Noise-driven cooperative dynamics between vegetation and topography in riparian zones

Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 42; no. 19; pp. 8021 - 8030
Main Authors Vesipa, R., Camporeale, C., Ridolfi, L.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 16.10.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation‐topography feedback. We demonstrate how the vegetation‐induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment. Key Points A stochastic model elucidates how random variations of water stage shape riparian transects A key feature of the model is to consider that vegetation alters the plot topography Vegetation modifies the topography for creating conditions more suitable to its survival
AbstractList Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation-topography feedback. We demonstrate how the vegetation-induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment.
Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation-topography feedback. We demonstrate how the vegetation-induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment. Key Points * A stochastic model elucidates how random variations of water stage shape riparian transects * A key feature of the model is to consider that vegetation alters the plot topography * Vegetation modifies the topography for creating conditions more suitable to its survival
Abstract Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation‐topography feedback. We demonstrate how the vegetation‐induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment. Key Points A stochastic model elucidates how random variations of water stage shape riparian transects A key feature of the model is to consider that vegetation alters the plot topography Vegetation modifies the topography for creating conditions more suitable to its survival
Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation‐topography feedback. We demonstrate how the vegetation‐induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment. Key Points A stochastic model elucidates how random variations of water stage shape riparian transects A key feature of the model is to consider that vegetation alters the plot topography Vegetation modifies the topography for creating conditions more suitable to its survival
Author Vesipa, R.
Ridolfi, L.
Camporeale, C.
Author_xml – sequence: 1
  givenname: R.
  surname: Vesipa
  fullname: Vesipa, R.
  email: riccardo.vesipa@polito.it
  organization: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
– sequence: 2
  givenname: C.
  surname: Camporeale
  fullname: Camporeale, C.
  organization: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
– sequence: 3
  givenname: L.
  surname: Ridolfi
  fullname: Ridolfi, L.
  organization: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
BookMark eNqFkU1rGzEQhkVJoU7aW37AQi89ZNPRt3QMIXELJoV80NyEvJ5NldjSVlondX99ZFxK6SE5zQzv877MMPtkL6aIhBxSOKYA7DMDKqczUFIZ84ZMqBWiNQB6j0wAbO2ZVu_Ifin3AMCB0wm5uUihYLvI4RFj06U0YPZjHZrFJvpV6Eozx_EJq_iIdzhWLcXGx0UzpiHdZT_82DQhNjkMPgcfm991pfKevO39suCHP_WA3JyfXZ9-aWffpl9PT2ZtJwWjrRSCo1BguOkEgJhbgZL32HsOqPUcpJLcWpCWcw5-vpDcUwu9Ac0VUMUPyKdd7pDTzzWW0a1C6XC59BHTujhqaraygsnXUa2BGa3lNvXjf-h9WudYD3EMmGbKKmleomhljNTcbrOOdlSXUykZezfksPJ54yi47dPcv0-rONvhT2GJmxdZN72cSS45raZ2ZwplxF9_TT4_OKW5lu77xdSJy_Mre3vNnOXPCJGlog
CitedBy_id crossref_primary_10_1016_j_geomorph_2020_107389
crossref_primary_10_1016_j_ecolind_2024_112313
crossref_primary_10_1002_esp_3864
crossref_primary_10_1016_j_amc_2018_09_039
crossref_primary_10_1002_2015WR018528
crossref_primary_10_1002_esp_5760
crossref_primary_10_1002_esp_4344
crossref_primary_10_1002_oca_2510
crossref_primary_10_1002_rra_4271
crossref_primary_10_3390_rs13020322
crossref_primary_10_1016_j_ecoleng_2018_08_024
crossref_primary_10_1029_2020MS002094
crossref_primary_10_1002_ece3_3886
crossref_primary_10_1007_s11009_023_10006_5
crossref_primary_10_1002_2015WR018490
crossref_primary_10_1002_2017WR020474
crossref_primary_10_1016_j_advwatres_2017_09_028
crossref_primary_10_1016_j_ecolmodel_2018_05_010
crossref_primary_10_3390_w10111500
crossref_primary_10_1051_e3sconf_20184002020
crossref_primary_10_1016_j_aml_2021_107589
crossref_primary_10_1007_s12040_020_01502_0
crossref_primary_10_1016_j_buildenv_2022_109928
crossref_primary_10_1016_j_ecolind_2018_02_009
Cites_doi 10.1038/NGEO1376
10.1017/CBO9780511565434
10.1029/2006WR004933
10.1007/s00267-004-0194-7
10.1029/2006JG000261
10.1016/S0169-555X(02)00326-4
10.1002/esp.1581
10.1073/pnas.1218327110
10.1016/j.geomorph.2008.01.009
10.1007/s10310-003-0032-4
10.1029/2004WR003730
10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F
10.1002/esp.2088
10.1002/jgrf.20132
10.1016/j.jhydrol.2010.11.016
10.1016/j.ecoleng.2011.12.002
10.1002/esp.1362
10.1002/esp.3196
10.1002/rog.20014
10.1890/1540-9295(2005)003[0377:EODWOB]2.0.CO;2
10.1016/j.earscirev.2007.05.004
10.1002/2014GL061666
10.1890/070080
10.1029/2007GL030899
10.1016/j.earscirev.2011.11.005
10.1017/CBO9780511984730
10.1029/2010WR010319
10.1002/esp.3397
10.1016/j.advwatres.2015.07.011
10.1002/1096-9837(200101)26:1<91::AID-ESP164>3.0.CO;2-U
10.1016/j.advwatres.2014.06.015
10.1029/2007WR006100
10.1890/1051-0761(2002)012[0107:RVRTAD]2.0.CO;2
10.2307/3545850
10.1111/j.1541-0064.1984.tb00779.x
10.1016/B978-0-12-424120-6.50009-2
10.1103/PhysRevE.63.036105
ContentType Journal Article
Copyright 2015. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2015. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
DOI 10.1002/2015GL065688
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
Aerospace Database
CrossRef
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 8030
ExternalDocumentID 3847139231
10_1002_2015GL065688
GRL53531
ark_67375_WNG_4RFS9XT2_9
Genre article
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAJUZ
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABPPZ
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFVGU
AGJLS
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
ALUQN
WIN
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
ID FETCH-LOGICAL-c5421-5443e460838c4004b94e53fefa30e77b05653990593330abd53a190f807360163
ISSN 0094-8276
IngestDate Fri Oct 25 08:14:48 EDT 2024
Fri Oct 25 01:12:59 EDT 2024
Thu Oct 10 21:10:40 EDT 2024
Thu Oct 10 21:12:39 EDT 2024
Thu Sep 12 16:27:37 EDT 2024
Sat Aug 24 00:52:09 EDT 2024
Wed Jan 17 05:01:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5421-5443e460838c4004b94e53fefa30e77b05653990593330abd53a190f807360163
Notes istex:31E71E20FCA46FE25C2F6C6B25F9BAF2C2A07833
ArticleID:GRL53531
Supporting Information S1
ark:/67375/WNG-4RFS9XT2-9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015GL065688
PQID 1726857396
PQPubID 54723
PageCount 10
ParticipantIDs proquest_miscellaneous_1808369425
proquest_miscellaneous_1770287756
proquest_journals_2027269658
proquest_journals_1726857396
crossref_primary_10_1002_2015GL065688
wiley_primary_10_1002_2015GL065688_GRL53531
istex_primary_ark_67375_WNG_4RFS9XT2_9
PublicationCentury 2000
PublicationDate 16 October 2015
PublicationDateYYYYMMDD 2015-10-16
PublicationDate_xml – month: 10
  year: 2015
  text: 16 October 2015
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Camporeale, C., and L. Ridolfi (2007), Noise-induced phenomena in riparian vegetation dynamics, Geophys. Res. Lett., 34, L18406, doi:10.1029/2007GL030899.
D'Odorico, P., F. Laio, A. Porporato, L. Ridolfi, and N. Barbier (2007), Noise-induced vegetation patterns in fire-prone savannas, J. Geophys. Res., 112, G02021, doi:10.1029/2006JG000261.
Bennett, S. J., W. Wu, C. V. Alonso, and S. S. Y. Wang (2008), Modeling fluvial response to in-stream woody vegetation: Implications for stream corridor restoration, Earth Surf. Processes Landforms, 33(6), 890-909.
Camporeale, C., E. Perucca, L. Ridolfi, and A. M. Gurnell (2013), Modeling the interactions between river morphodynamics and riparian vegetation, Rev. Geophys., 51, 379-414, doi:10.1002/rog.20014.
Tealdi, S., C. Camporeale, and L. Ridolfi (2011), Modeling the impact of river damming on riparian vegetation, J. Hydrol., 396(3-4), 302-312.
Abramowitz, M., and I. Stegun (1964), Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover, New York.
Bertoldi, W., A. M. Gurnell, and N. A. Drake (2011), The topographic signature of vegetation development along a braided river: Results of a combined analysis of airborne lidar, color air photographs, and ground measurements, Water Resour. Res., 47, W06525, doi:10.1029/2010WR010319.
Ridolfi, L., P. D'Odorico, and F. Laio (2011), Noise-Induced Phenomena in the Environmental Sciences, Cambridge Univ. Press, Cambridge.
Tockner, K., F. Malard, and J. Ward (2000), An extension of the flood pulse concept, Hydrol. Processes, 14(16-17), 2861-2883.
Naumburg, E., R. Mata-Gonzalez, R. G. Hunter, T. Mclendon, and D. W. Martin (2005), Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation, Environ. Manage., 35(6), 726-740.
Laio, F., A. Porporato, L. Ridolfi, and I. Rodriguez-Iturbe (2001), Mean first passage times of processes driven by white shot noise, Phys. Rev. E, 63, 036105.
Docker, B. B., and T. C. T. Hubble (2008), Quantifying root-reinforcement of river bank soils by four Australian tree species, Geomorphology, 100(3-4), 401-418.
Doulatyari, B., S. Basso, M. Schirmer, and G. Botter (2014), River flow regimes and vegetation dynamics along a river transect, Adv. Water Res., 73, 30-43.
Beschta, R. L., and W. J. Ripple (2006), River channel dynamics following extirpation of wolves in northwestern Yellowstone National Park, USA, Earth Surf. Processes Landforms, 31(12), 1525-1539, doi:10.1002/esp.1362.
Gurnell, A. (2014), Plants as river system engineers, Earth Surf. Processes Landforms, 39(1), 4-25.
Gurnell, A., K. Tockner, P. Edwards, and G. Petts (2005), Effects of deposited wood on biocomplexity of river corridors, Front. Ecol. Environ., 3(7), 377-382.
Welber, M., W. Bertoldi, and M. Tubino (2012), The response of braided planform configuration to flow variations, bed reworking and vegetation: The case of the Tagliamento River, Italy, Earth Surf. Processes Landforms, 37(5), 572-582.
Naiman, R., H. Décamps, and M. McClain (2005), Riparia, Elsevier Academic, Burlington.
Jones, C., J. H. Lawton, and M. Shachak (1994), Organisms as ecosystem engineers, Oikos, 69(3), 373-386, doi:10.2307/3545850.
Pasquale, N., P. Perona, R. Francis, and P. Burlando (2012), Effects of streamflow variability on the vertical root density distribution of willow cutting experiments, Ecol. Eng., 40, 167-172.
Steiger, J., A. Gurnell, P. Ergenzinger, and D. Snelder (2001), Sedimentation in the riparian zone of an incising river, Earth Surf. Processes Landforms, 26(1), 91-108.
Bertoldi, W., A. Siviglia, S. Tettamanti, M. Toffolon, D. Vetsch, and S. Francalanci (2014), Modeling vegetation controls on fluvial morphological trajectories, Geophys. Res. Lett., 41, 7167-7175, doi:10.1002/2014GL061666.
Gurnell, A. M., W. Bertoldi, and D. Corenblit (2012), Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers, Earth Sci. Rev., 111(1-2), 129-141.
Gibling, M. R., and N. S. Davies (2012), Palaeozoic landscapes shaped by plant evolution, Nat. Geosci., 5( 2), 99-105, doi:10.1038/NGEO1376.
Ishikawa, Y., T. Sakamoto, and K. Mizuhara (2003), Effect of density of riparian vegetation on effective tractive force, J. For. Res., 8(4), 235-246.
Shafroth, P., J. Stromberg, and D. Patten (2002), Riparian vegetation response to altered disturbance and stress regimes, Ecol. Appl., 12(1), 107-123.
Muneepeerakul, R., A. Rinaldo, and I. Rodriguez-Iturbe (2007), Effects of river flow scaling properties on riparian width and vegetation biomass, Water Resour. Res., 43, W12406, doi:10.1029/2007WR006100.
Camporeale, C., and L. Ridolfi (2006), Riparian vegetation distribution induced by river flow variability: A stochastic approach, Water Resour. Res., 42, W10415, doi:10.1029/2006WR004933.
Hickin, E. (1984), Vegetation and river channel dynamics, Can. Geogr. Geogr. Can., 28(2), 111-126.
Nicholas, A. P., P. J. Ashworth, G. H. S. Smith, and S. D. Sandbach (2013), Numerical simulation of bar and island morphodynamics in anabranching megarivers, J. Geophys. Res. Earth Surf., 118, 2019-2044, doi:10.1002/jgrf.20132.
Malanson, G. (1993), Riparian Landscapes, Cambridge Univ. Press, Cambridge.
Marani, M., C. Da Lio, and A. D'Alpaos (2013), Vegetation engineers marsh morphology through multiple competing stable states, Proc. Natl. Acad. Sci. U.S.A., 110(9), 3259-3263.
Craig, L. S., et al. (2008), Stream restoration strategies for reducing river nitrogen loads, Front. Ecol. Environ., 6(10), 529-538.
Abbe, T., and D. Montgomery (2003), Patterns and processes of wood debris accumulation in the Queets river basin, Washington, Geomorphology, 51(1-3), 81-107.
Crosato, A., and M. S. Saleh (2011), Numerical study on the effects of floodplain vegetation on river planform style, Earth Surf. Processes Landforms, 36(6), 711-720.
Crouzy, B., F. Brenbold, P. D'Odorico, and P. Perona (2015), Ecomorphodynamic approaches to river anabranching patterns, Adv. Water Res., doi:10.1016/j.advwatres.2015.07.011.
Wu, W., F. Shields, S. Bennett, and S. Wang (2005), A depth-averaged two-dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation, Water Resour. Res., 41, W03015, doi:10.1029/2004WR003730.
Corenblit, D., E. Tabacchi, J. Steiger, and A. M. Gurnell (2007), Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches, Earth Sci. Rev., 84(1-2), 56-86.
2006; 31
2011
1984; 28
2002; 12
2005; 41
1994; 69
2005
2001; 26
2008; 33
2008; 6
1993
2011; 36
2012; 37
2014; 41
2008; 100
2003; 51
2007; 34
2001; 63
2011; 396
2007; 112
2006; 42
2012; 111
2000; 14
2013; 51
2003; 8
2013; 118
1964
1984
2015
2007; 84
2005; 3
2013; 110
2011; 47
2014; 39
1980
2014; 73
2007; 43
2012; 5
2005; 35
2012; 40
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Abramowitz M. (e_1_2_8_3_1) 1964
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Naiman R. (e_1_2_8_30_1) 2005
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 6
  start-page: 529
  issue: 10
  year: 2008
  end-page: 538
  article-title: Stream restoration strategies for reducing river nitrogen loads
  publication-title: Front. Ecol. Environ.
– volume: 36
  start-page: 711
  issue: 6
  year: 2011
  end-page: 720
  article-title: Numerical study on the effects of floodplain vegetation on river planform style
  publication-title: Earth Surf. Processes Landforms
– year: 2011
– volume: 14
  start-page: 2861
  issue: 16‐17
  year: 2000
  end-page: 2883
  article-title: An extension of the flood pulse concept
  publication-title: Hydrol. Processes
– volume: 47
  start-page: W06525
  year: 2011
  article-title: The topographic signature of vegetation development along a braided river: Results of a combined analysis of airborne lidar, color air photographs, and ground measurements
  publication-title: Water Resour. Res.
– volume: 42
  start-page: W10415
  year: 2006
  article-title: Riparian vegetation distribution induced by river flow variability: A stochastic approach
  publication-title: Water Resour. Res.
– volume: 118
  start-page: 2019
  year: 2013
  end-page: 2044
  article-title: Numerical simulation of bar and island morphodynamics in anabranching megarivers
  publication-title: J. Geophys. Res. Earth Surf.
– year: 1964
– volume: 100
  start-page: 401
  issue: 3–4
  year: 2008
  end-page: 418
  article-title: Quantifying root‐reinforcement of river bank soils by four Australian tree species
  publication-title: Geomorphology
– year: 2005
– volume: 33
  start-page: 890
  issue: 6
  year: 2008
  end-page: 909
  article-title: Modeling fluvial response to in‐stream woody vegetation: Implications for stream corridor restoration
  publication-title: Earth Surf. Processes Landforms
– volume: 5
  start-page: 99
  issue: 2
  year: 2012
  end-page: 105
  article-title: Palaeozoic landscapes shaped by plant evolution
  publication-title: Nat. Geosci.
– start-page: 129
  year: 1984
  end-page: 163
– volume: 41
  start-page: 7167
  year: 2014
  end-page: 7175
  article-title: Modeling vegetation controls on fluvial morphological trajectories
  publication-title: Geophys. Res. Lett.
– volume: 51
  start-page: 379
  year: 2013
  end-page: 414
  article-title: Modeling the interactions between river morphodynamics and riparian vegetation
  publication-title: Rev. Geophys.
– volume: 112
  start-page: G02021
  year: 2007
  article-title: Noise‐induced vegetation patterns in fire‐prone savannas
  publication-title: J. Geophys. Res.
– volume: 41
  start-page: W03015
  year: 2005
  article-title: A depth‐averaged two‐dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation
  publication-title: Water Resour. Res.
– volume: 35
  start-page: 726
  issue: 6
  year: 2005
  end-page: 740
  article-title: Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation
  publication-title: Environ. Manage.
– volume: 31
  start-page: 1525
  issue: 12
  year: 2006
  end-page: 1539
  article-title: River channel dynamics following extirpation of wolves in northwestern Yellowstone National Park, USA
  publication-title: Earth Surf. Processes Landforms
– volume: 28
  start-page: 111
  issue: 2
  year: 1984
  end-page: 126
  article-title: Vegetation and river channel dynamics
  publication-title: Can. Geogr. Geogr. Can.
– volume: 396
  start-page: 302
  issue: 3–4
  year: 2011
  end-page: 312
  article-title: Modeling the impact of river damming on riparian vegetation
  publication-title: J. Hydrol.
– volume: 63
  start-page: 036105
  year: 2001
  article-title: Mean first passage times of processes driven by white shot noise
  publication-title: Phys. Rev. E
– volume: 110
  start-page: 3259
  issue: 9
  year: 2013
  end-page: 3263
  article-title: Vegetation engineers marsh morphology through multiple competing stable states
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 8
  start-page: 235
  issue: 4
  year: 2003
  end-page: 246
  article-title: Effect of density of riparian vegetation on effective tractive force
  publication-title: J. For. Res.
– year: 2015
  article-title: Ecomorphodynamic approaches to river anabranching patterns
  publication-title: Adv. Water Res.
– volume: 39
  start-page: 4
  issue: 1
  year: 2014
  end-page: 25
  article-title: Plants as river system engineers
  publication-title: Earth Surf. Processes Landforms
– year: 1980
– volume: 40
  start-page: 167
  year: 2012
  end-page: 172
  article-title: Effects of streamflow variability on the vertical root density distribution of willow cutting experiments
  publication-title: Ecol. Eng.
– volume: 69
  start-page: 373
  issue: 3
  year: 1994
  end-page: 386
  article-title: Organisms as ecosystem engineers
  publication-title: Oikos
– volume: 111
  start-page: 129
  issue: 1–2
  year: 2012
  end-page: 141
  article-title: Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers
  publication-title: Earth Sci. Rev.
– volume: 51
  start-page: 81
  issue: 1–3
  year: 2003
  end-page: 107
  article-title: Patterns and processes of wood debris accumulation in the Queets river basin, Washington
  publication-title: Geomorphology
– volume: 12
  start-page: 107
  issue: 1
  year: 2002
  end-page: 123
  article-title: Riparian vegetation response to altered disturbance and stress regimes
  publication-title: Ecol. Appl.
– volume: 84
  start-page: 56
  issue: 1–2
  year: 2007
  end-page: 86
  article-title: Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches
  publication-title: Earth Sci. Rev.
– volume: 43
  start-page: W12406
  year: 2007
  article-title: Effects of river flow scaling properties on riparian width and vegetation biomass
  publication-title: Water Resour. Res.
– volume: 34
  start-page: L18406
  year: 2007
  article-title: Noise‐induced phenomena in riparian vegetation dynamics
  publication-title: Geophys. Res. Lett.
– volume: 3
  start-page: 377
  issue: 7
  year: 2005
  end-page: 382
  article-title: Effects of deposited wood on biocomplexity of river corridors
  publication-title: Front. Ecol. Environ.
– volume: 37
  start-page: 572
  issue: 5
  year: 2012
  end-page: 582
  article-title: The response of braided planform configuration to flow variations, bed reworking and vegetation: The case of the Tagliamento River, Italy
  publication-title: Earth Surf. Processes Landforms
– year: 1993
– volume: 26
  start-page: 91
  issue: 1
  year: 2001
  end-page: 108
  article-title: Sedimentation in the riparian zone of an incising river
  publication-title: Earth Surf. Processes Landforms
– volume: 73
  start-page: 30
  year: 2014
  end-page: 43
  article-title: River flow regimes and vegetation dynamics along a river transect
  publication-title: Adv. Water Res.
– ident: e_1_2_8_18_1
  doi: 10.1038/NGEO1376
– ident: e_1_2_8_27_1
  doi: 10.1017/CBO9780511565434
– ident: e_1_2_8_8_1
  doi: 10.1029/2006WR004933
– ident: e_1_2_8_31_1
  doi: 10.1007/s00267-004-0194-7
– ident: e_1_2_8_16_1
  doi: 10.1029/2006JG000261
– ident: e_1_2_8_2_1
  doi: 10.1016/S0169-555X(02)00326-4
– ident: e_1_2_8_4_1
  doi: 10.1002/esp.1581
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.1218327110
– volume-title: Riparia
  year: 2005
  ident: e_1_2_8_30_1
  contributor:
    fullname: Naiman R.
– ident: e_1_2_8_15_1
  doi: 10.1016/j.geomorph.2008.01.009
– ident: e_1_2_8_23_1
  doi: 10.1007/s10310-003-0032-4
– ident: e_1_2_8_40_1
  doi: 10.1029/2004WR003730
– ident: e_1_2_8_38_1
  doi: 10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F
– ident: e_1_2_8_13_1
  doi: 10.1002/esp.2088
– ident: e_1_2_8_32_1
  doi: 10.1002/jgrf.20132
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jhydrol.2010.11.016
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ecoleng.2011.12.002
– ident: e_1_2_8_7_1
  doi: 10.1002/esp.1362
– ident: e_1_2_8_39_1
  doi: 10.1002/esp.3196
– ident: e_1_2_8_10_1
  doi: 10.1002/rog.20014
– ident: e_1_2_8_20_1
  doi: 10.1890/1540-9295(2005)003[0377:EODWOB]2.0.CO;2
– ident: e_1_2_8_11_1
  doi: 10.1016/j.earscirev.2007.05.004
– volume-title: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: e_1_2_8_3_1
  contributor:
    fullname: Abramowitz M.
– ident: e_1_2_8_6_1
  doi: 10.1002/2014GL061666
– ident: e_1_2_8_12_1
  doi: 10.1890/070080
– ident: e_1_2_8_9_1
  doi: 10.1029/2007GL030899
– ident: e_1_2_8_21_1
  doi: 10.1016/j.earscirev.2011.11.005
– ident: e_1_2_8_34_1
  doi: 10.1017/CBO9780511984730
– ident: e_1_2_8_5_1
  doi: 10.1029/2010WR010319
– ident: e_1_2_8_19_1
  doi: 10.1002/esp.3397
– ident: e_1_2_8_41_1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.advwatres.2015.07.011
– ident: e_1_2_8_36_1
  doi: 10.1002/1096-9837(200101)26:1<91::AID-ESP164>3.0.CO;2-U
– ident: e_1_2_8_17_1
  doi: 10.1016/j.advwatres.2014.06.015
– ident: e_1_2_8_29_1
  doi: 10.1029/2007WR006100
– ident: e_1_2_8_35_1
  doi: 10.1890/1051-0761(2002)012[0107:RVRTAD]2.0.CO;2
– ident: e_1_2_8_24_1
  doi: 10.2307/3545850
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1541-0064.1984.tb00779.x
– ident: e_1_2_8_25_1
  doi: 10.1016/B978-0-12-424120-6.50009-2
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevE.63.036105
SSID ssj0003031
Score 2.354997
Snippet Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the...
Abstract Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological...
Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the ecogeomorphological features of the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 8021
SubjectTerms Dynamics
ecomorphodynamics
Economic models
ecosystem engineers
Ecosystems
Freshwater
Probability density function
Probability density functions
Probability theory
Randomness
Riparian land
Riparian vegetation
Rivers
Sediment
Sediments
Slope
state-dependent dichotomous noise
Stochastic models
Stochasticity
Survival
Topography
Topography (geology)
Variation
Vegetation
Water levels
Title Noise-driven cooperative dynamics between vegetation and topography in riparian zones
URI https://api.istex.fr/ark:/67375/WNG-4RFS9XT2-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL065688
https://www.proquest.com/docview/1726857396
https://www.proquest.com/docview/2027269658
https://search.proquest.com/docview/1770287756
https://search.proquest.com/docview/1808369425
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagFRIviJ-iMJCRgJcqkMRxEj9OaO00lSKVZlS8WHHijoqpqdoOwf567mwnTbVpGrxEkZOeUt_5_Nm--46QtwVjSHLCvSJlsEBhofCUKkMvh7bSz5NAB5g7_HkcH2fRyYzPdlU6TXbJVn0oLq_NK_kfrUIb6BWzZP9Bs41QaIB70C9cQcNwvZWOx9Vio71yjR6rX1TVSjse79LWmd80YVi_9FkdV2hCJquVo6o2-SwLLEUIA_0SifvbcHWoq1WtSEcL9KN_bjKAGix-qjfw-73YQzzQqNbahSo3-7CTRVmdzxe7XAe32xAYllKbDFl7UBF5aZg4-mrrNEUEbb6tXlt71ShsW49o-cjUtznR9Xzr24OZK77ccsPiRwxHAJRiW_5vnzJ7_EUOstFITo9m07ukGyaC8w7pHp5m37NmQoZZ2hZOdJ_u8h9A_se29D1k0sVB9ntv2dFevBj0MX1IHrhlAz20NvCI3NHLx-Te0JRl_gN3JpC32DwhWdsmaMsmaG0T1NkE3dkEBZugO5ugiyWtbYIam3hKssHR9NOx50pneAWPwsBDVkMdxYCv0wK9tBKR5myu5znzdZIogL1ISYz1HBnzc1VylgM0nKfg8ZGghz0jnSXIf06oUnh0LDS47sKg96AsYoA0c8UKzpTokXd1t8mVZUiRlgs7lO3u7ZH3pk-bl_L1T4wqTLj8Nh7KaDL4KmbTUILAg7rTpRtsGwk4O055wkR87WPcwgtjJDLqkTfNY_CUePyVL3V1gSISANNJwuMb3kmRrV3ARNYjfaPvG_-THE5GnME09uIWEl-S-7sRdUA62_WFfgWIdqteO4v9C-rWnQ4
link.rule.ids 315,786,790,27955,27956,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-NVgheEOOP6BhgpMELitbEsZ08Toi2g64PW8sqXizbcdGElFRtN8Ge9hH4jHwS7hKvdBKatLcouZyUc-7uZ_v8O4A9xzmRnIjIZRwnKDzJI2uLJDJ4r-gaFfuYzg4fjeRgkn6eimnoc0pnYRp-iPWCG3lGHa_JwWlBev8fayimLtEfYgqVWXYP2oIo9VrQPvg6-TZZB2OM0E3TvDyNskTJUPuOGvY337-Rldpk4J83IOcmcK0zT-8xPAqQkR00Y7wNW758Avf7dUveX3hVF3G65VM4HVVnS__n6nexoBjGXFXNfcPszYqm8_yShcIsduG_h0pDZsqCrap5IK9mZyXDSIJzaFOyS6LyfwaT3qfxx0EUGidETqRJHBGnnU8loqvMkY_aPPWCz_zM8K5XyiLoIUJa6ubHedfYQnCDwGCWob8TPQt_Dq0S9b8AZi1tHOYeHdfV2C0unMSENrPcCW7zDry7NpyeN_wYumFCTvSmgTvwvrbqWsgsflBNmRL6dNTX6XHvJJ-OE40Kd6_NroM7LTWiLJkJxXP538e0gJNIorHpwNv1Y_QT2vwwpa_OSYVCKKWUkLfIZMTVnWMY68CHesRv_SbdPx4KjkFs507Sb-DBYHw01MPD0ZeX8JBkKBnGchdaq8W5f4UoZ2Vfhz_5L0QK8NQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7BKhAvEwzQuo3hScALitbEsZ08TrB2QKnQWFnFi2U7DpomJVXbIbYnfgK_kV_CXeKVTkKTeIuSy0k55-4-2-fvAF44zonkREQu4zhB4UkeWVskkcF7Rc-o2Md0dvjjSB6N0_cTMQkLbnQWpuWHWC64kWc08ZocfFqU-39JQzFzicEQM6jMsrvQQaCR4uSrc_Bl_HW8jMUYoNueeXkaZYmSofQdNeyvvn8jKXXIvj9uIM5V3Noknv5DWA-IkR20Q_wI7vhqA-4Nmo68l3jV1HC6-WM4HdVnc__7569iRiGMubqe-pbYmxVt4_k5C3VZ7Lv_FgoNmakKtqingbuanVUMAwlOoU3FrojJ_wmM-4cnb46i0DchciJN4ogo7XwqEVxljlzU5qkXvPSl4T2vlEXMQ3y01MyP856xheAGcUGZobsTOwt_CmsV6t8EZi3tG-Ye_dY10C0unMR8VlruBLd5F15eG05PW3oM3RIhJ3rVwF141Vh1KWRm51RSpoQ-HQ10etz_nE9OEo0Kd67NroM3zTWCLJkJxXP5z8e0fpNIYrHpwt7yMboJ7X2YytcXpEIhklJKyFtkMqLqzjGKdeF1M-K3fpMeHA8Fxxi29V_Sz-H-p7d9PXw3-rAND0iEUmEsd2BtMbvwzxDjLOxu-JH_AMiX7_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise-driven+cooperative+dynamics+between+vegetation+and+topography+in+riparian+zones&rft.jtitle=Geophysical+research+letters&rft.au=Vesipa%2C+R&rft.au=Camporeale%2C+C&rft.au=Ridolfi%2C+L&rft.date=2015-10-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=19&rft.spage=8021&rft.epage=8030&rft_id=info:doi/10.1002%2F2015GL065688&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon