.14849 – ident: e_1_2_9_36_1 doi: 10.2135/cropsci2006.0143 – ident: e_1_2_9_129_1 doi: 10.3198/jpr2007.11.0601crg – ident: e_1_2_9_174_1 doi: 10.1146/annurev-phyto-102313-045933 – ident: e_1_2_9_143_1 doi: 10.1007/s10529-008-9856-5 – ident: e_1_2_9_163_1 doi: 10.1270/jsbbs.63.301 – ident: e_1_2_9_93_1 doi: 10.1631/jzus.2004.0133 – ident: e_1_2_9_115_1 doi: 10.1007/s10681-011-0475-1 – ident: e_1_2_9_3_1 doi: 10.1111/j.1364-3703.2008.00469.x – ident: e_1_2_9_27_1 doi: 10.1094/PD-80-1103 – ident: e_1_2_9_32_1 doi: 10.1007/s001220051178 – ident: e_1_2_9_23_1 doi: 10.1080/07060661.2017.1417915 – volume: 61 start-page: 451 year: 1982 ident: e_1_2_9_43_1 article-title: Sheath blight of rice publication-title: Rev. Plant Pathol. – volume: 29 start-page: 622 year: 2002 ident: e_1_2_9_54_1 article-title: Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63 publication-title: Acta Genet. Sin. – ident: e_1_2_9_123_1 doi: 10.1073/pnas.81.10.3059 – ident: e_1_2_9_31_1 doi: 10.1201/9781420049299.ch13 – ident: e_1_2_9_41_1 doi: 10.1007/s10681-011-0366-5 – ident: e_1_2_9_199_1 doi: 10.1007/s00122-013-2051-7 – volume: 12 start-page: 44 year: 2013 ident: e_1_2_9_103_1 article-title: Trends in global rice consumption publication-title: Rice Today – volume: 22 start-page: 340 year: 2008 ident: e_1_2_9_185_1 article-title: Pyramiding effects of three quantitative trait loci for resistance to sheath blight using near‐isogenic lines of rice publication-title: Chin. J. Rice Sci. – ident: e_1_2_9_66_1 doi: 10.1016/j.plantsci.2005.08.002 – ident: e_1_2_9_201_1 doi: 10.1094/PDIS-09-13-0940-RE – volume: 45 start-page: 825 year: 2003 ident: e_1_2_9_55_1 article-title: Effect of morphological traits on sheath blight resistance in rice publication-title: Acta Bot. Sin. – ident: e_1_2_9_64_1 doi: 10.1007/s11703-009-0062-6 – ident: e_1_2_9_157_1 doi: 10.1126/science.7732374 – ident: e_1_2_9_179_1 doi: 10.1111/j.1439-0523.2010.01806.x – ident: e_1_2_9_22_1 doi: 10.1093/database/baw031 – ident: e_1_2_9_172_1 doi: 10.1007/s11032-011-9619-1 – ident: e_1_2_9_105_1 doi: 10.1111/mpp.12055 – ident: e_1_2_9_130_1 doi: 10.1094/PDIS-92-11-1503 – ident: e_1_2_9_120_1 doi: 10.3390/molecules191118139 – ident: e_1_2_9_122_1 doi: 10.1016/j.phytochem.2004.12.032 – ident: e_1_2_9_138_1 doi: 10.1270/jsbbs.54.265 – ident: e_1_2_9_147_1 doi: 10.1007/s00122-011-1687-4 – ident: e_1_2_9_190_1 doi: 10.1016/S2095-3119(14)60909-6 – ident: e_1_2_9_192_1 doi: 10.1007/s00122-007-0686-y – ident: e_1_2_9_119_1 doi: 10.1007/BF02886159 – ident: e_1_2_9_117_1 doi: 10.1094/MPMI-11-12-0272-R – ident: e_1_2_9_11_1 doi: 10.1094/PHYTO-97-10-1207 – ident: e_1_2_9_148_1 doi: 10.1093/aobpla/pls029 – ident: e_1_2_9_17_1 doi: 10.1007/s11032-009-9316-5 – ident: e_1_2_9_88_1 doi: 10.1111/pbi.12827 – ident: e_1_2_9_28_1 doi: 10.1023/A:1008736930068 – ident: e_1_2_9_160_1 doi: 10.1080/1343943X.2016.1140006 – ident: e_1_2_9_61_1 doi: 10.1007/s12284-009-9030-2 – ident: e_1_2_9_133_1 doi: 10.1007/s00299-011-1033-y – ident: e_1_2_9_91_1 doi: 10.1093/dnares/dsw024 – volume: 70 start-page: 135 year: 1983 ident: e_1_2_9_67_1 article-title: Effect of spacing on the spread of sheath blight disease of rice publication-title: Madras Agric. J. – ident: e_1_2_9_65_1 doi: 10.1371/journal.pone.0032703 – ident: e_1_2_9_144_1 doi: 10.1023/A:1012246406490 – ident: e_1_2_9_92_1 doi: 10.1080/07060669309501923 – ident: e_1_2_9_187_1 doi: 10.1111/j.1467-7652.2007.00243.x – ident: e_1_2_9_178_1 doi: 10.1038/s41598-017-10804-1 – ident: e_1_2_9_188_1 doi: 10.1007/s12374-017-0209-6 – volume: 29 start-page: 50 year: 2002 ident: e_1_2_9_80_1 article-title: QTL analysis of sheath blight resistance in rice (Oryza sativa L.) publication-title: Acta Genet. Sin. – ident: e_1_2_9_113_1 doi: 10.1007/s10535-007-0027-7 – ident: e_1_2_9_102_1 doi: 10.1016/S1369-5266(99)00055-2 – ident: e_1_2_9_176_1 doi: 10.1094/PHYTO.2004.94.7.672 – ident: e_1_2_9_42_1 doi: 10.1371/journal.ppat.1002882 – volume: 32 start-page: 399 year: 2005 ident: e_1_2_9_167_1 article-title: Identification and marker‐assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations publication-title: Acta. Genet. Sin. – ident: e_1_2_9_95_1 doi: 10.1094/PDIS-05-12-0466-RE – ident: e_1_2_9_173_1 doi: 10.1007/s11103-014-0269-7 – ident: e_1_2_9_4_1 doi: 10.3390/genes9070339 – ident: e_1_2_9_50_1 doi: 10.1371/journal.pone.0046443 – ident: e_1_2_9_109_1 doi: 10.1016/j.pmpp.2011.11.003 – ident: e_1_2_9_81_1 doi: 10.1016/S1369-5266(02)00275-3 – ident: e_1_2_9_162_1 doi: 10.1007/s00425-019-03241-z – ident: e_1_2_9_137_1 doi: 10.1016/j.jbiotec.2013.04.016 – ident: e_1_2_9_38_1 doi: 10.1007/s11032-013-9843-y – ident: e_1_2_9_191_1 doi: 10.3389/fpls.2017.01422 – ident: e_1_2_9_75_1 doi: 10.1016/0040-4020(95)00423-6 – ident: e_1_2_9_169_1 doi: 10.1111/j.1365-313X.2008.03531.x – ident: e_1_2_9_159_1 doi: 10.1016/j.fgb.2005.08.002 – volume: 996 start-page: 518 year: 1999 ident: e_1_2_9_8_1 article-title: Multicomponent coordinated defence response of rice to Rhizoctonia solani causing sheath blight publication-title: Appl. Phys. – ident: e_1_2_9_37_1 doi: 10.1007/s10722-008-9345-7 |
SSID | ssj0021656 |
Score | 2.6315222 |
SecondaryResourceType | review_article |
Snippet | Summary
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation... Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani , became one of the major threats to the rice cultivation worldwide,... Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide,... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 895 |
SubjectTerms | biotechnology Blight Crop diseases Crop yield Cultivation Disease resistance Disease Resistance - genetics Flowers & plants Food security Fungicides Gap analysis genes genetic resistance Genetic variability genetic variation genetically modified organisms Genomes Germplasm Grain cultivation Host range host-pathogen relationships host–plant interaction Infections Kinases leaf blight Oryza - genetics Oryza - microbiology Pathogenesis Pathogens Plant Diseases - genetics Plant Diseases - microbiology Proteins Review Rhizoctonia - pathogenicity Rhizoctonia solani Rice rice disease resistance Sheath blight sheath blight QTL Sheaths Thanatephorus cucumeris transgenic rice |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-N8gIPiG0MMjrkTTzwklEnTpzsZSoI1E0aQohKvEV2bNNKVVr68f_vLnVDKz7eovgcJXfx3e9nn88Ap9IkiitrcHxzF4qoTEJdKh3qOJKauzJOOrTB-d9N2uuLvw_Jg59wm_m0ypVPrB21GZc0R34exRj7ZCQy_nvyFNKpUbS66o_Q2IJtdMFZ1oLti6ub27uGclFtmeX-IhlKDP2-thDl8kz08CcSNB5tRqQXMPNltuQ6iq3D0PU-7Hn8yLpLg3-ED7b6BLvdx6mvoWE_w11_fcMKm5G7HTA9IhrOkF0TYkRTs2HFqKLQL4YYkE3HyjBtB0jRGXZ8vqewuzmA_vXV_WUv9EcnhGUiKD_fOakyqWyKgEw4Kbni0iLayBOnjShzZRB5xCKNhTIpklEd0w7UVOUdl6eZjr9AqxpX9giYQs12rNGKGyk6zilUWq5NFGPwKxEMBXC2Ul9R-rridLzFqFjxC9R0UWs6gB-N6GRZTOM1ofbKBoUfT7Pi2foBfG-acSTQ8oaq7HhBMhFiMaRv78kktASeilwGcLg0a_Mm6N048rMkALlh8EaAKnFvtlTDQV2RWyIqyiQ-86z-Nd7-uOL24k998fX9rzyGnYiIfZ0i1IbWfLqw3xD9zPWJ_8X_A4eXA2w priority: 102 providerName: ProQuest |
Title | Understanding sheath blight resistance in rice: the road behind and the road ahead |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13312 https://www.ncbi.nlm.nih.gov/pubmed/31811745 https://www.proquest.com/docview/2374172481 https://www.proquest.com/docview/2322739661 https://www.proquest.com/docview/2524216497 https://pubmed.ncbi.nlm.nih.gov/PMC7061877 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoFDeUOgXRnEoZesNo4TJ-XUVl0KEtVqxUo9IEV2bLMrqmy1j0t_fWecB7sUEOISRck4spMZzzfOzGeA99IkKlLWoH1HLhS8TEJdKh3qmEsduTJOBlTg_OUiPZ-Iz5fJ5Q58aGthan6IbsGNLMPP12TgSi83jPxaz_oYYPkdhilXiwDRuKOO4sQqU1cWyVCi029YhSiLp2u57YvuAMy7eZKb-NU7oOEj-NZ2vc47-dFfr3S_vPmF1fE_x_YY9hpgyo5rTXoCO7Z6Cg-Pvy8acg77DMaTzUoYtqR5fMr0FcX3DMN2gqKoQ2xWMaIqOmIILtlirgzTdoqxP8OGP68pbG6ew2R49vX0PGz2ZAjLRFDiv3NSZVLZFJGecFJGKpIWYUyeOG1EmSuDkCYWaSyUSTHK1TGVtqYqH7g8zXT8AnareWVfAVPoNQfWaBUZKQbOKRxxrg2P0auWiLICOGy_TlE2hOW0b8ZV0QYu-JoK_5oCeNeJXtcsHb8T2m8_cdEY6rLgMUIqyUUWBfC2u40mRv9NVGXna5LhCPIwLvybTEL_1lORywBe1lrT9QSnzQgDvyQAuaVPnQBRfG_fqWZTT_UtEW5lEp956NXlz4MrRief_Mnrfxd9Aw84rR74PKR92F0t1vYAIdZK9-AeFyM8ZsOPPbh_cnYxGvf8ckXPW9ktKcEmOw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB1EvK-pF4g4RQeSy79CGEulJvwY5tdqUqu-y2QvwpfiMzebWrQm-9RcnYSsZjz_fFM2OAl9olhhvvcH7zECtRJLEtjI2tFNryUMikRwnOe_vpcKy-HCaHa_CnzYWhsMp2TawWajcr6B_5ayHR92mh-vzd_GdMp0bR7mp7hEZtFjv-9y-kbMu3o484vq-EGHw6-DCMm1MF4iJRFLoegjZ9bXyKWEUFrbnh2qMjzpJgnSoy49ApS5VKZVyKPM1KSs5MTdYLWdq3Evu9AleVRE9OmemDzx3Bo0o2dTaTjjUCjaaSEUUOze10C-kgF6v-7xyoPR-beRYzV05vcAtuNmiVbdfmdRvWfHkHbmz_WDQVO_xd-DY-mx7DlrS4T5g9ItLPkMsTPkXDYtOSUf2iNwwRJ1vMjGPWT6alY9jw9J7B5u4ejC9FpfdhvZyV_iEwg66055013GnVC8Gg0jLrhERXWyD0imCzVV9eNFXM6TCNo7xlM6jpvNJ0BC860XlduuNfQhvtGOTN7F3mp7YWwfPuMc472kwxpZ-dkIxA5Idk8SKZhDbcU5XpCB7Uw9q9Ca6lHNlgEoFeGfBOgOp-rz4pp5Oq_rdGDNbX2OdmZRr__7j86_tRdfHo4q98BteGB3u7-e5of-cxXBf0S6EKTtqA9ePFiX-CuOvYPq2MncH3y55dfwG4DDzc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmsIFBIO0lrHacuEGa0MZWrQyqaqLS3oId27TSlJZ2E-Jf46_jLl9bNdjb3qrkEjXnO9_vZ9-dAd4qG2uunUX_5j6UIo9Dk2sTmkgow30exV0qcP46TA7H8vNJfLIGf5paGEqrbObEcqK2s5zWyLdFhLFPCdnj275Oixjt9z_Of4Z0ghTttDbHaVQmcuR-_0L6ttwZ7ONYvxOif_Dt02FYnzAQ5rGkNHbvle4p7RLELdIrxTVXDoNyGntjZZ5qiwE6kkkktU2Qs5mICjUTnXZ9mvRMhO-9BeuKWFEH1vcOhqPjlu5RX5uqtkmFCmFH3deI8ojmZvoeySEXq9HwCsS9mql5GUGXIbB_H-7V2JXtVsb2ANZc8RDu7v5Y1P073CM4Hl8ulmFLmuonzJzSEgBDZk9oFc2MTQtG3Yw-MMSfbDHTlhk3mRaW4YMX1zQ-bh_D-EaU-gQ6xaxwz4BpDKxdZ43mFnXsvUalpcaKCANvjkAsgK1GfVle9zSnozVOs4bboKazUtMBvGlF51Ujj38JbTRjkNW-vMwuLC-A1-1t9ELaWtGFm52TjEAciNTxOpmYtt8TmaoAnlbD2v4TnFk5csM4ALUy4K0AdQFfvVNMJ2U3cIWIrKfwnVulafz_47LR3qD88fz6r3wFt9Gzsi-D4dELuCNofaHMVNqAztni3G0iCDszL2trZ_D9ph3sL-wMQm4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+sheath+blight+resistance+in+rice%3A+the+road+behind+and+the+road+ahead&rft.jtitle=Plant+biotechnology+journal&rft.au=Molla%2C+Kutubuddin+A.&rft.au=Karmakar%2C+Subhasis&rft.au=Molla%2C+Johiruddin&rft.au=Bajaj%2C+Prasad&rft.date=2020-04-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=18&rft.issue=4&rft.spage=895&rft.epage=915&rft_id=info:doi/10.1111%2Fpbi.13312&rft.externalDBID=10.1111%252Fpbi.13312&rft.externalDocID=PBI13312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |