Understanding sheath blight resistance in rice: the road behind and the road ahead

Summary Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host ra...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 18; no. 4; pp. 895 - 915
Main Authors Molla, Kutubuddin A., Karmakar, Subhasis, Molla, Johiruddin, Bajaj, Prasad, Varshney, Rajeev K., Datta, Swapan K., Datta, Karabi
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.04.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani–rice pathosystem research with gap analysis are provided.
AbstractList Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani–rice pathosystem research with gap analysis are provided.
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani , became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani –rice pathosystem research with gap analysis are provided.
Summary Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani–rice pathosystem research with gap analysis are provided.
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host-pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani-rice pathosystem research with gap analysis are provided.
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host-pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani-rice pathosystem research with gap analysis are provided.Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host-pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani-rice pathosystem research with gap analysis are provided.
Author Molla, Kutubuddin A.
Datta, Karabi
Molla, Johiruddin
Datta, Swapan K.
Bajaj, Prasad
Varshney, Rajeev K.
Karmakar, Subhasis
AuthorAffiliation 3 The Huck Institute of the Life Sciences The Pennsylvania State University University Park PA USA
5 Center of Excellence in Genomics & Systems Biology (CEGSB) International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) Hyderabad India
4 Department of Plant Pathology and Environmental Microbiology The Pennsylvania State University University Park PA USA
1 ICAR‐National Rice Research Institute Cuttack India
2 Laboratory of Translational Research on Transgenic Crops Department of Botany University of Calcutta Kolkata India
AuthorAffiliation_xml – name: 4 Department of Plant Pathology and Environmental Microbiology The Pennsylvania State University University Park PA USA
– name: 1 ICAR‐National Rice Research Institute Cuttack India
– name: 5 Center of Excellence in Genomics & Systems Biology (CEGSB) International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) Hyderabad India
– name: 3 The Huck Institute of the Life Sciences The Pennsylvania State University University Park PA USA
– name: 2 Laboratory of Translational Research on Transgenic Crops Department of Botany University of Calcutta Kolkata India
Author_xml – sequence: 1
  givenname: Kutubuddin A.
  orcidid: 0000-0002-9897-7906
  surname: Molla
  fullname: Molla, Kutubuddin A.
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Subhasis
  surname: Karmakar
  fullname: Karmakar, Subhasis
  organization: University of Calcutta
– sequence: 3
  givenname: Johiruddin
  surname: Molla
  fullname: Molla, Johiruddin
  organization: International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)
– sequence: 4
  givenname: Prasad
  surname: Bajaj
  fullname: Bajaj, Prasad
  organization: International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)
– sequence: 5
  givenname: Rajeev K.
  orcidid: 0000-0002-4562-9131
  surname: Varshney
  fullname: Varshney, Rajeev K.
  organization: International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)
– sequence: 6
  givenname: Swapan K.
  surname: Datta
  fullname: Datta, Swapan K.
  organization: University of Calcutta
– sequence: 7
  givenname: Karabi
  orcidid: 0000-0003-1464-2680
  surname: Datta
  fullname: Datta, Karabi
  email: krbdatta@yahoo.com
  organization: University of Calcutta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31811745$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLJDEUhYMovhf-gSEwG2fRWnlXuRiYEV8gKKLrkKrc6opUJz1JtYP_ftK2tg9QJpuE3O8c7r1nC6364AGhPVIckHwOp7U7IIwRuoI2CZdqpKSgq8s35xtoK6X7oqBECrmONhgpCVFcbKKbO28hpsF46_wYpw7M0OG6d-NuwBGSm5cawM7j6Bo4wkMHOAZjcQ2d8xZn4eufyXK7g9Za0yfYfb630d3pye3x-ejy6uzi-NflqBGc0hFrW2VKZUDyQvBWKWKIAinKSrS15U1lrCg545JxY_M8rGYkty1NVbSVLGu2jX4ufKezegK2AT9E0-tpdBMTH3UwTr-veNfpcXjQqpCkVCob7D8bxPBnBmnQE5ca6HvjIcySpoLyvDFe_QfKKFWskpJk9PsH9D7Mos-byJTiRFFezqlvb5tfdv2STAZ-LIAmhpQitEuEFHqeus6p66fUM3v4gW3cYAYX5nO7_ivFX9fD4-fW-vr3xULxDxsUu7E
CitedBy_id crossref_primary_10_1111_pbi_13789
crossref_primary_10_17352_2455_815X_000222
crossref_primary_10_1007_s42106_021_00150_8
crossref_primary_10_1016_j_jia_2023_05_031
crossref_primary_10_1016_j_cj_2022_07_020
crossref_primary_10_1016_j_jare_2024_05_032
crossref_primary_10_1021_acs_jafc_3c05350
crossref_primary_10_1111_mpp_13130
crossref_primary_10_1007_s10681_022_03091_z
crossref_primary_10_1007_s42976_024_00533_3
crossref_primary_10_1111_1751_7915_14441
crossref_primary_10_1002_jobm_202200399
crossref_primary_10_3390_ijms23158214
crossref_primary_10_1021_acs_jafc_3c02117
crossref_primary_10_1007_s40858_023_00622_4
crossref_primary_10_1186_s13007_022_00882_2
crossref_primary_10_1002_cbdv_202400337
crossref_primary_10_3389_fpls_2022_841228
crossref_primary_10_3390_ijms21217974
crossref_primary_10_1111_nph_19809
crossref_primary_10_1017_S1479262123000801
crossref_primary_10_1016_j_jece_2023_109688
crossref_primary_10_1007_s11033_024_09889_5
crossref_primary_10_3390_genes14091673
crossref_primary_10_1007_s11240_022_02439_6
crossref_primary_10_3390_plants9111491
crossref_primary_10_1016_j_pmpp_2023_102152
crossref_primary_10_1186_s12284_020_00381_9
crossref_primary_10_3389_fpls_2024_1499785
crossref_primary_10_3390_agronomy12071493
crossref_primary_10_1002_tpg2_20140
crossref_primary_10_1007_s42535_023_00803_1
crossref_primary_10_1007_s00438_024_02220_8
crossref_primary_10_1007_s42994_023_00126_4
crossref_primary_10_1016_j_ijbiomac_2023_127747
crossref_primary_10_1094_PHYTO_08_20_0356_R
crossref_primary_10_1080_07060661_2022_2053588
crossref_primary_10_1111_pce_15407
crossref_primary_10_3389_fmicb_2024_1371850
crossref_primary_10_3389_fpls_2023_1115614
crossref_primary_10_1111_pbi_13715
crossref_primary_10_1007_s00122_023_04482_z
crossref_primary_10_1111_jph_13141
crossref_primary_10_5423_PPJ_OA_04_2022_0054
crossref_primary_10_1021_acs_jafc_4c02865
crossref_primary_10_3390_su131910806
crossref_primary_10_1007_s00203_022_03136_w
crossref_primary_10_1186_s12915_023_01526_0
crossref_primary_10_1007_s00299_023_03132_4
crossref_primary_10_1111_pbi_13569
crossref_primary_10_1002_ps_7394
crossref_primary_10_1007_s42485_022_00093_2
crossref_primary_10_1111_mpp_13470
crossref_primary_10_3390_bioengineering9100589
crossref_primary_10_3390_genes15070919
crossref_primary_10_1016_j_pmpp_2022_101916
crossref_primary_10_1080_02772248_2023_2254440
crossref_primary_10_1111_nph_19184
crossref_primary_10_1007_s42485_020_00053_8
crossref_primary_10_1016_j_plantsci_2022_111376
crossref_primary_10_1111_jph_13194
crossref_primary_10_1371_journal_pone_0291939
crossref_primary_10_1007_s10681_022_03101_0
crossref_primary_10_1111_pbi_14540
crossref_primary_10_1094_PHYTOFR_05_21_0035_R
crossref_primary_10_3390_jof7070561
crossref_primary_10_1016_j_synbio_2022_06_009
crossref_primary_10_1016_j_plaphy_2021_05_045
crossref_primary_10_3390_genes14091739
crossref_primary_10_1002_ps_8490
crossref_primary_10_3390_ijms221910451
crossref_primary_10_3390_jof10010033
crossref_primary_10_1007_s10142_022_00899_9
crossref_primary_10_3389_fpls_2020_577063
crossref_primary_10_36953_ECJ_021918_2167
crossref_primary_10_1111_nph_19570
crossref_primary_10_1021_acs_jafc_1c04064
crossref_primary_10_3390_ijms25115787
crossref_primary_10_1007_s00294_020_01118_3
crossref_primary_10_1111_ppa_13558
crossref_primary_10_3389_fpls_2021_693521
crossref_primary_10_1094_PDIS_11_20_2391_RE
crossref_primary_10_1016_j_crmicr_2022_100109
crossref_primary_10_3389_fpls_2022_881116
crossref_primary_10_1186_s42483_024_00297_y
crossref_primary_10_1002_ps_8378
crossref_primary_10_1094_MPMI_05_20_0121_R
crossref_primary_10_1111_tpj_17254
crossref_primary_10_1016_j_rsci_2024_12_014
crossref_primary_10_1111_tpj_16046
crossref_primary_10_1016_j_cropro_2024_107004
crossref_primary_10_34133_2020_8954085
crossref_primary_10_1016_j_bbrc_2023_06_041
crossref_primary_10_3390_ijms23094735
crossref_primary_10_1016_j_plaphy_2023_02_009
crossref_primary_10_3389_fpls_2020_591457
crossref_primary_10_1094_MPMI_34_1
crossref_primary_10_3390_molecules27248811
crossref_primary_10_1016_j_cej_2023_142190
crossref_primary_10_1111_mpp_13291
crossref_primary_10_1007_s42161_025_01892_4
crossref_primary_10_1002_ps_6400
crossref_primary_10_1002_ps_8153
crossref_primary_10_1099_mgen_0_000948
crossref_primary_10_1007_s44154_022_00049_y
crossref_primary_10_3390_agronomy11122532
crossref_primary_10_1093_plcell_koad118
crossref_primary_10_1186_s12284_024_00722_y
crossref_primary_10_1186_s12870_021_02930_w
crossref_primary_10_1007_s11033_023_08361_0
crossref_primary_10_1016_j_devcel_2024_03_033
crossref_primary_10_1016_j_micres_2020_126588
crossref_primary_10_3390_agronomy13030711
crossref_primary_10_1080_17429145_2022_2094003
crossref_primary_10_1039_D3EN00500C
crossref_primary_10_1186_s12864_022_08816_x
crossref_primary_10_3390_pathogens11091026
crossref_primary_10_3389_fgene_2022_869465
crossref_primary_10_1007_s11103_024_01442_z
crossref_primary_10_1111_pbr_13210
crossref_primary_10_3390_ijms26052249
crossref_primary_10_3390_plants14010136
crossref_primary_10_3390_plants13243554
crossref_primary_10_1016_j_gene_2022_146468
crossref_primary_10_1186_s12284_021_00466_z
crossref_primary_10_1016_j_pmpp_2024_102295
crossref_primary_10_1094_PDIS_08_20_1681_RE
crossref_primary_10_1038_s41598_023_49918_0
crossref_primary_10_3389_fpls_2023_1141697
crossref_primary_10_1007_s11033_023_09194_7
crossref_primary_10_1016_j_pestbp_2023_105525
crossref_primary_10_1021_acsnano_4c01835
crossref_primary_10_3389_fgene_2022_882836
crossref_primary_10_1016_j_pmpp_2024_102337
crossref_primary_10_1021_acs_jafc_4c09461
crossref_primary_10_1007_s11816_020_00652_3
crossref_primary_10_1016_j_carbpol_2024_122149
crossref_primary_10_1111_ppa_13804
crossref_primary_10_1186_s12284_022_00574_4
crossref_primary_10_3390_bioengineering10111244
crossref_primary_10_3390_life13102101
crossref_primary_10_61186_pps_13_1_42
crossref_primary_10_1016_j_postharvbio_2022_112075
crossref_primary_10_56093_ijas_v95i2_162339
crossref_primary_10_1016_j_jhazmat_2024_134807
crossref_primary_10_1094_PBIOMES_03_24_0034_R
crossref_primary_10_1111_mpp_13391
crossref_primary_10_1007_s10681_021_02958_x
crossref_primary_10_1016_S2095_3119_20_63499_2
crossref_primary_10_3390_antibiotics11030363
crossref_primary_10_3390_rs16122047
crossref_primary_10_1007_s10681_020_02702_x
crossref_primary_10_1016_j_aac_2024_11_001
crossref_primary_10_1111_pbi_13530
crossref_primary_10_3389_fpls_2023_1247014
crossref_primary_10_1007_s00709_021_01637_x
crossref_primary_10_1007_s42161_021_00974_3
crossref_primary_10_1038_s41467_024_52855_9
crossref_primary_10_1111_tpj_16437
crossref_primary_10_1016_j_pmpp_2021_101669
crossref_primary_10_1038_s41598_024_81143_1
crossref_primary_10_3390_ijms221910412
crossref_primary_10_1111_pce_14502
crossref_primary_10_3389_fmicb_2021_707281
crossref_primary_10_1007_s10681_024_03325_2
crossref_primary_10_1094_PHYTO_10_23_0390_KC
crossref_primary_10_1002_pld3_540
crossref_primary_10_1186_s12284_023_00678_5
crossref_primary_10_3390_ijms232112922
crossref_primary_10_1016_j_plaphy_2022_07_018
crossref_primary_10_1007_s11356_022_24835_3
crossref_primary_10_1111_ppl_14475
Cites_doi 10.1111/j.1365-2672.2004.02291.x
10.1016/S0092-8674(00)81858-9
10.1094/Phyto-70-947
10.1046/j.1365-313x.2001.01070.x
10.1016/S0168-9452(00)00413-1
10.1007/s00425-015-2398-x
10.4161/psb.5.12.13982
10.1371/journal.pgen.1004281
10.1007/s11274-007-9476-6
10.1038/s41580-019-0131-5
10.1111/nph.12292
10.5424/sjar/2006041-178
10.1111/mpp.12178
10.1007/s001220051517
10.1016/S0958-1669(03)00035-1
10.1016/j.plantsci.2017.09.014
10.1093/emboj/16.8.1934
10.1007/s00294-014-0438-x
10.1007/BF03263168
10.1007/s10658-010-9725-7
10.1038/nbt0795-686
10.1201/9781420049299
10.1016/S1673-8527(08)60068-5
10.1007/s10681-010-0296-7
10.1155/2011/250349
10.1038/s41598-019-46885-3
10.2135/cropsci2008.03.0131
10.1023/A:1024276127001
10.2135/cropsci2008.03.0124
10.1111/hrd2.00026
10.1007/s001220051359
10.1093/pcp/pcs047
10.1094/PHYTO-99-9-1078
10.1016/j.tibtech.2019.03.008
10.1073/pnas.1213962110
10.3835/plantgenome2008.02.0089
10.1104/pp.110.163949
10.1007/s10681-014-1246-6
10.2135/cropsci2005.0503
10.1094/PHYTO.2002.92.8.893
10.1007/s10142-019-00687-y
10.1016/S0168-9452(03)00271-1
10.1016/j.tibtech.2005.04.007
10.3390/molecules23020276
10.1094/PHYTO.2002.92.1.43
10.1007/s00122-002-1014-1
10.1270/jsbbs.15154
10.1038/s41598-017-10405-y
10.1146/annurev-phyto-080508-081904
10.1186/s40064-015-0954-2
10.1104/pp.113.230052
10.1094/PHYTO.1997.87.12.1258
10.1016/j.micres.2005.02.002
10.1146/annurev.micro.61.080706.093432
10.1074/jbc.M109.036871
10.1007/s001220050864
10.1016/j.plaphy.2017.12.012
10.1007/s11274-013-1546-3
10.1038/nature03895
10.3389/fpls.2012.00088
10.1007/BF00220903
10.1007/s12223-013-0280-4
10.1034/j.1399-3054.1998.1020104.x
10.1016/j.plantsci.2016.06.005
10.1038/ncomms2427
10.1094/MPMI.2004.17.2.140
10.3389/fpls.2017.00596
10.1038/srep41610
10.1002/3527603514.ch1
10.1038/nature22372
10.1007/s10658-009-9501-8
10.1007/s11248-008-9196-1
10.1094/PDIS-11-15-1372-RE
10.1016/j.fcr.2014.03.003
10.1094/MPMI.2001.14.10.1255
10.1007/s00425-019-03246-8
10.1007/s11032-005-4736-3
10.1094/PHYTO.2001.91.11.1054
10.4238/2015.March.6.10
10.1094/Phyto-85-959
10.1007/s11248-009-9315-7
10.1146/annurev.phyto.43.040204.135923
10.1146/annurev.arplant.043008.092007
10.1093/dnares/dsl001
10.1038/s41598-017-07749-w
10.1007/s00122-014-2395-7
10.4172/2157-7471.1000241
10.1186/s12284-016-0137-y
10.1007/s00299-008-0586-x
10.1101/625509
10.1016/j.plantsci.2008.04.011
10.5511/plantbiotechnology.18.101
10.1111/j.1365-313X.2010.04264.x
10.1146/annurev-phyto-102313-045854
10.1371/journal.pone.0169582
10.1139/w00-018
10.1146/annurev-arplant-043014-114623
10.1111/pbi.12004
10.1146/annurev.py.30.090192.002451
10.1007/s11032-014-0173-5
10.4141/CJPS08112
10.1038/s41598-017-08180-x
10.1007/s11738-016-2331-3
10.1007/s10681-018-2329-6
10.1007/s11103-019-00843-9
10.1111/j.1364-3703.2006.00350.x
10.1038/s41598-018-37365-1
10.1128/genomeA.01188-17
10.1038/nature14449
10.1007/s00425-012-1698-7
10.2478/jppr-2014-0006
10.1016/j.jplph.2009.08.003
10.1007/s00299-006-0292-5
10.1270/jsbbs.53.51
10.1094/MPMI-18-0511
10.1007/s00294-017-0791-7
10.1021/pr500069r
10.1186/1471-2164-15-461
10.1146/annurev.phyto.112408.132637
10.1111/nph.14849
10.2135/cropsci2006.0143
10.3198/jpr2007.11.0601crg
10.1146/annurev-phyto-102313-045933
10.1007/s10529-008-9856-5
10.1270/jsbbs.63.301
10.1631/jzus.2004.0133
10.1007/s10681-011-0475-1
10.1111/j.1364-3703.2008.00469.x
10.1094/PD-80-1103
10.1007/s001220051178
10.1080/07060661.2017.1417915
10.1073/pnas.81.10.3059
10.1201/9781420049299.ch13
10.1007/s10681-011-0366-5
10.1007/s00122-013-2051-7
10.1016/j.plantsci.2005.08.002
10.1094/PDIS-09-13-0940-RE
10.1007/s11703-009-0062-6
10.1126/science.7732374
10.1111/j.1439-0523.2010.01806.x
10.1093/database/baw031
10.1007/s11032-011-9619-1
10.1111/mpp.12055
10.1094/PDIS-92-11-1503
10.3390/molecules191118139
10.1016/j.phytochem.2004.12.032
10.1270/jsbbs.54.265
10.1007/s00122-011-1687-4
10.1016/S2095-3119(14)60909-6
10.1007/s00122-007-0686-y
10.1007/BF02886159
10.1094/MPMI-11-12-0272-R
10.1094/PHYTO-97-10-1207
10.1093/aobpla/pls029
10.1007/s11032-009-9316-5
10.1111/pbi.12827
10.1023/A:1008736930068
10.1080/1343943X.2016.1140006
10.1007/s12284-009-9030-2
10.1007/s00299-011-1033-y
10.1093/dnares/dsw024
10.1371/journal.pone.0032703
10.1023/A:1012246406490
10.1080/07060669309501923
10.1111/j.1467-7652.2007.00243.x
10.1038/s41598-017-10804-1
10.1007/s12374-017-0209-6
10.1007/s10535-007-0027-7
10.1016/S1369-5266(99)00055-2
10.1094/PHYTO.2004.94.7.672
10.1371/journal.ppat.1002882
10.1094/PDIS-05-12-0466-RE
10.1007/s11103-014-0269-7
10.3390/genes9070339
10.1371/journal.pone.0046443
10.1016/j.pmpp.2011.11.003
10.1016/S1369-5266(02)00275-3
10.1007/s00425-019-03241-z
10.1016/j.jbiotec.2013.04.016
10.1007/s11032-013-9843-y
10.3389/fpls.2017.01422
10.1016/0040-4020(95)00423-6
10.1111/j.1365-313X.2008.03531.x
10.1016/j.fgb.2005.08.002
10.1007/s10722-008-9345-7
ContentType Journal Article
Copyright 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.13312
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Publicly Available Content Database

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate A multifaceted picture of rice sheath blight resistance
EISSN 1467-7652
EndPage 915
ExternalDocumentID PMC7061877
31811745
10_1111_pbi_13312
PBI13312
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Indian Council of Agricultural Research (ICAR), Govt. of India
  funderid: CS11/7/2014‐1A‐IV dated 26.11.2014
– fundername: Department of Biotechnology (DBT), Govt. of India
  funderid: BT/PR12656/COE/34/22/2015
– fundername: Department of Biotechnology (DBT), Govt. of India
  grantid: BT/PR12656/COE/34/22/2015
– fundername: Indian Council of Agricultural Research (ICAR), Govt. of India
  grantid: CS11/7/2014‐1A‐IV dated 26.11.2014
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEFGJ
AEIMD
AENEX
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O9-
OIG
OK1
P2P
P2X
P4D
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WQJ
XG1
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
WIN
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5422-3ff7a87ae64054f771a17e65895fbd4c9ad58434634ad6523b311816a90f968b3
IEDL.DBID DR2
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 18:09:12 EDT 2025
Fri Jul 11 18:27:07 EDT 2025
Fri Jul 11 04:57:32 EDT 2025
Wed Aug 13 06:52:36 EDT 2025
Mon Jul 21 06:00:01 EDT 2025
Tue Jul 01 02:34:45 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Sun Jul 06 04:45:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords sheath blight
rice disease resistance
Rhizoctonia solani
host-plant interaction
transgenic rice
sheath blight QTL
Language English
License Attribution-NonCommercial
2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5422-3ff7a87ae64054f771a17e65895fbd4c9ad58434634ad6523b311816a90f968b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1464-2680
0000-0002-9897-7906
0000-0002-4562-9131
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13312
PMID 31811745
PQID 2374172481
PQPubID 1096352
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7061877
proquest_miscellaneous_2524216497
proquest_miscellaneous_2322739661
proquest_journals_2374172481
pubmed_primary_31811745
crossref_primary_10_1111_pbi_13312
crossref_citationtrail_10_1111_pbi_13312
wiley_primary_10_1111_pbi_13312_PBI13312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2009; 89
2013; 4
2012; 124
2010; 19
2013; 126
2013; 63
2019; 19
1999; 44
2004; 5
2008; 35
2006; 170
2003; 53
2005; 66
2009; 99
2018; 9
2010; 25
2011; 129
2019; 20
1982; 61
2018; 217
2012a; 77
2008; 27
2015; 87
2013; 199
2014; 15
2008; 24
2014; 13
2008; 116
2007; 61
2014; 19
2008; 22
2007; 5
2013; 110
1998; 97
2009; 125
2003; 165
2014; 10
2009; 18
2003; 45
2012; 184
1995; 51
2019; 9
2016; 19
2015; 523
2001; 160
2009; 60
2002; 5
2019; 37
2010; 167
2002b; 92
2001; 27
2014; 151
1980; 70
2008; 55
1983; 70
1991
2007; 97
2018; 23
2011; 130
2019; 100
2012; 30
1992; 30
1999
2004; 54
2010; 48
2006; 46
2000; 106
2015; 66
2008; 48
2019; 215
1995; 268
2000; 100
1996; 80
2000; 101
2014; 30
2017; 265
2012; 236
1999; 996
2005; 18
2018; 16
1999b; 98
2016; 9
2017; 545
2016; 23
2017; 40
2017; 5
2001; 91
2006; 71
2017; 7
2010; 54
2009; 47
2017; 8
2013; 26
2012; 2012
1997; 88
1997; 87
2000; 3
2000; 46
2018; 123
2008; 9
2003; 14
2013; 166
2016; 100
2008; 1
2008; 2
2014; 60
2009; 49
2005; 23
2003; 12
2009; 56
2014; 5
2013; 14
2014b; 98
2013; 11
2000
2017; 39
2013; 12
2013; 97
2010; 154
2002; 106
2014; 59
1997; 16
2005; 32
2009; 284
2001; 17
2001; 18
2014; 52
2007; 21
2002a; 92
2001; 14
2014; 164
2014; 203
2007; 26
2014; 54
2015; 14
2015; 16
1995; 91
1984; 81
2015; 4
2006; 13
1995; 13
2006; 17
2005; 436
2006; 7
2011; 30
2014b; 161
2016; 243
2005; 42
2005; 43
2014a; 34
1999a
2005
2006; 4
2007; 51
2018; 61
2008; 92
2018; 64
2011; 178
2005; 45
2010b; 5
1993; 15
2011; 2011
1995; 85
2005; 160
2004; 97
2010a; 63
2004; 94
2012; 3
2002; 29
2009; 31
2004; 17
2014a; 127
2013; 31
2017; 12
2019
2016
2011; 180
2009; 3
2019; 250
2012; 7
2009; 2
1998; 102
2008; 175
2012b; 53
2012; 8
2016; 250
2016; 66
Han Y. (e_1_2_9_54_1) 2002; 29
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
Jena K.K. (e_1_2_9_60_1) 2000
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_129_1
Zuo S. (e_1_2_9_197_1) 2007; 21
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_5_1
Kunihiro Y. (e_1_2_9_80_1) 2002; 29
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
Sneh B. (e_1_2_9_150_1) 1991
e_1_2_9_77_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_66_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
Mohanty S. (e_1_2_9_103_1) 2013; 12
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
Gangopadhyay S. (e_1_2_9_43_1) 1982; 61
e_1_2_9_90_1
Han Y.‐P. (e_1_2_9_55_1) 2003; 45
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
Tan C.‐X. (e_1_2_9_167_1) 2005; 32
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
Kannaiyan S. (e_1_2_9_67_1) 1983; 70
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_201_1
e_1_2_9_65_1
Mutuku M. (e_1_2_9_108_1) 2010; 54
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
Taheri P. (e_1_2_9_164_1) 2006; 71
e_1_2_9_181_1
e_1_2_9_62_1
Bera S. (e_1_2_9_8_1) 1999; 996
e_1_2_9_24_1
e_1_2_9_85_1
Yin Y.‐J. (e_1_2_9_185_1) 2008; 22
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 61
  start-page: 451
  year: 1982
  end-page: 460
  article-title: Sheath blight of rice
  publication-title: Rev. Plant Pathol.
– volume: 160
  start-page: 405
  year: 2001
  end-page: 414
  article-title: Enhanced resistance to sheath blight by constitutive expression of infection‐related rice chitinase in transgenic elite indica rice cultivars
  publication-title: Plant Sci.
– volume: 12
  year: 2017
  article-title: Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from (L.)
  publication-title: PLoS ONE
– volume: 250
  start-page: 1505
  year: 2019
  end-page: 1520
  article-title: Concurrent overexpression of rice G‐protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice
  publication-title: Planta
– year: 2019
  article-title: Loss of premature stop codon in the Wall‐Associated Kinase 91 (OsWAK91) gene confers sheath blight disease resistance in rice
  publication-title: bioRxiv
– volume: 80
  start-page: 1103
  year: 1996
  end-page: 1108
  article-title: Effect of sheath blight on yield in tropical, intensive rice production system
  publication-title: Plant Dis.
– year: 2016
  article-title: RSIADB, a collective resource for genome and transcriptome analyses in AG1 IA
  publication-title: Database
– volume: 40
  start-page: 39
  year: 2017
  end-page: 47
  article-title: Molecular cloning and functional analysis of two novel genes in
  publication-title: Can. J. Plant Pathol.
– volume: 44
  start-page: 1783
  year: 1999
  end-page: 1789
  article-title: Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85
  publication-title: Chin. Sci. Bull.
– volume: 16
  start-page: 210
  year: 2015
  end-page: 218
  article-title: The circadian clock and defence signalling in plants
  publication-title: Mol. Plant Pathol.
– volume: 34
  start-page: 2191
  year: 2014a
  end-page: 2203
  article-title: Fine‐mapping of qSB‐9 TQ, a gene conferring major quantitative resistance to rice sheath blight
  publication-title: Mol. Breed.
– volume: 7
  start-page: 10410
  year: 2017
  article-title: Comparative secretome analysis of isolates with different host ranges reveals unique secretomes and cell death inducing effectors
  publication-title: Sci. Rep.
– volume: 126
  start-page: 1257
  year: 2013
  end-page: 1272
  article-title: Fine mapping of qSB‐11 LE, the QTL that confers partial resistance to rice sheath blight
  publication-title: Theor. Appl. Genet.
– volume: 51
  start-page: 7907
  year: 1995
  end-page: 7918
  article-title: Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, L
  publication-title: Tetrahedron
– volume: 100
  start-page: 832
  year: 2000
  end-page: 839
  article-title: m‐mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems
  publication-title: Theor. Appl. Genet.
– volume: 12
  start-page: 475
  year: 2003
  end-page: 484
  article-title: Co‐expression of a modified maize ribosome‐inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight
  publication-title: Transgenic Res.
– volume: 217
  start-page: 771
  year: 2018
  end-page: 783
  article-title: Salicylic acid‐dependent immunity contributes to resistance against , a necrotrophic fungal agent of sheath blight, in rice and
  publication-title: New Phytol.
– volume: 13
  start-page: 686
  year: 1995
  end-page: 691
  article-title: Genetic engineering of rice for resistance to sheath blight
  publication-title: Nat. Biotechnol.
– volume: 4
  start-page: 175
  year: 2015
  article-title: Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice ( L.)
  publication-title: SpringerPlus
– volume: 161
  start-page: 118
  year: 2014b
  end-page: 127
  article-title: Improvement of japonica rice resistance to sheath blight by pyramiding qSB‐9TQ and qSB‐7TQ
  publication-title: Field Crops Res.
– volume: 13
  start-page: 53
  year: 2006
  end-page: 63
  article-title: The rice 14‐3‐3 gene family and its involvement in responses to biotic and abiotic stress
  publication-title: DNA Res.
– volume: 151
  start-page: 28
  year: 2014
  end-page: 37
  article-title: Dissection of additive, epistatic effect and QTL× environment interaction of quantitative trait loci for sheath blight resistance in rice
  publication-title: Hereditas
– volume: 29
  start-page: 50
  year: 2002
  end-page: 55
  article-title: QTL analysis of sheath blight resistance in rice ( L.)
  publication-title: Acta Genet. Sin.
– volume: 130
  start-page: 404
  year: 2011
  end-page: 406
  article-title: Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population
  publication-title: Plant Breed.
– volume: 94
  start-page: 672
  year: 2004
  end-page: 682
  article-title: Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies
  publication-title: Phytopathology
– volume: 19
  start-page: 279
  year: 2016
  end-page: 290
  article-title: Metabolite profiling of sheath blight disease resistance in rice: in the case of positive ion mode analysis by CE/TOF‐MS
  publication-title: Plant Prod. Sci.
– volume: 123
  start-page: 149
  year: 2018
  end-page: 159
  article-title: Osmotin: a plant defense tool against biotic and abiotic stresses
  publication-title: Plant Physiol. Biochem.
– volume: 9
  start-page: 329
  year: 2008
  end-page: 338
  article-title: Overexpression of snakin‐1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants
  publication-title: Mol. Plant Pathol.
– volume: 8
  year: 2012
  article-title: Surface α‐1, 3‐glucan facilitates fungal stealth infection by interfering with innate immunity in plants
  publication-title: PLoS Pathog.
– volume: 199
  start-page: 212
  year: 2013
  end-page: 227
  article-title: Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance‐associated macrophage protein 6) gene involved in pathogen resistance
  publication-title: New phytol.
– volume: 26
  start-page: 791
  year: 2007
  end-page: 804
  article-title: Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight
  publication-title: Plant Cell Rep.
– volume: 11
  start-page: 33
  year: 2013
  end-page: 42
  article-title: Transgenic rice with inducible ethylene production exhibits broad‐spectrum disease resistance to the fungal pathogens and
  publication-title: Plant Biotechnol. J.
– volume: 81
  start-page: 3059
  year: 1984
  end-page: 3063
  article-title: Formation of cyanide from carbon 1 of 1‐aminocyclopropane‐1‐carboxylic acid during its conversion to ethylene
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: 1422
  year: 2017
  article-title: Comparative transcriptome analyses of gene expression changes triggered by AG1 IA infection in resistant and susceptible Rice Varieties
  publication-title: Front. Plant Sci.
– volume: 110
  start-page: 2775
  year: 2013
  end-page: 2780
  article-title: Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 170
  start-page: 203
  year: 2006
  end-page: 215
  article-title: Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins
  publication-title: Plant Sci.
– volume: 436
  start-page: 793
  year: 2005
  end-page: 800
  article-title: The map‐based sequence of the rice genome
  publication-title: Nature
– volume: 9
  start-page: 339
  year: 2018
  article-title: Disease resistance mechanisms in plants
  publication-title: Genes
– volume: 5
  start-page: 313
  year: 2007
  end-page: 324
  article-title: Functional analysis of rice NPR1‐like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility
  publication-title: Plant Biotechnol. J.
– volume: 16
  start-page: 771
  year: 2018
  end-page: 783
  article-title: Os ASR 2 regulates the expression of a defence‐related gene, Os2H16, by targeting the GT‐1 cis‐element
  publication-title: Plant Biotechnol. J.
– volume: 46
  start-page: 520
  year: 2000
  end-page: 524
  article-title: Inactivation of phytotoxin produced by the rice sheath blight pathogen
  publication-title: Can. J. Microbiol.
– volume: 545
  start-page: 491
  year: 2017
  article-title: uORF‐mediated translation allows engineered plant disease resistance without fitness costs
  publication-title: Nature
– volume: 9
  start-page: 587
  year: 2019
  article-title: The rice CYP78A gene BSR2 confers resistance to and affects seed size and growth in Arabidopsis and rice
  publication-title: Sci. Rep.
– volume: 91
  start-page: 382
  year: 1995
  end-page: 388
  article-title: Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight )
  publication-title: Theor. Appl. Genet.
– volume: 71
  start-page: 255
  year: 2006
  end-page: 258
  article-title: Riboflavin induces resistance in rice against Rhizoctonia sheath diseases by activating signal transduction pathways leading to upregulation of rice cationic peroxidase and formation of lignin as a structural barrier
  publication-title: Commun. Agric. Appl. Biol. Sci.
– volume: 51
  start-page: 142
  year: 2007
  end-page: 148
  article-title: ‐mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance
  publication-title: Biol. Plant.
– volume: 31
  start-page: 239
  year: 2009
  end-page: 244
  article-title: Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens
  publication-title: Biotechnol. Lett.
– volume: 97
  start-page: 1207
  year: 2007
  end-page: 1212
  article-title: Sensitivity to a phytotoxin from correlates with sheath blight susceptibility in rice
  publication-title: Phytopathology
– volume: 61
  start-page: 143
  year: 2018
  end-page: 158
  article-title: Comparative transcriptome analysis of ‐resistant and‐susceptible rice cultivars reveals the importance of pathogen recognition and active immune responses in host resistance
  publication-title: J. Plant Biol.
– volume: 154
  start-page: 861
  year: 2010
  end-page: 873
  article-title: The B‐3 ethylene response factor MtERF1‐1 mediates resistance to a subset of root pathogens in without adversely affecting symbiosis with rhizobia
  publication-title: Plant Physiol.
– volume: 22
  start-page: 340
  year: 2008
  end-page: 346
  article-title: Pyramiding effects of three quantitative trait loci for resistance to sheath blight using near‐isogenic lines of rice
  publication-title: Chin. J. Rice Sci.
– volume: 19
  start-page: 799
  year: 2019
  end-page: 810
  article-title: Genome analysis provides insight about pathogenesis of Indian strains of Rhizoctonia solani in rice
  publication-title: Funct. Integr. Genomics
– volume: 47
  start-page: 233
  year: 2009
  end-page: 263
  article-title: Fungal effector proteins
  publication-title: Annu. Rev. Phytopathol.
– volume: 250
  start-page: 1387
  year: 2019
  end-page: 1407
  article-title: Sheath blight of rice: a review and identification of priorities for future research
  publication-title: Planta
– volume: 167
  start-page: 201
  year: 2010
  end-page: 208
  article-title: Riboflavin induces resistance in rice against via jasmonate‐mediated priming of phenylpropanoid pathway
  publication-title: J. Plant Physiol.
– volume: 17
  start-page: 140
  year: 2004
  end-page: 151
  article-title: Overexpression of in rice leads to a BTH‐and environment‐induced lesion‐mimic/cell death phenotype
  publication-title: Mol. Plant‐Microbe Interact.
– volume: 30
  start-page: 1229
  year: 2014
  end-page: 1238
  article-title: Co‐expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight and blast e and reveals impact on seed germination
  publication-title: World J. Microbiol. Biotechnol.
– volume: 2
  start-page: 251
  year: 2008
  end-page: 254
  article-title: Registration of TIL: 455, TIL: 514, and TIL: 642, three rice germplasm lines containing introgressed sheath blight resistance alleles
  publication-title: J. Plant Regist.
– volume: 32
  start-page: 399
  year: 2005
  end-page: 405
  article-title: Identification and marker‐assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations
  publication-title: Acta. Genet. Sin.
– volume: 97
  start-page: 169
  year: 2004
  end-page: 180
  article-title: Characterization of antimicrobial peptides against a US strain of the rice pathogen
  publication-title: J. Appl. Microbiol.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  article-title: Antibacterial peptides from plants: what they are and how they probably work
  publication-title: Biochem. Res. Int.
– volume: 129
  start-page: 511
  year: 2011
  end-page: 528
  article-title: Cytomolecular aspects of rice sheath blight caused by i
  publication-title: Eur. J. Plant Pathol.
– volume: 60
  start-page: 183
  year: 2009
  end-page: 205
  article-title: Jasmonate passes muster: a receptor and targets for the defense hormone
  publication-title: Annu. Rev. Plant. Biol.
– volume: 14
  start-page: 177
  year: 2003
  end-page: 193
  article-title: Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding
  publication-title: Curr. Opin. Biotechnol.
– volume: 63
  start-page: 599
  year: 2010a
  end-page: 612
  article-title: A rice fungal MAMP‐responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis
  publication-title: Plant J.
– volume: 164
  start-page: 1077
  year: 2014
  end-page: 1092
  article-title: Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae
  publication-title: Plant Physiol.
– volume: 39
  start-page: 37
  year: 2017
  article-title: Canavanine involvement in the interaction of rice lines and
  publication-title: Acta. Physiol. Plant.
– volume: 23
  start-page: 415
  year: 2016
  end-page: 425
  article-title: Comprehensive analysis of microRNA‐Seq and target mRNAs of rice sheath blight pathogen provides new insights into pathogenic regulatory mechanisms
  publication-title: DNA Res.
– volume: 523
  start-page: 472
  year: 2015
  end-page: 476
  article-title: Redox rhythm reinforces the circadian clock to gate immune response
  publication-title: Nature
– volume: 14
  start-page: 910
  year: 2013
  end-page: 922
  article-title: Rice oxalate oxidase gene driven by green tissue‐specific promoter increases tolerance to sheath blight pathogen ( ) in transgenic rice
  publication-title: Mol. Plant Pathol.
– volume: 99
  start-page: 1078
  year: 2009
  end-page: 1084
  article-title: Mapping quantitative trait loci responsible for resistance to sheath blight in rice
  publication-title: Phytopathology
– volume: 106
  start-page: 1
  year: 2002
  end-page: 8
  article-title: Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight
  publication-title: Theor. Appl. Genet.
– volume: 184
  start-page: 23
  year: 2012
  end-page: 34
  article-title: Sheath‐blight resistance QTLS in japonica rice germplasm
  publication-title: Euphytica
– volume: 268
  start-page: 661
  year: 1995
  end-page: 667
  article-title: Molecular genetics of plant disease resistance
  publication-title: Science
– volume: 12
  start-page: 44
  year: 2013
  end-page: 45
  article-title: Trends in global rice consumption
  publication-title: Rice Today
– volume: 18
  start-page: 59
  year: 2009
  end-page: 69
  article-title: Expression of Dm‐AMP1 in rice confers resistance t and
  publication-title: Transgenic Res.
– volume: 31
  start-page: 889
  year: 2013
  end-page: 907
  article-title: Identification of rice sheath blight and blast quantitative trait loci in two different advanced backcross populations
  publication-title: Mol. Breed.
– volume: 7
  year: 2012
  article-title: Identification of novel miRNAs in deep sequencing‐based small RNA libraries of rice infected with Rice stripe virus
  publication-title: PLoS ONE
– start-page: 1
  year: 2005
  end-page: 21
– volume: 92
  start-page: 1503
  year: 2008
  end-page: 1509
  article-title: Rice sheath blight disease resistance identified in spp. accessions
  publication-title: Plant Dis.
– volume: 124
  start-page: 63
  year: 2012
  end-page: 74
  article-title: Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing
  publication-title: Theor. Appl. Genet.
– volume: 70
  start-page: 947
  year: 1980
  end-page: 950
  article-title: Infection cushion formation on rice sheaths by
  publication-title: Phytopathology
– volume: 54
  start-page: 265
  year: 2004
  end-page: 271
  article-title: Mapping QTLs for sheath blight resistance in the rice line WSS2
  publication-title: Breed. Sci.
– volume: 70
  start-page: 135
  year: 1983
  end-page: 136
  article-title: Effect of spacing on the spread of sheath blight disease of rice
  publication-title: Madras Agric. J.
– volume: 23
  start-page: 276
  year: 2018
  article-title: Xylosylated detoxification of the rice flavonoid phytoalexin sakuranetin by the rice sheath blight fungus
  publication-title: Molecules
– start-page: 271
  year: 2000
  end-page: 285
– volume: 2012
  year: 2012
  article-title: Molecular breeding for the development of multiple disease resistance in Basmati rice
  publication-title: AoB Plants
– volume: 18
  start-page: 511
  year: 2005
  end-page: 520
  article-title: Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light
  publication-title: Mol. Plant‐Microbe Interact.
– volume: 250
  start-page: 105
  year: 2016
  end-page: 114
  article-title: Tissue‐specific expression of gene in rice for sheath blight resistance without compromising phenotypic cost
  publication-title: Plant Sci.
– volume: 61
  start-page: 423
  year: 2007
  end-page: 452
  article-title: Heterotrimeric G protein signaling in filamentous fungi*
  publication-title: Annu. Rev. Microbiol.
– volume: 85
  start-page: 959
  year: 1995
  end-page: 965
  article-title: Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread
  publication-title: Phytopathology
– volume: 7
  year: 2012
  article-title: Allelic analysis of sheath blight resistance with association mapping in rice
  publication-title: PLoS ONE
– volume: 29
  start-page: 622
  year: 2002
  end-page: 626
  article-title: Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63
  publication-title: Acta Genet. Sin.
– volume: 116
  start-page: 501
  year: 2008
  end-page: 516
  article-title: Identification of defense‐related genes in rice responding to challenge by
  publication-title: Theor. Appl. Genet.
– volume: 26
  start-page: 668
  year: 2013
  end-page: 675
  article-title: Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores
  publication-title: Mol. Plant Microbe Interact.
– volume: 16
  start-page: 1934
  year: 1997
  end-page: 1942
  article-title: G proteins in : transmission of multiple signals?
  publication-title: EMBO J.
– volume: 35
  start-page: 499
  year: 2008
  end-page: 505
  article-title: Prospect of the QTL‐qSB‐9Tq utilized in molecular breeding program of japonica rice against sheath blight
  publication-title: J. Genet. Genomics
– volume: 100
  start-page: 59
  year: 2019
  end-page: 71
  article-title: Pectin induced transcriptome of a Rhizoctonia solani strain causing sheath blight disease in rice reveals insights on key genes and RNAi machinery for development of pathogen derived resistance
  publication-title: Plant Mol. Biol.
– volume: 12
  start-page: 93
  year: 2003
  end-page: 101
  article-title: Transgenic indica rice variety Pusa Basmati 1 constitutively expressing a rice gene exhibits enhanced resistance to
  publication-title: J Plant Biochem. Biotechnol.
– volume: 243
  start-page: 115
  year: 2016
  end-page: 130
  article-title: Green tissue‐specific co‐expression of and genes in rice for enhanced resistance against sheath blight
  publication-title: Planta
– volume: 3
  start-page: 88
  year: 2012
  article-title: The cell wall‐associated kinases, WAKs, as pectin receptors
  publication-title: Front. Plant Sci.
– volume: 165
  start-page: 969
  year: 2003
  end-page: 976
  article-title: A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against the sheath blight pathogen,
  publication-title: Plant Sci.
– volume: 127
  start-page: 2515
  year: 2014a
  end-page: 2524
  article-title: Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice ( L.)
  publication-title: Theor. Appl. Genet.
– volume: 53
  start-page: 51
  year: 2003
  end-page: 59
  article-title: Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice
  publication-title: Breed. Sci.
– year: 1991
– volume: 106
  start-page: 555
  year: 2000
  end-page: 561
  article-title: Infection of rice plants with the sheath blight fungus causes an activation of pentose phosphate and glycolytic pathways
  publication-title: Eur. J. Plant Pathol.
– volume: 19
  start-page: 18139
  year: 2014
  end-page: 18151
  article-title: Antimicrobial activity of UV‐induced phenylamides from rice leaves
  publication-title: Molecules
– volume: 17
  start-page: 545
  year: 2001
  end-page: 552
  article-title: Inactivation of toxin by a putative α‐glucosidase from coconut leaves for control of sheath blight disease in rice
  publication-title: World J. Microbiol. Biotechnol.
– volume: 30
  start-page: 1241
  year: 2011
  end-page: 1252
  article-title: Transgene stacking and marker elimination in transgenic rice by sequential ‐mediated co‐transformation with the same selectable marker gene
  publication-title: Plant Cell Rep.
– volume: 1
  start-page: 5
  year: 2008
  end-page: 20
  article-title: Status and prospects of association mapping in plants
  publication-title: Plant Genome
– volume: 48
  start-page: 247
  year: 2010
  end-page: 268
  article-title: Quantitative disease resistance and quantitative resistance loci in breeding
  publication-title: Annu. Rev. Phytopathol.
– volume: 166
  start-page: 114
  year: 2013
  end-page: 121
  article-title: Transgenic indica rice lines, expressing Nonexpressor of pathogenesis‐related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens
  publication-title: J. Biotechnol.
– volume: 45
  start-page: 825
  year: 2003
  end-page: 831
  article-title: Effect of morphological traits on sheath blight resistance in rice
  publication-title: Acta Bot. Sin.
– volume: 21
  start-page: 136
  year: 2007
  end-page: 142
  article-title: Breeding value and further mapping of a QTL qSB‐11 conferring the rice sheath blight resistance
  publication-title: Chin. J. Rice Sci.
– volume: 19
  start-page: 373
  year: 2010
  end-page: 384
  article-title: Expression of a plant defensin in rice confers resistance to fungal phytopathogens
  publication-title: Transgenic Res.
– volume: 53
  start-page: 1017
  year: 2012b
  end-page: 1032
  article-title: Changes in the contents of metabolites and enzyme activities in rice plants responding to Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway
  publication-title: Plant Cell Physiol.
– volume: 180
  start-page: 209
  year: 2011
  end-page: 218
  article-title: QTL mapping of sheath blight resistance in a deep‐water rice cultivar
  publication-title: Euphytica
– start-page: 262
  year: 1999a
  end-page: 278
– volume: 101
  start-page: 569
  year: 2000
  end-page: 573
  article-title: Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars ( L.)
  publication-title: Theor. Appl. Genet.
– volume: 23
  start-page: 275
  year: 2005
  end-page: 282
  article-title: Engineering plants with increased disease resistance: what are we going to express?
  publication-title: Trends Biotechnol.
– volume: 37
  start-page: 1121
  year: 2019
  end-page: 1142
  article-title: CRISPR/Cas‐mediated base editing: technical considerations and practical applications
  publication-title: Trends Biotechnol.
– volume: 2
  start-page: 143
  year: 2009
  end-page: 154
  article-title: Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice
  publication-title: Rice
– volume: 265
  start-page: 51
  year: 2017
  end-page: 60
  article-title: Enhanced resistance to rice blast and sheath blight in rice ( L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis
  publication-title: Plant Sci.
– volume: 5
  start-page: 241
  year: 2014
  article-title: Rice sheath blight: a review of disease and pathogen management approaches
  publication-title: J. Plant Pathol. Microbiol.
– volume: 77
  start-page: 41
  year: 2012a
  end-page: 51
  article-title: High activities and mRNA expression of pyrophosphate‐fructose‐6‐phosphate‐phosphotransferase and 6‐phosphofructokinase are induced as a response to infection in rice leaf sheaths
  publication-title: Physiol. Mol. Plant Pathol.
– volume: 215
  start-page: 17
  year: 2019
  article-title: Novel biotic stress responsive candidate gene based SSR (cgSSR) markers from rice
  publication-title: Euphytica
– start-page: 288
  year: 1999
– volume: 20
  start-page: 490
  year: 2019
  end-page: 507
  article-title: The next generation of CRISPR–Cas technologies and applications
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 236
  start-page: 1485
  year: 2012
  end-page: 1498
  article-title: Constitutive expression of rice gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice
  publication-title: Planta
– volume: 63
  start-page: 301
  year: 2013
  article-title: Mapping and validation of QTLs for rice sheath blight resistance
  publication-title: Breed. Sci.
– volume: 3
  start-page: 231
  year: 2009
  end-page: 239
  article-title: Current progress on genetic interactions of rice with rice blast and sheath blight fungi
  publication-title: Front. Agri. China
– volume: 203
  start-page: 33
  year: 2014
  article-title: The way to a more precise sheath blight resistance QTL in rice
  publication-title: Euphytica
– volume: 66
  start-page: 613
  year: 2016
  end-page: 626
  article-title: Association between QTLs and morphological traits toward sheath blight resistance in rice ( L.)
  publication-title: Breed. Sci.
– volume: 24
  start-page: 345
  year: 2008
  end-page: 351
  article-title: Targeted disruption of a G protein α subunit gene results in reduced growth and pathogenicity in
  publication-title: World. J. Microbiol. Biotechnol.
– volume: 87
  start-page: 181
  year: 2015
  end-page: 191
  article-title: Functional analysis of OsPGIP1 in rice sheath blight resistance
  publication-title: Plant Mol. Biol.
– volume: 3
  start-page: 147
  year: 2000
  end-page: 152
  article-title: Novel genes for disease‐resistance breeding
  publication-title: Curr. Opin. Plant Biol.
– volume: 175
  start-page: 283
  year: 2008
  end-page: 290
  article-title: Combined expression of and genes in indica rice ( L.) enhances resistance against
  publication-title: Plant Sci.
– volume: 56
  start-page: 65
  year: 2009
  end-page: 76
  article-title: Exploring genetic diversity and potential novel disease resistance genes in a collection of rice ( spp.) wild relatives
  publication-title: Genet. Resour. Crop Evol.
– volume: 91
  start-page: 1054
  year: 2001
  end-page: 1061
  article-title: Characterization of a new subgroup of anastomosis group 1 (AG‐1‐ID), causal agent of a necrotic leaf spot on coffee
  publication-title: Phytopathology
– volume: 5
  start-page: 1653
  year: 2010b
  end-page: 1656
  article-title: MAMP‐responsive MAPK cascades regulate phytoalexin biosynthesis
  publication-title: Plant Signal. Behav.
– volume: 46
  start-page: 1870
  year: 2006
  end-page: 1878
  article-title: Identifying novel resistance genes in newly introduced blast resistant rice germplasm
  publication-title: Crop Sci.
– volume: 10
  year: 2014
  article-title: Genome sequencing and comparative genomics of the broad host‐range pathogen AG8
  publication-title: PLOS Genet.
– volume: 52
  start-page: 495
  year: 2014
  end-page: 516
  article-title: Small RNAs: a new paradigm in plant‐microbe interactions
  publication-title: Annu. Rev. Phytopathol.
– volume: 49
  start-page: 256
  year: 2009
  end-page: 264
  article-title: Genetic mapping of sheath blight resistance QTLs within tropical rice cultivars
  publication-title: Crop Sci.
– volume: 7
  start-page: 41610
  year: 2017
  article-title: Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of
  publication-title: Sci. Rep.
– start-page: 237
  year: 2000
  end-page: 246
– volume: 18
  start-page: 101
  year: 2001
  end-page: 108
  article-title: Rapid development of homozygous transgenic rice using anther culture harboring rice gene for enhanced sheath blight resistance
  publication-title: Plant Biotechnol.
– volume: 43
  start-page: 205
  year: 2005
  end-page: 227
  article-title: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens
  publication-title: Annu. Rev. Phytopathol.
– volume: 178
  start-page: 1
  year: 2011
  end-page: 22
  article-title: Resistance to rice sheath blight ( i Kühn) [(teleomorph: (A.B. Frank) Donk.] disease: current status and perspectives
  publication-title: Euphytica
– volume: 27
  start-page: 101
  year: 2001
  end-page: 113
  article-title: Evidence for a disease‐resistance pathway in rice similar to the NPR1‐mediated signaling pathway in Arabidopsis
  publication-title: Plant J.
– volume: 88
  start-page: 57
  year: 1997
  end-page: 63
  article-title: The gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats
  publication-title: Cell
– volume: 14
  start-page: 1255
  year: 2001
  end-page: 1260
  article-title: Wheat puroindolines enhance fungal disease resistance in transgenic rice
  publication-title: Mol. Plant‐Microbe Interact.
– volume: 5
  start-page: e01188
  year: 2017
  end-page: e01117
  article-title: Draft genome sequence of anastomosis group 1 subgroup 1A strain 1802/KB isolated from rice
  publication-title: Genome Announc.
– volume: 45
  start-page: 503
  year: 2005
  end-page: 510
  article-title: Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines
  publication-title: Crop Sci.
– volume: 64
  start-page: 729
  year: 2018
  end-page: 740
  article-title: Identification of candidate pathogenicity determinants of AG1‐IA, which causes sheath blight disease in rice
  publication-title: Curr. Genet.
– volume: 30
  start-page: 293
  year: 2012
  end-page: 303
  article-title: Phenotypic gain from introgression of two QTL, qSB9‐2 and qSB12‐1, for rice sheath blight resistance
  publication-title: Mol. Breed.
– volume: 17
  start-page: 159
  year: 2006
  end-page: 171
  article-title: Transgenic indica rice expressing ns‐LTP‐like protein shows enhanced resistance to both fungal and bacterial pathogens
  publication-title: Mol. Breed.
– volume: 66
  start-page: 391
  year: 2005
  end-page: 411
  article-title: Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi
  publication-title: Phytochemistry
– volume: 4
  start-page: 55
  year: 2006
  end-page: 79
  article-title: Review. Biology and systematics of the form genus Rhizoctonia
  publication-title: Span. J. Agric. Res.
– volume: 9
  start-page: 63
  year: 2016
  article-title: OsWRKY80‐OsWRKY4 module as a positive regulatory circuit in rice resistance against
  publication-title: Rice
– volume: 54
  start-page: 36
  year: 2014
  end-page: 43
  article-title: Expression of the pathogenesis related proteins, NH‐1, PAL, and lipoxygenase in the iranian Tarom and Khazar rice cultivars, in reaction to –the causal agent of rice sheath blight
  publication-title: J Plant Protect. Res.
– volume: 27
  start-page: 1635
  year: 2008
  end-page: 1644
  article-title: Generation of selectable marker‐free sheath blight resistant transgenic rice plants by efficient co‐transformation of a cointegrate vector T‐DNA and a binary vector T‐DNA in one strain
  publication-title: Plant Cell Rep.
– volume: 100
  start-page: 1634
  year: 2016
  end-page: 1642
  article-title: Overexpression of OsOSM1 enhances resistance to rice sheath blight
  publication-title: Plant Dis.
– volume: 7
  start-page: 405
  year: 2006
  end-page: 416
  article-title: Proteomic and genetic approaches to identifying defence‐related proteins in rice challenged with the fungal pathogen
  publication-title: Mol. Plant Pathol.
– volume: 14
  start-page: 1636
  year: 2015
  end-page: 1649
  article-title: Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice
  publication-title: Genet. Mol. Res.
– volume: 55
  start-page: 580
  year: 2008
  end-page: 595
  article-title: The Medicago truncatula ortholog of EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations
  publication-title: Plant J.
– volume: 60
  start-page: 327
  year: 2014
  end-page: 341
  article-title: Identification and functional analysis of AG1‐IA specific genes of Rhizoctonia solani
  publication-title: Curr. Genet.
– volume: 13
  start-page: 3277
  year: 2014
  end-page: 3293
  article-title: Global Protein‐protein interaction network of rice sheath blight pathogen
  publication-title: J. Proteome Res.
– volume: 98
  start-page: 1138
  year: 1999b
  end-page: 1145
  article-title: Over‐expression of the cloned rice (PR‐5) gene in transgenic rice plants enhances environmental friendly resistance to causing sheath blight disease
  publication-title: Theor. Appl. Genet.
– volume: 15
  start-page: 272
  year: 1993
  end-page: 280
  article-title: Differentiation of intraspecific groups within anastomosis group 1 of using ribosomal DNA internal transcribed spacer and isozyme comparisons
  publication-title: Can. J. Plant Pathol.
– volume: 52
  start-page: 551
  year: 2014
  end-page: 581
  article-title: Susceptibility genes 101: how to be a good host
  publication-title: Ann. Rev. Phytopathol.
– volume: 25
  start-page: 155
  year: 2010
  end-page: 166
  article-title: Identification of major quantitative trait loci qSBR11‐1 for sheath blight resistance in rice
  publication-title: Mol. Breed.
– volume: 5
  start-page: 325
  year: 2002
  end-page: 331
  article-title: Cross talk between signaling pathways in pathogen defense
  publication-title: Curr. Opin. Plant Biol.
– volume: 97
  start-page: 113
  year: 2013
  end-page: 117
  article-title: Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease
  publication-title: Plant Dis.
– volume: 102
  start-page: 21
  year: 1998
  end-page: 28
  article-title: Induction of thaumatin‐like proteins (TLPs) in ‐infected rice and characterization of two new cDNA clones
  publication-title: Physiol. Plant.
– volume: 42
  start-page: 924
  year: 2005
  end-page: 934
  article-title: Proteomic analysis of secreted proteins from : identification of a fungal cell wall‐induced aspartic protease
  publication-title: Fungal Genet. Biol.
– volume: 125
  start-page: 533
  year: 2009
  end-page: 543
  article-title: Transgenic indica rice expressing a bitter melon ( ) class I chitinase gene ( ) confers enhanced resistance to and
  publication-title: Eur. J. Plant Pathol.
– volume: 7
  start-page: 10120
  year: 2017
  article-title: Transcriptome analysis reveals the host selection fitness mechanisms of the AG1IA pathogen
  publication-title: Sci. Rep.
– volume: 48
  start-page: 1649
  year: 2008
  end-page: 1664
  article-title: Molecular markers and selection for complex traits in plants: learning from the last 20 years
  publication-title: Crop Sci.
– volume: 160
  start-page: 291
  year: 2005
  end-page: 298
  article-title: Detoxification of oxalic acid by strain PfMDU2: implications for the biological control of rice sheath blight caused by
  publication-title: Microbiol. Res.
– volume: 4
  start-page: 1424
  year: 2013
  article-title: The evolution and pathogenic mechanisms of the rice sheath blight pathogen
  publication-title: Nat Commun
– volume: 15
  start-page: 461
  year: 2014
  article-title: Interaction specificity and coexpression of rice NPR1 homologs 1 and 3 (NH1 and NH3), TGA transcription factors and Negative Regulator of Resistance (NRR) proteins
  publication-title: BMC Genom.
– volume: 97
  start-page: 37
  year: 1998
  end-page: 44
  article-title: Fine mapping of quantitative trait loci Hd‐1, Hd‐2 and Hd‐3, controlling heading date of rice, as single Mendelian factors
  publication-title: Theor. Appl. Genet.
– volume: 87
  start-page: 1258
  year: 1997
  end-page: 1263
  article-title: Host‐specific toxin production by , the rice sheath blight pathogen
  publication-title: Phytopathology
– volume: 7
  start-page: 7900
  year: 2017
  article-title: Dual gene expression cassette is superior than single gene cassette for enhancing sheath blight tolerance in transgenic rice
  publication-title: Sci. Rep.
– volume: 92
  start-page: 43
  year: 2002b
  end-page: 50
  article-title: Hyphal anastomosis reactions, rDNA‐internal transcribed spacer sequences, and virulence levels among subsets of anastomosis group‐2 (AG‐2) and AG‐BI
  publication-title: Phytopathology
– volume: 89
  start-page: 731
  year: 2009
  end-page: 737
  article-title: Evaluation of the effect of qSB‐9Tq involved in quantitative resistance to rice sheath blight using near‐isogenic lines
  publication-title: Can. J. Plant Sci.
– volume: 98
  start-page: 957
  year: 2014b
  end-page: 964
  article-title: Comparison and confirmation of quantitative trait loci conferring partial resistance to rice sheath blight on chromosome 9
  publication-title: Plant Dis.
– volume: 59
  start-page: 181
  year: 2014
  end-page: 196
  article-title: Plant antimicrobial peptides
  publication-title: Folia Microbiol.
– volume: 14
  start-page: 801
  year: 2015
  end-page: 810
  article-title: Mapping resistant QTLs for rice sheath blight disease with a doubled haploid population
  publication-title: J. Integr. Agric.
– volume: 284
  start-page: 26510
  year: 2009
  end-page: 26518
  article-title: OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 10461
  year: 2019
  article-title: Proteo‐metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against
  publication-title: Sci. Rep.
– volume: 66
  start-page: 513
  year: 2015
  end-page: 545
  article-title: Fungal effectors and plant susceptibility
  publication-title: Annu. Rev. Plant Biol.
– volume: 30
  start-page: 507
  year: 1992
  end-page: 528
  article-title: Breeding rice for resistance to pests
  publication-title: Annu. Rev. Phytopathol.
– volume: 92
  start-page: 893
  year: 2002a
  end-page: 899
  article-title: Characterization of AG‐13, a newly reported anastomosis group of
  publication-title: Phytopathology
– volume: 5
  start-page: 133
  year: 2004
  end-page: 136
  article-title: Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from
  publication-title: J. Zhejiang Univ. Sci.
– volume: 8
  start-page: 596
  year: 2017
  article-title: Novel chitinase gene LOC_Os11g47510 from indica rice tetep provides enhanced resistance against sheath blight pathogen in rice
  publication-title: Front. Plant Sci.
– volume: 7
  start-page: 7521
  year: 2017
  article-title: Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen ( )
  publication-title: Sci. Rep.
– volume: 54
  start-page: 119
  year: 2010
  end-page: 131
  article-title: infection in two rice lines increases mRNA expression of metabolic enzyme genes in glycolytic, oxidative pentose phosphate pathways and secondary metabolism
  publication-title: Tropical Agri. Dev.
– volume: 996
  start-page: 518
  year: 1999
  end-page: 527
  article-title: Multicomponent coordinated defence response of rice to causing sheath blight
  publication-title: Appl. Phys.
– ident: e_1_2_9_116_1
  doi: 10.1111/j.1365-2672.2004.02291.x
– ident: e_1_2_9_14_1
  doi: 10.1016/S0092-8674(00)81858-9
– ident: e_1_2_9_100_1
  doi: 10.1094/Phyto-70-947
– ident: e_1_2_9_24_1
  doi: 10.1046/j.1365-313x.2001.01070.x
– ident: e_1_2_9_34_1
  doi: 10.1016/S0168-9452(00)00413-1
– ident: e_1_2_9_68_1
  doi: 10.1007/s00425-015-2398-x
– ident: e_1_2_9_74_1
  doi: 10.4161/psb.5.12.13982
– ident: e_1_2_9_56_1
  doi: 10.1371/journal.pgen.1004281
– ident: e_1_2_9_18_1
  doi: 10.1007/s11274-007-9476-6
– ident: e_1_2_9_127_1
  doi: 10.1038/s41580-019-0131-5
– ident: e_1_2_9_13_1
  doi: 10.1111/nph.12292
– ident: e_1_2_9_44_1
  doi: 10.5424/sjar/2006041-178
– ident: e_1_2_9_145_1
  doi: 10.1111/mpp.12178
– ident: e_1_2_9_196_1
  doi: 10.1007/s001220051517
– ident: e_1_2_9_53_1
  doi: 10.1016/S0958-1669(03)00035-1
– ident: e_1_2_9_132_1
  doi: 10.1016/j.plantsci.2017.09.014
– ident: e_1_2_9_135_1
  doi: 10.1093/emboj/16.8.1934
– ident: e_1_2_9_45_1
  doi: 10.1007/s00294-014-0438-x
– ident: e_1_2_9_151_1
  doi: 10.1007/BF03263168
– ident: e_1_2_9_166_1
  doi: 10.1007/s10658-010-9725-7
– ident: e_1_2_9_89_1
  doi: 10.1038/nbt0795-686
– ident: e_1_2_9_30_1
  doi: 10.1201/9781420049299
– ident: e_1_2_9_198_1
  doi: 10.1016/S1673-8527(08)60068-5
– ident: e_1_2_9_153_1
  doi: 10.1007/s10681-010-0296-7
– ident: e_1_2_9_124_1
  doi: 10.1155/2011/250349
– ident: e_1_2_9_70_1
  doi: 10.1038/s41598-019-46885-3
– ident: e_1_2_9_9_1
  doi: 10.2135/cropsci2008.03.0131
– ident: e_1_2_9_72_1
  doi: 10.1023/A:1024276127001
– ident: e_1_2_9_146_1
  doi: 10.2135/cropsci2008.03.0124
– ident: e_1_2_9_96_1
  doi: 10.1111/hrd2.00026
– ident: e_1_2_9_33_1
  doi: 10.1007/s001220051359
– ident: e_1_2_9_110_1
  doi: 10.1093/pcp/pcs047
– ident: e_1_2_9_94_1
  doi: 10.1094/PHYTO-99-9-1078
– volume-title: Identification of Rhizoctonia Species
  year: 1991
  ident: e_1_2_9_150_1
– ident: e_1_2_9_104_1
  doi: 10.1016/j.tibtech.2019.03.008
– ident: e_1_2_9_177_1
  doi: 10.1073/pnas.1213962110
– ident: e_1_2_9_195_1
  doi: 10.3835/plantgenome2008.02.0089
– ident: e_1_2_9_5_1
  doi: 10.1104/pp.110.163949
– ident: e_1_2_9_189_1
  doi: 10.1007/s10681-014-1246-6
– ident: e_1_2_9_128_1
  doi: 10.2135/cropsci2005.0503
– ident: e_1_2_9_15_1
  doi: 10.1094/PHYTO.2002.92.8.893
– ident: e_1_2_9_48_1
  doi: 10.1007/s10142-019-00687-y
– ident: e_1_2_9_79_1
  doi: 10.1016/S0168-9452(03)00271-1
– ident: e_1_2_9_51_1
  doi: 10.1016/j.tibtech.2005.04.007
– ident: e_1_2_9_71_1
  doi: 10.3390/molecules23020276
– volume: 21
  start-page: 136
  year: 2007
  ident: e_1_2_9_197_1
  article-title: Breeding value and further mapping of a QTL qSB‐11 conferring the rice sheath blight resistance
  publication-title: Chin. J. Rice Sci.
– ident: e_1_2_9_16_1
  doi: 10.1094/PHYTO.2002.92.1.43
– ident: e_1_2_9_35_1
  doi: 10.1007/s00122-002-1014-1
– ident: e_1_2_9_58_1
  doi: 10.1270/jsbbs.15154
– ident: e_1_2_9_6_1
  doi: 10.1038/s41598-017-10405-y
– ident: e_1_2_9_156_1
  doi: 10.1146/annurev-phyto-080508-081904
– ident: e_1_2_9_182_1
  doi: 10.1186/s40064-015-0954-2
– ident: e_1_2_9_87_1
  doi: 10.1104/pp.113.230052
– ident: e_1_2_9_171_1
  doi: 10.1094/PHYTO.1997.87.12.1258
– ident: e_1_2_9_112_1
  doi: 10.1016/j.micres.2005.02.002
– ident: e_1_2_9_85_1
  doi: 10.1146/annurev.micro.61.080706.093432
– ident: e_1_2_9_118_1
  doi: 10.1074/jbc.M109.036871
– ident: e_1_2_9_183_1
  doi: 10.1007/s001220050864
– start-page: 271
  volume-title: Rice Breeding and Genetics: Research Priorities and Challenges
  year: 2000
  ident: e_1_2_9_60_1
– ident: e_1_2_9_52_1
  doi: 10.1016/j.plaphy.2017.12.012
– ident: e_1_2_9_99_1
  doi: 10.1007/s11274-013-1546-3
– ident: e_1_2_9_59_1
  doi: 10.1038/nature03895
– ident: e_1_2_9_76_1
  doi: 10.3389/fpls.2012.00088
– ident: e_1_2_9_84_1
  doi: 10.1007/BF00220903
– ident: e_1_2_9_114_1
  doi: 10.1007/s12223-013-0280-4
– ident: e_1_2_9_170_1
  doi: 10.1034/j.1399-3054.1998.1020104.x
– ident: e_1_2_9_106_1
  doi: 10.1016/j.plantsci.2016.06.005
– ident: e_1_2_9_193_1
  doi: 10.1038/ncomms2427
– ident: e_1_2_9_40_1
  doi: 10.1094/MPMI.2004.17.2.140
– ident: e_1_2_9_136_1
  doi: 10.3389/fpls.2017.00596
– ident: e_1_2_9_46_1
  doi: 10.1038/srep41610
– ident: e_1_2_9_142_1
  doi: 10.1002/3527603514.ch1
– ident: e_1_2_9_180_1
  doi: 10.1038/nature22372
– ident: e_1_2_9_86_1
  doi: 10.1007/s10658-009-9501-8
– ident: e_1_2_9_63_1
  doi: 10.1007/s11248-008-9196-1
– ident: e_1_2_9_181_1
  doi: 10.1094/PDIS-11-15-1372-RE
– ident: e_1_2_9_21_1
  doi: 10.1016/j.fcr.2014.03.003
– ident: e_1_2_9_78_1
  doi: 10.1094/MPMI.2001.14.10.1255
– ident: e_1_2_9_149_1
  doi: 10.1007/s00425-019-03246-8
– ident: e_1_2_9_121_1
  doi: 10.1007/s11032-005-4736-3
– ident: e_1_2_9_131_1
  doi: 10.1094/PHYTO.2001.91.11.1054
– ident: e_1_2_9_175_1
  doi: 10.4238/2015.March.6.10
– ident: e_1_2_9_139_1
  doi: 10.1094/Phyto-85-959
– ident: e_1_2_9_62_1
  doi: 10.1007/s11248-009-9315-7
– ident: e_1_2_9_49_1
  doi: 10.1146/annurev.phyto.43.040204.135923
– ident: e_1_2_9_12_1
  doi: 10.1146/annurev.arplant.043008.092007
– ident: e_1_2_9_19_1
  doi: 10.1093/dnares/dsl001
– ident: e_1_2_9_168_1
  doi: 10.1038/s41598-017-07749-w
– ident: e_1_2_9_20_1
  doi: 10.1007/s00122-014-2395-7
– ident: e_1_2_9_184_1
  doi: 10.4172/2157-7471.1000241
– ident: e_1_2_9_126_1
  doi: 10.1186/s12284-016-0137-y
– ident: e_1_2_9_154_1
  doi: 10.1007/s00299-008-0586-x
– ident: e_1_2_9_2_1
  doi: 10.1101/625509
– ident: e_1_2_9_152_1
  doi: 10.1016/j.plantsci.2008.04.011
– ident: e_1_2_9_7_1
  doi: 10.5511/plantbiotechnology.18.101
– ident: e_1_2_9_73_1
  doi: 10.1111/j.1365-313X.2010.04264.x
– ident: e_1_2_9_141_1
  doi: 10.1146/annurev-phyto-102313-045854
– ident: e_1_2_9_39_1
  doi: 10.1371/journal.pone.0169582
– ident: e_1_2_9_155_1
  doi: 10.1139/w00-018
– ident: e_1_2_9_29_1
– ident: e_1_2_9_97_1
  doi: 10.1146/annurev-arplant-043014-114623
– ident: e_1_2_9_57_1
  doi: 10.1111/pbi.12004
– ident: e_1_2_9_10_1
  doi: 10.1146/annurev.py.30.090192.002451
– ident: e_1_2_9_200_1
  doi: 10.1007/s11032-014-0173-5
– ident: e_1_2_9_186_1
  doi: 10.4141/CJPS08112
– ident: e_1_2_9_69_1
  doi: 10.1038/s41598-017-08180-x
– volume: 71
  start-page: 255
  year: 2006
  ident: e_1_2_9_164_1
  article-title: Riboflavin induces resistance in rice against Rhizoctonia sheath diseases by activating signal transduction pathways leading to upregulation of rice cationic peroxidase and formation of lignin as a structural barrier
  publication-title: Commun. Agric. Appl. Biol. Sci.
– ident: e_1_2_9_161_1
  doi: 10.1007/s11738-016-2331-3
– ident: e_1_2_9_107_1
  doi: 10.1007/s10681-018-2329-6
– volume: 54
  start-page: 119
  year: 2010
  ident: e_1_2_9_108_1
  article-title: Rhizoctonia solani infection in two rice lines increases mRNA expression of metabolic enzyme genes in glycolytic, oxidative pentose phosphate pathways and secondary metabolism
  publication-title: Tropical Agri. Dev.
– ident: e_1_2_9_134_1
  doi: 10.1007/s11103-019-00843-9
– ident: e_1_2_9_82_1
  doi: 10.1111/j.1364-3703.2006.00350.x
– ident: e_1_2_9_98_1
  doi: 10.1038/s41598-018-37365-1
– ident: e_1_2_9_111_1
  doi: 10.1128/genomeA.01188-17
– ident: e_1_2_9_194_1
  doi: 10.1038/nature14449
– ident: e_1_2_9_125_1
  doi: 10.1007/s00425-012-1698-7
– ident: e_1_2_9_140_1
  doi: 10.2478/jppr-2014-0006
– ident: e_1_2_9_165_1
  doi: 10.1016/j.jplph.2009.08.003
– ident: e_1_2_9_101_1
  doi: 10.1007/s00299-006-0292-5
– ident: e_1_2_9_90_1
  doi: 10.1270/jsbbs.53.51
– ident: e_1_2_9_25_1
  doi: 10.1094/MPMI-18-0511
– ident: e_1_2_9_47_1
  doi: 10.1007/s00294-017-0791-7
– ident: e_1_2_9_83_1
  doi: 10.1021/pr500069r
– ident: e_1_2_9_26_1
  doi: 10.1186/1471-2164-15-461
– ident: e_1_2_9_158_1
  doi: 10.1146/annurev.phyto.112408.132637
– ident: e_1_2_9_77_1
  doi: 10.1111/nph.14849
– ident: e_1_2_9_36_1
  doi: 10.2135/cropsci2006.0143
– ident: e_1_2_9_129_1
  doi: 10.3198/jpr2007.11.0601crg
– ident: e_1_2_9_174_1
  doi: 10.1146/annurev-phyto-102313-045933
– ident: e_1_2_9_143_1
  doi: 10.1007/s10529-008-9856-5
– ident: e_1_2_9_163_1
  doi: 10.1270/jsbbs.63.301
– ident: e_1_2_9_93_1
  doi: 10.1631/jzus.2004.0133
– ident: e_1_2_9_115_1
  doi: 10.1007/s10681-011-0475-1
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1364-3703.2008.00469.x
– ident: e_1_2_9_27_1
  doi: 10.1094/PD-80-1103
– ident: e_1_2_9_32_1
  doi: 10.1007/s001220051178
– ident: e_1_2_9_23_1
  doi: 10.1080/07060661.2017.1417915
– volume: 61
  start-page: 451
  year: 1982
  ident: e_1_2_9_43_1
  article-title: Sheath blight of rice
  publication-title: Rev. Plant Pathol.
– volume: 29
  start-page: 622
  year: 2002
  ident: e_1_2_9_54_1
  article-title: Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63
  publication-title: Acta Genet. Sin.
– ident: e_1_2_9_123_1
  doi: 10.1073/pnas.81.10.3059
– ident: e_1_2_9_31_1
  doi: 10.1201/9781420049299.ch13
– ident: e_1_2_9_41_1
  doi: 10.1007/s10681-011-0366-5
– ident: e_1_2_9_199_1
  doi: 10.1007/s00122-013-2051-7
– volume: 12
  start-page: 44
  year: 2013
  ident: e_1_2_9_103_1
  article-title: Trends in global rice consumption
  publication-title: Rice Today
– volume: 22
  start-page: 340
  year: 2008
  ident: e_1_2_9_185_1
  article-title: Pyramiding effects of three quantitative trait loci for resistance to sheath blight using near‐isogenic lines of rice
  publication-title: Chin. J. Rice Sci.
– ident: e_1_2_9_66_1
  doi: 10.1016/j.plantsci.2005.08.002
– ident: e_1_2_9_201_1
  doi: 10.1094/PDIS-09-13-0940-RE
– volume: 45
  start-page: 825
  year: 2003
  ident: e_1_2_9_55_1
  article-title: Effect of morphological traits on sheath blight resistance in rice
  publication-title: Acta Bot. Sin.
– ident: e_1_2_9_64_1
  doi: 10.1007/s11703-009-0062-6
– ident: e_1_2_9_157_1
  doi: 10.1126/science.7732374
– ident: e_1_2_9_179_1
  doi: 10.1111/j.1439-0523.2010.01806.x
– ident: e_1_2_9_22_1
  doi: 10.1093/database/baw031
– ident: e_1_2_9_172_1
  doi: 10.1007/s11032-011-9619-1
– ident: e_1_2_9_105_1
  doi: 10.1111/mpp.12055
– ident: e_1_2_9_130_1
  doi: 10.1094/PDIS-92-11-1503
– ident: e_1_2_9_120_1
  doi: 10.3390/molecules191118139
– ident: e_1_2_9_122_1
  doi: 10.1016/j.phytochem.2004.12.032
– ident: e_1_2_9_138_1
  doi: 10.1270/jsbbs.54.265
– ident: e_1_2_9_147_1
  doi: 10.1007/s00122-011-1687-4
– ident: e_1_2_9_190_1
  doi: 10.1016/S2095-3119(14)60909-6
– ident: e_1_2_9_192_1
  doi: 10.1007/s00122-007-0686-y
– ident: e_1_2_9_119_1
  doi: 10.1007/BF02886159
– ident: e_1_2_9_117_1
  doi: 10.1094/MPMI-11-12-0272-R
– ident: e_1_2_9_11_1
  doi: 10.1094/PHYTO-97-10-1207
– ident: e_1_2_9_148_1
  doi: 10.1093/aobpla/pls029
– ident: e_1_2_9_17_1
  doi: 10.1007/s11032-009-9316-5
– ident: e_1_2_9_88_1
  doi: 10.1111/pbi.12827
– ident: e_1_2_9_28_1
  doi: 10.1023/A:1008736930068
– ident: e_1_2_9_160_1
  doi: 10.1080/1343943X.2016.1140006
– ident: e_1_2_9_61_1
  doi: 10.1007/s12284-009-9030-2
– ident: e_1_2_9_133_1
  doi: 10.1007/s00299-011-1033-y
– ident: e_1_2_9_91_1
  doi: 10.1093/dnares/dsw024
– volume: 70
  start-page: 135
  year: 1983
  ident: e_1_2_9_67_1
  article-title: Effect of spacing on the spread of sheath blight disease of rice
  publication-title: Madras Agric. J.
– ident: e_1_2_9_65_1
  doi: 10.1371/journal.pone.0032703
– ident: e_1_2_9_144_1
  doi: 10.1023/A:1012246406490
– ident: e_1_2_9_92_1
  doi: 10.1080/07060669309501923
– ident: e_1_2_9_187_1
  doi: 10.1111/j.1467-7652.2007.00243.x
– ident: e_1_2_9_178_1
  doi: 10.1038/s41598-017-10804-1
– ident: e_1_2_9_188_1
  doi: 10.1007/s12374-017-0209-6
– volume: 29
  start-page: 50
  year: 2002
  ident: e_1_2_9_80_1
  article-title: QTL analysis of sheath blight resistance in rice (Oryza sativa L.)
  publication-title: Acta Genet. Sin.
– ident: e_1_2_9_113_1
  doi: 10.1007/s10535-007-0027-7
– ident: e_1_2_9_102_1
  doi: 10.1016/S1369-5266(99)00055-2
– ident: e_1_2_9_176_1
  doi: 10.1094/PHYTO.2004.94.7.672
– ident: e_1_2_9_42_1
  doi: 10.1371/journal.ppat.1002882
– volume: 32
  start-page: 399
  year: 2005
  ident: e_1_2_9_167_1
  article-title: Identification and marker‐assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations
  publication-title: Acta. Genet. Sin.
– ident: e_1_2_9_95_1
  doi: 10.1094/PDIS-05-12-0466-RE
– ident: e_1_2_9_173_1
  doi: 10.1007/s11103-014-0269-7
– ident: e_1_2_9_4_1
  doi: 10.3390/genes9070339
– ident: e_1_2_9_50_1
  doi: 10.1371/journal.pone.0046443
– ident: e_1_2_9_109_1
  doi: 10.1016/j.pmpp.2011.11.003
– ident: e_1_2_9_81_1
  doi: 10.1016/S1369-5266(02)00275-3
– ident: e_1_2_9_162_1
  doi: 10.1007/s00425-019-03241-z
– ident: e_1_2_9_137_1
  doi: 10.1016/j.jbiotec.2013.04.016
– ident: e_1_2_9_38_1
  doi: 10.1007/s11032-013-9843-y
– ident: e_1_2_9_191_1
  doi: 10.3389/fpls.2017.01422
– ident: e_1_2_9_75_1
  doi: 10.1016/0040-4020(95)00423-6
– ident: e_1_2_9_169_1
  doi: 10.1111/j.1365-313X.2008.03531.x
– ident: e_1_2_9_159_1
  doi: 10.1016/j.fgb.2005.08.002
– volume: 996
  start-page: 518
  year: 1999
  ident: e_1_2_9_8_1
  article-title: Multicomponent coordinated defence response of rice to Rhizoctonia solani causing sheath blight
  publication-title: Appl. Phys.
– ident: e_1_2_9_37_1
  doi: 10.1007/s10722-008-9345-7
SSID ssj0021656
Score 2.6315222
SecondaryResourceType review_article
Snippet Summary Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation...
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani , became one of the major threats to the rice cultivation worldwide,...
Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 895
SubjectTerms biotechnology
Blight
Crop diseases
Crop yield
Cultivation
Disease resistance
Disease Resistance - genetics
Flowers & plants
Food security
Fungicides
Gap analysis
genes
genetic resistance
Genetic variability
genetic variation
genetically modified organisms
Genomes
Germplasm
Grain cultivation
Host range
host-pathogen relationships
host–plant interaction
Infections
Kinases
leaf blight
Oryza - genetics
Oryza - microbiology
Pathogenesis
Pathogens
Plant Diseases - genetics
Plant Diseases - microbiology
Proteins
Review
Rhizoctonia - pathogenicity
Rhizoctonia solani
Rice
rice disease resistance
Sheath blight
sheath blight QTL
Sheaths
Thanatephorus cucumeris
transgenic rice
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-N8gIPiG0MMjrkTTzwklEnTpzsZSoI1E0aQohKvEV2bNNKVVr68f_vLnVDKz7eovgcJXfx3e9nn88Ap9IkiitrcHxzF4qoTEJdKh3qOJKauzJOOrTB-d9N2uuLvw_Jg59wm_m0ypVPrB21GZc0R34exRj7ZCQy_nvyFNKpUbS66o_Q2IJtdMFZ1oLti6ub27uGclFtmeX-IhlKDP2-thDl8kz08CcSNB5tRqQXMPNltuQ6iq3D0PU-7Hn8yLpLg3-ED7b6BLvdx6mvoWE_w11_fcMKm5G7HTA9IhrOkF0TYkRTs2HFqKLQL4YYkE3HyjBtB0jRGXZ8vqewuzmA_vXV_WUv9EcnhGUiKD_fOakyqWyKgEw4Kbni0iLayBOnjShzZRB5xCKNhTIpklEd0w7UVOUdl6eZjr9AqxpX9giYQs12rNGKGyk6zilUWq5NFGPwKxEMBXC2Ul9R-rridLzFqFjxC9R0UWs6gB-N6GRZTOM1ofbKBoUfT7Pi2foBfG-acSTQ8oaq7HhBMhFiMaRv78kktASeilwGcLg0a_Mm6N048rMkALlh8EaAKnFvtlTDQV2RWyIqyiQ-86z-Nd7-uOL24k998fX9rzyGnYiIfZ0i1IbWfLqw3xD9zPWJ_8X_A4eXA2w
  priority: 102
  providerName: ProQuest
Title Understanding sheath blight resistance in rice: the road behind and the road ahead
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13312
https://www.ncbi.nlm.nih.gov/pubmed/31811745
https://www.proquest.com/docview/2374172481
https://www.proquest.com/docview/2322739661
https://www.proquest.com/docview/2524216497
https://pubmed.ncbi.nlm.nih.gov/PMC7061877
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoFDeUOgXRnEoZesNo4TJ-XUVl0KEtVqxUo9IEV2bLMrqmy1j0t_fWecB7sUEOISRck4spMZzzfOzGeA99IkKlLWoH1HLhS8TEJdKh3qmEsduTJOBlTg_OUiPZ-Iz5fJ5Q58aGthan6IbsGNLMPP12TgSi83jPxaz_oYYPkdhilXiwDRuKOO4sQqU1cWyVCi029YhSiLp2u57YvuAMy7eZKb-NU7oOEj-NZ2vc47-dFfr3S_vPmF1fE_x_YY9hpgyo5rTXoCO7Z6Cg-Pvy8acg77DMaTzUoYtqR5fMr0FcX3DMN2gqKoQ2xWMaIqOmIILtlirgzTdoqxP8OGP68pbG6ew2R49vX0PGz2ZAjLRFDiv3NSZVLZFJGecFJGKpIWYUyeOG1EmSuDkCYWaSyUSTHK1TGVtqYqH7g8zXT8AnareWVfAVPoNQfWaBUZKQbOKRxxrg2P0auWiLICOGy_TlE2hOW0b8ZV0QYu-JoK_5oCeNeJXtcsHb8T2m8_cdEY6rLgMUIqyUUWBfC2u40mRv9NVGXna5LhCPIwLvybTEL_1lORywBe1lrT9QSnzQgDvyQAuaVPnQBRfG_fqWZTT_UtEW5lEp956NXlz4MrRief_Mnrfxd9Aw84rR74PKR92F0t1vYAIdZK9-AeFyM8ZsOPPbh_cnYxGvf8ckXPW9ktKcEmOw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB1EvK-pF4g4RQeSy79CGEulJvwY5tdqUqu-y2QvwpfiMzebWrQm-9RcnYSsZjz_fFM2OAl9olhhvvcH7zECtRJLEtjI2tFNryUMikRwnOe_vpcKy-HCaHa_CnzYWhsMp2TawWajcr6B_5ayHR92mh-vzd_GdMp0bR7mp7hEZtFjv-9y-kbMu3o484vq-EGHw6-DCMm1MF4iJRFLoegjZ9bXyKWEUFrbnh2qMjzpJgnSoy49ApS5VKZVyKPM1KSs5MTdYLWdq3Evu9AleVRE9OmemDzx3Bo0o2dTaTjjUCjaaSEUUOze10C-kgF6v-7xyoPR-beRYzV05vcAtuNmiVbdfmdRvWfHkHbmz_WDQVO_xd-DY-mx7DlrS4T5g9ItLPkMsTPkXDYtOSUf2iNwwRJ1vMjGPWT6alY9jw9J7B5u4ejC9FpfdhvZyV_iEwg66055013GnVC8Gg0jLrhERXWyD0imCzVV9eNFXM6TCNo7xlM6jpvNJ0BC860XlduuNfQhvtGOTN7F3mp7YWwfPuMc472kwxpZ-dkIxA5Idk8SKZhDbcU5XpCB7Uw9q9Ca6lHNlgEoFeGfBOgOp-rz4pp5Oq_rdGDNbX2OdmZRr__7j86_tRdfHo4q98BteGB3u7-e5of-cxXBf0S6EKTtqA9ePFiX-CuOvYPq2MncH3y55dfwG4DDzc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmsIFBIO0lrHacuEGa0MZWrQyqaqLS3oId27TSlJZ2E-Jf46_jLl9bNdjb3qrkEjXnO9_vZ9-dAd4qG2uunUX_5j6UIo9Dk2sTmkgow30exV0qcP46TA7H8vNJfLIGf5paGEqrbObEcqK2s5zWyLdFhLFPCdnj275Oixjt9z_Of4Z0ghTttDbHaVQmcuR-_0L6ttwZ7ONYvxOif_Dt02FYnzAQ5rGkNHbvle4p7RLELdIrxTVXDoNyGntjZZ5qiwE6kkkktU2Qs5mICjUTnXZ9mvRMhO-9BeuKWFEH1vcOhqPjlu5RX5uqtkmFCmFH3deI8ojmZvoeySEXq9HwCsS9mql5GUGXIbB_H-7V2JXtVsb2ANZc8RDu7v5Y1P073CM4Hl8ulmFLmuonzJzSEgBDZk9oFc2MTQtG3Yw-MMSfbDHTlhk3mRaW4YMX1zQ-bh_D-EaU-gQ6xaxwz4BpDKxdZ43mFnXsvUalpcaKCANvjkAsgK1GfVle9zSnozVOs4bboKazUtMBvGlF51Ujj38JbTRjkNW-vMwuLC-A1-1t9ELaWtGFm52TjEAciNTxOpmYtt8TmaoAnlbD2v4TnFk5csM4ALUy4K0AdQFfvVNMJ2U3cIWIrKfwnVulafz_47LR3qD88fz6r3wFt9Gzsi-D4dELuCNofaHMVNqAztni3G0iCDszL2trZ_D9ph3sL-wMQm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+sheath+blight+resistance+in+rice%3A+the+road+behind+and+the+road+ahead&rft.jtitle=Plant+biotechnology+journal&rft.au=Molla%2C+Kutubuddin+A.&rft.au=Karmakar%2C+Subhasis&rft.au=Molla%2C+Johiruddin&rft.au=Bajaj%2C+Prasad&rft.date=2020-04-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=18&rft.issue=4&rft.spage=895&rft.epage=915&rft_id=info:doi/10.1111%2Fpbi.13312&rft.externalDBID=10.1111%252Fpbi.13312&rft.externalDocID=PBI13312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon