Stress-Mediated Covariance between Nano-Structural Architecture and Ultraviolet Butterfly Coloration
1. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. 2. Males of the...
Saved in:
Published in | Functional ecology Vol. 20; no. 2; pp. 282 - 289 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
British Ecological Society
01.04.2006
Blackwell Publishing Ltd Blackwell Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. 2. Males of the butterfly Colias eurytheme L. possess a thin-film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. 3. Using scanning electron microscopy, we investigated the covariance between nanostructural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host-plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. 4. Two primary structure-reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above-wing angles for viewing the UV covaried with a measure of thin-film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. 5. Our results are consistent with a causal effect of developmental stress on nano-structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors. |
---|---|
AbstractList | Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour.2.Males of the butterfly Colias eurytheme L. possess a thin-film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice.3.Using scanning electron microscopy, we investigated the covariance between nano-structural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host-plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics.4.Two primary structure-reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above-wing angles for viewing the UV covaried with a measure of thin-film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample.5.Our results are consistent with a causal effect of developmental stress on nano-structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. Males of the butterfly Colias eurytheme L. possess a thin‐film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. Using scanning electron microscopy, we investigated the covariance between nano‐structural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host‐plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. Two primary structure–reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above‐wing angles for viewing the UV covaried with a measure of thin‐film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. Our results are consistent with a causal effect of developmental stress on nano‐structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors. Summary 1 Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. 2 Males of the butterfly Colias eurytheme L. possess a thin‐film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. 3 Using scanning electron microscopy, we investigated the covariance between nano‐structural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host‐plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. 4 Two primary structure–reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above‐wing angles for viewing the UV covaried with a measure of thin‐film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. 5 Our results are consistent with a causal effect of developmental stress on nano‐structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. Males of the butterfly Colias eurytheme L. possess a thin-film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. Using scanning electron microscopy, we investigated the covariance between nano-structural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host-plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. Two primary structure-reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above-wing angles for viewing the UV covaried with a measure of thin-film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. Our results are consistent with a causal effect of developmental stress on nano-structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors. 1. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. 2. Males of the butterfly Colias eurytheme L. possess a thin-film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. 3. Using scanning electron microscopy, we investigated the covariance between nanostructural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host-plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. 4. Two primary structure-reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above-wing angles for viewing the UV covaried with a measure of thin-film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. 5. Our results are consistent with a causal effect of developmental stress on nano-structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors. |
Author | Kemp, D. J. Rutowski, R. L. Vukusic, P. |
Author_xml | – sequence: 1 givenname: D. J. surname: Kemp fullname: Kemp, D. J. – sequence: 2 givenname: P. surname: Vukusic fullname: Vukusic, P. – sequence: 3 givenname: R. L. surname: Rutowski fullname: Rutowski, R. L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17776535$$DView record in Pascal Francis |
BookMark | eNqNkUFP3DAUhK2KSl1o_0EPucAt4dmOvckBJFhBqUThAJwtx3lRvTIx2A6w_74Oi6jUS7EsPVv-ZizN7JKd0Y9ISEGhonkdrivKpShZzUXFAGQFlAJUL5_I4v1hhyyAybZsasm_kN0Y1wDQCsYWpL9JAWMsf2FvdcK-WPknHaweDRYdpmfEsbjSoy8zN5k0Be2Kk2B-24TzDQs99sWdS0E_We8wFadTShgGt8lOzgedrB-_ks-DdhG_vc09cnd-dru6KC-vf_xcnVyWRtQMSialqRuQQ54ddN3ANCDWjAsteUNB9oYyPjDRIjfQt4zn3RvUQuiu4ZTvkYOt70PwjxPGpO5tNOicHtFPUXEuaglC_hekS9ouuYAM7r-BOhrthpCDsVE9BHuvwyZzy6UUXGSu2XIm-BgDDn8RUHNPaq3mOtRch5p7Uq89qZcsPf5Hamx6jS2Hat1HDI62Bs_W4ebDH6vzs9V8yvrvW_06Jh_e9Tw3ISTjfwDdHbgi |
CitedBy_id | crossref_primary_10_1673_031_013_11001 crossref_primary_10_1007_s00114_013_1099_1 crossref_primary_10_1098_rsif_2008_0395_focus crossref_primary_10_1098_rspa_2013_0856 crossref_primary_10_1038_s41598_017_01273_7 crossref_primary_10_1002_ece3_3349 crossref_primary_10_1073_pnas_2109255118 crossref_primary_10_1007_s10682_012_9580_4 crossref_primary_10_1098_rspb_2006_0043 crossref_primary_10_1364_AO_49_004246 crossref_primary_10_1007_s10641_012_0091_5 crossref_primary_10_1103_PhysRevLett_99_084301 crossref_primary_10_1111_1365_2435_12363 crossref_primary_10_1002_dvdy_63 crossref_primary_10_1063_1_3653260 crossref_primary_10_1016_j_gde_2021_01_004 crossref_primary_10_1111_eea_12420 crossref_primary_10_1007_s10682_019_09969_0 crossref_primary_10_1016_j_anbehav_2013_11_001 crossref_primary_10_1038_s41598_021_95881_z crossref_primary_10_1071_ZO06005 crossref_primary_10_1111_evo_12551 crossref_primary_10_2320_matertrans_MB201001 crossref_primary_10_1098_rsfs_2018_0049 crossref_primary_10_3390_ma5050754 crossref_primary_10_1093_ee_nvw097 crossref_primary_10_1016_j_asd_2020_100947 crossref_primary_10_1126_sciadv_abd6475 crossref_primary_10_1007_s00114_014_1244_5 crossref_primary_10_1071_ZO12045 crossref_primary_10_1111_jav_00750 crossref_primary_10_1016_j_jinsphys_2020_104114 crossref_primary_10_1093_cz_zoab087 crossref_primary_10_1016_j_asd_2019_06_001 crossref_primary_10_1364_OE_17_014729 crossref_primary_10_1111_ens_12256 crossref_primary_10_1098_rsif_2008_0459_focus crossref_primary_10_1098_rsif_2009_0013_focus crossref_primary_10_1098_rspb_2006_0020 crossref_primary_10_1016_j_cub_2007_05_064 crossref_primary_10_1093_nsr_nwaa107 crossref_primary_10_1007_s00265_016_2164_5 crossref_primary_10_1111_oik_04262 crossref_primary_10_1007_s00265_010_1135_5 crossref_primary_10_1098_rsif_2017_0948 crossref_primary_10_1111_j_1558_5646_2008_00461_x crossref_primary_10_18473_lepi_74i2_a1 crossref_primary_10_1016_j_ecolind_2016_08_039 crossref_primary_10_1016_j_zool_2010_11_001 crossref_primary_10_1007_s10336_010_0568_y crossref_primary_10_3389_fmars_2023_1127790 crossref_primary_10_1098_rsif_2022_0181 crossref_primary_10_1098_rspb_2007_0328 crossref_primary_10_1007_s00265_007_0511_2 crossref_primary_10_1016_j_pmatsci_2014_10_003 crossref_primary_10_1016_j_anbehav_2009_05_014 crossref_primary_10_1098_rsbl_2020_0001 crossref_primary_10_1111_j_1365_2656_2010_01695_x |
Cites_doi | 10.1006/anbe.2000.1548 10.1098/rspb.1995.0080 10.1098/rspb.1999.0704 10.1242/jeb.201.9.1307 10.1126/science.178.4066.1214 10.1002/jmor.1051420404 10.1038/423031a 10.1098/rspb.2003.2390 10.1242/jeb.201.16.2343 10.1098/rspb.1999.0794 10.1007/BF00296311 10.1038/nature01941 10.1038/35065161 10.1038/241406a0 10.1098/rspb.2004.2781 10.1364/AO.41.000437 |
ContentType | Journal Article |
Copyright | Copyright 2006 British Ecological Society 2006 INIST-CNRS |
Copyright_xml | – notice: Copyright 2006 British Ecological Society – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SN 7SS C1K 8FD F28 FR3 |
DOI | 10.1111/j.1365-2435.2006.01100.x |
DatabaseName | CrossRef Pascal-Francis Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environmental Sciences and Pollution Management Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitleList | Technology Research Database CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Architecture Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 289 |
ExternalDocumentID | 17776535 10_1111_j_1365_2435_2006_01100_x FEC1100 3806562 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE DOOOF ESX HF~ HGD HGLYW JSODD MVM VOH WRC ZY4 AAYXX AGHNM CITATION IQODW 7SN 7SS C1K 8FD F28 FR3 |
ID | FETCH-LOGICAL-c5420-266c4806f66cb0bbf2a0ee4235a638106dc123f259e3c0d923923dcea55ab8313 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Thu Jul 10 17:33:39 EDT 2025 Fri Jul 11 00:24:53 EDT 2025 Mon Jul 21 09:15:28 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Tue Jul 01 01:15:34 EDT 2025 Wed Jan 22 17:11:18 EST 2025 Thu Jul 03 21:21:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | iridescence butterflies honest signalling Insecta Color Stress Arthropoda Lepidoptera Pieridae Colias Invertebrata structural colour Coloration |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5420-266c4806f66cb0bbf2a0ee4235a638106dc123f259e3c0d923923dcea55ab8313 |
Notes | Present address: School of Tropical Biology, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2435.2006.01100.x |
PQID | 17197350 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_33546056 proquest_miscellaneous_17197350 pascalfrancis_primary_17776535 crossref_primary_10_1111_j_1365_2435_2006_01100_x crossref_citationtrail_10_1111_j_1365_2435_2006_01100_x wiley_primary_10_1111_j_1365_2435_2006_01100_x_FEC1100 jstor_primary_3806562 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2006 |
PublicationDateYYYYMMDD | 2006-04-01 |
PublicationDate_xml | – month: 04 year: 2006 text: April 2006 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Functional ecology |
PublicationYear | 2006 |
Publisher | British Ecological Society Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: British Ecological Society – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | 2001; 410 1998; Vol. 11A 2003; 424 2002; 41 1973; 241 2004; 271 1997 2006; 8 2004; 6 2003; 270 2000; 60 1978; 3 2002 1999; 266 1974; 142 2003; 423 1972; 178 1998; 201 1995; 260 1704 Kemp D.J. (e_1_2_6_10_1) 2006; 8 e_1_2_6_21_1 e_1_2_6_20_1 Burnham K.P. (e_1_2_6_4_1) 2002 Ghiradella H. (e_1_2_6_7_1) 1998 Halliday D. (e_1_2_6_9_1) 1997 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 Badyaev A. (e_1_2_6_2_1) 2004; 6 e_1_2_6_6_1 Newton I. (e_1_2_6_13_1) 1704 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_23_1 e_1_2_6_12_1 e_1_2_6_22_1 Parker A.R. (e_1_2_6_14_1) 1998; 201 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 6 start-page: 975 year: 2004 end-page: 991 article-title: Developmental perspective on the evolution of sexual ornaments publication-title: Evolutionary Ecology Research – volume: 266 start-page: 771 year: 1999 end-page: 777 article-title: Condition‐dependent variation in the blue‐ultraviolet colouration of a structurally based plumage ornament publication-title: Proceedings of the Royal Society of London B – volume: 271 start-page: 1577 year: 2004 end-page: 1584 article-title: Butterfly wing colours: scale beads make white pierid wings brighter publication-title: Proceedings of the Royal Society of London B – volume: 201 start-page: 1307 year: 1998 end-page: 1313 article-title: Multilayer reflectors in animals using green and gold beetles as contrasting examples publication-title: Journal of Experimental Biology – volume: 142 start-page: 395 year: 1974 end-page: 410 article-title: Development of ultraviolet‐reflecting butterfly scales: how to make an interference filter publication-title: Journal of Morphology – volume: 178 start-page: 1214 year: 1972 end-page: 1217 article-title: Ultraviolet reflection of a male butterfly: interference color caused by thin‐layer elaboration of wing scales publication-title: Science – year: 1704 – volume: 201 start-page: 2343 year: 1998 end-page: 2347 article-title: The diversity and implications of animal structural colours publication-title: Journal of Experimental Biology – volume: 266 start-page: 1403 year: 1999 end-page: 1411 article-title: Quantified interference and diffraction in single butterfly scales publication-title: Proceedings of the Royal Society of London B – year: 2002 – volume: 8 start-page: 515 year: 2006 end-page: 527 article-title: Heightened phenotypic variation and age‐based fading of ultraviolet butterfly wing coloration publication-title: Evolutionary Ecology Research – volume: 241 start-page: 406 year: 1973 end-page: 408 article-title: Ultraviolet differences between sulfur butterflies, and , and a possible isolating mechanism publication-title: Nature – volume: 424 start-page: 852 year: 2003 end-page: 855 article-title: Photonic structures in biology publication-title: Nature – year: 1997 – volume: 3 start-page: 203 year: 1978 end-page: 243 article-title: Ultraviolet reflection and its behavioral role in the courtship of the sulphur butterflies and (Lepidoptera, Pieridae) publication-title: Behavioral Ecology and Sociobiology – volume: 260 start-page: 199 year: 1995 end-page: 204 article-title: Ultraviolet colours in butterflies: intra‐ or inter‐specific communication? publication-title: Proceedings of the Royal Society of London B – volume: Vol. 11A start-page: 257 year: 1998 end-page: 287 – volume: 41 start-page: 437 year: 2002 end-page: 441 article-title: Grazing‐incidence iridescence from a butterfly wing publication-title: Applied Optics – volume: 270 start-page: 1455 year: 2003 end-page: 1460 article-title: Nanostructure predicts intraspecific variation in ultraviolet‐blue plumage colour publication-title: Proceedings of the Royal Society of London B – volume: 410 start-page: 36 year: 2001 article-title: Structural colour: now you see it – now you don't publication-title: Nature – volume: 60 start-page: 851 year: 2000 end-page: 855 article-title: Colour, fat and social status in male damselflies, publication-title: Animal Behaviour – volume: 423 start-page: 31 year: 2003 end-page: 32 article-title: Polarized light as a butterfly mating signal publication-title: Nature – ident: e_1_2_6_5_1 doi: 10.1006/anbe.2000.1548 – ident: e_1_2_6_3_1 doi: 10.1098/rspb.1995.0080 – ident: e_1_2_6_11_1 doi: 10.1098/rspb.1999.0704 – volume-title: Fundamentals of Physics year: 1997 ident: e_1_2_6_9_1 – ident: e_1_2_6_15_1 doi: 10.1242/jeb.201.9.1307 – ident: e_1_2_6_8_1 doi: 10.1126/science.178.4066.1214 – ident: e_1_2_6_6_1 doi: 10.1002/jmor.1051420404 – ident: e_1_2_6_20_1 doi: 10.1038/423031a – volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach year: 2002 ident: e_1_2_6_4_1 – ident: e_1_2_6_16_1 doi: 10.1098/rspb.2003.2390 – volume-title: Opticks year: 1704 ident: e_1_2_6_13_1 – volume: 201 start-page: 2343 year: 1998 ident: e_1_2_6_14_1 article-title: The diversity and implications of animal structural colours publication-title: Journal of Experimental Biology doi: 10.1242/jeb.201.16.2343 – ident: e_1_2_6_22_1 doi: 10.1098/rspb.1999.0794 – volume: 8 start-page: 515 year: 2006 ident: e_1_2_6_10_1 article-title: Heightened phenotypic variation and age‐based fading of ultraviolet butterfly wing coloration publication-title: Evolutionary Ecology Research – ident: e_1_2_6_18_1 doi: 10.1007/BF00296311 – ident: e_1_2_6_21_1 doi: 10.1038/nature01941 – ident: e_1_2_6_23_1 doi: 10.1038/35065161 – ident: e_1_2_6_17_1 doi: 10.1038/241406a0 – volume: 6 start-page: 975 year: 2004 ident: e_1_2_6_2_1 article-title: Developmental perspective on the evolution of sexual ornaments publication-title: Evolutionary Ecology Research – ident: e_1_2_6_19_1 doi: 10.1098/rspb.2004.2781 – ident: e_1_2_6_12_1 doi: 10.1364/AO.41.000437 – start-page: 257 volume-title: Microscopic Anatomy of Invertebrates year: 1998 ident: e_1_2_6_7_1 |
SSID | ssj0009522 |
Score | 2.0770867 |
Snippet | 1. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical... Summary 1 Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical... Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms... |
SourceID | proquest pascalfrancis crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 282 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Architecture Autoecology Biological and medical sciences Butterflies Colias Colias eurytheme Covariance Fundamental and applied biological sciences. Psychology General aspects honest signalling Human ecology Insecta Invertebrates iridescence Optical reflection Reflectance Signal reflection Spectral reflectance structural colour Thermal stress Ultraviolet reflection |
Title | Stress-Mediated Covariance between Nano-Structural Architecture and Ultraviolet Butterfly Coloration |
URI | https://www.jstor.org/stable/3806562 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2435.2006.01100.x https://www.proquest.com/docview/17197350 https://www.proquest.com/docview/33546056 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB-KUPDFalUarXYf-pojyWY3yWORO6SgD1rBt7CfFDxypXdXqk_9E_o39i_pzG7uvBQLUgqBLGQnH5uZzG8yXwDvtchdbvIi9YUv01I0Lq1t4dOGl9rbvHGSUzbyxaU8vyk_3orbPv6JcmFifYj1DzeSjPC9JgFXej4U8hChhfq-9ylQ9bMR4Uk6QPjoqtiovxsdCoVsUlS5fBjU8-SJBpoqBitS5KSa4-L52PViAEs3wW3QTpNXcLd6rhiUcjdaLvTIPPxR8vH_PPgu7PQgln2IXLcHL1z3Gl7Gtpb3OBqbfnQ4fsyjQ4L-QzLfh8_XIUfl14-fIXUFYS8zs29otxMTsj54jHWqm-GUWOOW6oOwTb8HU51ly-niqwrRBQumY9Pt6T2j60fWPoCbyfjT2XnaN31IjSjRlEXAYMo6kx73OtPaFypzDkGfUJKqkUmLnMU9Wm2Om8wiPsXNGqeEULrmOT-ErW7WuTfAGit86VFNk9WY8aqpRckRH1nrCQjXCVSrF9yaviI6NeaYthuWES51S0tN_TplG5a6_Z5Avqb8EquCPIPmIPDQmoCTT1sWCZwOeOrxhFVVScFFAu9WTNai7JNDR3VutpzjjLypuMj-PoNzQY5vmYAMLPXsu20n4zMaHf0r4TFsx79VFOT0FraQU9wJ4reFPg2S-RvSrjeP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hIgQXnq0wj3YPXB3ZXu_aPqIqUYC2B2il3qx9ConIqUiC2p74CfxGfgkzu04aI5AqhGTJe9jxYz3j-WbnBfBGi9zlJi9SX_gyLUXj0toWPm14qb3NGyc5ZSMfn8jpWfn-XJz37YAoFybWh9hsuJFkhP81CThtSA-lPIRoocLvnQpU_myEgPIuNfgO9tXHYqsCb3QpFLJJUenyYVjPH6800FUxXJFiJ9UCl8_HvhcDYLoNb4N-mjyC2frNYljKl9FqqUfm-reij__p1R_Dwx7HsreR8Z7AHdc9hXuxs-UVjsamH-2Nb1LpkKD_lyyewedPIU3l5_cfIXsFkS8z829ouhMfsj5-jHWqm-OUWOaWSoSwbdcHU51lq9nyqwoBBkumY9_t2RWj-0fu3oWzyfj0cJr2fR9SI0q0ZhEzmLLOpMezzrT2hcqcQ9wnlKSCZNIic3GPhpvjJrMIUfGwxikhlK55zvdgp5t37jmwxgpfetTUZDhmvGpqUXKESNZ6wsJ1AtX6C7emL4pOvTlm7ZZxhEvd0lJTy07ZhqVuLxPIN5QXsTDILWh2AxNtCDi5tWWRwP6AqW4uWFWVFFwkcLDmshbFn3w6qnPz1QJn5E3FRfb3GZwL8n3LBGTgqVs_bTsZH9Loxb8SHsD96enxUXv07uTDS3gQN68o5ukV7CDXuNcI55Z6P4jpLz72O6o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD5IRfHFa0tTtZ0HX7MkmUuSR2l3qbciaqFvYTIXhC7Z4u6K7ZM_wd_oL_Gcmex2IwpFhIXMw5xsMvlO5js5N4AXrcxdbvIi9YUXqZC1Sytb-LTmovU2r53ilI387kQdn4rXZ_Ksj3-iXJhYH2L9wY00I7yvScEvrB8qeYjQwv2-9ylQ9bMR8snbQmUVIfzoQ7FRgDd6FApVp7jn8mFUzx_PNNiqYrQihU7qOa6ej20vBrx0k92G7WnyAM5XNxajUs5Hy0U7Mle_1Xz8P3f-EO73LJa9jLB7BLdc9xjuxL6Wlzgam360M75OpEOB_k0yfwKfP4YklZ_ff4TcFeS9zMy-ouFOKGR99BjrdDfDKbHILRUIYZuOD6Y7y5bTxRcdwgsWrI1dt6eXjP4_YnsbTifjT4fHad_1ITVSoC2LjMGIKlMej23Wtr7QmXPI-qRWVI5MWYQW92i2OW4yiwQVf9Y4LaVuK57zHdjqZp3bBVZb6YXHfZrMxoyXdSUFR4JkrScmXCVQrh5wY_qS6NSZY9psmEa41A0tNTXsVE1Y6uZbAvla8iKWBbmBzHbA0FqAk1NbFQnsDzB1fcKyLJXkMoGDFcgaVH7y6OjOzZZznJHXJZfZ32dwLsnzrRJQAVI3vtpmMj6k0d6_Ch7A3fdHk-btq5M3T-Fe_HJFAU_PYAtB454jl1u0-0FJfwFuezpi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress%E2%80%90mediated+covariance+between+nano%E2%80%90structural+architecture+and+ultraviolet+butterfly+coloration&rft.jtitle=Functional+ecology&rft.au=KEMP%2C+D.+J.&rft.au=VUKUSIC%2C+P.&rft.au=RUTOWSKI%2C+R.+L.&rft.date=2006-04-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=20&rft.issue=2&rft.spage=282&rft.epage=289&rft_id=info:doi/10.1111%2Fj.1365-2435.2006.01100.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2435_2006_01100_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |