SIRT1 Positively Regulates Autophagy and Mitochondria Function in Embryonic Stem Cells Under Oxidative Stress

SIRT1, an NAD‐dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age‐related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidativ...

Full description

Saved in:
Bibliographic Details
Published inStem cells (Dayton, Ohio) Vol. 32; no. 5; pp. 1183 - 1194
Main Authors Ou, Xuan, Lee, Man Ryul, Huang, Xinxin, Messina‐Graham, Steven, Broxmeyer, Hal E.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SIRT1, an NAD‐dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age‐related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2O2 (1 mM) induced apoptosis and autophagy in wild‐type (WT) and Sirt1−/− mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1−/−, than in WT mESCs. However, addition of 3‐methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1−/− mESCs. Decreased induction of autophagy in Sirt1−/− mESCs was demonstrated by decreased conversion of LC3‐I to LC3‐II, lowered expression of Beclin‐1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1−/− mESCs. Increased phosphorylation of P70/85‐S6 kinase and ribosomal S6 was noted in Sirt1−/− mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus‐mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2‐induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014;32:1183–1194
AbstractList SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2 O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways.
SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014;32:1183-1194 [PUBLICATION ABSTRACT]
SIRT1, an NAD‐dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age‐related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2O2 (1 mM) induced apoptosis and autophagy in wild‐type (WT) and Sirt1−/− mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1−/−, than in WT mESCs. However, addition of 3‐methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1−/− mESCs. Decreased induction of autophagy in Sirt1−/− mESCs was demonstrated by decreased conversion of LC3‐I to LC3‐II, lowered expression of Beclin‐1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1−/− mESCs. Increased phosphorylation of P70/85‐S6 kinase and ribosomal S6 was noted in Sirt1−/− mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus‐mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2‐induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014;32:1183–1194
SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H sub(2)O sub(2) induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H sub(2)O sub(2) (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H sub(2)O sub(2) (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H sub(2)O sub(2) induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H sub(2)O sub(2) induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H sub(2)O sub(2)-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014; 32:1183-1194
SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H 2 O 2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H 2 O 2 (1mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1−/− mESCs. High concentrations of H 2 O 2 (1mM) induced more apoptosis in Sirt1−/− , than in WT mESCs. However, addition of 3-Methyladenine (3-MA), a widely used autophagy inhibitor, in combination with H 2 O 2 induced more cell death in WT than in Sirt1−/− mESCs. Decreased induction of autophagy in Sirt1−/− mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, decreased LC3 punctae and LysoTracker staining. H 2 O 2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1−/− mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1−/− mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knock-down of SIRT1 decreased H 2 O 2 -induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways.
Author Messina‐Graham, Steven
Broxmeyer, Hal E.
Ou, Xuan
Huang, Xinxin
Lee, Man Ryul
Author_xml – sequence: 1
  givenname: Xuan
  surname: Ou
  fullname: Ou, Xuan
  organization: Indiana University School of Medicine
– sequence: 2
  givenname: Man Ryul
  surname: Lee
  fullname: Lee, Man Ryul
  organization: Indiana University School of Medicine
– sequence: 3
  givenname: Xinxin
  surname: Huang
  fullname: Huang, Xinxin
  organization: Indiana University School of Medicine
– sequence: 4
  givenname: Steven
  surname: Messina‐Graham
  fullname: Messina‐Graham, Steven
  organization: Indiana University School of Medicine
– sequence: 5
  givenname: Hal E.
  surname: Broxmeyer
  fullname: Broxmeyer, Hal E.
  organization: Indiana University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24449278$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEUhoNU7Ide-Ack4I1eTJtkkpnJjVCWbS20VLrb65BJzuymzCRrMlPdf9-sW4sKXiVwHh7ec95jdOCDB4TeU3JKCWFnaYThlFacvkJHVHBZcEmbg_wnVVUIIuUhOk7pgRDKRdO8QYeMcy5Z3RyhYXF1t6T4W0hudI_Qb_EdrKZej5Dw-TSGzVqvtlh7i2_cGMw6eBudxheTN6MLHjuP50Mbt8E7gxc5B55B3yd87y1EfPvTWb3z5lGElN6i153uE7x7fk_Q_cV8OftaXN9eXs3OrwsjOKOFbXRTM11bUQJprc1Zq7bmTLTCGFGTirWyoaKuSMe6qoROGmNb0QBorUsmyxP0Ze_dTO0A1oAfo-7VJrpBx60K2qm_J96t1So8qlJKWldlFnx6FsTwfYI0qsElkzfTHsKUFBWMZzYnyOjHf9CHMEWf18sUrbkQ-eqZ-rynTAwpRehewlCidiWqXYlqV2JmP_yZ_oX83VoGzvbAD9fD9v8mtVjOb34pnwDq16p1
CitedBy_id crossref_primary_10_1089_ars_2017_7145
crossref_primary_10_1093_biolre_ioad168
crossref_primary_10_1007_s13105_024_01032_z
crossref_primary_10_1038_s41598_024_62740_6
crossref_primary_10_1038_s41419_020_2246_1
crossref_primary_10_1177_1535370218759636
crossref_primary_10_1016_j_ijrobp_2019_02_048
crossref_primary_10_1038_s41467_021_26125_x
crossref_primary_10_4103_1673_5374_291382
crossref_primary_10_1111_jcmm_15598
crossref_primary_10_1134_S0006297920100053
crossref_primary_10_1007_s13238_016_0257_6
crossref_primary_10_3390_nu12051344
crossref_primary_10_3389_fcell_2020_00047
crossref_primary_10_1007_s12035_019_1483_8
crossref_primary_10_1016_j_jmb_2020_01_020
crossref_primary_10_1016_j_jnutbio_2019_03_014
crossref_primary_10_1242_dev_107086
crossref_primary_10_3389_fcell_2021_714370
crossref_primary_10_1016_j_crphys_2021_03_002
crossref_primary_10_1101_cshperspect_a026831
crossref_primary_10_1155_2022_5668226
crossref_primary_10_1016_j_lfs_2020_118789
crossref_primary_10_1172_JCI75803
crossref_primary_10_1038_s41419_018_1187_4
crossref_primary_10_1111_andr_12462
crossref_primary_10_1016_j_bbagen_2016_09_008
crossref_primary_10_1586_14737175_2015_1058160
crossref_primary_10_1038_s12276_019_0302_7
crossref_primary_10_29014_ns_2018_13
crossref_primary_10_3389_fonc_2021_700947
crossref_primary_10_1186_s12986_021_00540_9
crossref_primary_10_3390_nu15132851
crossref_primary_10_1016_j_bbcan_2018_07_008
crossref_primary_10_1155_2015_875961
crossref_primary_10_1016_j_cytogfr_2014_06_008
crossref_primary_10_1016_j_chemosphere_2023_138714
crossref_primary_10_1097_ALN_0000000000000568
crossref_primary_10_3390_cancers14235812
crossref_primary_10_1089_ars_2023_0241
crossref_primary_10_1111_brv_12464
crossref_primary_10_1515_hsz_2021_0139
crossref_primary_10_1016_j_bbrc_2015_09_080
crossref_primary_10_1016_j_canlet_2018_03_024
crossref_primary_10_1080_14728222_2019_1570499
crossref_primary_10_3164_jcbn_15_3
crossref_primary_10_1016_j_lfs_2022_120870
crossref_primary_10_1111_ajt_14586
crossref_primary_10_1007_s10571_020_00786_6
crossref_primary_10_1007_s00210_024_03026_6
crossref_primary_10_14348_molcells_2016_2318
crossref_primary_10_4049_jimmunol_1500326
crossref_primary_10_1038_s41598_023_44134_2
crossref_primary_10_3390_bioengineering10070871
crossref_primary_10_3390_biomedicines9010005
crossref_primary_10_1016_j_yexcr_2017_01_021
crossref_primary_10_1038_s41467_023_41351_1
crossref_primary_10_3389_fphar_2017_00954
crossref_primary_10_1155_2022_7904845
crossref_primary_10_1089_ars_2019_8013
crossref_primary_10_1111_bcp_12804
crossref_primary_10_1021_acschemneuro_1c00198
crossref_primary_10_1002_jcp_26302
crossref_primary_10_3390_biom11071002
crossref_primary_10_4252_wjsc_v13_i12_1928
crossref_primary_10_3390_antiox9040327
crossref_primary_10_1186_s40104_016_0093_9
crossref_primary_10_1186_s12864_018_4657_2
crossref_primary_10_1136_bmjgast_2020_000381
crossref_primary_10_1111_and_13456
crossref_primary_10_3748_wjg_v21_i6_1765
crossref_primary_10_1038_s41419_017_0167_4
crossref_primary_10_1177_1010428317708532
crossref_primary_10_1080_15548627_2021_2007027
crossref_primary_10_1016_j_canlet_2016_03_010
crossref_primary_10_1097_MOH_0000000000000152
crossref_primary_10_1016_j_redox_2019_101356
crossref_primary_10_1159_000528011
crossref_primary_10_18632_oncotarget_17189
crossref_primary_10_3389_fnagi_2022_881239
crossref_primary_10_3390_cells10030660
crossref_primary_10_1155_2022_2849985
crossref_primary_10_3390_nu13072197
crossref_primary_10_5812_zjrms_132725
crossref_primary_10_1016_j_cca_2014_07_019
crossref_primary_10_1136_jim_2019_001258
crossref_primary_10_1016_j_biopha_2023_115942
crossref_primary_10_1071_RD18162
crossref_primary_10_2174_0929867327999201116194634
crossref_primary_10_1038_nrd4391
crossref_primary_10_1007_s12079_018_0454_6
crossref_primary_10_1016_j_neuroscience_2019_05_035
crossref_primary_10_3390_molecules22010030
crossref_primary_10_5483_BMBRep_2018_51_10_172
crossref_primary_10_1002_1878_0261_12067
crossref_primary_10_1016_j_ijbiomac_2022_02_005
crossref_primary_10_4103_1673_5374_179032
crossref_primary_10_2147_DMSO_S276184
crossref_primary_10_1111_1440_1681_12649
crossref_primary_10_1155_2019_6740616
crossref_primary_10_1093_function_zqae004
crossref_primary_10_2174_1871530320666201029143606
crossref_primary_10_1002_jcsm_12393
crossref_primary_10_1016_j_taap_2016_11_012
crossref_primary_10_3390_jpm11090905
crossref_primary_10_1002_jcp_29204
crossref_primary_10_1016_j_phymed_2022_154094
crossref_primary_10_3390_cells11182921
crossref_primary_10_1186_s12986_021_00554_3
crossref_primary_10_3390_antiox10060973
crossref_primary_10_1177_0300060519869459
crossref_primary_10_1016_j_mvr_2022_104380
crossref_primary_10_1038_s41420_021_00438_8
crossref_primary_10_3390_ijms25020718
crossref_primary_10_3390_ijms19072127
crossref_primary_10_3923_ijp_2021_169_179
crossref_primary_10_3390_ijms232112889
crossref_primary_10_1016_j_tcb_2022_04_001
crossref_primary_10_1155_2021_9934646
crossref_primary_10_3390_ijms20102415
crossref_primary_10_3233_JAD_230600
crossref_primary_10_1038_srep07456
crossref_primary_10_3390_nu14235101
crossref_primary_10_1111_jpi_12534
crossref_primary_10_1007_s12035_018_0923_1
crossref_primary_10_1016_j_mce_2017_03_031
crossref_primary_10_1371_journal_pone_0103724
crossref_primary_10_1016_j_bbadis_2023_166806
crossref_primary_10_3892_mmr_2015_3322
crossref_primary_10_1080_21691401_2018_1494183
crossref_primary_10_3389_fneur_2019_01289
crossref_primary_10_1016_j_yexcr_2020_112421
crossref_primary_10_1186_s13287_018_1060_5
crossref_primary_10_1016_j_mad_2019_111194
crossref_primary_10_1007_s00204_023_03540_1
crossref_primary_10_1007_s11055_023_01379_8
crossref_primary_10_5812_ijpr_136952
crossref_primary_10_15252_embj_201488278
crossref_primary_10_1016_j_bbadis_2022_166412
crossref_primary_10_1016_j_intimp_2024_112111
crossref_primary_10_1016_j_biochi_2019_12_001
crossref_primary_10_1016_j_jneuroim_2018_06_018
crossref_primary_10_1186_s13578_019_0327_6
crossref_primary_10_1016_j_micpath_2023_106181
crossref_primary_10_1016_j_bbadis_2023_166912
crossref_primary_10_1186_s13568_020_01105_4
crossref_primary_10_1371_journal_pone_0197934
crossref_primary_10_4103_1673_5374_389624
crossref_primary_10_1186_s12986_018_0306_7
crossref_primary_10_1016_j_cellsig_2022_110502
crossref_primary_10_1007_s00210_023_02520_7
crossref_primary_10_1016_j_freeradbiomed_2020_02_012
crossref_primary_10_1016_j_amjms_2018_04_010
crossref_primary_10_3892_mmr_2017_8012
crossref_primary_10_1016_j_bcp_2017_02_008
crossref_primary_10_1016_j_phrs_2018_01_022
crossref_primary_10_1186_s43141_022_00430_4
crossref_primary_10_1038_srep36481
crossref_primary_10_1016_j_tem_2018_12_002
crossref_primary_10_1016_j_theriogenology_2020_04_036
crossref_primary_10_1111_jam_14264
crossref_primary_10_3390_cancers12051348
crossref_primary_10_1016_j_ygeno_2023_110750
crossref_primary_10_1371_journal_pone_0180344
crossref_primary_10_1155_2020_8865611
crossref_primary_10_1111_acel_12446
crossref_primary_10_1038_srep26322
crossref_primary_10_1080_10408398_2022_2050349
crossref_primary_10_1186_s40779_022_00385_0
crossref_primary_10_1016_j_bbrc_2015_07_098
crossref_primary_10_3389_fimmu_2023_1273570
crossref_primary_10_1186_s13048_024_01427_y
crossref_primary_10_3892_ijmm_2019_4185
crossref_primary_10_1097_FJC_0000000000001154
crossref_primary_10_1016_j_repbio_2017_09_002
crossref_primary_10_2174_1874467215666220510112118
crossref_primary_10_1186_s40478_024_01743_w
crossref_primary_10_1016_j_canlet_2015_02_009
crossref_primary_10_1021_acs_analchem_2c04380
crossref_primary_10_1093_nutrit_nuy037
crossref_primary_10_1038_tp_2016_179
crossref_primary_10_1186_s13293_023_00500_3
crossref_primary_10_3390_antiox13070800
crossref_primary_10_1016_j_gene_2019_04_040
crossref_primary_10_2337_db18_1367
crossref_primary_10_3390_molecules27082568
crossref_primary_10_3390_ijms23158811
crossref_primary_10_3390_ijms232314520
crossref_primary_10_1016_j_livres_2018_09_002
crossref_primary_10_1155_2021_5583215
crossref_primary_10_1016_j_biopha_2021_111590
crossref_primary_10_1089_ars_2020_8040
crossref_primary_10_18632_oncotarget_20747
crossref_primary_10_1016_j_freeradbiomed_2023_08_018
crossref_primary_10_1002_biof_1674
crossref_primary_10_1016_j_cryobiol_2020_02_014
crossref_primary_10_1016_j_jare_2024_02_011
crossref_primary_10_1038_s12276_021_00611_0
crossref_primary_10_1080_01443615_2022_2091924
crossref_primary_10_3390_antiox13050525
crossref_primary_10_1111_imm_13160
crossref_primary_10_1667_RADE_20_00273_1
crossref_primary_10_1002_cbin_10610
crossref_primary_10_1002_tox_23134
crossref_primary_10_1111_febs_14826
crossref_primary_10_1002_cbin_11271
crossref_primary_10_1016_j_clnesp_2022_09_001
crossref_primary_10_1042_BST20170121
crossref_primary_10_1016_j_ijbiomac_2018_05_174
crossref_primary_10_3389_fnagi_2014_00027
crossref_primary_10_1016_j_preteyeres_2015_03_002
crossref_primary_10_3389_fonc_2022_924290
crossref_primary_10_1631_jzus_B1900148
crossref_primary_10_1038_srep06666
crossref_primary_10_1039_C9RA01683J
crossref_primary_10_1167_iovs_61_4_21
crossref_primary_10_1155_2021_7207692
crossref_primary_10_1016_j_nut_2018_01_017
crossref_primary_10_1016_j_stemcr_2017_06_001
crossref_primary_10_18632_oncotarget_6076
crossref_primary_10_1155_2020_5915481
crossref_primary_10_1016_j_cryobiol_2019_05_008
crossref_primary_10_1007_s12975_020_00828_7
crossref_primary_10_1155_2017_9209127
crossref_primary_10_1038_s41598_017_06721_y
crossref_primary_10_2174_0115734099258321231003161602
crossref_primary_10_1016_j_rbmo_2021_12_003
crossref_primary_10_1007_s11010_016_2702_5
crossref_primary_10_1038_srep42394
crossref_primary_10_1016_j_pestbp_2021_104883
crossref_primary_10_1038_s41598_019_44382_1
crossref_primary_10_1007_s12975_018_0642_y
crossref_primary_10_1080_15548627_2021_1984656
crossref_primary_10_1080_10253890_2018_1501022
crossref_primary_10_3390_ijms24054306
crossref_primary_10_3389_fcvm_2020_00028
crossref_primary_10_3389_fphys_2019_01224
crossref_primary_10_1016_j_mad_2020_111215
crossref_primary_10_1002_jcp_29182
crossref_primary_10_1371_journal_pone_0124636
crossref_primary_10_3892_mmr_2017_7804
crossref_primary_10_1111_1440_1681_13207
crossref_primary_10_1016_j_brainres_2023_148536
crossref_primary_10_1155_2019_4067162
crossref_primary_10_3892_mmr_2019_9974
crossref_primary_10_1002_jcp_24969
Cites_doi 10.1038/sj.emboj.7601623
10.1042/BJ20111451
10.1172/JCI41376
10.1074/jbc.M110.102574
10.1056/NEJMra1205406
10.1016/j.semcdb.2010.03.002
10.1038/nrd3802
10.1172/JCI46243
10.1038/sj.cdd.4402233
10.1038/nm.2559
10.1038/sj.emboj.7601633
10.1016/j.neures.2012.03.005
10.1089/scd.2010.0465
10.4161/oxim.3.3.12106
10.1182/blood-2010-03-273011
10.1093/toxsci/kfp101
10.1167/iovs.10-5278
10.1016/S0076-6879(08)04007-X
10.1161/CIRCRESAHA.110.227371
10.1038/ncb0910-813
10.1172/JCI26185
10.4161/auto.7.2.14212
10.1016/S0092-8674(02)00680-3
10.1016/j.cell.2007.12.018
10.1126/science.1099993
10.1038/nature06261
10.1002/emmm.201201606
10.1371/journal.pone.0009199
10.1016/j.stem.2008.01.002
10.1097/MOH.0b013e3283043819
10.1016/j.bmc.2007.10.033
10.1146/annurev.pathol.4.110807.092250
10.1038/15458
10.1159/000328516
10.1073/pnas.0712145105
10.1242/jcs.064576
10.1016/j.cell.2006.05.034
10.3389/fncel.2012.00063
10.1002/stem.490
10.1242/dev.00933
10.1007/s00018-008-8357-y
10.1093/toxsci/kfm040
10.1038/nature07813
10.1158/0008-5472.CAN-09-3537
10.4161/cc.7.18.6517
ContentType Journal Article
Copyright 2014 AlphaMed Press
2014 AlphaMed Press.
Copyright_xml – notice: 2014 AlphaMed Press
– notice: 2014 AlphaMed Press.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
5PM
DOI 10.1002/stem.1641
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Genetics Abstracts

Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-4918
EndPage 1194
ExternalDocumentID 3278895301
10_1002_stem_1641
24449278
STEM1641
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01 HL056416 ; R01 HL67384 ; R01 HL112669 ; P01 DK090948
– fundername: NHLBI NIH HHS
  grantid: R01 HL067384
– fundername: NIDDK NIH HHS
  grantid: U54 DK106846
– fundername: NHLBI NIH HHS
  grantid: R01 HL056416
– fundername: NCI NIH HHS
  grantid: P30 CA082709
– fundername: NIDDK NIH HHS
  grantid: T32 DK007519
– fundername: NIDDK NIH HHS
  grantid: P30 DK090948
– fundername: NHLBI NIH HHS
  grantid: R01 HL67384
– fundername: NHLBI NIH HHS
  grantid: R01 HL112669
– fundername: NIDDK NIH HHS
  grantid: P01 DK090948
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AASNB
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
5PM
ID FETCH-LOGICAL-c5421-d8a872a7d53e0bdd4926b7425b5cc57062b9815760f2f63ef9ccdb58eeaaa3293
ISSN 1066-5099
IngestDate Tue Sep 17 21:25:38 EDT 2024
Fri Oct 25 10:58:51 EDT 2024
Thu Oct 10 16:23:26 EDT 2024
Fri Aug 23 03:25:38 EDT 2024
Tue Oct 15 23:54:00 EDT 2024
Sat Aug 24 01:13:13 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Cell culture
Oxidative stress
Sirt1
Embryonic stem cells
Autophagy
Cell signaling
Apoptosis
Language English
License 2014 AlphaMed Press.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5421-d8a872a7d53e0bdd4926b7425b5cc57062b9815760f2f63ef9ccdb58eeaaa3293
Notes Xuan Ou and Man Ryul Lee contributed equally to this article.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://academic.oup.com/stmcls/article-pdf/32/5/1183/41358700/stmcls_32_5_1183.pdf
PMID 24449278
PQID 1517455145
PQPubID 1046343
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3991763
proquest_miscellaneous_1524399760
proquest_journals_1517455145
crossref_primary_10_1002_stem_1641
pubmed_primary_24449278
wiley_primary_10_1002_stem_1641_STEM1641
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2010; 12
2012; 441
2011; 117
2010; 107
2013; 368
2008; 16
2009; 110
2008
2008; 15
1999; 23
2009; 453
2008; 7
2010; 120
2010; 285
2012; 18
2007; 97
2006; 116
2008; 2
2004; 306
2011; 19
2013; 5
2012; 11
2011; 7
2009; 458
2012; 73
2010; 21
2011; 124
2004; 131
2010; 28
2007; 450
2011; 20
2008; 65
2002; 109
2010; 70
2010; 3
2012; 6
2006; 126
2010; 5
2008; 132
2010; 51
2007; 26
2011; 121
11955444 - Cell. 2002 Apr 5;109(1):29-37
18536570 - Curr Opin Hematol. 2008 Jul;15(4):326-31
18820996 - Cell Mol Life Sci. 2008 Dec;65(24):4000-18
18046409 - Nature. 2007 Nov 29;450(7170):712-6
17341480 - Toxicol Sci. 2007 Jun;97(2):448-58
20716941 - Oxid Med Cell Longev. 2010 May-Jun;3(3):168-77
20665740 - Stem Cells. 2010 Sep;28(9):1550-9
22187934 - Biochem J. 2012 Jan 15;441(2):523-40
21127402 - Autophagy. 2011 Feb;7(2):217-28
19262508 - Nature. 2009 Apr 23;458(7241):1056-60
20947830 - Circ Res. 2010 Dec 10;107(12):1470-82
23364955 - EMBO Mol Med. 2013 Mar;5(3):430-40
18296641 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3374-9
18191218 - Cell. 2008 Jan 11;132(1):27-42
21778691 - Neurosignals. 2011;19(3):163-74
16839881 - Cell. 2006 Jul 14;126(1):121-34
22179316 - Nat Med. 2012 Jan;18(1):159-65
23293585 - Front Cell Neurosci. 2012 Dec 31;6:63
18371449 - Cell Stem Cell. 2008 Mar 6;2(3):241-51
20966168 - Blood. 2011 Jan 13;117(2):440-50
22935804 - Nat Rev Drug Discov. 2012 Sep;11(9):709-30
15528435 - Science. 2004 Nov 5;306(5698):990-5
23406030 - N Engl J Med. 2013 Feb 14;368(7):651-62
17917680 - Cell Death Differ. 2008 Jan;15(1):171-82
20223289 - Semin Cell Dev Biol. 2010 Sep;21(7):683-90
19451193 - Toxicol Sci. 2009 Aug;110(2):376-88
10545947 - Nat Genet. 1999 Nov;23(3):281-5
21083429 - Stem Cells Dev. 2011 Jul;20(7):1277-85
20811352 - Nat Cell Biol. 2010 Sep;12(9):813
20078221 - Annu Rev Pathol. 2010;5:253-95
16886061 - J Clin Invest. 2006 Aug;116(8):2161-72
17347651 - EMBO J. 2007 Apr 4;26(7):1749-60
22465415 - Neurosci Res. 2012 Jun;73(2):99-105
21187343 - J Cell Sci. 2011 Jan 15;124(Pt 2):161-70
20169165 - PLoS One. 2010;5(2):e9199
19216905 - Methods Enzymol. 2009;453:145-58
20574031 - Invest Ophthalmol Vis Sci. 2010 Nov;51(11):6030-7
17980607 - Bioorg Med Chem. 2008 Jan 15;16(2):721-31
17347648 - EMBO J. 2007 Apr 4;26(7):1913-23
18797187 - Cell Cycle. 2008 Sep 15;7(18):2821-5
14668412 - Development. 2004 Jan;131(2):275-84
21965330 - J Clin Invest. 2011 Nov;121(11):4477-90
20103647 - Cancer Res. 2010 Feb 1;70(3):1042-52
20167603 - J Biol Chem. 2010 Apr 23;285(17):13223-32
20335657 - J Clin Invest. 2010 Apr;120(4):1043-55
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 368
  start-page: 651
  year: 2013
  end-page: 662
  article-title: Autophagy in human health and disease
  publication-title: N Engl J Med
– volume: 110
  start-page: 376
  year: 2009
  end-page: 388
  article-title: Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells
  publication-title: Toxicol Sci
– volume: 306
  start-page: 990
  year: 2004
  end-page: 995
  article-title: Autophagy in health and disease: A double‐edged sword
  publication-title: Science
– volume: 5
  start-page: e9199
  year: 2010
  article-title: SIRT1 negatively regulates the mammalian target of rapamycin
  publication-title: PLoS One
– volume: 116
  start-page: 2161
  year: 2006
  end-page: 2172
  article-title: Autophagy is involved in T cell death after binding of HIV‐1 envelope proteins to CXCR4
  publication-title: J Clin Invest
– volume: 109
  start-page: 29
  year: 2002
  end-page: 37
  article-title: HoxB4 confers definitive lymphoid‐myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors
  publication-title: Cell
– volume: 20
  start-page: 1277
  year: 2011
  end-page: 1285
  article-title: SIRT1 deficiency downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen species‐induced apoptosis in mouse embryonic stem cells
  publication-title: Stem Cells Dev
– volume: 107
  start-page: 1470
  year: 2010
  end-page: 1482
  article-title: Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation‐induced autophagy in cardiac myocytes
  publication-title: Circ Res
– start-page: 3374
  year: 2008
  end-page: 3379
  article-title: A role for the NAD‐dependent deacetylase Sirt1 in the regulation of autophagy
  publication-title: Proc Natl Acad Sci USA
– volume: 51
  start-page: 6030
  year: 2010
  end-page: 6037
  article-title: Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE‐19 cells
  publication-title: Invest Ophthalmol Vis Sci
– volume: 285
  start-page: 13223
  year: 2010
  end-page: 13232
  article-title: DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
  publication-title: J Biol Chem
– volume: 19
  start-page: 163
  year: 2011
  end-page: 174
  article-title: Resveratrol‐activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease
  publication-title: Neurosignals
– volume: 450
  start-page: 712
  year: 2007
  end-page: 716
  article-title: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
  publication-title: Nature
– volume: 7
  start-page: 217
  year: 2011
  end-page: 228
  article-title: zVAD‐induced autophagic cell death requires c‐Src‐dependent ERK and JNK activation and reactive oxygen species generation
  publication-title: Autophagy
– volume: 5
  start-page: 253
  year: 2010
  end-page: 295
  article-title: Mammalian sirtuins: Biological insights and disease relevance
  publication-title: Annu Rev Pathol
– volume: 16
  start-page: 721
  year: 2008
  end-page: 731
  article-title: Eupalinin A isolated from Eupatorium chinense L. induces autophagocytosis in human leukemia HL60 cells
  publication-title: Bioorg Med Chem
– volume: 28
  start-page: 1550
  year: 2010
  end-page: 1559
  article-title: miR‐124a is important for migratory cell fate transition during gastrulation of human embryonic stem cells
  publication-title: Stem Cells
– volume: 5
  start-page: 430
  year: 2013
  end-page: 440
  article-title: SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β‐catenin
  publication-title: EMBO Mol Med
– volume: 6
  start-page: 63
  year: 2012
  article-title: SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells
  publication-title: Front Cell Neurosci
– volume: 15
  start-page: 171
  year: 2008
  end-page: 182
  article-title: Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells
  publication-title: Cell Death Differ
– volume: 2
  start-page: 241
  year: 2008
  end-page: 251
  article-title: SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization
  publication-title: Cell Stem Cell
– volume: 21
  start-page: 683
  year: 2010
  end-page: 690
  article-title: Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism
  publication-title: Semin Cell Dev Biol
– volume: 126
  start-page: 121
  year: 2006
  end-page: 134
  article-title: DRAM, a p53‐induced modulator of autophagy, is critical for apoptosis
  publication-title: Cell
– volume: 120
  start-page: 1043
  year: 2010
  end-page: 1055
  article-title: Calorie restriction enhances cell adaptation to hypoxia through Sirt1‐dependent mitochondrial autophagy in mouse aged kidney
  publication-title: J Clin Invest
– volume: 23
  start-page: 281
  year: 1999
  end-page: 285
  article-title: Diverse and dynamic functions of the Sir silencing complex
  publication-title: Nat Genet
– volume: 458
  start-page: 1056
  year: 2009
  end-page: 1060
  article-title: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
  publication-title: Nature
– volume: 453
  start-page: 145
  year: 2009
  end-page: 158
  article-title: Live‐cell imaging of autophagy induction and autophagosome‐lysosome fusion in primary cultured neurons
  publication-title: Methods Enzymol
– volume: 65
  start-page: 4000
  year: 2008
  end-page: 4018
  article-title: Biological and potential therapeutic roles of sirtuin deacetylases
  publication-title: Cell Mol Life Sci
– volume: 3
  start-page: 168
  year: 2010
  end-page: 177
  article-title: Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer
  publication-title: Oxid Med Cell Longev
– volume: 11
  start-page: 709
  year: 2012
  end-page: 730
  article-title: Autophagy modulation as a potential therapeutic target for diverse diseases
  publication-title: Nat Rev Drug Discov
– volume: 26
  start-page: 1749
  year: 2007
  end-page: 1760
  article-title: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
  publication-title: Embo J
– volume: 70
  start-page: 1042
  year: 2010
  end-page: 1052
  article-title: Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK‐mediated p62/SQSTM1 expression and AMPK activation
  publication-title: Cancer Res
– volume: 73
  start-page: 99
  year: 2012
  end-page: 105
  article-title: Autophagy induced by resveratrol prevents human prion protein‐mediated neurotoxicity
  publication-title: Neurosci Res
– volume: 131
  start-page: 275
  year: 2004
  end-page: 284
  article-title: Caspases function in autophagic programmed cell death in Drosophila
  publication-title: Development
– volume: 97
  start-page: 448
  year: 2007
  end-page: 458
  article-title: Inhibition of paraquat‐induced autophagy accelerates the apoptotic cell death in neuroblastoma SH‐SY5Y cells
  publication-title: Toxicol Sci
– volume: 26
  start-page: 1913
  year: 2007
  end-page: 1923
  article-title: Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC‐1alpha
  publication-title: EMBO J
– volume: 124
  start-page: 161
  year: 2011
  end-page: 170
  article-title: The regulation of autophagy—Unanswered questions
  publication-title: J Cell Sci
– volume: 12
  start-page: 813
  year: 2010
  article-title: Editorial Focusing on autophagy
  publication-title: Nat Cell Biol
– volume: 18
  start-page: 159
  year: 2012
  end-page: 165
  article-title: Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
  publication-title: Nat Med
– volume: 121
  start-page: 4477
  year: 2011
  end-page: 4490
  article-title: Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
  publication-title: J Clin Invest
– volume: 441
  start-page: 523
  year: 2012
  end-page: 540
  article-title: Autophagy, mitochondria and oxidative stress: Cross‐talk and redox signalling
  publication-title: Biochem J
– volume: 117
  start-page: 440
  year: 2011
  end-page: 450
  article-title: SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse
  publication-title: Blood
– volume: 132
  start-page: 27
  year: 2008
  end-page: 42
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
– volume: 7
  start-page: 2821
  year: 2008
  end-page: 2825
  article-title: Sirt1, notch and stem cell “age asymmetry”
  publication-title: Cell Cycle
– volume: 15
  start-page: 326
  year: 2008
  end-page: 331
  article-title: Sirtuin 1, stem cells, aging, and stem cell aging
  publication-title: Curr Opin Hematol
– ident: e_1_2_9_41_1
  doi: 10.1038/sj.emboj.7601623
– ident: e_1_2_9_45_1
  doi: 10.1042/BJ20111451
– ident: e_1_2_9_10_1
  doi: 10.1172/JCI41376
– ident: e_1_2_9_32_1
  doi: 10.1074/jbc.M110.102574
– ident: e_1_2_9_34_1
  doi: 10.1056/NEJMra1205406
– ident: e_1_2_9_37_1
  doi: 10.1016/j.semcdb.2010.03.002
– ident: e_1_2_9_2_1
  doi: 10.1038/nrd3802
– ident: e_1_2_9_26_1
  doi: 10.1172/JCI46243
– ident: e_1_2_9_15_1
  doi: 10.1038/sj.cdd.4402233
– ident: e_1_2_9_25_1
  doi: 10.1038/nm.2559
– ident: e_1_2_9_9_1
  doi: 10.1038/sj.emboj.7601633
– ident: e_1_2_9_35_1
  doi: 10.1016/j.neures.2012.03.005
– ident: e_1_2_9_7_1
  doi: 10.1089/scd.2010.0465
– ident: e_1_2_9_14_1
  doi: 10.4161/oxim.3.3.12106
– ident: e_1_2_9_6_1
  doi: 10.1182/blood-2010-03-273011
– ident: e_1_2_9_16_1
  doi: 10.1093/toxsci/kfp101
– ident: e_1_2_9_22_1
  doi: 10.1167/iovs.10-5278
– ident: e_1_2_9_21_1
  doi: 10.1016/S0076-6879(08)04007-X
– ident: e_1_2_9_12_1
  doi: 10.1161/CIRCRESAHA.110.227371
– ident: e_1_2_9_4_1
  doi: 10.1038/ncb0910-813
– ident: e_1_2_9_39_1
  doi: 10.1172/JCI26185
– ident: e_1_2_9_42_1
  doi: 10.4161/auto.7.2.14212
– ident: e_1_2_9_19_1
  doi: 10.1016/S0092-8674(02)00680-3
– ident: e_1_2_9_33_1
  doi: 10.1016/j.cell.2007.12.018
– ident: e_1_2_9_23_1
  doi: 10.1126/science.1099993
– ident: e_1_2_9_29_1
  doi: 10.1038/nature06261
– ident: e_1_2_9_46_1
  doi: 10.1002/emmm.201201606
– ident: e_1_2_9_27_1
  doi: 10.1371/journal.pone.0009199
– ident: e_1_2_9_18_1
  doi: 10.1016/j.stem.2008.01.002
– ident: e_1_2_9_30_1
  doi: 10.1097/MOH.0b013e3283043819
– ident: e_1_2_9_44_1
  doi: 10.1016/j.bmc.2007.10.033
– ident: e_1_2_9_5_1
  doi: 10.1146/annurev.pathol.4.110807.092250
– ident: e_1_2_9_31_1
  doi: 10.1038/15458
– ident: e_1_2_9_36_1
  doi: 10.1159/000328516
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.0712145105
– ident: e_1_2_9_3_1
  doi: 10.1242/jcs.064576
– ident: e_1_2_9_40_1
  doi: 10.1016/j.cell.2006.05.034
– ident: e_1_2_9_17_1
  doi: 10.3389/fncel.2012.00063
– ident: e_1_2_9_20_1
  doi: 10.1002/stem.490
– ident: e_1_2_9_38_1
  doi: 10.1242/dev.00933
– ident: e_1_2_9_28_1
  doi: 10.1007/s00018-008-8357-y
– ident: e_1_2_9_24_1
  doi: 10.1093/toxsci/kfm040
– ident: e_1_2_9_8_1
  doi: 10.1038/nature07813
– ident: e_1_2_9_13_1
  doi: 10.1158/0008-5472.CAN-09-3537
– ident: e_1_2_9_43_1
  doi: 10.4161/cc.7.18.6517
SSID ssj0014588
Score 2.6058943
Snippet SIRT1, an NAD‐dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been...
SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1183
SubjectTerms Adenine - analogs & derivatives
Adenine - pharmacology
Animals
Apoptosis
Apoptosis - drug effects
Apoptosis - genetics
Apoptosis - physiology
Apoptosis Regulatory Proteins - metabolism
Autophagy
Autophagy - drug effects
Autophagy - genetics
Autophagy - physiology
Beclin-1
Blotting, Western
Cell culture
Cell Line
Cell signaling
Cells, Cultured
Embryonic stem cells
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Humans
Hydrogen Peroxide - pharmacology
Membrane Potential, Mitochondrial - drug effects
Membrane Potential, Mitochondrial - genetics
Membrane Potential, Mitochondrial - physiology
Mice, Knockout
Microscopy, Confocal
Mitochondria - metabolism
Mitochondria - physiology
Oxidants - pharmacology
Oxidative stress
Oxidative Stress - drug effects
Oxidative Stress - physiology
Phosphatidylinositol 3-Kinases - metabolism
Reactive Oxygen Species - metabolism
RNA Interference
Signal Transduction - drug effects
Sirt1
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Stem cells
TOR Serine-Threonine Kinases - metabolism
Title SIRT1 Positively Regulates Autophagy and Mitochondria Function in Embryonic Stem Cells Under Oxidative Stress
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.1641
https://www.ncbi.nlm.nih.gov/pubmed/24449278
https://www.proquest.com/docview/1517455145
https://search.proquest.com/docview/1524399760
https://pubmed.ncbi.nlm.nih.gov/PMC3991763
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx2AvY99N1w1t7GEQ3FmyHduPpU1JN7LCkkLejGTL1JA4o42h6V-0P3N3siw7ZIVuLyZYhyLrfroP6XRHyOfQiwEVMnJUHMaOn3uZEw3j1BHMD3gGTHcV3kae_BiOL_1v82De6_3uRC1Va3mU3v31Xsn_cBXeAV_xluw_cNZ2Ci_gN_AXnsBheD6Ix9PznzOG9XZ1ANACzWldWV7dDI4rzBggTHqlCaxbkHNlBoManIEqa0IcR0t5vdFFcKZrtRycqMUCI2YwwcTFbZHVWcGnaxunYcxYTZxqYrBQT8XGBOFfXBWr7s5thS_n1U7czwQPDjZtTOK4MtvW86K8LSz1BGN0S2EDMtpr3XUxtu6WBfPbAEEjZcHOccBSqYejjOT1sdydEcZGNLdbn-3ht5az4BZ5HZ3NWF0peUcf1PllMSX2EfiFrFV6zUG_JQruJdPKfjobTbDpEXnMQaRh8ODp-Xd7XoX3ffW5uvmwJoeVy7_aXrctnx13Zjcqt-staXNn9pw8M34KPa5B94L0VPmSPKkrl25ekaWGHm2hRy30qIUeBejRLvRoAz1alNRCjyKaqIYe1dCjFnq0ht5rcnk2mp2MHVO5w0kDnzMni0QUchHCYleuzDLMSilDUA8ySNMgdIdcxhEDV9fNeT70VB6naSaDSCkhhAcW6BuyV65KtU8oi3IuPS8P3Uz5YDwJT_Eg44HKuEzB3u2TT82sJr_qBC1JnYqbJzj1CU59nxw2852Y9XuTMEzSjg4D9PHRNoN0xeUjSrWqkIajww4D7ZO3NXvsv4BhDN8VRn0SbjHOEmDm9u2WsrjSGdyhSwaKvU--aBbfP_Ckwd3Bw0nfkaftojske-vrSr0Hy3ktP2jQ_gHzU8M5
link.rule.ids 230,315,783,787,888,27938,27939
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT1+Positively+Regulates+Autophagy+and+Mitochondria+Function+in+Embryonic+Stem+Cells+Under+Oxidative+Stress&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Ou%2C+Xuan&rft.au=Lee%2C+Man+Ryul&rft.au=Huang%2C+Xinxin&rft.au=Messina%E2%80%90Graham%2C+Steven&rft.date=2014-05-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=32&rft.issue=5&rft.spage=1183&rft.epage=1194&rft_id=info:doi/10.1002%2Fstem.1641&rft.externalDBID=10.1002%252Fstem.1641&rft.externalDocID=STEM1641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon