Harnessing root architecture to address global challenges

SUMMARY Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Cro...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 109; no. 2; pp. 415 - 431
Main Author Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2. Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. Significance Statement Root architecture can be harnessed to develop crops with improved climate resilience and reduced input requirements, thereby improving global food security, agricultural sustainability, and climate change mitigation. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
AbstractList SUMMARY Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2. Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. Significance Statement Root architecture can be harnessed to develop crops with improved climate resilience and reduced input requirements, thereby improving global food security, agricultural sustainability, and climate change mitigation. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO₂. Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO 2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges. Root architecture can be harnessed to develop crops with improved climate resilience and reduced input requirements, thereby improving global food security, agricultural sustainability, and climate change mitigation. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
SUMMARYRoot architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2. Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high‐input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low‐input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Author Lynch, Jonathan P.
AuthorAffiliation 1 Department of Plant Science The Pennsylvania State University University Park PA 16802 USA
AuthorAffiliation_xml – name: 1 Department of Plant Science The Pennsylvania State University University Park PA 16802 USA
Author_xml – sequence: 1
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  email: jpl4@psu.edu
  organization: The Pennsylvania State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34724260$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rVDEUxYNU7LS68AvIAze6eG3-v2QjSKnWUqiLCu5CksmbyZBJxiRP6bdvxpmKLUqzyeL-zuHec47AQUzRAfAawRPU3mndrE4QYxw-AzNEOOsJIt8PwAxKDvuBInwIjkpZQYgGwukLcEjogCnmcAbkhc7RleLjossp1U5nu_TV2Tpl19XU6fk8t3m3CMno0NmlDsHFhSsvwfNRh-Je7f9j8O3T-c3ZRX91_fnL2cer3jKKYW-cQJoL3FYhRg6GE8scHUfGORdyYFwQwwiBlkA4QjYfDBLGUMuYRFY6SI7Bh53vZjJrN7cu1qyD2mS_1vlWJe3Vw0n0S7VIP5XEUkq0NXi3N8jpx-RKVWtfrAtBR5emojBvoXAq-PA0yiQmSLSsG_r2EbpKU44tiWaIMRVUCt6oN38v_2fr-wIacLoDbE6lZDcq66uuPm1v8UEhqLYVq1ax-l1xU7x_pLg3_Re7d__lg7v9P6huvl7uFHc9irPe
CitedBy_id crossref_primary_10_1371_journal_pone_0291430
crossref_primary_10_3390_ijms25094687
crossref_primary_10_1093_jxb_erad421
crossref_primary_10_1111_tpj_17177
crossref_primary_10_1007_s11104_023_06326_7
crossref_primary_10_3390_agronomy13112700
crossref_primary_10_3390_plants11212927
crossref_primary_10_3389_fpls_2023_1094157
crossref_primary_10_1007_s00425_023_04294_x
crossref_primary_10_1016_j_fcr_2025_109805
crossref_primary_10_1016_j_fcr_2024_109369
crossref_primary_10_1111_pce_14553
crossref_primary_10_3390_bacteria4010012
crossref_primary_10_36783_18069657rbcs20230046
crossref_primary_10_1007_s11104_024_07159_8
crossref_primary_10_1016_j_chemosphere_2024_143715
crossref_primary_10_1111_jac_12700
crossref_primary_10_46810_tdfd_1386233
crossref_primary_10_1002_csc2_21229
crossref_primary_10_1016_j_plaphy_2025_109793
crossref_primary_10_3389_fpls_2023_1092885
crossref_primary_10_1186_s12870_024_05435_4
crossref_primary_10_1016_j_tree_2023_11_011
crossref_primary_10_34133_plantphenomics_0280
crossref_primary_10_1016_j_indcrop_2022_116175
crossref_primary_10_1111_pce_14284
crossref_primary_10_3390_ijms25041975
crossref_primary_10_3389_fpls_2022_993484
crossref_primary_10_1016_j_ecoenv_2024_116532
crossref_primary_10_1111_mec_16945
crossref_primary_10_1016_j_hpj_2025_01_001
crossref_primary_10_1016_j_eja_2023_126994
crossref_primary_10_1111_tpj_15774
crossref_primary_10_1016_j_still_2022_105492
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1111_tpj_16627
crossref_primary_10_3389_fpls_2024_1389593
crossref_primary_10_1007_s10343_024_01013_8
crossref_primary_10_1021_acsagscitech_3c00426
crossref_primary_10_1007_s12374_022_09370_5
crossref_primary_10_1002_csc2_21149
crossref_primary_10_1186_s13007_022_00960_5
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_3389_fpls_2022_827369
crossref_primary_10_1093_jxb_erad312
crossref_primary_10_3390_ijms25126791
crossref_primary_10_1007_s00122_024_04797_5
crossref_primary_10_1093_jxb_erae009
crossref_primary_10_1016_j_apsoil_2024_105635
crossref_primary_10_1111_tpj_15669
crossref_primary_10_1080_00288233_2024_2395370
crossref_primary_10_3390_horticulturae10060569
crossref_primary_10_1111_1365_2745_14286
crossref_primary_10_3389_fpls_2022_1047563
crossref_primary_10_3390_agriculture14071168
crossref_primary_10_3390_ijms23169262
crossref_primary_10_1016_j_fcr_2024_109430
crossref_primary_10_1016_j_rhisph_2024_100922
crossref_primary_10_1186_s12870_022_03724_4
crossref_primary_10_1002_tpg2_20395
crossref_primary_10_3389_fpls_2022_1085409
crossref_primary_10_3390_agriculture13122184
crossref_primary_10_1007_s11104_024_06573_2
crossref_primary_10_1007_s11104_024_06743_2
crossref_primary_10_1016_j_jplph_2024_154241
crossref_primary_10_3389_fpls_2022_1035089
crossref_primary_10_1007_s11104_022_05692_y
crossref_primary_10_3389_fpls_2023_1146681
crossref_primary_10_3390_agriculture12020209
crossref_primary_10_3390_proteomes10020017
crossref_primary_10_1007_s00344_022_10887_9
crossref_primary_10_32604_phyton_2024_046976
crossref_primary_10_3390_horticulturae11030232
crossref_primary_10_1093_jxb_erac493
crossref_primary_10_1016_j_eja_2024_127393
crossref_primary_10_3390_plants13121699
crossref_primary_10_1007_s11104_024_06560_7
crossref_primary_10_1016_j_heliyon_2024_e27142
crossref_primary_10_1016_j_envexpbot_2022_105086
crossref_primary_10_1016_j_scib_2023_12_051
crossref_primary_10_1111_ejss_13524
crossref_primary_10_1007_s40502_024_00828_x
crossref_primary_10_1016_j_rhisph_2024_100915
crossref_primary_10_1080_00103624_2025_2474180
crossref_primary_10_3390_gels9100835
crossref_primary_10_1111_nph_19676
crossref_primary_10_1111_tpj_15641
crossref_primary_10_1007_s11104_024_06949_4
crossref_primary_10_34133_plantphenomics_0127
crossref_primary_10_1111_nph_20428
crossref_primary_10_3390_agronomy13071678
crossref_primary_10_1186_s12870_023_04469_4
crossref_primary_10_1126_science_ads5999
crossref_primary_10_7717_peerj_13638
crossref_primary_10_1007_s10722_023_01855_7
crossref_primary_10_1016_j_tplants_2022_04_001
crossref_primary_10_3390_horticulturae9121267
crossref_primary_10_1093_aob_mcae201
crossref_primary_10_1007_s11104_024_07181_w
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_3390_su152014792
crossref_primary_10_3389_fpls_2024_1429901
crossref_primary_10_1007_s00344_023_11106_9
crossref_primary_10_3390_plants12203543
crossref_primary_10_1016_j_plaphy_2024_109144
crossref_primary_10_1093_jxb_erad488
crossref_primary_10_1007_s42994_023_00112_w
crossref_primary_10_1016_j_geoderma_2024_117061
crossref_primary_10_1007_s00425_024_04562_4
crossref_primary_10_1016_j_stress_2023_100211
crossref_primary_10_1016_j_bioeco_2023_100057
crossref_primary_10_3389_fpls_2022_1010165
crossref_primary_10_1007_s40626_024_00334_3
crossref_primary_10_1007_s11104_024_06799_0
crossref_primary_10_1111_aab_70006
crossref_primary_10_1186_s40168_024_01839_4
crossref_primary_10_1093_plphys_kiad214
crossref_primary_10_1111_pce_15385
crossref_primary_10_3390_agronomy13040984
crossref_primary_10_3389_fpls_2024_1408356
crossref_primary_10_1002_tpg2_20489
crossref_primary_10_15252_embr_202255631
crossref_primary_10_3389_fpls_2022_926214
crossref_primary_10_1080_10549811_2024_2447717
crossref_primary_10_1093_plphys_kiad213
crossref_primary_10_34133_plantphenomics_0076
crossref_primary_10_1016_j_fcr_2023_109189
crossref_primary_10_1111_gcb_70057
crossref_primary_10_1186_s12870_024_04971_3
crossref_primary_10_1007_s11258_024_01416_7
crossref_primary_10_3389_fpls_2022_959629
crossref_primary_10_1042_BCJ20220245
crossref_primary_10_1016_j_jgg_2023_08_011
crossref_primary_10_1007_s11104_022_05734_5
crossref_primary_10_1016_j_jgg_2024_05_001
crossref_primary_10_1111_pbi_14592
crossref_primary_10_3389_fpls_2022_853309
crossref_primary_10_1007_s11104_023_06301_2
crossref_primary_10_1016_j_cub_2023_10_028
Cites_doi 10.1007/978-3-662-05349-2
10.1016/j.tplants.2007.08.012
10.1007/s11104-011-0880-1
10.1111/pce.13875
10.1104/pp.20.00211
10.1093/jxb/ery252
10.1104/pp.113.233916
10.1016/j.tplants.2019.12.007
10.1038/ng.2725
10.1098/rstb.2010.0172
10.1093/aob/mcaa068
10.1093/aob/mcs293
10.1093/jxb/erq272
10.1093/aob/mcq199
10.1111/j.1469-8137.1996.tb01847.x
10.1111/j.1438-8677.1999.tb00253.x
10.1098/rspa.2020.0351
10.1111/tpj.14722
10.1093/jxb/erv560
10.1007/s11104-011-0950-4
10.1093/jxb/eru508
10.1093/jxb/eraa165
10.1007/s11104-012-1342-0
10.1104/pp.17.00648
10.1126/science.1170261
10.1046/j.1469-8137.2003.00695.x
10.1104/pp.111.175489
10.1093/jxb/erz383
10.1007/s11104‐021‐05010‐y
10.1071/FP03078
10.1186/s12284-014-0030-5
10.1016/j.fcr.2004.07.008
10.1071/FP09197
10.1093/aob/mct164
10.3389/fsufs.2020.00031
10.1093/aob/mcw112
10.1071/FP04046
10.1596/26447
10.1104/pp.111.175414
10.1093/jxb/erv074
10.1029/2008GL033423
10.1016/j.tplants.2006.10.006
10.1146/annurev.environ.032108.105046
10.1104/pp.114.250449
10.1111/nph.13469
10.1111/j.1365-3040.2005.01306.x
10.3389/fpls.2020.00546
10.1111/pce.12684
10.1126/science.abf3013
10.1104/pp.17.01583
10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
10.1016/j.tplants.2017.02.001
10.1080/11263501003731805
10.1073/pnas.2012087118
10.3389/fpls.2013.00355
10.1111/nph.14641
10.1093/jxb/ert200
10.1098/rstb.2011.0244
10.1104/pp.18.00234
10.1146/annurev.es.16.110185.002051
10.1080/09640560600601587
10.1016/0098-8472(93)90053-I
10.1007/s11104-010-0623-8
10.1093/jxb/erv098
10.1002/csc2.20241
10.1111/pce.13197
10.1146/annurev-arplant-043014-114822
10.1016/j.fcr.2019.04.012
10.1016/j.fcr.2014.10.009
10.1093/aob/mcr175
10.1016/j.still.2020.104912
10.1071/BT06118
10.1201/9780203909423.pt6
10.1023/A:1004276724310
10.1016/j.fcr.2019.107612
10.1093/jxb/erq350
10.1093/jxb/ery048
10.1002/ggn2.202100017
10.1007/s11104-010-0328-z
10.1007/s11104-004-1096-4
10.1007/s11104-015-2379-7
10.1104/pp.114.241711
10.1104/pp.114.249037
10.1038/nature10452
10.1270/jsbbs.20118
10.1111/nph.15738
10.1104/pp.15.00145
10.1007/s11104-005-0389-6
10.1093/jxb/ers111
10.1071/FP03255
10.1093/jxb/erv241
10.1111/pce.14135
10.1071/FP05043
10.2135/cropsci2003.5980
10.1093/jxb/erw243
10.1111/j.1469-8137.2004.01130.x
10.1093/aob/mcy092
10.1104/pp.19.00262
10.1111/pce.14175
10.1111/pce.12451
10.1023/A:1013324727040
10.1016/j.foodpol.2010.05.006
10.1111/pce.14213
10.59327/IPCC/AR5-9789291691432
10.1016/S0038-0717(01)00158-4
10.1016/j.jtbi.2003.09.011
10.1071/FP05005
10.1093/jxb/erv121
10.1093/jxb/ert043
10.1016/j.fcr.2012.09.010
10.1007/3-540-27675-0_7
10.1111/pce.12933
10.1016/j.fcr.2016.04.008
10.1104/pp.114.243519
10.1111/j.1365-3040.2009.02099.x
10.1093/jxb/erv007
10.1104/pp.15.00187
10.1007/s11104-004-0907-y
10.1016/j.fcr.2009.10.004
10.1007/978-3-319-19168-3
10.1093/aob/mcw073
10.1023/A:1010381919003
ContentType Journal Article
Copyright 2021 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd.
2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/tpj.15560
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE
MEDLINE - Academic
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
Botany
Agriculture
DocumentTitleAlternate Harnessing root architecture to address global challenges
EISSN 1365-313X
EndPage 431
ExternalDocumentID PMC9299910
34724260
10_1111_tpj_15560
TPJ15560
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Cooperative State Research, Education, and Extension Service
  funderid: PEN04732
– fundername: ;
  grantid: PEN04732
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5420-be81a6829603b97b63c5e4ff56668975683b5330c300f05d7b18bb4c5591c9e03
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Thu Aug 21 13:36:42 EDT 2025
Fri Jul 11 18:33:14 EDT 2025
Fri Jul 11 06:08:49 EDT 2025
Fri Jul 25 10:57:13 EDT 2025
Thu Apr 03 06:57:14 EDT 2025
Tue Jul 01 03:57:38 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Wed Jan 22 16:26:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords water
carbon
nitrogen
root
architecture
phosphorus
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5420-be81a6829603b97b63c5e4ff56668975683b5330c300f05d7b18bb4c5591c9e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7265-9790
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15560
PMID 34724260
PQID 2622484986
PQPubID 31702
PageCount 431
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9299910
proquest_miscellaneous_2636464867
proquest_miscellaneous_2592318155
proquest_journals_2622484986
pubmed_primary_34724260
crossref_citationtrail_10_1111_tpj_15560
crossref_primary_10_1111_tpj_15560
wiley_primary_10_1111_tpj_15560_TPJ15560
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2022
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2011; 478
2021; 208
2013; 4
2021a; 466
2017a; 40
2015; 388
2004; 163
2021b; 118
2011; 62
2013; 64
2013; 364
2008; 35
2018; 41
2020; 11
2012; 367
2016; 39
2021; 71
2003; 157
2011a; 107
2010b; 37
2018; 177
2004; 31
1993; 33
2010; 115
2013; 112
1996; 132
1985; 16
2003; 43
2010; 35
2021; 44
1998
2019; 223
1995
2007; 12
2003; 30
2019; 180
2006; 49
2017b; 174
2010; 335
2015; 66
2014; 38
2021; 371
2014a; 166
2020; 25
2018; 122
2011b; 156
2010a; 33
2020; 60
2010; 144
2005; 28
2011; 156
2019; 244
2015; 171
2016; 118
2005; 269
1997; 188
2019; 237
2005; 32
2014; 166
2016; 192
2003; 84
2014; 7
2017; 126
2009; 324
2012; 63
2004; 226
2019; 70
2021; 2
2015; 168
2006; 11
2013; 45
2002; 34
2017; 22
2015; 167
2010; 365
2020; 183
2021b
2021a
2005
2015; 208
2013; 140
2003
2020; 103
1999; 1
2002
2017; 176
2004; 90
2007; 55
2017; 215
2018; 69
2006; 279
2014b; 166
2001; 232
2009; 34
2011; 108
2011; 349
2021
2020
2020; 71
2019
2017
2016
2015
2014
2020; 476
2007; 42
2016; 67
2011; 341
2001; 237
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_92_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_58_1
e_1_2_14_6_1
e_1_2_14_121_1
e_1_2_14_107_1
e_1_2_14_125_1
e_1_2_14_103_1
e_1_2_14_85_1
e_1_2_14_129_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_89_1
e_1_2_14_47_1
e_1_2_14_119_1
e_1_2_14_132_1
e_1_2_14_115_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
Barber S. (e_1_2_14_3_1) 1995
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
Saengwilai P. (e_1_2_14_90_1) 2014; 166
e_1_2_14_120_1
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_128_1
e_1_2_14_100_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
e_1_2_14_69_1
Yang X. (e_1_2_14_124_1) 2020
e_1_2_14_131_1
e_1_2_14_116_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
e_1_2_14_79_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_105_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_127_1
e_1_2_14_101_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_26_1
e_1_2_14_19_1
Wortmann C.S. (e_1_2_14_123_1) 1998
e_1_2_14_130_1
e_1_2_14_117_1
e_1_2_14_113_1
e_1_2_14_74_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
Vieira R.F. (e_1_2_14_114_1) 2007; 42
e_1_2_14_5_1
IPCC (e_1_2_14_36_1) 2014
e_1_2_14_122_1
e_1_2_14_9_1
e_1_2_14_106_1
Lynch J.P. (e_1_2_14_49_1) 2005
e_1_2_14_126_1
e_1_2_14_102_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
e_1_2_14_118_1
e_1_2_14_133_1
References_xml – volume: 67
  start-page: 4545
  year: 2016
  end-page: 4557
  article-title: Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.)
  publication-title: Journal of Experimental Botany
– volume: 16
  start-page: 363
  year: 1985
  end-page: 392
  article-title: Resource limitation in plants ‐ an economic analogy
  publication-title: Annual Review of Ecology and Systematics
– volume: 7
  start-page: 30
  year: 2014
  article-title: Genes controlling root development in rice
  publication-title: Rice
– volume: 4
  start-page: 355
  year: 2013
  article-title: Integration of root phenes for soil resource acquisition Integration of root phenes for soil resource acquisition
  publication-title: Frontiers Plant Science
– volume: 367
  start-page: 1589
  year: 2012
  end-page: 1597
  article-title: Large‐scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 166
  start-page: 2166
  issue: 4
  year: 2014a
  end-page: 2178
  article-title: Large root cortical cell size improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 66
  start-page: 3151
  year: 2015
  end-page: 3162
  article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays)
  publication-title: Journal of Experimental Botany
– volume: 64
  start-page: 3711
  year: 2013
  end-page: 3721
  article-title: Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength
  publication-title: Journal of Experimental Botany
– volume: 208
  start-page: 26
  issue: 1
  year: 2015
  end-page: 38
  article-title: Genes and networks regulating root anatomy and architecture
  publication-title: New Phytologist
– volume: 22
  start-page: 433
  year: 2017
  end-page: 443
  article-title: Toward an integrated root ideotype for irrigated systems
  publication-title: Trends in Plant Science
– volume: 171
  start-page: 86
  year: 2015
  end-page: 98
  article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.)
  publication-title: Field Crops Research
– volume: 71
  start-page: 3
  year: 2021
  end-page: 12
  article-title: Challenges to design‐oriented breeding of root system architecture adapted to climate change
  publication-title: Breeding Science
– volume: 157
  start-page: 423
  year: 2003
  end-page: 447
  article-title: Phosphorus aquisition and use: critical adaptations by plants for securing a nonrewable resource
  publication-title: New Phytologist
– year: 1998
– volume: 31
  start-page: 1
  year: 2004
  end-page: 12
  article-title: Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean
  publication-title: Functional Plant Biology
– year: 2020
  article-title: The ability of Conservation Agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield
  publication-title: Frontiers in Sustainable Food Systems
– volume: 11
  start-page: 587
  year: 2006
  end-page: 593
  article-title: Models for navigating biological complexity in breeding improved crop plants
  publication-title: Trends in Plant Science
– volume: 476
  start-page: 20200351
  year: 2020
  article-title: Environmental sustainability of biofuels: a review
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 118
  start-page: 401
  year: 2016
  end-page: 414
  article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions
  publication-title: Annals of Botany
– volume: 118
  year: 2021b
  article-title: Multiseriate cortical sclerenchyma enhance root penetration in compacted soils
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 156
  start-page: 1190
  year: 2011b
  end-page: 1201
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiology
– volume: 64
  start-page: 1193
  year: 2013
  end-page: 1208
  article-title: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver
  publication-title: Journal of Experimental Botany
– volume: 167
  start-page: 1430
  year: 2015
  end-page: 1439
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition
  publication-title: Plant Physiology
– volume: 107
  start-page: 829
  year: 2011a
  end-page: 841
  article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability
  publication-title: Annals of Botany
– volume: 324
  start-page: 1519
  year: 2009
  end-page: 1520
  article-title: Nutrient imbalances in agricultural development
  publication-title: Science
– volume: 279
  start-page: 347
  year: 2006
  end-page: 366
  article-title: Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition
  publication-title: Plant & Soil
– volume: 126
  start-page: 205
  year: 2017
  end-page: 218
  article-title: Root secondary growth: an unexplored component of soil resource acquisition
  publication-title: Annals of Botany
– volume: 11
  start-page: 546
  year: 2020
  article-title: Should root plasticity be a crop breeding target?
  publication-title: Frontiers in Plant Science
– volume: 63
  start-page: 3485
  year: 2012
  end-page: 3498
  article-title: Traits and selection strategies to improve root systems and water uptake in water‐limited wheat crops
  publication-title: Journal of Experimental Botany
– volume: 44
  start-page: 49
  year: 2021
  end-page: 67
  article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress
  publication-title: Plant, Cell & Environment
– volume: 180
  start-page: 2049
  year: 2019
  end-page: 2060
  article-title: Cortical cell diameter is key to energy costs of root growth in wheat
  publication-title: Plant Physiology
– volume: 1
  start-page: 274
  year: 1999
  end-page: 287
  article-title: Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence
  publication-title: Plant Biology
– volume: 232
  start-page: 69
  year: 2001
  end-page: 79
  article-title: Effect of phosphorus availability on basal root shallowness in common bean
  publication-title: Plant & Soil
– year: 2019
– volume: 67
  start-page: 1071
  year: 2016
  end-page: 1078
  article-title: Root hairs aid soil penetration by anchoring the root surface to pore walls
  publication-title: Journal of Experimental Botany
– volume: 388
  start-page: 1
  year: 2015
  end-page: 20
  article-title: Next generation shovelomics: set up a tent and REST
  publication-title: Plant and Soil
– volume: 41
  start-page: 1579
  year: 2018
  end-page: 1592
  article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize
  publication-title: Plant Cell and Environment
– volume: 237
  start-page: 225
  year: 2001
  end-page: 237
  article-title: Topsoil foraging ‐ an architectural adaptation of plants to low phosphorus availability
  publication-title: Plant & Soil
– volume: 49
  start-page: 413
  year: 2006
  end-page: 433
  article-title: Damage costs of nitrogen fertilizer in Europe and their internalization
  publication-title: Journal of Environmental Planning and Management
– year: 2021a
  article-title: Root angle in maize influences nitrogen capture and is regulated by calcineurin B‐like protein ‐interacting serine/threonine‐protein kinase 15 ( )
  publication-title: Plant, Cell & Environment
– year: 2021
  article-title: Genotypic variation in soil penetration by maize roots is negatively related to ethylene‐induced thickening
  publication-title: Plant, Cell and Environment
– volume: 144
  start-page: 458
  year: 2010
  end-page: 462
  article-title: Experimental and modelling studies of drought‐adaptive root architectural traits in wheat (Triticum aestivum L.)
  publication-title: Plant Biosystems
– volume: 269
  start-page: 341
  year: 2005
  end-page: 356
  article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
  publication-title: Plant & Soil
– volume: 25
  start-page: 406
  year: 2020
  end-page: 417
  article-title: Digging deeper for agricultural resources, the value of deep rooting
  publication-title: Trends in Plant Science
– volume: 55
  start-page: 493
  year: 2007
  end-page: 512
  article-title: Roots of the second green revolution
  publication-title: Australian Journal of Botany
– volume: 69
  start-page: 3279
  year: 2018
  end-page: 3292
  article-title: Rightsizing root phenotypes for drought resistance
  publication-title: Journal of Experimental Botany
– volume: 192
  start-page: 21
  year: 2016
  end-page: 32
  article-title: Legume shovelomics : high — throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field
  publication-title: Field Crops Research
– volume: 122
  start-page: 485
  year: 2018
  end-page: 499
  article-title: Co‐optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Annals of Botany
– volume: 349
  start-page: 121
  year: 2011
  end-page: 156
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant & Soil
– volume: 12
  start-page: 474
  year: 2007
  end-page: 481
  article-title: Root system architecture: opportunities and constraints for genetic improvement of crops
  publication-title: Trends in Plant Science
– volume: 66
  start-page: 571
  year: 2015
  end-page: 598
  article-title: Plant adaptation to acid soils: the molecular basis for crop aluminum resistance
  publication-title: Annual Review of Plant Biology
– year: 2016
– volume: 62
  start-page: 59
  year: 2011
  end-page: 68
  article-title: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits
  publication-title: Journal of Experimental Botany
– year: 2020
  article-title: Enlarged cortical cells and reduced cortical cell file number improve growth under suboptimal nitrogen, phosphorus and potassium availability
  publication-title: bioRxiv
– volume: 35
  start-page: 365
  year: 2010
  end-page: 377
  article-title: Global water crisis and future food security in an era of climate change
  publication-title: Food Policy
– volume: 349
  start-page: 89
  year: 2011
  end-page: 120
  article-title: Strategies and agronomic interventions to improve the phosphorus‐use efficiency of farming systems
  publication-title: Plant & Soil
– volume: 108
  start-page: 407
  year: 2011
  end-page: 418
  article-title: Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration
  publication-title: Annals of Botany
– volume: 118
  start-page: 593
  year: 2016
  end-page: 605
  article-title: Root adaptations to soils with low fertility and aluminium toxicity
  publication-title: Annals of Botany
– volume: 32
  start-page: 749
  year: 2005
  end-page: 762
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays L.)
  publication-title: Functional Plant Biology
– volume: 177
  start-page: 90
  year: 2018
  end-page: 104
  article-title: (2018) Large crown root number improves topsoil foraging and phosphorus acquisition
  publication-title: Plant Physiology
– year: 1995
– volume: 176
  start-page: 691
  year: 2017
  end-page: 703
  article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition
  publication-title: Plant Physiology
– volume: 39
  start-page: 1662
  year: 2016
  end-page: 1668
  article-title: Deep roots and soil structure
  publication-title: Plant, Cell & Environment
– volume: 269
  start-page: 45
  year: 2005
  end-page: 56
  article-title: Rhizoeconomics: Carbon costs of phosphorus acquisition
  publication-title: Plant & Soil
– volume: 166
  start-page: 1943
  issue: 4
  year: 2014b
  end-page: 1955
  article-title: Reduced root cortical cell file number improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 223
  start-page: 548
  issue: 2
  year: 2019
  end-page: 564
  article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture
  publication-title: New Phytologist
– volume: 40
  start-page: 1392
  year: 2017a
  end-page: 1408
  article-title: Root cortical senescence decreases root respiration, nutrient content, and radial water and nutrient transport in barley
  publication-title: Plant, Cell & Environment
– start-page: 521
  year: 2002
  end-page: 552
– volume: 42
  start-page: 1365
  year: 2007
  end-page: 1368
  article-title: Method for evaluation of root hairs of common bean genotypes.
  publication-title: Brasília
– volume: 188
  start-page: 139
  year: 1997
  end-page: 151
  article-title: SimRoot: Modelling and visualization of root systems
  publication-title: Plant & Soil
– volume: 226
  start-page: 331
  year: 2004
  end-page: 340
  article-title: Theoretical modeling of tradeoffs limiting root architecture plasticity
  publication-title: Journal of Theoretical Biology
– volume: 69
  start-page: 4961
  year: 2018
  end-page: 4970
  article-title: Greater lateral root branching density in maize (Zea mays L.) improves phosphorus acquisition from low phosphorus soil
  publication-title: Journal of Experimental Botany
– volume: 166
  start-page: 726
  year: 2014b
  end-page: 735
  article-title: Root cortical aerenchyma enhances nitrogen acquisition from low nitrogen soils in maize
  publication-title: Plant Physiology
– year: 2021
– volume: 2
  issue: 3
  year: 2021
  article-title: Breeding custom‐designed crops for improved drought adaptation
  publication-title: Advanced Genetics
– volume: 37
  start-page: 313
  year: 2010b
  end-page: 322
  article-title: The utility of phenotypic plasticity of root hair length for phosphorus acquisition
  publication-title: Functional Plant Biology
– volume: 84
  start-page: 827
  year: 2003
  end-page: 837
  article-title: How roots control the flux of carbon to the rhizosphere
  publication-title: Ecology
– volume: 237
  start-page: 53
  year: 2019
  end-page: 64
  article-title: Seedling root architecture and its relationship with seed yield across diverse environments in Phaseolus vulgaris
  publication-title: Field Crops Research
– start-page: 147
  year: 2005
  end-page: 183
– volume: 174
  start-page: 2333
  year: 2017b
  end-page: 2347
  article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K
  publication-title: Plant Physiology
– volume: 168
  start-page: 1603
  year: 2015
  end-page: 1615
  article-title: Reduced lateral root branching density improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 28
  start-page: 67
  year: 2005
  end-page: 77
  article-title: Intrinsic and environmental response pathways that regulate root system architecture
  publication-title: Plant, Cell and Environment
– year: 2021b
  article-title: Future roots for future soils
  publication-title: Plant, Cell & Environment
– volume: 66
  start-page: 3463
  year: 2015
  end-page: 3476
  article-title: Use of crop simulation modelling to aid ideotype design of future cereal cultivars
  publication-title: Journal of Experimental Botany
– volume: 66
  start-page: 2055
  year: 2015
  end-page: 2065
  article-title: Reduced frequency of lateral root branching improves N capture from low‐N soils in maize
  publication-title: Journal of Experimental Botany
– volume: 33
  start-page: 740
  year: 2010a
  end-page: 749
  article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.)
  publication-title: Plant, Cell and Environment
– volume: 371
  start-page: 276
  year: 2021
  end-page: 280
  article-title: Plant roots sense soil compaction through restricted ethylene diffusion
  publication-title: Science
– volume: 244
  start-page: 107612
  year: 2019
  article-title: A case study on the efficacy of root phenotypic selection for edaphic stress tolerance in low‐input agriculture: common bean breeding in Mozambique
  publication-title: Field Crops Research
– volume: 34
  start-page: 139
  year: 2002
  end-page: 162
  article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter
  publication-title: Soil Biology and Biochemistry
– volume: 466
  start-page: 21
  year: 2021a
  end-page: 63
  article-title: Root anatomy and soil resource capture
  publication-title: Plant & Soil
– volume: 60
  start-page: 2574
  year: 2020
  end-page: 2593
  article-title: Comparative phenomics of annual grain legume root architecture
  publication-title: Crop Science
– volume: 163
  start-page: 459
  year: 2004
  end-page: 480
  article-title: Plant and mycorrizal regulation of rhizodeposition
  publication-title: New Phytologist
– volume: 34
  start-page: 97
  year: 2009
  end-page: 125
  article-title: Nitrogen in agriculture: balancing the cost of an essential resource
  publication-title: Annual Review of Environment and Resources
– volume: 66
  start-page: 5493
  year: 2015
  end-page: 5505
  article-title: Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition
  publication-title: Journal of Experimental Botany
– volume: 38
  start-page: 1775
  year: 2014
  end-page: 1784
  article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture
  publication-title: Plant, Cell & Environment
– volume: 215
  start-page: 1274
  year: 2017
  end-page: 1286
  article-title: OpenSimRoot: widening the scope and application of root architectural models
  publication-title: New Phytologist
– volume: 43
  start-page: 598
  year: 2003
  end-page: 607
  article-title: Topsoil foraging and its role in plant competitiveness for phosphorus in common bean
  publication-title: Crop Science
– volume: 166
  start-page: 1
  year: 2014a
  end-page: 34
  article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.)
  publication-title: Plant Physiology
– year: 2015
– volume: 183
  start-page: 1011
  year: 2020
  end-page: 1025
  article-title: Multiple integrated root phenotypes are associated with improved drought tolerance
  publication-title: Plant Physiology
– volume: 156
  start-page: 1041
  year: 2011
  end-page: 1049
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiology
– volume: 208
  start-page: 104912
  year: 2021
  article-title: Natural and managed soil structure: On the fragile scaffolding for soil functioning
  publication-title: Soil and Tillage Research
– year: 2003
– volume: 70
  start-page: 6019
  year: 2019
  end-page: 6034
  article-title: Soil compaction and the architectural plasticity of root systems
  publication-title: Journal of Experimental Botany
– volume: 112
  start-page: 973
  year: 2013
  end-page: 982
  article-title: Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris)
  publication-title: Annals of Botany
– volume: 341
  start-page: 75
  year: 2011
  end-page: 87
  article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field
  publication-title: Plant & Soil
– volume: 335
  start-page: 101
  year: 2010
  end-page: 115
  article-title: The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries
  publication-title: Plant & Soil
– volume: 365
  start-page: 2991
  year: 2010
  end-page: 3006
  article-title: Energy and the food system
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 103
  start-page: 21
  year: 2020
  end-page: 31
  article-title: Multiscale computational models can guide experimentation and targeted measurements for crop improvement
  publication-title: The Plant Journal
– volume: 132
  start-page: 281
  year: 1996
  end-page: 288
  article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris
  publication-title: New Phytologist
– volume: 115
  start-page: 67
  year: 2010
  end-page: 78
  article-title: Will nutrient‐efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low‐input agro‐ecosystem in Central America
  publication-title: Field Crops Research
– volume: 71
  start-page: 4243
  year: 2020
  end-page: 4257
  article-title: Root anatomical traits contribute to deeper rooting of maize under compacted field conditions
  publication-title: Journal of Experimental Botany
– start-page: 1132
  year: 2014
– volume: 62
  start-page: 9
  year: 2011
  end-page: 20
  article-title: The identification of aluminium‐resistance genes provides opportunities for enhancing crop production on acid soils
  publication-title: Journal of Experimental Botany
– volume: 140
  start-page: 18
  year: 2013
  end-page: 31
  article-title: Maize root growth angles become steeper under low N conditions
  publication-title: Field Crops Research
– volume: 66
  start-page: 2199
  year: 2015
  end-page: 2210
  article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops
  publication-title: Journal of Experimental Botany
– volume: 66
  start-page: 2347
  year: 2015
  end-page: 2358
  article-title: Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress
  publication-title: Journal of Experimental Botany
– volume: 45
  start-page: 1097
  year: 2013
  end-page: 1102
  article-title: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions
  publication-title: Nature Genetics
– volume: 364
  start-page: 171
  year: 2013
  end-page: 179
  article-title: Genotypic variation in the ability of wheat roots to penetrate wax layers
  publication-title: Plant and Soil
– volume: 166
  start-page: 590
  year: 2014
  end-page: 602
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiology
– volume: 166
  start-page: 470
  year: 2014
  end-page: 486
  article-title: Image‐based high‐throughput field phenotyping of crop roots
  publication-title: Plant Physiology
– volume: 31
  start-page: 949
  year: 2004
  end-page: 958
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( ) seedlings
  publication-title: Functional Plant Biology
– volume: 478
  start-page: 337
  year: 2011
  end-page: 342
  article-title: Solutions for a cultivated planet
  publication-title: Nature
– volume: 90
  start-page: 101
  year: 2004
  end-page: 115
  article-title: Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils
  publication-title: Field Crops Research
– year: 2020
– volume: 112
  start-page: 347
  year: 2013
  end-page: 357
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
– volume: 35
  start-page: 2
  year: 2008
  end-page: 7
  article-title: Towards probabilistic projections of climate change impacts on global crop yields
  publication-title: Geophysical Research Letters
– volume: 30
  start-page: 973
  year: 2003
  end-page: 985
  article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils
  publication-title: Functional Plant Biology
– volume: 33
  start-page: 27
  year: 1993
  end-page: 40
  article-title: Response of roots to mechanical impedance
  publication-title: Environmental and Experimental Botany
– year: 2017
– volume: 32
  start-page: 737
  year: 2005
  end-page: 748
  article-title: Root architectural tradeoffs for water and phosphorus acquisition
  publication-title: Functional Plant Biology
– ident: e_1_2_14_7_1
  doi: 10.1007/978-3-662-05349-2
– start-page: 1132
  volume-title: Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change
  year: 2014
  ident: e_1_2_14_36_1
– ident: e_1_2_14_22_1
  doi: 10.1016/j.tplants.2007.08.012
– ident: e_1_2_14_97_1
  doi: 10.1007/s11104-011-0880-1
– ident: e_1_2_14_100_1
  doi: 10.1111/pce.13875
– ident: e_1_2_14_43_1
  doi: 10.1104/pp.20.00211
– ident: e_1_2_14_39_1
  doi: 10.1093/jxb/ery252
– ident: e_1_2_14_76_1
  doi: 10.1104/pp.113.233916
– ident: e_1_2_14_105_1
  doi: 10.1016/j.tplants.2019.12.007
– ident: e_1_2_14_109_1
  doi: 10.1038/ng.2725
– ident: e_1_2_14_121_1
  doi: 10.1098/rstb.2010.0172
– ident: e_1_2_14_101_1
  doi: 10.1093/aob/mcaa068
– ident: e_1_2_14_52_1
  doi: 10.1093/aob/mcs293
– ident: e_1_2_14_88_1
  doi: 10.1093/jxb/erq272
– ident: e_1_2_14_78_1
  doi: 10.1093/aob/mcq199
– ident: e_1_2_14_9_1
  doi: 10.1111/j.1469-8137.1996.tb01847.x
– ident: e_1_2_14_37_1
  doi: 10.1111/j.1438-8677.1999.tb00253.x
– ident: e_1_2_14_38_1
  doi: 10.1098/rspa.2020.0351
– ident: e_1_2_14_4_1
  doi: 10.1111/tpj.14722
– ident: e_1_2_14_5_1
  doi: 10.1093/jxb/erv560
– ident: e_1_2_14_84_1
  doi: 10.1007/s11104-011-0950-4
– ident: e_1_2_14_62_1
  doi: 10.1093/jxb/eru508
– ident: e_1_2_14_111_1
  doi: 10.1093/jxb/eraa165
– ident: e_1_2_14_120_1
  doi: 10.1007/s11104-012-1342-0
– ident: e_1_2_14_94_1
  doi: 10.1104/pp.17.00648
– ident: e_1_2_14_115_1
  doi: 10.1126/science.1170261
– ident: e_1_2_14_110_1
  doi: 10.1046/j.1469-8137.2003.00695.x
– ident: e_1_2_14_79_1
  doi: 10.1104/pp.111.175489
– ident: e_1_2_14_20_1
  doi: 10.1093/jxb/erz383
– ident: e_1_2_14_61_1
  doi: 10.1007/s11104‐021‐05010‐y
– ident: e_1_2_14_69_1
  doi: 10.1071/FP03078
– ident: e_1_2_14_63_1
  doi: 10.1186/s12284-014-0030-5
– ident: e_1_2_14_60_1
  doi: 10.1016/j.fcr.2004.07.008
– ident: e_1_2_14_133_1
  doi: 10.1071/FP09197
– ident: e_1_2_14_68_1
  doi: 10.1093/aob/mct164
– ident: e_1_2_14_74_1
  doi: 10.3389/fsufs.2020.00031
– ident: e_1_2_14_21_1
  doi: 10.1093/aob/mcw112
– ident: e_1_2_14_132_1
  doi: 10.1071/FP04046
– ident: e_1_2_14_122_1
  doi: 10.1596/26447
– ident: e_1_2_14_51_1
  doi: 10.1104/pp.111.175414
– ident: e_1_2_14_125_1
  doi: 10.1093/jxb/erv074
– ident: e_1_2_14_104_1
  doi: 10.1029/2008GL033423
– ident: e_1_2_14_31_1
  doi: 10.1016/j.tplants.2006.10.006
– ident: e_1_2_14_24_1
– ident: e_1_2_14_85_1
  doi: 10.1146/annurev.environ.032108.105046
– ident: e_1_2_14_14_1
  doi: 10.1104/pp.114.250449
– ident: e_1_2_14_117_1
  doi: 10.1111/nph.13469
– ident: e_1_2_14_64_1
  doi: 10.1111/j.1365-3040.2005.01306.x
– ident: e_1_2_14_93_1
  doi: 10.3389/fpls.2020.00546
– ident: e_1_2_14_28_1
  doi: 10.1111/pce.12684
– ident: e_1_2_14_23_1
– ident: e_1_2_14_75_1
  doi: 10.1126/science.abf3013
– ident: e_1_2_14_102_1
  doi: 10.1104/pp.17.01583
– ident: e_1_2_14_25_1
  doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
– ident: e_1_2_14_91_1
  doi: 10.1016/j.tplants.2017.02.001
– ident: e_1_2_14_65_1
  doi: 10.1080/11263501003731805
– ident: e_1_2_14_95_1
  doi: 10.1073/pnas.2012087118
– ident: e_1_2_14_127_1
  doi: 10.3389/fpls.2013.00355
– ident: e_1_2_14_77_1
  doi: 10.1111/nph.14641
– ident: e_1_2_14_30_1
  doi: 10.1093/jxb/ert200
– ident: e_1_2_14_42_1
  doi: 10.1098/rstb.2011.0244
– ident: e_1_2_14_103_1
  doi: 10.1104/pp.18.00234
– ident: e_1_2_14_8_1
  doi: 10.1146/annurev.es.16.110185.002051
– ident: e_1_2_14_116_1
  doi: 10.1080/09640560600601587
– ident: e_1_2_14_2_1
  doi: 10.1016/0098-8472(93)90053-I
– ident: e_1_2_14_106_1
  doi: 10.1007/s11104-010-0623-8
– ident: e_1_2_14_86_1
  doi: 10.1093/jxb/erv098
– ident: e_1_2_14_13_1
  doi: 10.1002/csc2.20241
– ident: e_1_2_14_27_1
  doi: 10.1111/pce.13197
– ident: e_1_2_14_44_1
  doi: 10.1146/annurev-arplant-043014-114822
– year: 2020
  ident: e_1_2_14_124_1
  article-title: Enlarged cortical cells and reduced cortical cell file number improve growth under suboptimal nitrogen, phosphorus and potassium availability
  publication-title: bioRxiv
– ident: e_1_2_14_99_1
  doi: 10.1016/j.fcr.2019.04.012
– ident: e_1_2_14_17_1
  doi: 10.1016/j.fcr.2014.10.009
– ident: e_1_2_14_41_1
  doi: 10.1093/aob/mcr175
– ident: e_1_2_14_72_1
  doi: 10.1016/j.still.2020.104912
– ident: e_1_2_14_50_1
  doi: 10.1071/BT06118
– volume-title: Atlas of common bean (Phaseolus vulgaris L.)
  year: 1998
  ident: e_1_2_14_123_1
– ident: e_1_2_14_46_1
  doi: 10.1201/9780203909423.pt6
– ident: e_1_2_14_59_1
  doi: 10.1023/A:1004276724310
– ident: e_1_2_14_11_1
  doi: 10.1016/j.fcr.2019.107612
– ident: e_1_2_14_6_1
  doi: 10.1093/jxb/erq350
– ident: e_1_2_14_54_1
  doi: 10.1093/jxb/ery048
– ident: e_1_2_14_113_1
  doi: 10.1002/ggn2.202100017
– ident: e_1_2_14_98_1
  doi: 10.1007/s11104-010-0328-z
– ident: e_1_2_14_57_1
  doi: 10.1007/s11104-004-1096-4
– ident: e_1_2_14_19_1
  doi: 10.1007/s11104-015-2379-7
– ident: e_1_2_14_89_1
  doi: 10.1104/pp.114.241711
– ident: e_1_2_14_15_1
  doi: 10.1104/pp.114.249037
– ident: e_1_2_14_70_1
– ident: e_1_2_14_26_1
  doi: 10.1038/nature10452
– ident: e_1_2_14_108_1
  doi: 10.1270/jsbbs.20118
– ident: e_1_2_14_55_1
  doi: 10.1111/nph.15738
– ident: e_1_2_14_67_1
  doi: 10.1104/pp.15.00145
– ident: e_1_2_14_118_1
  doi: 10.1007/s11104-005-0389-6
– ident: e_1_2_14_119_1
  doi: 10.1093/jxb/ers111
– ident: e_1_2_14_48_1
  doi: 10.1071/FP03255
– ident: e_1_2_14_126_1
  doi: 10.1093/jxb/erv241
– ident: e_1_2_14_92_1
  doi: 10.1111/pce.14135
– ident: e_1_2_14_35_1
  doi: 10.1071/FP05043
– ident: e_1_2_14_87_1
  doi: 10.2135/cropsci2003.5980
– ident: e_1_2_14_29_1
  doi: 10.1093/jxb/erw243
– ident: e_1_2_14_40_1
  doi: 10.1111/j.1469-8137.2004.01130.x
– volume-title: Soil Nutrient Bioavailability: A Mechanistic Approach
  year: 1995
  ident: e_1_2_14_3_1
– ident: e_1_2_14_80_1
  doi: 10.1093/aob/mcy092
– ident: e_1_2_14_18_1
  doi: 10.1104/pp.19.00262
– ident: e_1_2_14_112_1
  doi: 10.1111/pce.14175
– ident: e_1_2_14_53_1
  doi: 10.1111/pce.12451
– ident: e_1_2_14_56_1
  doi: 10.1023/A:1013324727040
– ident: e_1_2_14_32_1
  doi: 10.1016/j.foodpol.2010.05.006
– ident: e_1_2_14_58_1
  doi: 10.1111/pce.14213
– ident: e_1_2_14_73_1
  doi: 10.59327/IPCC/AR5-9789291691432
– ident: e_1_2_14_45_1
  doi: 10.1016/S0038-0717(01)00158-4
– ident: e_1_2_14_34_1
  doi: 10.1016/j.jtbi.2003.09.011
– ident: e_1_2_14_131_1
  doi: 10.1071/FP05005
– ident: e_1_2_14_16_1
  doi: 10.1093/jxb/erv121
– ident: e_1_2_14_83_1
  doi: 10.1093/jxb/ert043
– ident: e_1_2_14_107_1
  doi: 10.1016/j.fcr.2012.09.010
– start-page: 147
  volume-title: Root architecture and nutrient acquisition. In Nutrient acquisition by plants
  year: 2005
  ident: e_1_2_14_49_1
  doi: 10.1007/3-540-27675-0_7
– volume: 166
  start-page: 1
  year: 2014
  ident: e_1_2_14_90_1
  article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.)
  publication-title: Plant Physiology
– ident: e_1_2_14_96_1
  doi: 10.1111/pce.12933
– ident: e_1_2_14_12_1
  doi: 10.1016/j.fcr.2016.04.008
– ident: e_1_2_14_10_1
  doi: 10.1104/pp.114.243519
– ident: e_1_2_14_130_1
  doi: 10.1111/j.1365-3040.2009.02099.x
– ident: e_1_2_14_128_1
  doi: 10.1093/jxb/erv007
– ident: e_1_2_14_129_1
  doi: 10.1104/pp.15.00187
– ident: e_1_2_14_82_1
  doi: 10.1007/s11104-004-0907-y
– ident: e_1_2_14_33_1
  doi: 10.1016/j.fcr.2009.10.004
– ident: e_1_2_14_71_1
  doi: 10.1007/978-3-319-19168-3
– ident: e_1_2_14_81_1
  doi: 10.1093/aob/mcw073
– ident: e_1_2_14_47_1
  doi: 10.1023/A:1010381919003
– ident: e_1_2_14_66_1
– volume: 42
  start-page: 1365
  year: 2007
  ident: e_1_2_14_114_1
  article-title: Method for evaluation of root hairs of common bean genotypes. Pesq. agropec. bras
  publication-title: Brasília
SSID ssj0017364
Score 2.6673584
SecondaryResourceType review_article
Snippet SUMMARY Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would...
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce...
SUMMARYRoot architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 415
SubjectTerms Agricultural conservation
agricultural conservation practice
Agricultural economics
Agriculture
architecture
carbon
Carbon - metabolism
Carbon dioxide
climate
Climate adaptation
computer simulation
Crop improvement
Crop production
Crops
Crops, Agricultural - anatomy & histology
Crops, Agricultural - genetics
Crops, Agricultural - physiology
Developing countries
Droughts
Economic development
Food security
Hypoxia
ideotypes
Impedance
LDCs
Low resistance
Mechanical impedance
Metabolism
nitrogen
Nitrogen - metabolism
Nutrients
Phenotype
Phenotypes
Phenotypic plasticity
phosphorus
Phosphorus - metabolism
Plant Breeding
Plant growth
Plant Roots - anatomy & histology
Plant Roots - genetics
Plant Roots - physiology
Plant tissues
pollution
Production costs
Resilience
root
root growth
Root hairs
Rooting
Roots
Sequestering
Soil conservation
Soil mechanics
Special Issue
subsoil
Subsoils
Topsoil
Toxicity
water
Water - physiology
Title Harnessing root architecture to address global challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15560
https://www.ncbi.nlm.nih.gov/pubmed/34724260
https://www.proquest.com/docview/2622484986
https://www.proquest.com/docview/2592318155
https://www.proquest.com/docview/2636464867
https://pubmed.ncbi.nlm.nih.gov/PMC9299910
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7U4kEEl7rVjSgevESSzJIJnqoopaCIKHgQQmY6QVHS0qYH_fW-mSy0boi3wLwJs7zlm5k33wAcCaUNc1niqkgSl0pfuwnRqctTFTGEGCS0xPNX17x7T3sP7KEBp9VdmIIfot5wM5Zh_bUx8ESOp4w8H6KZMwzY6H9NrpYBRLc1dZQfkoI6ChG6i1EzKFmFTBZPXXM2Fn0BmF_zJKfxqw1Al8vwWDW9yDt5OZnk8kS9f2J1_GffVmCpBKZOp9CkVWjorAWLnalzhhbMnw0QS76tQdRNRsZHYtxzEHrnzvR5hJMPHPRnZh3vFHwjjqqebBmvw_3lxd151y0fYXAVo7i0lFr4CRcBjiORUSg5UUzTNEUYyEUUMi6INBmqinhe6rF-KH0hJVW4UvFVpD2yAc1skOktcATvIxzqE93XnDKRSt9PGA0V91LJZRC14biajliVDOXmoYzXuFqp4LjEdlzacFiLDgtaju-Edqs5jUvLHMcBR9AiaCR4Gw7qYrQpc1CSZHowQRlmYK_An_wiw1HBuOErbMNmoSZ1SwgNDfLBBoQzClQLGE7v2ZLs-clyeyNaRcSONY-tfvzcufjupmc_tv8uugMLgbm9YXeQdqGZjyZ6DzFVLvdhLqA3-9aEPgD8tR2n
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BakVUoFCYaGAqUDqJVUSP-IcOBRKtX0Koa3UW4i9jlqBslU3K1R-E3-F_9QZ56FdChWXHrhF8sTyY8bzjT3-DPBGW0fMZXlgU8MDYSIX5NwVgSpsKhFi8MQTzx8eqf6x2DuRJ3Pws70LU_NDdBtuZBl-vSYDpw3pKSuvztHOJXrsJqVy311-x4Bt_G53G2f3bRzvfBx86AfNmwKBlQIjJeN0lCsdI3DnJk2M4lY6URSIapROE6k0N5RwaXkYFqEcJibSxgiLwDuyqQs51jsPd-gFcWLq3_7ckVVFCa_JqrDqAP103PAYUd5Q19RZ73cN0l7PzJxGzN7l7dyHX-1g1ZkuXzcnldm0P37jkfxfRvMBLDfYm23VxvIQ5ly5Ave2po5SVuDu-xHC5ctHkPbzC3ID6NoZRhcVmz5yYdWI4ZJNWxWsplRhtn2VZvwYjm-lF6uwUI5K9xSYVkNEfEPuhk4JqQsTRbkUiVVhYZSJ0x5stPOf2YaEnd4C-Za1wRjOQ-bnoQfrneh5zTzyJ6G1VomyZvEZZ7FCXKZFqlUPXnfFuGzQWVBeutEEZSQhe42V3CCjUKMVUTL24Emtl11LuEgI3GEDkhmN7QSItny2pDw79fTlCMgxKME_N7xC_r1z2eDTnv949u-ir2CxPzg8yA52j_afw1JMl1X8htkaLFQXE_cCIWRlXnrLZfDltpX7ChOid2E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEB5ylBAKIc3VbY6qIYW8GGzrsPyQh82xbJI27EMCeXMtWSaF4l12Hcr-pv7JjuSDXXKQl7wZPBbyaEbzSTP6BHAktbHMZamnY0U9pgLjpdTknsh1zBFi0MgRz_-8Ef07dnXP7xfgX3MWpuKHaDfcrGe4-do6-CjLZ5y8HKGbcwzYdUXltZn-xfXa5OTyHAf3exj2Lm7P-l59pYCnOcOFkjIySIUMEbdTFUdKUM0Ny3MENULGEReSKltvqanv5z7PIhVIpZhG3B3o2PgU212EZZtctPVjIRu0KYuIVlxV2LSHYTqsaYxs2VDb1fng9wTRPi3MnAXMLuL11mGthqqkW9nWJ1gwxQZ87M5kHjbgw-kQ0eV0E-J-OrazJkZCgmC8JLMZClIOCc5wdmVPKgYSoptLXCZbcPcuOtyGpWJYmM9ApMgQIGXUZEagTnMVBClnkRZ-roQK4w4cN_pKdM1Zbq_O-JM0axdUbeJU24HDVnRUEXU8J7TXKD2pfXWShAJhjGSxFB341r5GL7Opk7Qww0eU4RYIS2zkFRmBFiAsg2EHdqpxbHtCWWSxEHYgmhvhVsCyfM-_KX4_OLZvxK-I4fHLY2cLL_9ccju4cg9f3i76FVYG573kx-XN9S6shvZoh9te2oOlcvxo9hFwlerAGTqBX-_tWf8BmeA26g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+root+architecture+to+address+global+challenges&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Lynch%2C+Jonathan+P&rft.date=2022-01-01&rft.issn=1365-313X&rft.eissn=1365-313X&rft.volume=109&rft.issue=2&rft.spage=415&rft_id=info:doi/10.1111%2Ftpj.15560&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon