Noise-driven cooperative dynamics between vegetation and topography in riparian zones
Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment...
Saved in:
Published in | Geophysical research letters Vol. 42; no. 19; pp. 8021 - 8030 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
16.10.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation‐topography feedback. We demonstrate how the vegetation‐induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment.
Key Points
A stochastic model elucidates how random variations of water stage shape riparian transects
A key feature of the model is to consider that vegetation alters the plot topography
Vegetation modifies the topography for creating conditions more suitable to its survival |
---|---|
AbstractList | Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation-topography feedback. We demonstrate how the vegetation-induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment. Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation-topography feedback. We demonstrate how the vegetation-induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment. Key Points * A stochastic model elucidates how random variations of water stage shape riparian transects * A key feature of the model is to consider that vegetation alters the plot topography * Vegetation modifies the topography for creating conditions more suitable to its survival Abstract Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation‐topography feedback. We demonstrate how the vegetation‐induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment. Key Points A stochastic model elucidates how random variations of water stage shape riparian transects A key feature of the model is to consider that vegetation alters the plot topography Vegetation modifies the topography for creating conditions more suitable to its survival Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In order to elucidate how randomness shape riparian transects, a stochastic model that takes into account the main links between vegetation, sediments, and the stream is adopted, emphasizing the capability of vegetation to alter the plot topography. A minimalistic approach is pursued, and the probability density function of vegetation biomass is analytically evaluated in any transect plot. This probability density function strongly depends on the vegetation‐topography feedback. We demonstrate how the vegetation‐induced modifications of the bed topography create more suitable conditions for the survival of vegetation in a stochastically dominated environment. Key Points A stochastic model elucidates how random variations of water stage shape riparian transects A key feature of the model is to consider that vegetation alters the plot topography Vegetation modifies the topography for creating conditions more suitable to its survival |
Author | Vesipa, R. Ridolfi, L. Camporeale, C. |
Author_xml | – sequence: 1 givenname: R. surname: Vesipa fullname: Vesipa, R. email: riccardo.vesipa@polito.it organization: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy – sequence: 2 givenname: C. surname: Camporeale fullname: Camporeale, C. organization: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy – sequence: 3 givenname: L. surname: Ridolfi fullname: Ridolfi, L. organization: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy |
BookMark | eNqFkU1rGzEQhkVJoU7aW37AQi89ZNPRt3QMIXELJoV80NyEvJ5NldjSVlondX99ZFxK6SE5zQzv877MMPtkL6aIhBxSOKYA7DMDKqczUFIZ84ZMqBWiNQB6j0wAbO2ZVu_Ifin3AMCB0wm5uUihYLvI4RFj06U0YPZjHZrFJvpV6Eozx_EJq_iIdzhWLcXGx0UzpiHdZT_82DQhNjkMPgcfm991pfKevO39suCHP_WA3JyfXZ9-aWffpl9PT2ZtJwWjrRSCo1BguOkEgJhbgZL32HsOqPUcpJLcWpCWcw5-vpDcUwu9Ac0VUMUPyKdd7pDTzzWW0a1C6XC59BHTujhqaraygsnXUa2BGa3lNvXjf-h9WudYD3EMmGbKKmleomhljNTcbrOOdlSXUykZezfksPJ54yi47dPcv0-rONvhT2GJmxdZN72cSS45raZ2ZwplxF9_TT4_OKW5lu77xdSJy_Mre3vNnOXPCJGlog |
CitedBy_id | crossref_primary_10_1016_j_geomorph_2020_107389 crossref_primary_10_1016_j_ecolind_2024_112313 crossref_primary_10_1002_esp_3864 crossref_primary_10_1016_j_amc_2018_09_039 crossref_primary_10_1002_2015WR018528 crossref_primary_10_1002_esp_5760 crossref_primary_10_1002_esp_4344 crossref_primary_10_1002_oca_2510 crossref_primary_10_1002_rra_4271 crossref_primary_10_3390_rs13020322 crossref_primary_10_1016_j_ecoleng_2018_08_024 crossref_primary_10_1029_2020MS002094 crossref_primary_10_1002_ece3_3886 crossref_primary_10_1007_s11009_023_10006_5 crossref_primary_10_1002_2015WR018490 crossref_primary_10_1002_2017WR020474 crossref_primary_10_1016_j_advwatres_2017_09_028 crossref_primary_10_1016_j_ecolmodel_2018_05_010 crossref_primary_10_3390_w10111500 crossref_primary_10_1051_e3sconf_20184002020 crossref_primary_10_1016_j_aml_2021_107589 crossref_primary_10_1007_s12040_020_01502_0 crossref_primary_10_1016_j_buildenv_2022_109928 crossref_primary_10_1016_j_ecolind_2018_02_009 |
Cites_doi | 10.1038/NGEO1376 10.1017/CBO9780511565434 10.1029/2006WR004933 10.1007/s00267-004-0194-7 10.1029/2006JG000261 10.1016/S0169-555X(02)00326-4 10.1002/esp.1581 10.1073/pnas.1218327110 10.1016/j.geomorph.2008.01.009 10.1007/s10310-003-0032-4 10.1029/2004WR003730 10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F 10.1002/esp.2088 10.1002/jgrf.20132 10.1016/j.jhydrol.2010.11.016 10.1016/j.ecoleng.2011.12.002 10.1002/esp.1362 10.1002/esp.3196 10.1002/rog.20014 10.1890/1540-9295(2005)003[0377:EODWOB]2.0.CO;2 10.1016/j.earscirev.2007.05.004 10.1002/2014GL061666 10.1890/070080 10.1029/2007GL030899 10.1016/j.earscirev.2011.11.005 10.1017/CBO9780511984730 10.1029/2010WR010319 10.1002/esp.3397 10.1016/j.advwatres.2015.07.011 10.1002/1096-9837(200101)26:1<91::AID-ESP164>3.0.CO;2-U 10.1016/j.advwatres.2014.06.015 10.1029/2007WR006100 10.1890/1051-0761(2002)012[0107:RVRTAD]2.0.CO;2 10.2307/3545850 10.1111/j.1541-0064.1984.tb00779.x 10.1016/B978-0-12-424120-6.50009-2 10.1103/PhysRevE.63.036105 |
ContentType | Journal Article |
Copyright | 2015. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2015. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K |
DOI | 10.1002/2015GL065688 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database Aerospace Database CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 8030 |
ExternalDocumentID | 3847139231 10_1002_2015GL065688 GRL53531 ark_67375_WNG_4RFS9XT2_9 |
Genre | article |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAJUZ AASGY AAXRX AAZKR ABCUV ABCVL ABHUG ABPPZ ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADAWD ADBBV ADDAD ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFVGU AGJLS AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A ALUQN WIN AAYXX CITATION PYCSY 7TG 7TN 8FD ALXUD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K |
ID | FETCH-LOGICAL-c5421-5443e460838c4004b94e53fefa30e77b05653990593330abd53a190f807360163 |
ISSN | 0094-8276 |
IngestDate | Fri Oct 25 08:14:48 EDT 2024 Fri Oct 25 01:12:59 EDT 2024 Thu Oct 10 21:10:40 EDT 2024 Thu Oct 10 21:12:39 EDT 2024 Thu Sep 12 16:27:37 EDT 2024 Sat Aug 24 00:52:09 EDT 2024 Wed Jan 17 05:01:59 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5421-5443e460838c4004b94e53fefa30e77b05653990593330abd53a190f807360163 |
Notes | istex:31E71E20FCA46FE25C2F6C6B25F9BAF2C2A07833 ArticleID:GRL53531 Supporting Information S1 ark:/67375/WNG-4RFS9XT2-9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015GL065688 |
PQID | 1726857396 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1808369425 proquest_miscellaneous_1770287756 proquest_journals_2027269658 proquest_journals_1726857396 crossref_primary_10_1002_2015GL065688 wiley_primary_10_1002_2015GL065688_GRL53531 istex_primary_ark_67375_WNG_4RFS9XT2_9 |
PublicationCentury | 2000 |
PublicationDate | 16 October 2015 |
PublicationDateYYYYMMDD | 2015-10-16 |
PublicationDate_xml | – month: 10 year: 2015 text: 16 October 2015 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Camporeale, C., and L. Ridolfi (2007), Noise-induced phenomena in riparian vegetation dynamics, Geophys. Res. Lett., 34, L18406, doi:10.1029/2007GL030899. D'Odorico, P., F. Laio, A. Porporato, L. Ridolfi, and N. Barbier (2007), Noise-induced vegetation patterns in fire-prone savannas, J. Geophys. Res., 112, G02021, doi:10.1029/2006JG000261. Bennett, S. J., W. Wu, C. V. Alonso, and S. S. Y. Wang (2008), Modeling fluvial response to in-stream woody vegetation: Implications for stream corridor restoration, Earth Surf. Processes Landforms, 33(6), 890-909. Camporeale, C., E. Perucca, L. Ridolfi, and A. M. Gurnell (2013), Modeling the interactions between river morphodynamics and riparian vegetation, Rev. Geophys., 51, 379-414, doi:10.1002/rog.20014. Tealdi, S., C. Camporeale, and L. Ridolfi (2011), Modeling the impact of river damming on riparian vegetation, J. Hydrol., 396(3-4), 302-312. Abramowitz, M., and I. Stegun (1964), Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover, New York. Bertoldi, W., A. M. Gurnell, and N. A. Drake (2011), The topographic signature of vegetation development along a braided river: Results of a combined analysis of airborne lidar, color air photographs, and ground measurements, Water Resour. Res., 47, W06525, doi:10.1029/2010WR010319. Ridolfi, L., P. D'Odorico, and F. Laio (2011), Noise-Induced Phenomena in the Environmental Sciences, Cambridge Univ. Press, Cambridge. Tockner, K., F. Malard, and J. Ward (2000), An extension of the flood pulse concept, Hydrol. Processes, 14(16-17), 2861-2883. Naumburg, E., R. Mata-Gonzalez, R. G. Hunter, T. Mclendon, and D. W. Martin (2005), Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation, Environ. Manage., 35(6), 726-740. Laio, F., A. Porporato, L. Ridolfi, and I. Rodriguez-Iturbe (2001), Mean first passage times of processes driven by white shot noise, Phys. Rev. E, 63, 036105. Docker, B. B., and T. C. T. Hubble (2008), Quantifying root-reinforcement of river bank soils by four Australian tree species, Geomorphology, 100(3-4), 401-418. Doulatyari, B., S. Basso, M. Schirmer, and G. Botter (2014), River flow regimes and vegetation dynamics along a river transect, Adv. Water Res., 73, 30-43. Beschta, R. L., and W. J. Ripple (2006), River channel dynamics following extirpation of wolves in northwestern Yellowstone National Park, USA, Earth Surf. Processes Landforms, 31(12), 1525-1539, doi:10.1002/esp.1362. Gurnell, A. (2014), Plants as river system engineers, Earth Surf. Processes Landforms, 39(1), 4-25. Gurnell, A., K. Tockner, P. Edwards, and G. Petts (2005), Effects of deposited wood on biocomplexity of river corridors, Front. Ecol. Environ., 3(7), 377-382. Welber, M., W. Bertoldi, and M. Tubino (2012), The response of braided planform configuration to flow variations, bed reworking and vegetation: The case of the Tagliamento River, Italy, Earth Surf. Processes Landforms, 37(5), 572-582. Naiman, R., H. Décamps, and M. McClain (2005), Riparia, Elsevier Academic, Burlington. Jones, C., J. H. Lawton, and M. Shachak (1994), Organisms as ecosystem engineers, Oikos, 69(3), 373-386, doi:10.2307/3545850. Pasquale, N., P. Perona, R. Francis, and P. Burlando (2012), Effects of streamflow variability on the vertical root density distribution of willow cutting experiments, Ecol. Eng., 40, 167-172. Steiger, J., A. Gurnell, P. Ergenzinger, and D. Snelder (2001), Sedimentation in the riparian zone of an incising river, Earth Surf. Processes Landforms, 26(1), 91-108. Bertoldi, W., A. Siviglia, S. Tettamanti, M. Toffolon, D. Vetsch, and S. Francalanci (2014), Modeling vegetation controls on fluvial morphological trajectories, Geophys. Res. Lett., 41, 7167-7175, doi:10.1002/2014GL061666. Gurnell, A. M., W. Bertoldi, and D. Corenblit (2012), Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers, Earth Sci. Rev., 111(1-2), 129-141. Gibling, M. R., and N. S. Davies (2012), Palaeozoic landscapes shaped by plant evolution, Nat. Geosci., 5( 2), 99-105, doi:10.1038/NGEO1376. Ishikawa, Y., T. Sakamoto, and K. Mizuhara (2003), Effect of density of riparian vegetation on effective tractive force, J. For. Res., 8(4), 235-246. Shafroth, P., J. Stromberg, and D. Patten (2002), Riparian vegetation response to altered disturbance and stress regimes, Ecol. Appl., 12(1), 107-123. Muneepeerakul, R., A. Rinaldo, and I. Rodriguez-Iturbe (2007), Effects of river flow scaling properties on riparian width and vegetation biomass, Water Resour. Res., 43, W12406, doi:10.1029/2007WR006100. Camporeale, C., and L. Ridolfi (2006), Riparian vegetation distribution induced by river flow variability: A stochastic approach, Water Resour. Res., 42, W10415, doi:10.1029/2006WR004933. Hickin, E. (1984), Vegetation and river channel dynamics, Can. Geogr. Geogr. Can., 28(2), 111-126. Nicholas, A. P., P. J. Ashworth, G. H. S. Smith, and S. D. Sandbach (2013), Numerical simulation of bar and island morphodynamics in anabranching megarivers, J. Geophys. Res. Earth Surf., 118, 2019-2044, doi:10.1002/jgrf.20132. Malanson, G. (1993), Riparian Landscapes, Cambridge Univ. Press, Cambridge. Marani, M., C. Da Lio, and A. D'Alpaos (2013), Vegetation engineers marsh morphology through multiple competing stable states, Proc. Natl. Acad. Sci. U.S.A., 110(9), 3259-3263. Craig, L. S., et al. (2008), Stream restoration strategies for reducing river nitrogen loads, Front. Ecol. Environ., 6(10), 529-538. Abbe, T., and D. Montgomery (2003), Patterns and processes of wood debris accumulation in the Queets river basin, Washington, Geomorphology, 51(1-3), 81-107. Crosato, A., and M. S. Saleh (2011), Numerical study on the effects of floodplain vegetation on river planform style, Earth Surf. Processes Landforms, 36(6), 711-720. Crouzy, B., F. Brenbold, P. D'Odorico, and P. Perona (2015), Ecomorphodynamic approaches to river anabranching patterns, Adv. Water Res., doi:10.1016/j.advwatres.2015.07.011. Wu, W., F. Shields, S. Bennett, and S. Wang (2005), A depth-averaged two-dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation, Water Resour. Res., 41, W03015, doi:10.1029/2004WR003730. Corenblit, D., E. Tabacchi, J. Steiger, and A. M. Gurnell (2007), Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches, Earth Sci. Rev., 84(1-2), 56-86. 2006; 31 2011 1984; 28 2002; 12 2005; 41 1994; 69 2005 2001; 26 2008; 33 2008; 6 1993 2011; 36 2012; 37 2014; 41 2008; 100 2003; 51 2007; 34 2001; 63 2011; 396 2007; 112 2006; 42 2012; 111 2000; 14 2013; 51 2003; 8 2013; 118 1964 1984 2015 2007; 84 2005; 3 2013; 110 2011; 47 2014; 39 1980 2014; 73 2007; 43 2012; 5 2005; 35 2012; 40 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Abramowitz M. (e_1_2_8_3_1) 1964 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Naiman R. (e_1_2_8_30_1) 2005 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 6 start-page: 529 issue: 10 year: 2008 end-page: 538 article-title: Stream restoration strategies for reducing river nitrogen loads publication-title: Front. Ecol. Environ. – volume: 36 start-page: 711 issue: 6 year: 2011 end-page: 720 article-title: Numerical study on the effects of floodplain vegetation on river planform style publication-title: Earth Surf. Processes Landforms – year: 2011 – volume: 14 start-page: 2861 issue: 16‐17 year: 2000 end-page: 2883 article-title: An extension of the flood pulse concept publication-title: Hydrol. Processes – volume: 47 start-page: W06525 year: 2011 article-title: The topographic signature of vegetation development along a braided river: Results of a combined analysis of airborne lidar, color air photographs, and ground measurements publication-title: Water Resour. Res. – volume: 42 start-page: W10415 year: 2006 article-title: Riparian vegetation distribution induced by river flow variability: A stochastic approach publication-title: Water Resour. Res. – volume: 118 start-page: 2019 year: 2013 end-page: 2044 article-title: Numerical simulation of bar and island morphodynamics in anabranching megarivers publication-title: J. Geophys. Res. Earth Surf. – year: 1964 – volume: 100 start-page: 401 issue: 3–4 year: 2008 end-page: 418 article-title: Quantifying root‐reinforcement of river bank soils by four Australian tree species publication-title: Geomorphology – year: 2005 – volume: 33 start-page: 890 issue: 6 year: 2008 end-page: 909 article-title: Modeling fluvial response to in‐stream woody vegetation: Implications for stream corridor restoration publication-title: Earth Surf. Processes Landforms – volume: 5 start-page: 99 issue: 2 year: 2012 end-page: 105 article-title: Palaeozoic landscapes shaped by plant evolution publication-title: Nat. Geosci. – start-page: 129 year: 1984 end-page: 163 – volume: 41 start-page: 7167 year: 2014 end-page: 7175 article-title: Modeling vegetation controls on fluvial morphological trajectories publication-title: Geophys. Res. Lett. – volume: 51 start-page: 379 year: 2013 end-page: 414 article-title: Modeling the interactions between river morphodynamics and riparian vegetation publication-title: Rev. Geophys. – volume: 112 start-page: G02021 year: 2007 article-title: Noise‐induced vegetation patterns in fire‐prone savannas publication-title: J. Geophys. Res. – volume: 41 start-page: W03015 year: 2005 article-title: A depth‐averaged two‐dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation publication-title: Water Resour. Res. – volume: 35 start-page: 726 issue: 6 year: 2005 end-page: 740 article-title: Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation publication-title: Environ. Manage. – volume: 31 start-page: 1525 issue: 12 year: 2006 end-page: 1539 article-title: River channel dynamics following extirpation of wolves in northwestern Yellowstone National Park, USA publication-title: Earth Surf. Processes Landforms – volume: 28 start-page: 111 issue: 2 year: 1984 end-page: 126 article-title: Vegetation and river channel dynamics publication-title: Can. Geogr. Geogr. Can. – volume: 396 start-page: 302 issue: 3–4 year: 2011 end-page: 312 article-title: Modeling the impact of river damming on riparian vegetation publication-title: J. Hydrol. – volume: 63 start-page: 036105 year: 2001 article-title: Mean first passage times of processes driven by white shot noise publication-title: Phys. Rev. E – volume: 110 start-page: 3259 issue: 9 year: 2013 end-page: 3263 article-title: Vegetation engineers marsh morphology through multiple competing stable states publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 8 start-page: 235 issue: 4 year: 2003 end-page: 246 article-title: Effect of density of riparian vegetation on effective tractive force publication-title: J. For. Res. – year: 2015 article-title: Ecomorphodynamic approaches to river anabranching patterns publication-title: Adv. Water Res. – volume: 39 start-page: 4 issue: 1 year: 2014 end-page: 25 article-title: Plants as river system engineers publication-title: Earth Surf. Processes Landforms – year: 1980 – volume: 40 start-page: 167 year: 2012 end-page: 172 article-title: Effects of streamflow variability on the vertical root density distribution of willow cutting experiments publication-title: Ecol. Eng. – volume: 69 start-page: 373 issue: 3 year: 1994 end-page: 386 article-title: Organisms as ecosystem engineers publication-title: Oikos – volume: 111 start-page: 129 issue: 1–2 year: 2012 end-page: 141 article-title: Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers publication-title: Earth Sci. Rev. – volume: 51 start-page: 81 issue: 1–3 year: 2003 end-page: 107 article-title: Patterns and processes of wood debris accumulation in the Queets river basin, Washington publication-title: Geomorphology – volume: 12 start-page: 107 issue: 1 year: 2002 end-page: 123 article-title: Riparian vegetation response to altered disturbance and stress regimes publication-title: Ecol. Appl. – volume: 84 start-page: 56 issue: 1–2 year: 2007 end-page: 86 article-title: Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches publication-title: Earth Sci. Rev. – volume: 43 start-page: W12406 year: 2007 article-title: Effects of river flow scaling properties on riparian width and vegetation biomass publication-title: Water Resour. Res. – volume: 34 start-page: L18406 year: 2007 article-title: Noise‐induced phenomena in riparian vegetation dynamics publication-title: Geophys. Res. Lett. – volume: 3 start-page: 377 issue: 7 year: 2005 end-page: 382 article-title: Effects of deposited wood on biocomplexity of river corridors publication-title: Front. Ecol. Environ. – volume: 37 start-page: 572 issue: 5 year: 2012 end-page: 582 article-title: The response of braided planform configuration to flow variations, bed reworking and vegetation: The case of the Tagliamento River, Italy publication-title: Earth Surf. Processes Landforms – year: 1993 – volume: 26 start-page: 91 issue: 1 year: 2001 end-page: 108 article-title: Sedimentation in the riparian zone of an incising river publication-title: Earth Surf. Processes Landforms – volume: 73 start-page: 30 year: 2014 end-page: 43 article-title: River flow regimes and vegetation dynamics along a river transect publication-title: Adv. Water Res. – ident: e_1_2_8_18_1 doi: 10.1038/NGEO1376 – ident: e_1_2_8_27_1 doi: 10.1017/CBO9780511565434 – ident: e_1_2_8_8_1 doi: 10.1029/2006WR004933 – ident: e_1_2_8_31_1 doi: 10.1007/s00267-004-0194-7 – ident: e_1_2_8_16_1 doi: 10.1029/2006JG000261 – ident: e_1_2_8_2_1 doi: 10.1016/S0169-555X(02)00326-4 – ident: e_1_2_8_4_1 doi: 10.1002/esp.1581 – ident: e_1_2_8_28_1 doi: 10.1073/pnas.1218327110 – volume-title: Riparia year: 2005 ident: e_1_2_8_30_1 contributor: fullname: Naiman R. – ident: e_1_2_8_15_1 doi: 10.1016/j.geomorph.2008.01.009 – ident: e_1_2_8_23_1 doi: 10.1007/s10310-003-0032-4 – ident: e_1_2_8_40_1 doi: 10.1029/2004WR003730 – ident: e_1_2_8_38_1 doi: 10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F – ident: e_1_2_8_13_1 doi: 10.1002/esp.2088 – ident: e_1_2_8_32_1 doi: 10.1002/jgrf.20132 – ident: e_1_2_8_37_1 doi: 10.1016/j.jhydrol.2010.11.016 – ident: e_1_2_8_33_1 doi: 10.1016/j.ecoleng.2011.12.002 – ident: e_1_2_8_7_1 doi: 10.1002/esp.1362 – ident: e_1_2_8_39_1 doi: 10.1002/esp.3196 – ident: e_1_2_8_10_1 doi: 10.1002/rog.20014 – ident: e_1_2_8_20_1 doi: 10.1890/1540-9295(2005)003[0377:EODWOB]2.0.CO;2 – ident: e_1_2_8_11_1 doi: 10.1016/j.earscirev.2007.05.004 – volume-title: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables year: 1964 ident: e_1_2_8_3_1 contributor: fullname: Abramowitz M. – ident: e_1_2_8_6_1 doi: 10.1002/2014GL061666 – ident: e_1_2_8_12_1 doi: 10.1890/070080 – ident: e_1_2_8_9_1 doi: 10.1029/2007GL030899 – ident: e_1_2_8_21_1 doi: 10.1016/j.earscirev.2011.11.005 – ident: e_1_2_8_34_1 doi: 10.1017/CBO9780511984730 – ident: e_1_2_8_5_1 doi: 10.1029/2010WR010319 – ident: e_1_2_8_19_1 doi: 10.1002/esp.3397 – ident: e_1_2_8_41_1 – ident: e_1_2_8_14_1 doi: 10.1016/j.advwatres.2015.07.011 – ident: e_1_2_8_36_1 doi: 10.1002/1096-9837(200101)26:1<91::AID-ESP164>3.0.CO;2-U – ident: e_1_2_8_17_1 doi: 10.1016/j.advwatres.2014.06.015 – ident: e_1_2_8_29_1 doi: 10.1029/2007WR006100 – ident: e_1_2_8_35_1 doi: 10.1890/1051-0761(2002)012[0107:RVRTAD]2.0.CO;2 – ident: e_1_2_8_24_1 doi: 10.2307/3545850 – ident: e_1_2_8_22_1 doi: 10.1111/j.1541-0064.1984.tb00779.x – ident: e_1_2_8_25_1 doi: 10.1016/B978-0-12-424120-6.50009-2 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevE.63.036105 |
SSID | ssj0003031 |
Score | 2.354997 |
Snippet | Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological features of the... Abstract Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation‐sediments‐stream determines the ecogeomorphological... Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the ecogeomorphological features of the... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 8021 |
SubjectTerms | Dynamics ecomorphodynamics Economic models ecosystem engineers Ecosystems Freshwater Probability density function Probability density functions Probability theory Randomness Riparian land Riparian vegetation Rivers Sediment Sediments Slope state-dependent dichotomous noise Stochastic models Stochasticity Survival Topography Topography (geology) Variation Vegetation Water levels |
Title | Noise-driven cooperative dynamics between vegetation and topography in riparian zones |
URI | https://api.istex.fr/ark:/67375/WNG-4RFS9XT2-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL065688 https://www.proquest.com/docview/1726857396 https://www.proquest.com/docview/2027269658 https://search.proquest.com/docview/1770287756 https://search.proquest.com/docview/1808369425 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagFRIviJ-iMJCRgJcqkMRxEj9OaO00lSKVZlS8WHHijoqpqdoOwf567mwnTbVpGrxEkZOeUt_5_Nm--46QtwVjSHLCvSJlsEBhofCUKkMvh7bSz5NAB5g7_HkcH2fRyYzPdlU6TXbJVn0oLq_NK_kfrUIb6BWzZP9Bs41QaIB70C9cQcNwvZWOx9Vio71yjR6rX1TVSjse79LWmd80YVi_9FkdV2hCJquVo6o2-SwLLEUIA_0SifvbcHWoq1WtSEcL9KN_bjKAGix-qjfw-73YQzzQqNbahSo3-7CTRVmdzxe7XAe32xAYllKbDFl7UBF5aZg4-mrrNEUEbb6tXlt71ShsW49o-cjUtznR9Xzr24OZK77ccsPiRwxHAJRiW_5vnzJ7_EUOstFITo9m07ukGyaC8w7pHp5m37NmQoZZ2hZOdJ_u8h9A_se29D1k0sVB9ntv2dFevBj0MX1IHrhlAz20NvCI3NHLx-Te0JRl_gN3JpC32DwhWdsmaMsmaG0T1NkE3dkEBZugO5ugiyWtbYIam3hKssHR9NOx50pneAWPwsBDVkMdxYCv0wK9tBKR5myu5znzdZIogL1ISYz1HBnzc1VylgM0nKfg8ZGghz0jnSXIf06oUnh0LDS47sKg96AsYoA0c8UKzpTokXd1t8mVZUiRlgs7lO3u7ZH3pk-bl_L1T4wqTLj8Nh7KaDL4KmbTUILAg7rTpRtsGwk4O055wkR87WPcwgtjJDLqkTfNY_CUePyVL3V1gSISANNJwuMb3kmRrV3ARNYjfaPvG_-THE5GnME09uIWEl-S-7sRdUA62_WFfgWIdqteO4v9C-rWnQ4 |
link.rule.ids | 315,786,790,27955,27956,50847,50956 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-NVgheEOOP6BhgpMELitbEsZ08Toi2g64PW8sqXizbcdGElFRtN8Ge9hH4jHwS7hKvdBKatLcouZyUc-7uZ_v8O4A9xzmRnIjIZRwnKDzJI2uLJDJ4r-gaFfuYzg4fjeRgkn6eimnoc0pnYRp-iPWCG3lGHa_JwWlBev8fayimLtEfYgqVWXYP2oIo9VrQPvg6-TZZB2OM0E3TvDyNskTJUPuOGvY337-Rldpk4J83IOcmcK0zT-8xPAqQkR00Y7wNW758Avf7dUveX3hVF3G65VM4HVVnS__n6nexoBjGXFXNfcPszYqm8_yShcIsduG_h0pDZsqCrap5IK9mZyXDSIJzaFOyS6LyfwaT3qfxx0EUGidETqRJHBGnnU8loqvMkY_aPPWCz_zM8K5XyiLoIUJa6ubHedfYQnCDwGCWob8TPQt_Dq0S9b8AZi1tHOYeHdfV2C0unMSENrPcCW7zDry7NpyeN_wYumFCTvSmgTvwvrbqWsgsflBNmRL6dNTX6XHvJJ-OE40Kd6_NroM7LTWiLJkJxXP538e0gJNIorHpwNv1Y_QT2vwwpa_OSYVCKKWUkLfIZMTVnWMY68CHesRv_SbdPx4KjkFs507Sb-DBYHw01MPD0ZeX8JBkKBnGchdaq8W5f4UoZ2Vfhz_5L0QK8NQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7BKhAvEwzQuo3hScALitbEsZ08TrB2QKnQWFnFi2U7DpomJVXbIbYnfgK_kV_CXeKVTkKTeIuSy0k55-4-2-fvAF44zonkREQu4zhB4UkeWVskkcF7Rc-o2Md0dvjjSB6N0_cTMQkLbnQWpuWHWC64kWc08ZocfFqU-39JQzFzicEQM6jMsrvQQaCR4uSrc_Bl_HW8jMUYoNueeXkaZYmSofQdNeyvvn8jKXXIvj9uIM5V3Noknv5DWA-IkR20Q_wI7vhqA-4Nmo68l3jV1HC6-WM4HdVnc__7569iRiGMubqe-pbYmxVt4_k5C3VZ7Lv_FgoNmakKtqingbuanVUMAwlOoU3FrojJ_wmM-4cnb46i0DchciJN4ogo7XwqEVxljlzU5qkXvPSl4T2vlEXMQ3y01MyP856xheAGcUGZobsTOwt_CmsV6t8EZi3tG-Ye_dY10C0unMR8VlruBLd5F15eG05PW3oM3RIhJ3rVwF141Vh1KWRm51RSpoQ-HQ10etz_nE9OEo0Kd67NroM3zTWCLJkJxXP5z8e0fpNIYrHpwt7yMboJ7X2YytcXpEIhklJKyFtkMqLqzjGKdeF1M-K3fpMeHA8Fxxi29V_Sz-H-p7d9PXw3-rAND0iEUmEsd2BtMbvwzxDjLOxu-JH_AMiX7_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise-driven+cooperative+dynamics+between+vegetation+and+topography+in+riparian+zones&rft.jtitle=Geophysical+research+letters&rft.au=Vesipa%2C+R&rft.au=Camporeale%2C+C&rft.au=Ridolfi%2C+L&rft.date=2015-10-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=19&rft.spage=8021&rft.epage=8030&rft_id=info:doi/10.1002%2F2015GL065688&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |