Harnessing root architecture to address global challenges
SUMMARY Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Cro...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 109; no. 2; pp. 415 - 431 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2. Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Significance Statement
Root architecture can be harnessed to develop crops with improved climate resilience and reduced input requirements, thereby improving global food security, agricultural sustainability, and climate change mitigation. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. |
---|---|
AbstractList | SUMMARY
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2. Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Significance Statement
Root architecture can be harnessed to develop crops with improved climate resilience and reduced input requirements, thereby improving global food security, agricultural sustainability, and climate change mitigation. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO₂. Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO 2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. Root architecture can be harnessed to develop crops with improved climate resilience and reduced input requirements, thereby improving global food security, agricultural sustainability, and climate change mitigation. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. SUMMARYRoot architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2. Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. |
Author | Lynch, Jonathan P. |
AuthorAffiliation | 1 Department of Plant Science The Pennsylvania State University University Park PA 16802 USA |
AuthorAffiliation_xml | – name: 1 Department of Plant Science The Pennsylvania State University University Park PA 16802 USA |
Author_xml | – sequence: 1 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. email: jpl4@psu.edu organization: The Pennsylvania State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34724260$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rVDEUxYNU7LS68AvIAze6eG3-v2QjSKnWUqiLCu5CksmbyZBJxiRP6bdvxpmKLUqzyeL-zuHec47AQUzRAfAawRPU3mndrE4QYxw-AzNEOOsJIt8PwAxKDvuBInwIjkpZQYgGwukLcEjogCnmcAbkhc7RleLjossp1U5nu_TV2Tpl19XU6fk8t3m3CMno0NmlDsHFhSsvwfNRh-Je7f9j8O3T-c3ZRX91_fnL2cer3jKKYW-cQJoL3FYhRg6GE8scHUfGORdyYFwQwwiBlkA4QjYfDBLGUMuYRFY6SI7Bh53vZjJrN7cu1qyD2mS_1vlWJe3Vw0n0S7VIP5XEUkq0NXi3N8jpx-RKVWtfrAtBR5emojBvoXAq-PA0yiQmSLSsG_r2EbpKU44tiWaIMRVUCt6oN38v_2fr-wIacLoDbE6lZDcq66uuPm1v8UEhqLYVq1ax-l1xU7x_pLg3_Re7d__lg7v9P6huvl7uFHc9irPe |
CitedBy_id | crossref_primary_10_1371_journal_pone_0291430 crossref_primary_10_3390_ijms25094687 crossref_primary_10_1093_jxb_erad421 crossref_primary_10_1111_tpj_17177 crossref_primary_10_1007_s11104_023_06326_7 crossref_primary_10_3390_agronomy13112700 crossref_primary_10_3390_plants11212927 crossref_primary_10_3389_fpls_2023_1094157 crossref_primary_10_1007_s00425_023_04294_x crossref_primary_10_1016_j_fcr_2025_109805 crossref_primary_10_1016_j_fcr_2024_109369 crossref_primary_10_1111_pce_14553 crossref_primary_10_3390_bacteria4010012 crossref_primary_10_36783_18069657rbcs20230046 crossref_primary_10_1007_s11104_024_07159_8 crossref_primary_10_1016_j_chemosphere_2024_143715 crossref_primary_10_1111_jac_12700 crossref_primary_10_46810_tdfd_1386233 crossref_primary_10_1002_csc2_21229 crossref_primary_10_1016_j_plaphy_2025_109793 crossref_primary_10_3389_fpls_2023_1092885 crossref_primary_10_1186_s12870_024_05435_4 crossref_primary_10_1016_j_tree_2023_11_011 crossref_primary_10_34133_plantphenomics_0280 crossref_primary_10_1016_j_indcrop_2022_116175 crossref_primary_10_1111_pce_14284 crossref_primary_10_3390_ijms25041975 crossref_primary_10_3389_fpls_2022_993484 crossref_primary_10_1016_j_ecoenv_2024_116532 crossref_primary_10_1111_mec_16945 crossref_primary_10_1016_j_hpj_2025_01_001 crossref_primary_10_1016_j_eja_2023_126994 crossref_primary_10_1111_tpj_15774 crossref_primary_10_1016_j_still_2022_105492 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1111_tpj_16627 crossref_primary_10_3389_fpls_2024_1389593 crossref_primary_10_1007_s10343_024_01013_8 crossref_primary_10_1021_acsagscitech_3c00426 crossref_primary_10_1007_s12374_022_09370_5 crossref_primary_10_1002_csc2_21149 crossref_primary_10_1186_s13007_022_00960_5 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_1093_jxb_erad312 crossref_primary_10_3390_ijms25126791 crossref_primary_10_1007_s00122_024_04797_5 crossref_primary_10_1093_jxb_erae009 crossref_primary_10_1016_j_apsoil_2024_105635 crossref_primary_10_1111_tpj_15669 crossref_primary_10_1080_00288233_2024_2395370 crossref_primary_10_3390_horticulturae10060569 crossref_primary_10_1111_1365_2745_14286 crossref_primary_10_3389_fpls_2022_1047563 crossref_primary_10_3390_agriculture14071168 crossref_primary_10_3390_ijms23169262 crossref_primary_10_1016_j_fcr_2024_109430 crossref_primary_10_1016_j_rhisph_2024_100922 crossref_primary_10_1186_s12870_022_03724_4 crossref_primary_10_1002_tpg2_20395 crossref_primary_10_3389_fpls_2022_1085409 crossref_primary_10_3390_agriculture13122184 crossref_primary_10_1007_s11104_024_06573_2 crossref_primary_10_1007_s11104_024_06743_2 crossref_primary_10_1016_j_jplph_2024_154241 crossref_primary_10_3389_fpls_2022_1035089 crossref_primary_10_1007_s11104_022_05692_y crossref_primary_10_3389_fpls_2023_1146681 crossref_primary_10_3390_agriculture12020209 crossref_primary_10_3390_proteomes10020017 crossref_primary_10_1007_s00344_022_10887_9 crossref_primary_10_32604_phyton_2024_046976 crossref_primary_10_3390_horticulturae11030232 crossref_primary_10_1093_jxb_erac493 crossref_primary_10_1016_j_eja_2024_127393 crossref_primary_10_3390_plants13121699 crossref_primary_10_1007_s11104_024_06560_7 crossref_primary_10_1016_j_heliyon_2024_e27142 crossref_primary_10_1016_j_envexpbot_2022_105086 crossref_primary_10_1016_j_scib_2023_12_051 crossref_primary_10_1111_ejss_13524 crossref_primary_10_1007_s40502_024_00828_x crossref_primary_10_1016_j_rhisph_2024_100915 crossref_primary_10_1080_00103624_2025_2474180 crossref_primary_10_3390_gels9100835 crossref_primary_10_1111_nph_19676 crossref_primary_10_1111_tpj_15641 crossref_primary_10_1007_s11104_024_06949_4 crossref_primary_10_34133_plantphenomics_0127 crossref_primary_10_1111_nph_20428 crossref_primary_10_3390_agronomy13071678 crossref_primary_10_1186_s12870_023_04469_4 crossref_primary_10_1126_science_ads5999 crossref_primary_10_7717_peerj_13638 crossref_primary_10_1007_s10722_023_01855_7 crossref_primary_10_1016_j_tplants_2022_04_001 crossref_primary_10_3390_horticulturae9121267 crossref_primary_10_1093_aob_mcae201 crossref_primary_10_1007_s11104_024_07181_w crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_3390_su152014792 crossref_primary_10_3389_fpls_2024_1429901 crossref_primary_10_1007_s00344_023_11106_9 crossref_primary_10_3390_plants12203543 crossref_primary_10_1016_j_plaphy_2024_109144 crossref_primary_10_1093_jxb_erad488 crossref_primary_10_1007_s42994_023_00112_w crossref_primary_10_1016_j_geoderma_2024_117061 crossref_primary_10_1007_s00425_024_04562_4 crossref_primary_10_1016_j_stress_2023_100211 crossref_primary_10_1016_j_bioeco_2023_100057 crossref_primary_10_3389_fpls_2022_1010165 crossref_primary_10_1007_s40626_024_00334_3 crossref_primary_10_1007_s11104_024_06799_0 crossref_primary_10_1111_aab_70006 crossref_primary_10_1186_s40168_024_01839_4 crossref_primary_10_1093_plphys_kiad214 crossref_primary_10_1111_pce_15385 crossref_primary_10_3390_agronomy13040984 crossref_primary_10_3389_fpls_2024_1408356 crossref_primary_10_1002_tpg2_20489 crossref_primary_10_15252_embr_202255631 crossref_primary_10_3389_fpls_2022_926214 crossref_primary_10_1080_10549811_2024_2447717 crossref_primary_10_1093_plphys_kiad213 crossref_primary_10_34133_plantphenomics_0076 crossref_primary_10_1016_j_fcr_2023_109189 crossref_primary_10_1111_gcb_70057 crossref_primary_10_1186_s12870_024_04971_3 crossref_primary_10_1007_s11258_024_01416_7 crossref_primary_10_3389_fpls_2022_959629 crossref_primary_10_1042_BCJ20220245 crossref_primary_10_1016_j_jgg_2023_08_011 crossref_primary_10_1007_s11104_022_05734_5 crossref_primary_10_1016_j_jgg_2024_05_001 crossref_primary_10_1111_pbi_14592 crossref_primary_10_3389_fpls_2022_853309 crossref_primary_10_1007_s11104_023_06301_2 crossref_primary_10_1016_j_cub_2023_10_028 |
Cites_doi | 10.1007/978-3-662-05349-2 10.1016/j.tplants.2007.08.012 10.1007/s11104-011-0880-1 10.1111/pce.13875 10.1104/pp.20.00211 10.1093/jxb/ery252 10.1104/pp.113.233916 10.1016/j.tplants.2019.12.007 10.1038/ng.2725 10.1098/rstb.2010.0172 10.1093/aob/mcaa068 10.1093/aob/mcs293 10.1093/jxb/erq272 10.1093/aob/mcq199 10.1111/j.1469-8137.1996.tb01847.x 10.1111/j.1438-8677.1999.tb00253.x 10.1098/rspa.2020.0351 10.1111/tpj.14722 10.1093/jxb/erv560 10.1007/s11104-011-0950-4 10.1093/jxb/eru508 10.1093/jxb/eraa165 10.1007/s11104-012-1342-0 10.1104/pp.17.00648 10.1126/science.1170261 10.1046/j.1469-8137.2003.00695.x 10.1104/pp.111.175489 10.1093/jxb/erz383 10.1007/s11104‐021‐05010‐y 10.1071/FP03078 10.1186/s12284-014-0030-5 10.1016/j.fcr.2004.07.008 10.1071/FP09197 10.1093/aob/mct164 10.3389/fsufs.2020.00031 10.1093/aob/mcw112 10.1071/FP04046 10.1596/26447 10.1104/pp.111.175414 10.1093/jxb/erv074 10.1029/2008GL033423 10.1016/j.tplants.2006.10.006 10.1146/annurev.environ.032108.105046 10.1104/pp.114.250449 10.1111/nph.13469 10.1111/j.1365-3040.2005.01306.x 10.3389/fpls.2020.00546 10.1111/pce.12684 10.1126/science.abf3013 10.1104/pp.17.01583 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 10.1016/j.tplants.2017.02.001 10.1080/11263501003731805 10.1073/pnas.2012087118 10.3389/fpls.2013.00355 10.1111/nph.14641 10.1093/jxb/ert200 10.1098/rstb.2011.0244 10.1104/pp.18.00234 10.1146/annurev.es.16.110185.002051 10.1080/09640560600601587 10.1016/0098-8472(93)90053-I 10.1007/s11104-010-0623-8 10.1093/jxb/erv098 10.1002/csc2.20241 10.1111/pce.13197 10.1146/annurev-arplant-043014-114822 10.1016/j.fcr.2019.04.012 10.1016/j.fcr.2014.10.009 10.1093/aob/mcr175 10.1016/j.still.2020.104912 10.1071/BT06118 10.1201/9780203909423.pt6 10.1023/A:1004276724310 10.1016/j.fcr.2019.107612 10.1093/jxb/erq350 10.1093/jxb/ery048 10.1002/ggn2.202100017 10.1007/s11104-010-0328-z 10.1007/s11104-004-1096-4 10.1007/s11104-015-2379-7 10.1104/pp.114.241711 10.1104/pp.114.249037 10.1038/nature10452 10.1270/jsbbs.20118 10.1111/nph.15738 10.1104/pp.15.00145 10.1007/s11104-005-0389-6 10.1093/jxb/ers111 10.1071/FP03255 10.1093/jxb/erv241 10.1111/pce.14135 10.1071/FP05043 10.2135/cropsci2003.5980 10.1093/jxb/erw243 10.1111/j.1469-8137.2004.01130.x 10.1093/aob/mcy092 10.1104/pp.19.00262 10.1111/pce.14175 10.1111/pce.12451 10.1023/A:1013324727040 10.1016/j.foodpol.2010.05.006 10.1111/pce.14213 10.59327/IPCC/AR5-9789291691432 10.1016/S0038-0717(01)00158-4 10.1016/j.jtbi.2003.09.011 10.1071/FP05005 10.1093/jxb/erv121 10.1093/jxb/ert043 10.1016/j.fcr.2012.09.010 10.1007/3-540-27675-0_7 10.1111/pce.12933 10.1016/j.fcr.2016.04.008 10.1104/pp.114.243519 10.1111/j.1365-3040.2009.02099.x 10.1093/jxb/erv007 10.1104/pp.15.00187 10.1007/s11104-004-0907-y 10.1016/j.fcr.2009.10.004 10.1007/978-3-319-19168-3 10.1093/aob/mcw073 10.1023/A:1010381919003 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd. 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/tpj.15560 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture Botany Agriculture |
DocumentTitleAlternate | Harnessing root architecture to address global challenges |
EISSN | 1365-313X |
EndPage | 431 |
ExternalDocumentID | PMC9299910 34724260 10_1111_tpj_15560 TPJ15560 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Cooperative State Research, Education, and Extension Service funderid: PEN04732 – fundername: ; grantid: PEN04732 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5420-be81a6829603b97b63c5e4ff56668975683b5330c300f05d7b18bb4c5591c9e03 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Thu Aug 21 13:36:42 EDT 2025 Fri Jul 11 18:33:14 EDT 2025 Fri Jul 11 06:08:49 EDT 2025 Fri Jul 25 10:57:13 EDT 2025 Thu Apr 03 06:57:14 EDT 2025 Tue Jul 01 03:57:38 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Wed Jan 22 16:26:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | water carbon nitrogen root architecture phosphorus |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5420-be81a6829603b97b63c5e4ff56668975683b5330c300f05d7b18bb4c5591c9e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7265-9790 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15560 |
PMID | 34724260 |
PQID | 2622484986 |
PQPubID | 31702 |
PageCount | 431 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9299910 proquest_miscellaneous_2636464867 proquest_miscellaneous_2592318155 proquest_journals_2622484986 pubmed_primary_34724260 crossref_citationtrail_10_1111_tpj_15560 crossref_primary_10_1111_tpj_15560 wiley_primary_10_1111_tpj_15560_TPJ15560 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2011; 478 2021; 208 2013; 4 2021a; 466 2017a; 40 2015; 388 2004; 163 2021b; 118 2011; 62 2013; 64 2013; 364 2008; 35 2018; 41 2020; 11 2012; 367 2016; 39 2021; 71 2003; 157 2011a; 107 2010b; 37 2018; 177 2004; 31 1993; 33 2010; 115 2013; 112 1996; 132 1985; 16 2003; 43 2010; 35 2021; 44 1998 2019; 223 1995 2007; 12 2003; 30 2019; 180 2006; 49 2017b; 174 2010; 335 2015; 66 2014; 38 2021; 371 2014a; 166 2020; 25 2018; 122 2011b; 156 2010a; 33 2020; 60 2010; 144 2005; 28 2011; 156 2019; 244 2015; 171 2016; 118 2005; 269 1997; 188 2019; 237 2005; 32 2014; 166 2016; 192 2003; 84 2014; 7 2017; 126 2009; 324 2012; 63 2004; 226 2019; 70 2021; 2 2015; 168 2006; 11 2013; 45 2002; 34 2017; 22 2015; 167 2010; 365 2020; 183 2021b 2021a 2005 2015; 208 2013; 140 2003 2020; 103 1999; 1 2002 2017; 176 2004; 90 2007; 55 2017; 215 2018; 69 2006; 279 2014b; 166 2001; 232 2009; 34 2011; 108 2011; 349 2021 2020 2020; 71 2019 2017 2016 2015 2014 2020; 476 2007; 42 2016; 67 2011; 341 2001; 237 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_92_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_6_1 e_1_2_14_121_1 e_1_2_14_107_1 e_1_2_14_125_1 e_1_2_14_103_1 e_1_2_14_85_1 e_1_2_14_129_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_47_1 e_1_2_14_119_1 e_1_2_14_132_1 e_1_2_14_115_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 Barber S. (e_1_2_14_3_1) 1995 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 Saengwilai P. (e_1_2_14_90_1) 2014; 166 e_1_2_14_120_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_128_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 e_1_2_14_69_1 Yang X. (e_1_2_14_124_1) 2020 e_1_2_14_131_1 e_1_2_14_116_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_105_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_127_1 e_1_2_14_101_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_26_1 e_1_2_14_19_1 Wortmann C.S. (e_1_2_14_123_1) 1998 e_1_2_14_130_1 e_1_2_14_117_1 e_1_2_14_113_1 e_1_2_14_74_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 Vieira R.F. (e_1_2_14_114_1) 2007; 42 e_1_2_14_5_1 IPCC (e_1_2_14_36_1) 2014 e_1_2_14_122_1 e_1_2_14_9_1 e_1_2_14_106_1 Lynch J.P. (e_1_2_14_49_1) 2005 e_1_2_14_126_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 e_1_2_14_118_1 e_1_2_14_133_1 |
References_xml | – volume: 67 start-page: 4545 year: 2016 end-page: 4557 article-title: Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.) publication-title: Journal of Experimental Botany – volume: 16 start-page: 363 year: 1985 end-page: 392 article-title: Resource limitation in plants ‐ an economic analogy publication-title: Annual Review of Ecology and Systematics – volume: 7 start-page: 30 year: 2014 article-title: Genes controlling root development in rice publication-title: Rice – volume: 4 start-page: 355 year: 2013 article-title: Integration of root phenes for soil resource acquisition Integration of root phenes for soil resource acquisition publication-title: Frontiers Plant Science – volume: 367 start-page: 1589 year: 2012 end-page: 1597 article-title: Large‐scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 166 start-page: 2166 issue: 4 year: 2014a end-page: 2178 article-title: Large root cortical cell size improves drought tolerance in maize publication-title: Plant Physiology – volume: 66 start-page: 3151 year: 2015 end-page: 3162 article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays) publication-title: Journal of Experimental Botany – volume: 64 start-page: 3711 year: 2013 end-page: 3721 article-title: Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength publication-title: Journal of Experimental Botany – volume: 208 start-page: 26 issue: 1 year: 2015 end-page: 38 article-title: Genes and networks regulating root anatomy and architecture publication-title: New Phytologist – volume: 22 start-page: 433 year: 2017 end-page: 443 article-title: Toward an integrated root ideotype for irrigated systems publication-title: Trends in Plant Science – volume: 171 start-page: 86 year: 2015 end-page: 98 article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.) publication-title: Field Crops Research – volume: 71 start-page: 3 year: 2021 end-page: 12 article-title: Challenges to design‐oriented breeding of root system architecture adapted to climate change publication-title: Breeding Science – volume: 157 start-page: 423 year: 2003 end-page: 447 article-title: Phosphorus aquisition and use: critical adaptations by plants for securing a nonrewable resource publication-title: New Phytologist – year: 1998 – volume: 31 start-page: 1 year: 2004 end-page: 12 article-title: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean publication-title: Functional Plant Biology – year: 2020 article-title: The ability of Conservation Agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield publication-title: Frontiers in Sustainable Food Systems – volume: 11 start-page: 587 year: 2006 end-page: 593 article-title: Models for navigating biological complexity in breeding improved crop plants publication-title: Trends in Plant Science – volume: 476 start-page: 20200351 year: 2020 article-title: Environmental sustainability of biofuels: a review publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 118 start-page: 401 year: 2016 end-page: 414 article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions publication-title: Annals of Botany – volume: 118 year: 2021b article-title: Multiseriate cortical sclerenchyma enhance root penetration in compacted soils publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 156 start-page: 1190 year: 2011b end-page: 1201 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiology – volume: 64 start-page: 1193 year: 2013 end-page: 1208 article-title: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver publication-title: Journal of Experimental Botany – volume: 167 start-page: 1430 year: 2015 end-page: 1439 article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition publication-title: Plant Physiology – volume: 107 start-page: 829 year: 2011a end-page: 841 article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability publication-title: Annals of Botany – volume: 324 start-page: 1519 year: 2009 end-page: 1520 article-title: Nutrient imbalances in agricultural development publication-title: Science – volume: 279 start-page: 347 year: 2006 end-page: 366 article-title: Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition publication-title: Plant & Soil – volume: 126 start-page: 205 year: 2017 end-page: 218 article-title: Root secondary growth: an unexplored component of soil resource acquisition publication-title: Annals of Botany – volume: 11 start-page: 546 year: 2020 article-title: Should root plasticity be a crop breeding target? publication-title: Frontiers in Plant Science – volume: 63 start-page: 3485 year: 2012 end-page: 3498 article-title: Traits and selection strategies to improve root systems and water uptake in water‐limited wheat crops publication-title: Journal of Experimental Botany – volume: 44 start-page: 49 year: 2021 end-page: 67 article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress publication-title: Plant, Cell & Environment – volume: 180 start-page: 2049 year: 2019 end-page: 2060 article-title: Cortical cell diameter is key to energy costs of root growth in wheat publication-title: Plant Physiology – volume: 1 start-page: 274 year: 1999 end-page: 287 article-title: Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence publication-title: Plant Biology – volume: 232 start-page: 69 year: 2001 end-page: 79 article-title: Effect of phosphorus availability on basal root shallowness in common bean publication-title: Plant & Soil – year: 2019 – volume: 67 start-page: 1071 year: 2016 end-page: 1078 article-title: Root hairs aid soil penetration by anchoring the root surface to pore walls publication-title: Journal of Experimental Botany – volume: 388 start-page: 1 year: 2015 end-page: 20 article-title: Next generation shovelomics: set up a tent and REST publication-title: Plant and Soil – volume: 41 start-page: 1579 year: 2018 end-page: 1592 article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize publication-title: Plant Cell and Environment – volume: 237 start-page: 225 year: 2001 end-page: 237 article-title: Topsoil foraging ‐ an architectural adaptation of plants to low phosphorus availability publication-title: Plant & Soil – volume: 49 start-page: 413 year: 2006 end-page: 433 article-title: Damage costs of nitrogen fertilizer in Europe and their internalization publication-title: Journal of Environmental Planning and Management – year: 2021a article-title: Root angle in maize influences nitrogen capture and is regulated by calcineurin B‐like protein ‐interacting serine/threonine‐protein kinase 15 ( ) publication-title: Plant, Cell & Environment – year: 2021 article-title: Genotypic variation in soil penetration by maize roots is negatively related to ethylene‐induced thickening publication-title: Plant, Cell and Environment – volume: 144 start-page: 458 year: 2010 end-page: 462 article-title: Experimental and modelling studies of drought‐adaptive root architectural traits in wheat (Triticum aestivum L.) publication-title: Plant Biosystems – volume: 269 start-page: 341 year: 2005 end-page: 356 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant & Soil – volume: 25 start-page: 406 year: 2020 end-page: 417 article-title: Digging deeper for agricultural resources, the value of deep rooting publication-title: Trends in Plant Science – volume: 55 start-page: 493 year: 2007 end-page: 512 article-title: Roots of the second green revolution publication-title: Australian Journal of Botany – volume: 69 start-page: 3279 year: 2018 end-page: 3292 article-title: Rightsizing root phenotypes for drought resistance publication-title: Journal of Experimental Botany – volume: 192 start-page: 21 year: 2016 end-page: 32 article-title: Legume shovelomics : high — throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field publication-title: Field Crops Research – volume: 122 start-page: 485 year: 2018 end-page: 499 article-title: Co‐optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Annals of Botany – volume: 349 start-page: 121 year: 2011 end-page: 156 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant & Soil – volume: 12 start-page: 474 year: 2007 end-page: 481 article-title: Root system architecture: opportunities and constraints for genetic improvement of crops publication-title: Trends in Plant Science – volume: 66 start-page: 571 year: 2015 end-page: 598 article-title: Plant adaptation to acid soils: the molecular basis for crop aluminum resistance publication-title: Annual Review of Plant Biology – year: 2016 – volume: 62 start-page: 59 year: 2011 end-page: 68 article-title: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits publication-title: Journal of Experimental Botany – year: 2020 article-title: Enlarged cortical cells and reduced cortical cell file number improve growth under suboptimal nitrogen, phosphorus and potassium availability publication-title: bioRxiv – volume: 35 start-page: 365 year: 2010 end-page: 377 article-title: Global water crisis and future food security in an era of climate change publication-title: Food Policy – volume: 349 start-page: 89 year: 2011 end-page: 120 article-title: Strategies and agronomic interventions to improve the phosphorus‐use efficiency of farming systems publication-title: Plant & Soil – volume: 108 start-page: 407 year: 2011 end-page: 418 article-title: Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration publication-title: Annals of Botany – volume: 118 start-page: 593 year: 2016 end-page: 605 article-title: Root adaptations to soils with low fertility and aluminium toxicity publication-title: Annals of Botany – volume: 32 start-page: 749 year: 2005 end-page: 762 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays L.) publication-title: Functional Plant Biology – volume: 177 start-page: 90 year: 2018 end-page: 104 article-title: (2018) Large crown root number improves topsoil foraging and phosphorus acquisition publication-title: Plant Physiology – year: 1995 – volume: 176 start-page: 691 year: 2017 end-page: 703 article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition publication-title: Plant Physiology – volume: 39 start-page: 1662 year: 2016 end-page: 1668 article-title: Deep roots and soil structure publication-title: Plant, Cell & Environment – volume: 269 start-page: 45 year: 2005 end-page: 56 article-title: Rhizoeconomics: Carbon costs of phosphorus acquisition publication-title: Plant & Soil – volume: 166 start-page: 1943 issue: 4 year: 2014b end-page: 1955 article-title: Reduced root cortical cell file number improves drought tolerance in maize publication-title: Plant Physiology – volume: 223 start-page: 548 issue: 2 year: 2019 end-page: 564 article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture publication-title: New Phytologist – volume: 40 start-page: 1392 year: 2017a end-page: 1408 article-title: Root cortical senescence decreases root respiration, nutrient content, and radial water and nutrient transport in barley publication-title: Plant, Cell & Environment – start-page: 521 year: 2002 end-page: 552 – volume: 42 start-page: 1365 year: 2007 end-page: 1368 article-title: Method for evaluation of root hairs of common bean genotypes. publication-title: Brasília – volume: 188 start-page: 139 year: 1997 end-page: 151 article-title: SimRoot: Modelling and visualization of root systems publication-title: Plant & Soil – volume: 226 start-page: 331 year: 2004 end-page: 340 article-title: Theoretical modeling of tradeoffs limiting root architecture plasticity publication-title: Journal of Theoretical Biology – volume: 69 start-page: 4961 year: 2018 end-page: 4970 article-title: Greater lateral root branching density in maize (Zea mays L.) improves phosphorus acquisition from low phosphorus soil publication-title: Journal of Experimental Botany – volume: 166 start-page: 726 year: 2014b end-page: 735 article-title: Root cortical aerenchyma enhances nitrogen acquisition from low nitrogen soils in maize publication-title: Plant Physiology – year: 2021 – volume: 2 issue: 3 year: 2021 article-title: Breeding custom‐designed crops for improved drought adaptation publication-title: Advanced Genetics – volume: 37 start-page: 313 year: 2010b end-page: 322 article-title: The utility of phenotypic plasticity of root hair length for phosphorus acquisition publication-title: Functional Plant Biology – volume: 84 start-page: 827 year: 2003 end-page: 837 article-title: How roots control the flux of carbon to the rhizosphere publication-title: Ecology – volume: 237 start-page: 53 year: 2019 end-page: 64 article-title: Seedling root architecture and its relationship with seed yield across diverse environments in Phaseolus vulgaris publication-title: Field Crops Research – start-page: 147 year: 2005 end-page: 183 – volume: 174 start-page: 2333 year: 2017b end-page: 2347 article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K publication-title: Plant Physiology – volume: 168 start-page: 1603 year: 2015 end-page: 1615 article-title: Reduced lateral root branching density improves drought tolerance in maize publication-title: Plant Physiology – volume: 28 start-page: 67 year: 2005 end-page: 77 article-title: Intrinsic and environmental response pathways that regulate root system architecture publication-title: Plant, Cell and Environment – year: 2021b article-title: Future roots for future soils publication-title: Plant, Cell & Environment – volume: 66 start-page: 3463 year: 2015 end-page: 3476 article-title: Use of crop simulation modelling to aid ideotype design of future cereal cultivars publication-title: Journal of Experimental Botany – volume: 66 start-page: 2055 year: 2015 end-page: 2065 article-title: Reduced frequency of lateral root branching improves N capture from low‐N soils in maize publication-title: Journal of Experimental Botany – volume: 33 start-page: 740 year: 2010a end-page: 749 article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.) publication-title: Plant, Cell and Environment – volume: 371 start-page: 276 year: 2021 end-page: 280 article-title: Plant roots sense soil compaction through restricted ethylene diffusion publication-title: Science – volume: 244 start-page: 107612 year: 2019 article-title: A case study on the efficacy of root phenotypic selection for edaphic stress tolerance in low‐input agriculture: common bean breeding in Mozambique publication-title: Field Crops Research – volume: 34 start-page: 139 year: 2002 end-page: 162 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biology and Biochemistry – volume: 466 start-page: 21 year: 2021a end-page: 63 article-title: Root anatomy and soil resource capture publication-title: Plant & Soil – volume: 60 start-page: 2574 year: 2020 end-page: 2593 article-title: Comparative phenomics of annual grain legume root architecture publication-title: Crop Science – volume: 163 start-page: 459 year: 2004 end-page: 480 article-title: Plant and mycorrizal regulation of rhizodeposition publication-title: New Phytologist – volume: 34 start-page: 97 year: 2009 end-page: 125 article-title: Nitrogen in agriculture: balancing the cost of an essential resource publication-title: Annual Review of Environment and Resources – volume: 66 start-page: 5493 year: 2015 end-page: 5505 article-title: Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition publication-title: Journal of Experimental Botany – volume: 38 start-page: 1775 year: 2014 end-page: 1784 article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture publication-title: Plant, Cell & Environment – volume: 215 start-page: 1274 year: 2017 end-page: 1286 article-title: OpenSimRoot: widening the scope and application of root architectural models publication-title: New Phytologist – volume: 43 start-page: 598 year: 2003 end-page: 607 article-title: Topsoil foraging and its role in plant competitiveness for phosphorus in common bean publication-title: Crop Science – volume: 166 start-page: 1 year: 2014a end-page: 34 article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.) publication-title: Plant Physiology – year: 2015 – volume: 183 start-page: 1011 year: 2020 end-page: 1025 article-title: Multiple integrated root phenotypes are associated with improved drought tolerance publication-title: Plant Physiology – volume: 156 start-page: 1041 year: 2011 end-page: 1049 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiology – volume: 208 start-page: 104912 year: 2021 article-title: Natural and managed soil structure: On the fragile scaffolding for soil functioning publication-title: Soil and Tillage Research – year: 2003 – volume: 70 start-page: 6019 year: 2019 end-page: 6034 article-title: Soil compaction and the architectural plasticity of root systems publication-title: Journal of Experimental Botany – volume: 112 start-page: 973 year: 2013 end-page: 982 article-title: Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris) publication-title: Annals of Botany – volume: 341 start-page: 75 year: 2011 end-page: 87 article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field publication-title: Plant & Soil – volume: 335 start-page: 101 year: 2010 end-page: 115 article-title: The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries publication-title: Plant & Soil – volume: 365 start-page: 2991 year: 2010 end-page: 3006 article-title: Energy and the food system publication-title: Philosophical Transactions of the Royal Society B – volume: 103 start-page: 21 year: 2020 end-page: 31 article-title: Multiscale computational models can guide experimentation and targeted measurements for crop improvement publication-title: The Plant Journal – volume: 132 start-page: 281 year: 1996 end-page: 288 article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris publication-title: New Phytologist – volume: 115 start-page: 67 year: 2010 end-page: 78 article-title: Will nutrient‐efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low‐input agro‐ecosystem in Central America publication-title: Field Crops Research – volume: 71 start-page: 4243 year: 2020 end-page: 4257 article-title: Root anatomical traits contribute to deeper rooting of maize under compacted field conditions publication-title: Journal of Experimental Botany – start-page: 1132 year: 2014 – volume: 62 start-page: 9 year: 2011 end-page: 20 article-title: The identification of aluminium‐resistance genes provides opportunities for enhancing crop production on acid soils publication-title: Journal of Experimental Botany – volume: 140 start-page: 18 year: 2013 end-page: 31 article-title: Maize root growth angles become steeper under low N conditions publication-title: Field Crops Research – volume: 66 start-page: 2199 year: 2015 end-page: 2210 article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops publication-title: Journal of Experimental Botany – volume: 66 start-page: 2347 year: 2015 end-page: 2358 article-title: Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress publication-title: Journal of Experimental Botany – volume: 45 start-page: 1097 year: 2013 end-page: 1102 article-title: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions publication-title: Nature Genetics – volume: 364 start-page: 171 year: 2013 end-page: 179 article-title: Genotypic variation in the ability of wheat roots to penetrate wax layers publication-title: Plant and Soil – volume: 166 start-page: 590 year: 2014 end-page: 602 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiology – volume: 166 start-page: 470 year: 2014 end-page: 486 article-title: Image‐based high‐throughput field phenotyping of crop roots publication-title: Plant Physiology – volume: 31 start-page: 949 year: 2004 end-page: 958 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( ) seedlings publication-title: Functional Plant Biology – volume: 478 start-page: 337 year: 2011 end-page: 342 article-title: Solutions for a cultivated planet publication-title: Nature – volume: 90 start-page: 101 year: 2004 end-page: 115 article-title: Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils publication-title: Field Crops Research – year: 2020 – volume: 112 start-page: 347 year: 2013 end-page: 357 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany – volume: 35 start-page: 2 year: 2008 end-page: 7 article-title: Towards probabilistic projections of climate change impacts on global crop yields publication-title: Geophysical Research Letters – volume: 30 start-page: 973 year: 2003 end-page: 985 article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils publication-title: Functional Plant Biology – volume: 33 start-page: 27 year: 1993 end-page: 40 article-title: Response of roots to mechanical impedance publication-title: Environmental and Experimental Botany – year: 2017 – volume: 32 start-page: 737 year: 2005 end-page: 748 article-title: Root architectural tradeoffs for water and phosphorus acquisition publication-title: Functional Plant Biology – ident: e_1_2_14_7_1 doi: 10.1007/978-3-662-05349-2 – start-page: 1132 volume-title: Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change year: 2014 ident: e_1_2_14_36_1 – ident: e_1_2_14_22_1 doi: 10.1016/j.tplants.2007.08.012 – ident: e_1_2_14_97_1 doi: 10.1007/s11104-011-0880-1 – ident: e_1_2_14_100_1 doi: 10.1111/pce.13875 – ident: e_1_2_14_43_1 doi: 10.1104/pp.20.00211 – ident: e_1_2_14_39_1 doi: 10.1093/jxb/ery252 – ident: e_1_2_14_76_1 doi: 10.1104/pp.113.233916 – ident: e_1_2_14_105_1 doi: 10.1016/j.tplants.2019.12.007 – ident: e_1_2_14_109_1 doi: 10.1038/ng.2725 – ident: e_1_2_14_121_1 doi: 10.1098/rstb.2010.0172 – ident: e_1_2_14_101_1 doi: 10.1093/aob/mcaa068 – ident: e_1_2_14_52_1 doi: 10.1093/aob/mcs293 – ident: e_1_2_14_88_1 doi: 10.1093/jxb/erq272 – ident: e_1_2_14_78_1 doi: 10.1093/aob/mcq199 – ident: e_1_2_14_9_1 doi: 10.1111/j.1469-8137.1996.tb01847.x – ident: e_1_2_14_37_1 doi: 10.1111/j.1438-8677.1999.tb00253.x – ident: e_1_2_14_38_1 doi: 10.1098/rspa.2020.0351 – ident: e_1_2_14_4_1 doi: 10.1111/tpj.14722 – ident: e_1_2_14_5_1 doi: 10.1093/jxb/erv560 – ident: e_1_2_14_84_1 doi: 10.1007/s11104-011-0950-4 – ident: e_1_2_14_62_1 doi: 10.1093/jxb/eru508 – ident: e_1_2_14_111_1 doi: 10.1093/jxb/eraa165 – ident: e_1_2_14_120_1 doi: 10.1007/s11104-012-1342-0 – ident: e_1_2_14_94_1 doi: 10.1104/pp.17.00648 – ident: e_1_2_14_115_1 doi: 10.1126/science.1170261 – ident: e_1_2_14_110_1 doi: 10.1046/j.1469-8137.2003.00695.x – ident: e_1_2_14_79_1 doi: 10.1104/pp.111.175489 – ident: e_1_2_14_20_1 doi: 10.1093/jxb/erz383 – ident: e_1_2_14_61_1 doi: 10.1007/s11104‐021‐05010‐y – ident: e_1_2_14_69_1 doi: 10.1071/FP03078 – ident: e_1_2_14_63_1 doi: 10.1186/s12284-014-0030-5 – ident: e_1_2_14_60_1 doi: 10.1016/j.fcr.2004.07.008 – ident: e_1_2_14_133_1 doi: 10.1071/FP09197 – ident: e_1_2_14_68_1 doi: 10.1093/aob/mct164 – ident: e_1_2_14_74_1 doi: 10.3389/fsufs.2020.00031 – ident: e_1_2_14_21_1 doi: 10.1093/aob/mcw112 – ident: e_1_2_14_132_1 doi: 10.1071/FP04046 – ident: e_1_2_14_122_1 doi: 10.1596/26447 – ident: e_1_2_14_51_1 doi: 10.1104/pp.111.175414 – ident: e_1_2_14_125_1 doi: 10.1093/jxb/erv074 – ident: e_1_2_14_104_1 doi: 10.1029/2008GL033423 – ident: e_1_2_14_31_1 doi: 10.1016/j.tplants.2006.10.006 – ident: e_1_2_14_24_1 – ident: e_1_2_14_85_1 doi: 10.1146/annurev.environ.032108.105046 – ident: e_1_2_14_14_1 doi: 10.1104/pp.114.250449 – ident: e_1_2_14_117_1 doi: 10.1111/nph.13469 – ident: e_1_2_14_64_1 doi: 10.1111/j.1365-3040.2005.01306.x – ident: e_1_2_14_93_1 doi: 10.3389/fpls.2020.00546 – ident: e_1_2_14_28_1 doi: 10.1111/pce.12684 – ident: e_1_2_14_23_1 – ident: e_1_2_14_75_1 doi: 10.1126/science.abf3013 – ident: e_1_2_14_102_1 doi: 10.1104/pp.17.01583 – ident: e_1_2_14_25_1 doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 – ident: e_1_2_14_91_1 doi: 10.1016/j.tplants.2017.02.001 – ident: e_1_2_14_65_1 doi: 10.1080/11263501003731805 – ident: e_1_2_14_95_1 doi: 10.1073/pnas.2012087118 – ident: e_1_2_14_127_1 doi: 10.3389/fpls.2013.00355 – ident: e_1_2_14_77_1 doi: 10.1111/nph.14641 – ident: e_1_2_14_30_1 doi: 10.1093/jxb/ert200 – ident: e_1_2_14_42_1 doi: 10.1098/rstb.2011.0244 – ident: e_1_2_14_103_1 doi: 10.1104/pp.18.00234 – ident: e_1_2_14_8_1 doi: 10.1146/annurev.es.16.110185.002051 – ident: e_1_2_14_116_1 doi: 10.1080/09640560600601587 – ident: e_1_2_14_2_1 doi: 10.1016/0098-8472(93)90053-I – ident: e_1_2_14_106_1 doi: 10.1007/s11104-010-0623-8 – ident: e_1_2_14_86_1 doi: 10.1093/jxb/erv098 – ident: e_1_2_14_13_1 doi: 10.1002/csc2.20241 – ident: e_1_2_14_27_1 doi: 10.1111/pce.13197 – ident: e_1_2_14_44_1 doi: 10.1146/annurev-arplant-043014-114822 – year: 2020 ident: e_1_2_14_124_1 article-title: Enlarged cortical cells and reduced cortical cell file number improve growth under suboptimal nitrogen, phosphorus and potassium availability publication-title: bioRxiv – ident: e_1_2_14_99_1 doi: 10.1016/j.fcr.2019.04.012 – ident: e_1_2_14_17_1 doi: 10.1016/j.fcr.2014.10.009 – ident: e_1_2_14_41_1 doi: 10.1093/aob/mcr175 – ident: e_1_2_14_72_1 doi: 10.1016/j.still.2020.104912 – ident: e_1_2_14_50_1 doi: 10.1071/BT06118 – volume-title: Atlas of common bean (Phaseolus vulgaris L.) year: 1998 ident: e_1_2_14_123_1 – ident: e_1_2_14_46_1 doi: 10.1201/9780203909423.pt6 – ident: e_1_2_14_59_1 doi: 10.1023/A:1004276724310 – ident: e_1_2_14_11_1 doi: 10.1016/j.fcr.2019.107612 – ident: e_1_2_14_6_1 doi: 10.1093/jxb/erq350 – ident: e_1_2_14_54_1 doi: 10.1093/jxb/ery048 – ident: e_1_2_14_113_1 doi: 10.1002/ggn2.202100017 – ident: e_1_2_14_98_1 doi: 10.1007/s11104-010-0328-z – ident: e_1_2_14_57_1 doi: 10.1007/s11104-004-1096-4 – ident: e_1_2_14_19_1 doi: 10.1007/s11104-015-2379-7 – ident: e_1_2_14_89_1 doi: 10.1104/pp.114.241711 – ident: e_1_2_14_15_1 doi: 10.1104/pp.114.249037 – ident: e_1_2_14_70_1 – ident: e_1_2_14_26_1 doi: 10.1038/nature10452 – ident: e_1_2_14_108_1 doi: 10.1270/jsbbs.20118 – ident: e_1_2_14_55_1 doi: 10.1111/nph.15738 – ident: e_1_2_14_67_1 doi: 10.1104/pp.15.00145 – ident: e_1_2_14_118_1 doi: 10.1007/s11104-005-0389-6 – ident: e_1_2_14_119_1 doi: 10.1093/jxb/ers111 – ident: e_1_2_14_48_1 doi: 10.1071/FP03255 – ident: e_1_2_14_126_1 doi: 10.1093/jxb/erv241 – ident: e_1_2_14_92_1 doi: 10.1111/pce.14135 – ident: e_1_2_14_35_1 doi: 10.1071/FP05043 – ident: e_1_2_14_87_1 doi: 10.2135/cropsci2003.5980 – ident: e_1_2_14_29_1 doi: 10.1093/jxb/erw243 – ident: e_1_2_14_40_1 doi: 10.1111/j.1469-8137.2004.01130.x – volume-title: Soil Nutrient Bioavailability: A Mechanistic Approach year: 1995 ident: e_1_2_14_3_1 – ident: e_1_2_14_80_1 doi: 10.1093/aob/mcy092 – ident: e_1_2_14_18_1 doi: 10.1104/pp.19.00262 – ident: e_1_2_14_112_1 doi: 10.1111/pce.14175 – ident: e_1_2_14_53_1 doi: 10.1111/pce.12451 – ident: e_1_2_14_56_1 doi: 10.1023/A:1013324727040 – ident: e_1_2_14_32_1 doi: 10.1016/j.foodpol.2010.05.006 – ident: e_1_2_14_58_1 doi: 10.1111/pce.14213 – ident: e_1_2_14_73_1 doi: 10.59327/IPCC/AR5-9789291691432 – ident: e_1_2_14_45_1 doi: 10.1016/S0038-0717(01)00158-4 – ident: e_1_2_14_34_1 doi: 10.1016/j.jtbi.2003.09.011 – ident: e_1_2_14_131_1 doi: 10.1071/FP05005 – ident: e_1_2_14_16_1 doi: 10.1093/jxb/erv121 – ident: e_1_2_14_83_1 doi: 10.1093/jxb/ert043 – ident: e_1_2_14_107_1 doi: 10.1016/j.fcr.2012.09.010 – start-page: 147 volume-title: Root architecture and nutrient acquisition. In Nutrient acquisition by plants year: 2005 ident: e_1_2_14_49_1 doi: 10.1007/3-540-27675-0_7 – volume: 166 start-page: 1 year: 2014 ident: e_1_2_14_90_1 article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.) publication-title: Plant Physiology – ident: e_1_2_14_96_1 doi: 10.1111/pce.12933 – ident: e_1_2_14_12_1 doi: 10.1016/j.fcr.2016.04.008 – ident: e_1_2_14_10_1 doi: 10.1104/pp.114.243519 – ident: e_1_2_14_130_1 doi: 10.1111/j.1365-3040.2009.02099.x – ident: e_1_2_14_128_1 doi: 10.1093/jxb/erv007 – ident: e_1_2_14_129_1 doi: 10.1104/pp.15.00187 – ident: e_1_2_14_82_1 doi: 10.1007/s11104-004-0907-y – ident: e_1_2_14_33_1 doi: 10.1016/j.fcr.2009.10.004 – ident: e_1_2_14_71_1 doi: 10.1007/978-3-319-19168-3 – ident: e_1_2_14_81_1 doi: 10.1093/aob/mcw073 – ident: e_1_2_14_47_1 doi: 10.1023/A:1010381919003 – ident: e_1_2_14_66_1 – volume: 42 start-page: 1365 year: 2007 ident: e_1_2_14_114_1 article-title: Method for evaluation of root hairs of common bean genotypes. Pesq. agropec. bras publication-title: Brasília |
SSID | ssj0017364 |
Score | 2.6673584 |
SecondaryResourceType | review_article |
Snippet | SUMMARY
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would... Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce... SUMMARYRoot architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 415 |
SubjectTerms | Agricultural conservation agricultural conservation practice Agricultural economics Agriculture architecture carbon Carbon - metabolism Carbon dioxide climate Climate adaptation computer simulation Crop improvement Crop production Crops Crops, Agricultural - anatomy & histology Crops, Agricultural - genetics Crops, Agricultural - physiology Developing countries Droughts Economic development Food security Hypoxia ideotypes Impedance LDCs Low resistance Mechanical impedance Metabolism nitrogen Nitrogen - metabolism Nutrients Phenotype Phenotypes Phenotypic plasticity phosphorus Phosphorus - metabolism Plant Breeding Plant growth Plant Roots - anatomy & histology Plant Roots - genetics Plant Roots - physiology Plant tissues pollution Production costs Resilience root root growth Root hairs Rooting Roots Sequestering Soil conservation Soil mechanics Special Issue subsoil Subsoils Topsoil Toxicity water Water - physiology |
Title | Harnessing root architecture to address global challenges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15560 https://www.ncbi.nlm.nih.gov/pubmed/34724260 https://www.proquest.com/docview/2622484986 https://www.proquest.com/docview/2592318155 https://www.proquest.com/docview/2636464867 https://pubmed.ncbi.nlm.nih.gov/PMC9299910 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7U4kEEl7rVjSgevESSzJIJnqoopaCIKHgQQmY6QVHS0qYH_fW-mSy0boi3wLwJs7zlm5k33wAcCaUNc1niqkgSl0pfuwnRqctTFTGEGCS0xPNX17x7T3sP7KEBp9VdmIIfot5wM5Zh_bUx8ESOp4w8H6KZMwzY6H9NrpYBRLc1dZQfkoI6ChG6i1EzKFmFTBZPXXM2Fn0BmF_zJKfxqw1Al8vwWDW9yDt5OZnk8kS9f2J1_GffVmCpBKZOp9CkVWjorAWLnalzhhbMnw0QS76tQdRNRsZHYtxzEHrnzvR5hJMPHPRnZh3vFHwjjqqebBmvw_3lxd151y0fYXAVo7i0lFr4CRcBjiORUSg5UUzTNEUYyEUUMi6INBmqinhe6rF-KH0hJVW4UvFVpD2yAc1skOktcATvIxzqE93XnDKRSt9PGA0V91LJZRC14biajliVDOXmoYzXuFqp4LjEdlzacFiLDgtaju-Edqs5jUvLHMcBR9AiaCR4Gw7qYrQpc1CSZHowQRlmYK_An_wiw1HBuOErbMNmoSZ1SwgNDfLBBoQzClQLGE7v2ZLs-clyeyNaRcSONY-tfvzcufjupmc_tv8uugMLgbm9YXeQdqGZjyZ6DzFVLvdhLqA3-9aEPgD8tR2n |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BakVUoFCYaGAqUDqJVUSP-IcOBRKtX0Koa3UW4i9jlqBslU3K1R-E3-F_9QZ56FdChWXHrhF8sTyY8bzjT3-DPBGW0fMZXlgU8MDYSIX5NwVgSpsKhFi8MQTzx8eqf6x2DuRJ3Pws70LU_NDdBtuZBl-vSYDpw3pKSuvztHOJXrsJqVy311-x4Bt_G53G2f3bRzvfBx86AfNmwKBlQIjJeN0lCsdI3DnJk2M4lY6URSIapROE6k0N5RwaXkYFqEcJibSxgiLwDuyqQs51jsPd-gFcWLq3_7ckVVFCa_JqrDqAP103PAYUd5Q19RZ73cN0l7PzJxGzN7l7dyHX-1g1ZkuXzcnldm0P37jkfxfRvMBLDfYm23VxvIQ5ly5Ave2po5SVuDu-xHC5ctHkPbzC3ID6NoZRhcVmz5yYdWI4ZJNWxWsplRhtn2VZvwYjm-lF6uwUI5K9xSYVkNEfEPuhk4JqQsTRbkUiVVhYZSJ0x5stPOf2YaEnd4C-Za1wRjOQ-bnoQfrneh5zTzyJ6G1VomyZvEZZ7FCXKZFqlUPXnfFuGzQWVBeutEEZSQhe42V3CCjUKMVUTL24Emtl11LuEgI3GEDkhmN7QSItny2pDw79fTlCMgxKME_N7xC_r1z2eDTnv949u-ir2CxPzg8yA52j_afw1JMl1X8htkaLFQXE_cCIWRlXnrLZfDltpX7ChOid2E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEB5ylBAKIc3VbY6qIYW8GGzrsPyQh82xbJI27EMCeXMtWSaF4l12Hcr-pv7JjuSDXXKQl7wZPBbyaEbzSTP6BHAktbHMZamnY0U9pgLjpdTknsh1zBFi0MgRz_-8Ef07dnXP7xfgX3MWpuKHaDfcrGe4-do6-CjLZ5y8HKGbcwzYdUXltZn-xfXa5OTyHAf3exj2Lm7P-l59pYCnOcOFkjIySIUMEbdTFUdKUM0Ny3MENULGEReSKltvqanv5z7PIhVIpZhG3B3o2PgU212EZZtctPVjIRu0KYuIVlxV2LSHYTqsaYxs2VDb1fng9wTRPi3MnAXMLuL11mGthqqkW9nWJ1gwxQZ87M5kHjbgw-kQ0eV0E-J-OrazJkZCgmC8JLMZClIOCc5wdmVPKgYSoptLXCZbcPcuOtyGpWJYmM9ApMgQIGXUZEagTnMVBClnkRZ-roQK4w4cN_pKdM1Zbq_O-JM0axdUbeJU24HDVnRUEXU8J7TXKD2pfXWShAJhjGSxFB341r5GL7Opk7Qww0eU4RYIS2zkFRmBFiAsg2EHdqpxbHtCWWSxEHYgmhvhVsCyfM-_KX4_OLZvxK-I4fHLY2cLL_9ccju4cg9f3i76FVYG573kx-XN9S6shvZoh9te2oOlcvxo9hFwlerAGTqBX-_tWf8BmeA26g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+root+architecture+to+address+global+challenges&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Lynch%2C+Jonathan+P&rft.date=2022-01-01&rft.issn=1365-313X&rft.eissn=1365-313X&rft.volume=109&rft.issue=2&rft.spage=415&rft_id=info:doi/10.1111%2Ftpj.15560&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |