SIRT1 Positively Regulates Autophagy and Mitochondria Function in Embryonic Stem Cells Under Oxidative Stress
SIRT1, an NAD‐dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age‐related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidativ...
Saved in:
Published in | Stem cells (Dayton, Ohio) Vol. 32; no. 5; pp. 1183 - 1194 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SIRT1, an NAD‐dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age‐related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2O2 (1 mM) induced apoptosis and autophagy in wild‐type (WT) and Sirt1−/− mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1−/−, than in WT mESCs. However, addition of 3‐methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1−/− mESCs. Decreased induction of autophagy in Sirt1−/− mESCs was demonstrated by decreased conversion of LC3‐I to LC3‐II, lowered expression of Beclin‐1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1−/− mESCs. Increased phosphorylation of P70/85‐S6 kinase and ribosomal S6 was noted in Sirt1−/− mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus‐mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2‐induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014;32:1183–1194 |
---|---|
AbstractList | SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2 O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014;32:1183-1194 [PUBLICATION ABSTRACT] SIRT1, an NAD‐dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age‐related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2O2 (1 mM) induced apoptosis and autophagy in wild‐type (WT) and Sirt1−/− mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1−/−, than in WT mESCs. However, addition of 3‐methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1−/− mESCs. Decreased induction of autophagy in Sirt1−/− mESCs was demonstrated by decreased conversion of LC3‐I to LC3‐II, lowered expression of Beclin‐1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1−/− mESCs. Increased phosphorylation of P70/85‐S6 kinase and ribosomal S6 was noted in Sirt1−/− mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus‐mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2‐induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014;32:1183–1194 SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H sub(2)O sub(2) induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H sub(2)O sub(2) (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H sub(2)O sub(2) (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H sub(2)O sub(2) induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H sub(2)O sub(2) induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H sub(2)O sub(2)-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014; 32:1183-1194 SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H 2 O 2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H 2 O 2 (1mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1−/− mESCs. High concentrations of H 2 O 2 (1mM) induced more apoptosis in Sirt1−/− , than in WT mESCs. However, addition of 3-Methyladenine (3-MA), a widely used autophagy inhibitor, in combination with H 2 O 2 induced more cell death in WT than in Sirt1−/− mESCs. Decreased induction of autophagy in Sirt1−/− mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, decreased LC3 punctae and LysoTracker staining. H 2 O 2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1−/− mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1−/− mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knock-down of SIRT1 decreased H 2 O 2 -induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. |
Author | Messina‐Graham, Steven Broxmeyer, Hal E. Ou, Xuan Huang, Xinxin Lee, Man Ryul |
Author_xml | – sequence: 1 givenname: Xuan surname: Ou fullname: Ou, Xuan organization: Indiana University School of Medicine – sequence: 2 givenname: Man Ryul surname: Lee fullname: Lee, Man Ryul organization: Indiana University School of Medicine – sequence: 3 givenname: Xinxin surname: Huang fullname: Huang, Xinxin organization: Indiana University School of Medicine – sequence: 4 givenname: Steven surname: Messina‐Graham fullname: Messina‐Graham, Steven organization: Indiana University School of Medicine – sequence: 5 givenname: Hal E. surname: Broxmeyer fullname: Broxmeyer, Hal E. organization: Indiana University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24449278$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1rFDEUhoNU7Ide-Ack4I1eTJtkkpnJjVCWbS20VLrb65BJzuymzCRrMlPdf9-sW4sKXiVwHh7ec95jdOCDB4TeU3JKCWFnaYThlFacvkJHVHBZcEmbg_wnVVUIIuUhOk7pgRDKRdO8QYeMcy5Z3RyhYXF1t6T4W0hudI_Qb_EdrKZej5Dw-TSGzVqvtlh7i2_cGMw6eBudxheTN6MLHjuP50Mbt8E7gxc5B55B3yd87y1EfPvTWb3z5lGElN6i153uE7x7fk_Q_cV8OftaXN9eXs3OrwsjOKOFbXRTM11bUQJprc1Zq7bmTLTCGFGTirWyoaKuSMe6qoROGmNb0QBorUsmyxP0Ze_dTO0A1oAfo-7VJrpBx60K2qm_J96t1So8qlJKWldlFnx6FsTwfYI0qsElkzfTHsKUFBWMZzYnyOjHf9CHMEWf18sUrbkQ-eqZ-rynTAwpRehewlCidiWqXYlqV2JmP_yZ_oX83VoGzvbAD9fD9v8mtVjOb34pnwDq16p1 |
CitedBy_id | crossref_primary_10_1089_ars_2017_7145 crossref_primary_10_1093_biolre_ioad168 crossref_primary_10_1007_s13105_024_01032_z crossref_primary_10_1038_s41598_024_62740_6 crossref_primary_10_1038_s41419_020_2246_1 crossref_primary_10_1177_1535370218759636 crossref_primary_10_1016_j_ijrobp_2019_02_048 crossref_primary_10_1038_s41467_021_26125_x crossref_primary_10_4103_1673_5374_291382 crossref_primary_10_1111_jcmm_15598 crossref_primary_10_1134_S0006297920100053 crossref_primary_10_1007_s13238_016_0257_6 crossref_primary_10_3390_nu12051344 crossref_primary_10_3389_fcell_2020_00047 crossref_primary_10_1007_s12035_019_1483_8 crossref_primary_10_1016_j_jmb_2020_01_020 crossref_primary_10_1016_j_jnutbio_2019_03_014 crossref_primary_10_1242_dev_107086 crossref_primary_10_3389_fcell_2021_714370 crossref_primary_10_1016_j_crphys_2021_03_002 crossref_primary_10_1101_cshperspect_a026831 crossref_primary_10_1155_2022_5668226 crossref_primary_10_1016_j_lfs_2020_118789 crossref_primary_10_1172_JCI75803 crossref_primary_10_1038_s41419_018_1187_4 crossref_primary_10_1111_andr_12462 crossref_primary_10_1016_j_bbagen_2016_09_008 crossref_primary_10_1586_14737175_2015_1058160 crossref_primary_10_1038_s12276_019_0302_7 crossref_primary_10_29014_ns_2018_13 crossref_primary_10_3389_fonc_2021_700947 crossref_primary_10_1186_s12986_021_00540_9 crossref_primary_10_3390_nu15132851 crossref_primary_10_1016_j_bbcan_2018_07_008 crossref_primary_10_1155_2015_875961 crossref_primary_10_1016_j_cytogfr_2014_06_008 crossref_primary_10_1016_j_chemosphere_2023_138714 crossref_primary_10_1097_ALN_0000000000000568 crossref_primary_10_3390_cancers14235812 crossref_primary_10_1089_ars_2023_0241 crossref_primary_10_1111_brv_12464 crossref_primary_10_1515_hsz_2021_0139 crossref_primary_10_1016_j_bbrc_2015_09_080 crossref_primary_10_1016_j_canlet_2018_03_024 crossref_primary_10_1080_14728222_2019_1570499 crossref_primary_10_3164_jcbn_15_3 crossref_primary_10_1016_j_lfs_2022_120870 crossref_primary_10_1111_ajt_14586 crossref_primary_10_1007_s10571_020_00786_6 crossref_primary_10_1007_s00210_024_03026_6 crossref_primary_10_14348_molcells_2016_2318 crossref_primary_10_4049_jimmunol_1500326 crossref_primary_10_1038_s41598_023_44134_2 crossref_primary_10_3390_bioengineering10070871 crossref_primary_10_3390_biomedicines9010005 crossref_primary_10_1016_j_yexcr_2017_01_021 crossref_primary_10_1038_s41467_023_41351_1 crossref_primary_10_3389_fphar_2017_00954 crossref_primary_10_1155_2022_7904845 crossref_primary_10_1089_ars_2019_8013 crossref_primary_10_1111_bcp_12804 crossref_primary_10_1021_acschemneuro_1c00198 crossref_primary_10_1002_jcp_26302 crossref_primary_10_3390_biom11071002 crossref_primary_10_4252_wjsc_v13_i12_1928 crossref_primary_10_3390_antiox9040327 crossref_primary_10_1186_s40104_016_0093_9 crossref_primary_10_1186_s12864_018_4657_2 crossref_primary_10_1136_bmjgast_2020_000381 crossref_primary_10_1111_and_13456 crossref_primary_10_3748_wjg_v21_i6_1765 crossref_primary_10_1038_s41419_017_0167_4 crossref_primary_10_1177_1010428317708532 crossref_primary_10_1080_15548627_2021_2007027 crossref_primary_10_1016_j_canlet_2016_03_010 crossref_primary_10_1097_MOH_0000000000000152 crossref_primary_10_1016_j_redox_2019_101356 crossref_primary_10_1159_000528011 crossref_primary_10_18632_oncotarget_17189 crossref_primary_10_3389_fnagi_2022_881239 crossref_primary_10_3390_cells10030660 crossref_primary_10_1155_2022_2849985 crossref_primary_10_3390_nu13072197 crossref_primary_10_5812_zjrms_132725 crossref_primary_10_1016_j_cca_2014_07_019 crossref_primary_10_1136_jim_2019_001258 crossref_primary_10_1016_j_biopha_2023_115942 crossref_primary_10_1071_RD18162 crossref_primary_10_2174_0929867327999201116194634 crossref_primary_10_1038_nrd4391 crossref_primary_10_1007_s12079_018_0454_6 crossref_primary_10_1016_j_neuroscience_2019_05_035 crossref_primary_10_3390_molecules22010030 crossref_primary_10_5483_BMBRep_2018_51_10_172 crossref_primary_10_1002_1878_0261_12067 crossref_primary_10_1016_j_ijbiomac_2022_02_005 crossref_primary_10_4103_1673_5374_179032 crossref_primary_10_2147_DMSO_S276184 crossref_primary_10_1111_1440_1681_12649 crossref_primary_10_1155_2019_6740616 crossref_primary_10_1093_function_zqae004 crossref_primary_10_2174_1871530320666201029143606 crossref_primary_10_1002_jcsm_12393 crossref_primary_10_1016_j_taap_2016_11_012 crossref_primary_10_3390_jpm11090905 crossref_primary_10_1002_jcp_29204 crossref_primary_10_1016_j_phymed_2022_154094 crossref_primary_10_3390_cells11182921 crossref_primary_10_1186_s12986_021_00554_3 crossref_primary_10_3390_antiox10060973 crossref_primary_10_1177_0300060519869459 crossref_primary_10_1016_j_mvr_2022_104380 crossref_primary_10_1038_s41420_021_00438_8 crossref_primary_10_3390_ijms25020718 crossref_primary_10_3390_ijms19072127 crossref_primary_10_3923_ijp_2021_169_179 crossref_primary_10_3390_ijms232112889 crossref_primary_10_1016_j_tcb_2022_04_001 crossref_primary_10_1155_2021_9934646 crossref_primary_10_3390_ijms20102415 crossref_primary_10_3233_JAD_230600 crossref_primary_10_1038_srep07456 crossref_primary_10_3390_nu14235101 crossref_primary_10_1111_jpi_12534 crossref_primary_10_1007_s12035_018_0923_1 crossref_primary_10_1016_j_mce_2017_03_031 crossref_primary_10_1371_journal_pone_0103724 crossref_primary_10_1016_j_bbadis_2023_166806 crossref_primary_10_3892_mmr_2015_3322 crossref_primary_10_1080_21691401_2018_1494183 crossref_primary_10_3389_fneur_2019_01289 crossref_primary_10_1016_j_yexcr_2020_112421 crossref_primary_10_1186_s13287_018_1060_5 crossref_primary_10_1016_j_mad_2019_111194 crossref_primary_10_1007_s00204_023_03540_1 crossref_primary_10_1007_s11055_023_01379_8 crossref_primary_10_5812_ijpr_136952 crossref_primary_10_15252_embj_201488278 crossref_primary_10_1016_j_bbadis_2022_166412 crossref_primary_10_1016_j_intimp_2024_112111 crossref_primary_10_1016_j_biochi_2019_12_001 crossref_primary_10_1016_j_jneuroim_2018_06_018 crossref_primary_10_1186_s13578_019_0327_6 crossref_primary_10_1016_j_micpath_2023_106181 crossref_primary_10_1016_j_bbadis_2023_166912 crossref_primary_10_1186_s13568_020_01105_4 crossref_primary_10_1371_journal_pone_0197934 crossref_primary_10_4103_1673_5374_389624 crossref_primary_10_1186_s12986_018_0306_7 crossref_primary_10_1016_j_cellsig_2022_110502 crossref_primary_10_1007_s00210_023_02520_7 crossref_primary_10_1016_j_freeradbiomed_2020_02_012 crossref_primary_10_1016_j_amjms_2018_04_010 crossref_primary_10_3892_mmr_2017_8012 crossref_primary_10_1016_j_bcp_2017_02_008 crossref_primary_10_1016_j_phrs_2018_01_022 crossref_primary_10_1186_s43141_022_00430_4 crossref_primary_10_1038_srep36481 crossref_primary_10_1016_j_tem_2018_12_002 crossref_primary_10_1016_j_theriogenology_2020_04_036 crossref_primary_10_1111_jam_14264 crossref_primary_10_3390_cancers12051348 crossref_primary_10_1016_j_ygeno_2023_110750 crossref_primary_10_1371_journal_pone_0180344 crossref_primary_10_1155_2020_8865611 crossref_primary_10_1111_acel_12446 crossref_primary_10_1038_srep26322 crossref_primary_10_1080_10408398_2022_2050349 crossref_primary_10_1186_s40779_022_00385_0 crossref_primary_10_1016_j_bbrc_2015_07_098 crossref_primary_10_3389_fimmu_2023_1273570 crossref_primary_10_1186_s13048_024_01427_y crossref_primary_10_3892_ijmm_2019_4185 crossref_primary_10_1097_FJC_0000000000001154 crossref_primary_10_1016_j_repbio_2017_09_002 crossref_primary_10_2174_1874467215666220510112118 crossref_primary_10_1186_s40478_024_01743_w crossref_primary_10_1016_j_canlet_2015_02_009 crossref_primary_10_1021_acs_analchem_2c04380 crossref_primary_10_1093_nutrit_nuy037 crossref_primary_10_1038_tp_2016_179 crossref_primary_10_1186_s13293_023_00500_3 crossref_primary_10_3390_antiox13070800 crossref_primary_10_1016_j_gene_2019_04_040 crossref_primary_10_2337_db18_1367 crossref_primary_10_3390_molecules27082568 crossref_primary_10_3390_ijms23158811 crossref_primary_10_3390_ijms232314520 crossref_primary_10_1016_j_livres_2018_09_002 crossref_primary_10_1155_2021_5583215 crossref_primary_10_1016_j_biopha_2021_111590 crossref_primary_10_1089_ars_2020_8040 crossref_primary_10_18632_oncotarget_20747 crossref_primary_10_1016_j_freeradbiomed_2023_08_018 crossref_primary_10_1002_biof_1674 crossref_primary_10_1016_j_cryobiol_2020_02_014 crossref_primary_10_1016_j_jare_2024_02_011 crossref_primary_10_1038_s12276_021_00611_0 crossref_primary_10_1080_01443615_2022_2091924 crossref_primary_10_3390_antiox13050525 crossref_primary_10_1111_imm_13160 crossref_primary_10_1667_RADE_20_00273_1 crossref_primary_10_1002_cbin_10610 crossref_primary_10_1002_tox_23134 crossref_primary_10_1111_febs_14826 crossref_primary_10_1002_cbin_11271 crossref_primary_10_1016_j_clnesp_2022_09_001 crossref_primary_10_1042_BST20170121 crossref_primary_10_1016_j_ijbiomac_2018_05_174 crossref_primary_10_3389_fnagi_2014_00027 crossref_primary_10_1016_j_preteyeres_2015_03_002 crossref_primary_10_3389_fonc_2022_924290 crossref_primary_10_1631_jzus_B1900148 crossref_primary_10_1038_srep06666 crossref_primary_10_1039_C9RA01683J crossref_primary_10_1167_iovs_61_4_21 crossref_primary_10_1155_2021_7207692 crossref_primary_10_1016_j_nut_2018_01_017 crossref_primary_10_1016_j_stemcr_2017_06_001 crossref_primary_10_18632_oncotarget_6076 crossref_primary_10_1155_2020_5915481 crossref_primary_10_1016_j_cryobiol_2019_05_008 crossref_primary_10_1007_s12975_020_00828_7 crossref_primary_10_1155_2017_9209127 crossref_primary_10_1038_s41598_017_06721_y crossref_primary_10_2174_0115734099258321231003161602 crossref_primary_10_1016_j_rbmo_2021_12_003 crossref_primary_10_1007_s11010_016_2702_5 crossref_primary_10_1038_srep42394 crossref_primary_10_1016_j_pestbp_2021_104883 crossref_primary_10_1038_s41598_019_44382_1 crossref_primary_10_1007_s12975_018_0642_y crossref_primary_10_1080_15548627_2021_1984656 crossref_primary_10_1080_10253890_2018_1501022 crossref_primary_10_3390_ijms24054306 crossref_primary_10_3389_fcvm_2020_00028 crossref_primary_10_3389_fphys_2019_01224 crossref_primary_10_1016_j_mad_2020_111215 crossref_primary_10_1002_jcp_29182 crossref_primary_10_1371_journal_pone_0124636 crossref_primary_10_3892_mmr_2017_7804 crossref_primary_10_1111_1440_1681_13207 crossref_primary_10_1016_j_brainres_2023_148536 crossref_primary_10_1155_2019_4067162 crossref_primary_10_3892_mmr_2019_9974 crossref_primary_10_1002_jcp_24969 |
Cites_doi | 10.1038/sj.emboj.7601623 10.1042/BJ20111451 10.1172/JCI41376 10.1074/jbc.M110.102574 10.1056/NEJMra1205406 10.1016/j.semcdb.2010.03.002 10.1038/nrd3802 10.1172/JCI46243 10.1038/sj.cdd.4402233 10.1038/nm.2559 10.1038/sj.emboj.7601633 10.1016/j.neures.2012.03.005 10.1089/scd.2010.0465 10.4161/oxim.3.3.12106 10.1182/blood-2010-03-273011 10.1093/toxsci/kfp101 10.1167/iovs.10-5278 10.1016/S0076-6879(08)04007-X 10.1161/CIRCRESAHA.110.227371 10.1038/ncb0910-813 10.1172/JCI26185 10.4161/auto.7.2.14212 10.1016/S0092-8674(02)00680-3 10.1016/j.cell.2007.12.018 10.1126/science.1099993 10.1038/nature06261 10.1002/emmm.201201606 10.1371/journal.pone.0009199 10.1016/j.stem.2008.01.002 10.1097/MOH.0b013e3283043819 10.1016/j.bmc.2007.10.033 10.1146/annurev.pathol.4.110807.092250 10.1038/15458 10.1159/000328516 10.1073/pnas.0712145105 10.1242/jcs.064576 10.1016/j.cell.2006.05.034 10.3389/fncel.2012.00063 10.1002/stem.490 10.1242/dev.00933 10.1007/s00018-008-8357-y 10.1093/toxsci/kfm040 10.1038/nature07813 10.1158/0008-5472.CAN-09-3537 10.4161/cc.7.18.6517 |
ContentType | Journal Article |
Copyright | 2014 AlphaMed Press 2014 AlphaMed Press. |
Copyright_xml | – notice: 2014 AlphaMed Press – notice: 2014 AlphaMed Press. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 5PM |
DOI | 10.1002/stem.1641 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1549-4918 |
EndPage | 1194 |
ExternalDocumentID | 3278895301 10_1002_stem_1641 24449278 STEM1641 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: R01 HL056416 ; R01 HL67384 ; R01 HL112669 ; P01 DK090948 – fundername: NHLBI NIH HHS grantid: R01 HL067384 – fundername: NIDDK NIH HHS grantid: U54 DK106846 – fundername: NHLBI NIH HHS grantid: R01 HL056416 – fundername: NCI NIH HHS grantid: P30 CA082709 – fundername: NIDDK NIH HHS grantid: T32 DK007519 – fundername: NIDDK NIH HHS grantid: P30 DK090948 – fundername: NHLBI NIH HHS grantid: R01 HL67384 – fundername: NHLBI NIH HHS grantid: R01 HL112669 – fundername: NIDDK NIH HHS grantid: P01 DK090948 |
GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AASNB AAUAY AAVAP AAWDT AAZKR ABCUV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 5PM |
ID | FETCH-LOGICAL-c5421-d8a872a7d53e0bdd4926b7425b5cc57062b9815760f2f63ef9ccdb58eeaaa3293 |
ISSN | 1066-5099 |
IngestDate | Tue Sep 17 21:25:38 EDT 2024 Fri Oct 25 10:58:51 EDT 2024 Thu Oct 10 16:23:26 EDT 2024 Fri Aug 23 03:25:38 EDT 2024 Tue Oct 15 23:54:00 EDT 2024 Sat Aug 24 01:13:13 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Cell culture Oxidative stress Sirt1 Embryonic stem cells Autophagy Cell signaling Apoptosis |
Language | English |
License | 2014 AlphaMed Press. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5421-d8a872a7d53e0bdd4926b7425b5cc57062b9815760f2f63ef9ccdb58eeaaa3293 |
Notes | Xuan Ou and Man Ryul Lee contributed equally to this article. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://academic.oup.com/stmcls/article-pdf/32/5/1183/41358700/stmcls_32_5_1183.pdf |
PMID | 24449278 |
PQID | 1517455145 |
PQPubID | 1046343 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3991763 proquest_miscellaneous_1524399760 proquest_journals_1517455145 crossref_primary_10_1002_stem_1641 pubmed_primary_24449278 wiley_primary_10_1002_stem_1641_STEM1641 |
PublicationCentury | 2000 |
PublicationDate | May 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Stem cells (Dayton, Ohio) |
PublicationTitleAlternate | Stem Cells |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2010; 12 2012; 441 2011; 117 2010; 107 2013; 368 2008; 16 2009; 110 2008 2008; 15 1999; 23 2009; 453 2008; 7 2010; 120 2010; 285 2012; 18 2007; 97 2006; 116 2008; 2 2004; 306 2011; 19 2013; 5 2012; 11 2011; 7 2009; 458 2012; 73 2010; 21 2011; 124 2004; 131 2010; 28 2007; 450 2011; 20 2008; 65 2002; 109 2010; 70 2010; 3 2012; 6 2006; 126 2010; 5 2008; 132 2010; 51 2007; 26 2011; 121 11955444 - Cell. 2002 Apr 5;109(1):29-37 18536570 - Curr Opin Hematol. 2008 Jul;15(4):326-31 18820996 - Cell Mol Life Sci. 2008 Dec;65(24):4000-18 18046409 - Nature. 2007 Nov 29;450(7170):712-6 17341480 - Toxicol Sci. 2007 Jun;97(2):448-58 20716941 - Oxid Med Cell Longev. 2010 May-Jun;3(3):168-77 20665740 - Stem Cells. 2010 Sep;28(9):1550-9 22187934 - Biochem J. 2012 Jan 15;441(2):523-40 21127402 - Autophagy. 2011 Feb;7(2):217-28 19262508 - Nature. 2009 Apr 23;458(7241):1056-60 20947830 - Circ Res. 2010 Dec 10;107(12):1470-82 23364955 - EMBO Mol Med. 2013 Mar;5(3):430-40 18296641 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3374-9 18191218 - Cell. 2008 Jan 11;132(1):27-42 21778691 - Neurosignals. 2011;19(3):163-74 16839881 - Cell. 2006 Jul 14;126(1):121-34 22179316 - Nat Med. 2012 Jan;18(1):159-65 23293585 - Front Cell Neurosci. 2012 Dec 31;6:63 18371449 - Cell Stem Cell. 2008 Mar 6;2(3):241-51 20966168 - Blood. 2011 Jan 13;117(2):440-50 22935804 - Nat Rev Drug Discov. 2012 Sep;11(9):709-30 15528435 - Science. 2004 Nov 5;306(5698):990-5 23406030 - N Engl J Med. 2013 Feb 14;368(7):651-62 17917680 - Cell Death Differ. 2008 Jan;15(1):171-82 20223289 - Semin Cell Dev Biol. 2010 Sep;21(7):683-90 19451193 - Toxicol Sci. 2009 Aug;110(2):376-88 10545947 - Nat Genet. 1999 Nov;23(3):281-5 21083429 - Stem Cells Dev. 2011 Jul;20(7):1277-85 20811352 - Nat Cell Biol. 2010 Sep;12(9):813 20078221 - Annu Rev Pathol. 2010;5:253-95 16886061 - J Clin Invest. 2006 Aug;116(8):2161-72 17347651 - EMBO J. 2007 Apr 4;26(7):1749-60 22465415 - Neurosci Res. 2012 Jun;73(2):99-105 21187343 - J Cell Sci. 2011 Jan 15;124(Pt 2):161-70 20169165 - PLoS One. 2010;5(2):e9199 19216905 - Methods Enzymol. 2009;453:145-58 20574031 - Invest Ophthalmol Vis Sci. 2010 Nov;51(11):6030-7 17980607 - Bioorg Med Chem. 2008 Jan 15;16(2):721-31 17347648 - EMBO J. 2007 Apr 4;26(7):1913-23 18797187 - Cell Cycle. 2008 Sep 15;7(18):2821-5 14668412 - Development. 2004 Jan;131(2):275-84 21965330 - J Clin Invest. 2011 Nov;121(11):4477-90 20103647 - Cancer Res. 2010 Feb 1;70(3):1042-52 20167603 - J Biol Chem. 2010 Apr 23;285(17):13223-32 20335657 - J Clin Invest. 2010 Apr;120(4):1043-55 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 368 start-page: 651 year: 2013 end-page: 662 article-title: Autophagy in human health and disease publication-title: N Engl J Med – volume: 110 start-page: 376 year: 2009 end-page: 388 article-title: Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells publication-title: Toxicol Sci – volume: 306 start-page: 990 year: 2004 end-page: 995 article-title: Autophagy in health and disease: A double‐edged sword publication-title: Science – volume: 5 start-page: e9199 year: 2010 article-title: SIRT1 negatively regulates the mammalian target of rapamycin publication-title: PLoS One – volume: 116 start-page: 2161 year: 2006 end-page: 2172 article-title: Autophagy is involved in T cell death after binding of HIV‐1 envelope proteins to CXCR4 publication-title: J Clin Invest – volume: 109 start-page: 29 year: 2002 end-page: 37 article-title: HoxB4 confers definitive lymphoid‐myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors publication-title: Cell – volume: 20 start-page: 1277 year: 2011 end-page: 1285 article-title: SIRT1 deficiency downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen species‐induced apoptosis in mouse embryonic stem cells publication-title: Stem Cells Dev – volume: 107 start-page: 1470 year: 2010 end-page: 1482 article-title: Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation‐induced autophagy in cardiac myocytes publication-title: Circ Res – start-page: 3374 year: 2008 end-page: 3379 article-title: A role for the NAD‐dependent deacetylase Sirt1 in the regulation of autophagy publication-title: Proc Natl Acad Sci USA – volume: 51 start-page: 6030 year: 2010 end-page: 6037 article-title: Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE‐19 cells publication-title: Invest Ophthalmol Vis Sci – volume: 285 start-page: 13223 year: 2010 end-page: 13232 article-title: DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1 publication-title: J Biol Chem – volume: 19 start-page: 163 year: 2011 end-page: 174 article-title: Resveratrol‐activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease publication-title: Neurosignals – volume: 450 start-page: 712 year: 2007 end-page: 716 article-title: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes publication-title: Nature – volume: 7 start-page: 217 year: 2011 end-page: 228 article-title: zVAD‐induced autophagic cell death requires c‐Src‐dependent ERK and JNK activation and reactive oxygen species generation publication-title: Autophagy – volume: 5 start-page: 253 year: 2010 end-page: 295 article-title: Mammalian sirtuins: Biological insights and disease relevance publication-title: Annu Rev Pathol – volume: 16 start-page: 721 year: 2008 end-page: 731 article-title: Eupalinin A isolated from Eupatorium chinense L. induces autophagocytosis in human leukemia HL60 cells publication-title: Bioorg Med Chem – volume: 28 start-page: 1550 year: 2010 end-page: 1559 article-title: miR‐124a is important for migratory cell fate transition during gastrulation of human embryonic stem cells publication-title: Stem Cells – volume: 5 start-page: 430 year: 2013 end-page: 440 article-title: SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β‐catenin publication-title: EMBO Mol Med – volume: 6 start-page: 63 year: 2012 article-title: SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells publication-title: Front Cell Neurosci – volume: 15 start-page: 171 year: 2008 end-page: 182 article-title: Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells publication-title: Cell Death Differ – volume: 2 start-page: 241 year: 2008 end-page: 251 article-title: SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization publication-title: Cell Stem Cell – volume: 21 start-page: 683 year: 2010 end-page: 690 article-title: Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism publication-title: Semin Cell Dev Biol – volume: 126 start-page: 121 year: 2006 end-page: 134 article-title: DRAM, a p53‐induced modulator of autophagy, is critical for apoptosis publication-title: Cell – volume: 120 start-page: 1043 year: 2010 end-page: 1055 article-title: Calorie restriction enhances cell adaptation to hypoxia through Sirt1‐dependent mitochondrial autophagy in mouse aged kidney publication-title: J Clin Invest – volume: 23 start-page: 281 year: 1999 end-page: 285 article-title: Diverse and dynamic functions of the Sir silencing complex publication-title: Nat Genet – volume: 458 start-page: 1056 year: 2009 end-page: 1060 article-title: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity publication-title: Nature – volume: 453 start-page: 145 year: 2009 end-page: 158 article-title: Live‐cell imaging of autophagy induction and autophagosome‐lysosome fusion in primary cultured neurons publication-title: Methods Enzymol – volume: 65 start-page: 4000 year: 2008 end-page: 4018 article-title: Biological and potential therapeutic roles of sirtuin deacetylases publication-title: Cell Mol Life Sci – volume: 3 start-page: 168 year: 2010 end-page: 177 article-title: Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer publication-title: Oxid Med Cell Longev – volume: 11 start-page: 709 year: 2012 end-page: 730 article-title: Autophagy modulation as a potential therapeutic target for diverse diseases publication-title: Nat Rev Drug Discov – volume: 26 start-page: 1749 year: 2007 end-page: 1760 article-title: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 publication-title: Embo J – volume: 70 start-page: 1042 year: 2010 end-page: 1052 article-title: Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK‐mediated p62/SQSTM1 expression and AMPK activation publication-title: Cancer Res – volume: 73 start-page: 99 year: 2012 end-page: 105 article-title: Autophagy induced by resveratrol prevents human prion protein‐mediated neurotoxicity publication-title: Neurosci Res – volume: 131 start-page: 275 year: 2004 end-page: 284 article-title: Caspases function in autophagic programmed cell death in Drosophila publication-title: Development – volume: 97 start-page: 448 year: 2007 end-page: 458 article-title: Inhibition of paraquat‐induced autophagy accelerates the apoptotic cell death in neuroblastoma SH‐SY5Y cells publication-title: Toxicol Sci – volume: 26 start-page: 1913 year: 2007 end-page: 1923 article-title: Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC‐1alpha publication-title: EMBO J – volume: 124 start-page: 161 year: 2011 end-page: 170 article-title: The regulation of autophagy—Unanswered questions publication-title: J Cell Sci – volume: 12 start-page: 813 year: 2010 article-title: Editorial Focusing on autophagy publication-title: Nat Cell Biol – volume: 18 start-page: 159 year: 2012 end-page: 165 article-title: Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway publication-title: Nat Med – volume: 121 start-page: 4477 year: 2011 end-page: 4490 article-title: Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance publication-title: J Clin Invest – volume: 441 start-page: 523 year: 2012 end-page: 540 article-title: Autophagy, mitochondria and oxidative stress: Cross‐talk and redox signalling publication-title: Biochem J – volume: 117 start-page: 440 year: 2011 end-page: 450 article-title: SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse publication-title: Blood – volume: 132 start-page: 27 year: 2008 end-page: 42 article-title: Autophagy in the pathogenesis of disease publication-title: Cell – volume: 7 start-page: 2821 year: 2008 end-page: 2825 article-title: Sirt1, notch and stem cell “age asymmetry” publication-title: Cell Cycle – volume: 15 start-page: 326 year: 2008 end-page: 331 article-title: Sirtuin 1, stem cells, aging, and stem cell aging publication-title: Curr Opin Hematol – ident: e_1_2_9_41_1 doi: 10.1038/sj.emboj.7601623 – ident: e_1_2_9_45_1 doi: 10.1042/BJ20111451 – ident: e_1_2_9_10_1 doi: 10.1172/JCI41376 – ident: e_1_2_9_32_1 doi: 10.1074/jbc.M110.102574 – ident: e_1_2_9_34_1 doi: 10.1056/NEJMra1205406 – ident: e_1_2_9_37_1 doi: 10.1016/j.semcdb.2010.03.002 – ident: e_1_2_9_2_1 doi: 10.1038/nrd3802 – ident: e_1_2_9_26_1 doi: 10.1172/JCI46243 – ident: e_1_2_9_15_1 doi: 10.1038/sj.cdd.4402233 – ident: e_1_2_9_25_1 doi: 10.1038/nm.2559 – ident: e_1_2_9_9_1 doi: 10.1038/sj.emboj.7601633 – ident: e_1_2_9_35_1 doi: 10.1016/j.neures.2012.03.005 – ident: e_1_2_9_7_1 doi: 10.1089/scd.2010.0465 – ident: e_1_2_9_14_1 doi: 10.4161/oxim.3.3.12106 – ident: e_1_2_9_6_1 doi: 10.1182/blood-2010-03-273011 – ident: e_1_2_9_16_1 doi: 10.1093/toxsci/kfp101 – ident: e_1_2_9_22_1 doi: 10.1167/iovs.10-5278 – ident: e_1_2_9_21_1 doi: 10.1016/S0076-6879(08)04007-X – ident: e_1_2_9_12_1 doi: 10.1161/CIRCRESAHA.110.227371 – ident: e_1_2_9_4_1 doi: 10.1038/ncb0910-813 – ident: e_1_2_9_39_1 doi: 10.1172/JCI26185 – ident: e_1_2_9_42_1 doi: 10.4161/auto.7.2.14212 – ident: e_1_2_9_19_1 doi: 10.1016/S0092-8674(02)00680-3 – ident: e_1_2_9_33_1 doi: 10.1016/j.cell.2007.12.018 – ident: e_1_2_9_23_1 doi: 10.1126/science.1099993 – ident: e_1_2_9_29_1 doi: 10.1038/nature06261 – ident: e_1_2_9_46_1 doi: 10.1002/emmm.201201606 – ident: e_1_2_9_27_1 doi: 10.1371/journal.pone.0009199 – ident: e_1_2_9_18_1 doi: 10.1016/j.stem.2008.01.002 – ident: e_1_2_9_30_1 doi: 10.1097/MOH.0b013e3283043819 – ident: e_1_2_9_44_1 doi: 10.1016/j.bmc.2007.10.033 – ident: e_1_2_9_5_1 doi: 10.1146/annurev.pathol.4.110807.092250 – ident: e_1_2_9_31_1 doi: 10.1038/15458 – ident: e_1_2_9_36_1 doi: 10.1159/000328516 – ident: e_1_2_9_11_1 doi: 10.1073/pnas.0712145105 – ident: e_1_2_9_3_1 doi: 10.1242/jcs.064576 – ident: e_1_2_9_40_1 doi: 10.1016/j.cell.2006.05.034 – ident: e_1_2_9_17_1 doi: 10.3389/fncel.2012.00063 – ident: e_1_2_9_20_1 doi: 10.1002/stem.490 – ident: e_1_2_9_38_1 doi: 10.1242/dev.00933 – ident: e_1_2_9_28_1 doi: 10.1007/s00018-008-8357-y – ident: e_1_2_9_24_1 doi: 10.1093/toxsci/kfm040 – ident: e_1_2_9_8_1 doi: 10.1038/nature07813 – ident: e_1_2_9_13_1 doi: 10.1158/0008-5472.CAN-09-3537 – ident: e_1_2_9_43_1 doi: 10.4161/cc.7.18.6517 |
SSID | ssj0014588 |
Score | 2.6058943 |
Snippet | SIRT1, an NAD‐dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been... SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1183 |
SubjectTerms | Adenine - analogs & derivatives Adenine - pharmacology Animals Apoptosis Apoptosis - drug effects Apoptosis - genetics Apoptosis - physiology Apoptosis Regulatory Proteins - metabolism Autophagy Autophagy - drug effects Autophagy - genetics Autophagy - physiology Beclin-1 Blotting, Western Cell culture Cell Line Cell signaling Cells, Cultured Embryonic stem cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Humans Hydrogen Peroxide - pharmacology Membrane Potential, Mitochondrial - drug effects Membrane Potential, Mitochondrial - genetics Membrane Potential, Mitochondrial - physiology Mice, Knockout Microscopy, Confocal Mitochondria - metabolism Mitochondria - physiology Oxidants - pharmacology Oxidative stress Oxidative Stress - drug effects Oxidative Stress - physiology Phosphatidylinositol 3-Kinases - metabolism Reactive Oxygen Species - metabolism RNA Interference Signal Transduction - drug effects Sirt1 Sirtuin 1 - genetics Sirtuin 1 - metabolism Stem cells TOR Serine-Threonine Kinases - metabolism |
Title | SIRT1 Positively Regulates Autophagy and Mitochondria Function in Embryonic Stem Cells Under Oxidative Stress |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.1641 https://www.ncbi.nlm.nih.gov/pubmed/24449278 https://www.proquest.com/docview/1517455145 https://search.proquest.com/docview/1524399760 https://pubmed.ncbi.nlm.nih.gov/PMC3991763 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx2AvY99N1w1t7GEQ3FmyHduPpU1JN7LCkkLejGTL1JA4o42h6V-0P3N3siw7ZIVuLyZYhyLrfroP6XRHyOfQiwEVMnJUHMaOn3uZEw3j1BHMD3gGTHcV3kae_BiOL_1v82De6_3uRC1Va3mU3v31Xsn_cBXeAV_xluw_cNZ2Ci_gN_AXnsBheD6Ix9PznzOG9XZ1ANACzWldWV7dDI4rzBggTHqlCaxbkHNlBoManIEqa0IcR0t5vdFFcKZrtRycqMUCI2YwwcTFbZHVWcGnaxunYcxYTZxqYrBQT8XGBOFfXBWr7s5thS_n1U7czwQPDjZtTOK4MtvW86K8LSz1BGN0S2EDMtpr3XUxtu6WBfPbAEEjZcHOccBSqYejjOT1sdydEcZGNLdbn-3ht5az4BZ5HZ3NWF0peUcf1PllMSX2EfiFrFV6zUG_JQruJdPKfjobTbDpEXnMQaRh8ODp-Xd7XoX3ffW5uvmwJoeVy7_aXrctnx13Zjcqt-staXNn9pw8M34KPa5B94L0VPmSPKkrl25ekaWGHm2hRy30qIUeBejRLvRoAz1alNRCjyKaqIYe1dCjFnq0ht5rcnk2mp2MHVO5w0kDnzMni0QUchHCYleuzDLMSilDUA8ySNMgdIdcxhEDV9fNeT70VB6naSaDSCkhhAcW6BuyV65KtU8oi3IuPS8P3Uz5YDwJT_Eg44HKuEzB3u2TT82sJr_qBC1JnYqbJzj1CU59nxw2852Y9XuTMEzSjg4D9PHRNoN0xeUjSrWqkIajww4D7ZO3NXvsv4BhDN8VRn0SbjHOEmDm9u2WsrjSGdyhSwaKvU--aBbfP_Ckwd3Bw0nfkaftojske-vrSr0Hy3ktP2jQ_gHzU8M5 |
link.rule.ids | 230,315,783,787,888,27938,27939 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT1+Positively+Regulates+Autophagy+and+Mitochondria+Function+in+Embryonic+Stem+Cells+Under+Oxidative+Stress&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Ou%2C+Xuan&rft.au=Lee%2C+Man+Ryul&rft.au=Huang%2C+Xinxin&rft.au=Messina%E2%80%90Graham%2C+Steven&rft.date=2014-05-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=32&rft.issue=5&rft.spage=1183&rft.epage=1194&rft_id=info:doi/10.1002%2Fstem.1641&rft.externalDBID=10.1002%252Fstem.1641&rft.externalDocID=STEM1641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |