Stress-Mediated Covariance between Nano-Structural Architecture and Ultraviolet Butterfly Coloration

1. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. 2. Males of the...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 20; no. 2; pp. 282 - 289
Main Authors Kemp, D. J., Vukusic, P., Rutowski, R. L.
Format Journal Article
LanguageEnglish
Published Oxford, UK British Ecological Society 01.04.2006
Blackwell Publishing Ltd
Blackwell Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. 2. Males of the butterfly Colias eurytheme L. possess a thin-film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. 3. Using scanning electron microscopy, we investigated the covariance between nanostructural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host-plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. 4. Two primary structure-reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above-wing angles for viewing the UV covaried with a measure of thin-film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. 5. Our results are consistent with a causal effect of developmental stress on nano-structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors.
AbstractList Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour.2.Males of the butterfly Colias eurytheme L. possess a thin-film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice.3.Using scanning electron microscopy, we investigated the covariance between nano-structural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host-plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics.4.Two primary structure-reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above-wing angles for viewing the UV covaried with a measure of thin-film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample.5.Our results are consistent with a causal effect of developmental stress on nano-structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors.
Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. Males of the butterfly Colias eurytheme L. possess a thin‐film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. Using scanning electron microscopy, we investigated the covariance between nano‐structural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host‐plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. Two primary structure–reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above‐wing angles for viewing the UV covaried with a measure of thin‐film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. Our results are consistent with a causal effect of developmental stress on nano‐structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors.
Summary 1 Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. 2 Males of the butterfly Colias eurytheme L. possess a thin‐film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. 3 Using scanning electron microscopy, we investigated the covariance between nano‐structural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host‐plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. 4 Two primary structure–reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above‐wing angles for viewing the UV covaried with a measure of thin‐film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. 5 Our results are consistent with a causal effect of developmental stress on nano‐structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors.
Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. Males of the butterfly Colias eurytheme L. possess a thin-film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. Using scanning electron microscopy, we investigated the covariance between nano-structural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host-plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. Two primary structure-reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above-wing angles for viewing the UV covaried with a measure of thin-film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. Our results are consistent with a causal effect of developmental stress on nano-structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors.
1. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms are often well defined, we know much less about the morphological basis for intraspecific variation in structural colour. 2. Males of the butterfly Colias eurytheme L. possess a thin-film interference array on their dorsal wing scales that generates a bright and iridescent ultraviolet (UV) signal. This signal is used in mate choice. 3. Using scanning electron microscopy, we investigated the covariance between nanostructural architecture and UV reflectance in samples that were variously subject to either nutrient stress (using a larval host-plant manipulation), or thermal stress (using transient heat and cold shocks during the pupal period). We employed these two stressors to mimic natural stressful processes and to accentuate the variance in UV signal characteristics. 4. Two primary structure-reflectance relationships were apparent. First, UV brightness increased with the density of scale ridges that bear the interference reflectors. Second, the breadth of above-wing angles for viewing the UV covaried with a measure of thin-film angular orientation. These relationships were, however, either limited to, or stronger among, males of the nutrient stress sample. 5. Our results are consistent with a causal effect of developmental stress on nano-structural architecture and henceforth UV reflectance, but also suggest that the proximate basis for signal variation may be intimately linked to the nature of prevailing stressors.
Author Kemp, D. J.
Rutowski, R. L.
Vukusic, P.
Author_xml – sequence: 1
  givenname: D. J.
  surname: Kemp
  fullname: Kemp, D. J.
– sequence: 2
  givenname: P.
  surname: Vukusic
  fullname: Vukusic, P.
– sequence: 3
  givenname: R. L.
  surname: Rutowski
  fullname: Rutowski, R. L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17776535$$DView record in Pascal Francis
BookMark eNqNkUFP3DAUhK2KSl1o_0EPucAt4dmOvckBJFhBqUThAJwtx3lRvTIx2A6w_74Oi6jUS7EsPVv-ZizN7JKd0Y9ISEGhonkdrivKpShZzUXFAGQFlAJUL5_I4v1hhyyAybZsasm_kN0Y1wDQCsYWpL9JAWMsf2FvdcK-WPknHaweDRYdpmfEsbjSoy8zN5k0Be2Kk2B-24TzDQs99sWdS0E_We8wFadTShgGt8lOzgedrB-_ks-DdhG_vc09cnd-dru6KC-vf_xcnVyWRtQMSialqRuQQ54ddN3ANCDWjAsteUNB9oYyPjDRIjfQt4zn3RvUQuiu4ZTvkYOt70PwjxPGpO5tNOicHtFPUXEuaglC_hekS9ouuYAM7r-BOhrthpCDsVE9BHuvwyZzy6UUXGSu2XIm-BgDDn8RUHNPaq3mOtRch5p7Uq89qZcsPf5Hamx6jS2Hat1HDI62Bs_W4ebDH6vzs9V8yvrvW_06Jh_e9Tw3ISTjfwDdHbgi
CitedBy_id crossref_primary_10_1673_031_013_11001
crossref_primary_10_1007_s00114_013_1099_1
crossref_primary_10_1098_rsif_2008_0395_focus
crossref_primary_10_1098_rspa_2013_0856
crossref_primary_10_1038_s41598_017_01273_7
crossref_primary_10_1002_ece3_3349
crossref_primary_10_1073_pnas_2109255118
crossref_primary_10_1007_s10682_012_9580_4
crossref_primary_10_1098_rspb_2006_0043
crossref_primary_10_1364_AO_49_004246
crossref_primary_10_1007_s10641_012_0091_5
crossref_primary_10_1103_PhysRevLett_99_084301
crossref_primary_10_1111_1365_2435_12363
crossref_primary_10_1002_dvdy_63
crossref_primary_10_1063_1_3653260
crossref_primary_10_1016_j_gde_2021_01_004
crossref_primary_10_1111_eea_12420
crossref_primary_10_1007_s10682_019_09969_0
crossref_primary_10_1016_j_anbehav_2013_11_001
crossref_primary_10_1038_s41598_021_95881_z
crossref_primary_10_1071_ZO06005
crossref_primary_10_1111_evo_12551
crossref_primary_10_2320_matertrans_MB201001
crossref_primary_10_1098_rsfs_2018_0049
crossref_primary_10_3390_ma5050754
crossref_primary_10_1093_ee_nvw097
crossref_primary_10_1016_j_asd_2020_100947
crossref_primary_10_1126_sciadv_abd6475
crossref_primary_10_1007_s00114_014_1244_5
crossref_primary_10_1071_ZO12045
crossref_primary_10_1111_jav_00750
crossref_primary_10_1016_j_jinsphys_2020_104114
crossref_primary_10_1093_cz_zoab087
crossref_primary_10_1016_j_asd_2019_06_001
crossref_primary_10_1364_OE_17_014729
crossref_primary_10_1111_ens_12256
crossref_primary_10_1098_rsif_2008_0459_focus
crossref_primary_10_1098_rsif_2009_0013_focus
crossref_primary_10_1098_rspb_2006_0020
crossref_primary_10_1016_j_cub_2007_05_064
crossref_primary_10_1093_nsr_nwaa107
crossref_primary_10_1007_s00265_016_2164_5
crossref_primary_10_1111_oik_04262
crossref_primary_10_1007_s00265_010_1135_5
crossref_primary_10_1098_rsif_2017_0948
crossref_primary_10_1111_j_1558_5646_2008_00461_x
crossref_primary_10_18473_lepi_74i2_a1
crossref_primary_10_1016_j_ecolind_2016_08_039
crossref_primary_10_1016_j_zool_2010_11_001
crossref_primary_10_1007_s10336_010_0568_y
crossref_primary_10_3389_fmars_2023_1127790
crossref_primary_10_1098_rsif_2022_0181
crossref_primary_10_1098_rspb_2007_0328
crossref_primary_10_1007_s00265_007_0511_2
crossref_primary_10_1016_j_pmatsci_2014_10_003
crossref_primary_10_1016_j_anbehav_2009_05_014
crossref_primary_10_1098_rsbl_2020_0001
crossref_primary_10_1111_j_1365_2656_2010_01695_x
Cites_doi 10.1006/anbe.2000.1548
10.1098/rspb.1995.0080
10.1098/rspb.1999.0704
10.1242/jeb.201.9.1307
10.1126/science.178.4066.1214
10.1002/jmor.1051420404
10.1038/423031a
10.1098/rspb.2003.2390
10.1242/jeb.201.16.2343
10.1098/rspb.1999.0794
10.1007/BF00296311
10.1038/nature01941
10.1038/35065161
10.1038/241406a0
10.1098/rspb.2004.2781
10.1364/AO.41.000437
ContentType Journal Article
Copyright Copyright 2006 British Ecological Society
2006 INIST-CNRS
Copyright_xml – notice: Copyright 2006 British Ecological Society
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SN
7SS
C1K
8FD
F28
FR3
DOI 10.1111/j.1365-2435.2006.01100.x
DatabaseName CrossRef
Pascal-Francis
Ecology Abstracts
Entomology Abstracts (Full archive)
Environmental Sciences and Pollution Management
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList Technology Research Database
CrossRef

Entomology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Architecture
Environmental Sciences
EISSN 1365-2435
EndPage 289
ExternalDocumentID 17776535
10_1111_j_1365_2435_2006_01100_x
FEC1100
3806562
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
DOOOF
ESX
HF~
HGD
HGLYW
JSODD
MVM
VOH
WRC
ZY4
AAYXX
AGHNM
CITATION
IQODW
7SN
7SS
C1K
8FD
F28
FR3
ID FETCH-LOGICAL-c5420-266c4806f66cb0bbf2a0ee4235a638106dc123f259e3c0d923923dcea55ab8313
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Thu Jul 10 17:33:39 EDT 2025
Fri Jul 11 00:24:53 EDT 2025
Mon Jul 21 09:15:28 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Tue Jul 01 01:15:34 EDT 2025
Wed Jan 22 17:11:18 EST 2025
Thu Jul 03 21:21:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords iridescence
butterflies
honest signalling
Insecta
Color
Stress
Arthropoda
Lepidoptera
Pieridae
Colias
Invertebrata
structural colour
Coloration
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5420-266c4806f66cb0bbf2a0ee4235a638106dc123f259e3c0d923923dcea55ab8313
Notes Present address: School of Tropical Biology, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2435.2006.01100.x
PQID 17197350
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_33546056
proquest_miscellaneous_17197350
pascalfrancis_primary_17776535
crossref_primary_10_1111_j_1365_2435_2006_01100_x
crossref_citationtrail_10_1111_j_1365_2435_2006_01100_x
wiley_primary_10_1111_j_1365_2435_2006_01100_x_FEC1100
jstor_primary_3806562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2006
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: April 2006
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Functional ecology
PublicationYear 2006
Publisher British Ecological Society
Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: British Ecological Society
– name: Blackwell Publishing Ltd
– name: Blackwell Science
References 2001; 410
1998; Vol. 11A
2003; 424
2002; 41
1973; 241
2004; 271
1997
2006; 8
2004; 6
2003; 270
2000; 60
1978; 3
2002
1999; 266
1974; 142
2003; 423
1972; 178
1998; 201
1995; 260
1704
Kemp D.J. (e_1_2_6_10_1) 2006; 8
e_1_2_6_21_1
e_1_2_6_20_1
Burnham K.P. (e_1_2_6_4_1) 2002
Ghiradella H. (e_1_2_6_7_1) 1998
Halliday D. (e_1_2_6_9_1) 1997
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
Badyaev A. (e_1_2_6_2_1) 2004; 6
e_1_2_6_6_1
Newton I. (e_1_2_6_13_1) 1704
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_12_1
e_1_2_6_22_1
Parker A.R. (e_1_2_6_14_1) 1998; 201
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 6
  start-page: 975
  year: 2004
  end-page: 991
  article-title: Developmental perspective on the evolution of sexual ornaments
  publication-title: Evolutionary Ecology Research
– volume: 266
  start-page: 771
  year: 1999
  end-page: 777
  article-title: Condition‐dependent variation in the blue‐ultraviolet colouration of a structurally based plumage ornament
  publication-title: Proceedings of the Royal Society of London B
– volume: 271
  start-page: 1577
  year: 2004
  end-page: 1584
  article-title: Butterfly wing colours: scale beads make white pierid wings brighter
  publication-title: Proceedings of the Royal Society of London B
– volume: 201
  start-page: 1307
  year: 1998
  end-page: 1313
  article-title: Multilayer reflectors in animals using green and gold beetles as contrasting examples
  publication-title: Journal of Experimental Biology
– volume: 142
  start-page: 395
  year: 1974
  end-page: 410
  article-title: Development of ultraviolet‐reflecting butterfly scales: how to make an interference filter
  publication-title: Journal of Morphology
– volume: 178
  start-page: 1214
  year: 1972
  end-page: 1217
  article-title: Ultraviolet reflection of a male butterfly: interference color caused by thin‐layer elaboration of wing scales
  publication-title: Science
– year: 1704
– volume: 201
  start-page: 2343
  year: 1998
  end-page: 2347
  article-title: The diversity and implications of animal structural colours
  publication-title: Journal of Experimental Biology
– volume: 266
  start-page: 1403
  year: 1999
  end-page: 1411
  article-title: Quantified interference and diffraction in single butterfly scales
  publication-title: Proceedings of the Royal Society of London B
– year: 2002
– volume: 8
  start-page: 515
  year: 2006
  end-page: 527
  article-title: Heightened phenotypic variation and age‐based fading of ultraviolet butterfly wing coloration
  publication-title: Evolutionary Ecology Research
– volume: 241
  start-page: 406
  year: 1973
  end-page: 408
  article-title: Ultraviolet differences between sulfur butterflies, and , and a possible isolating mechanism
  publication-title: Nature
– volume: 424
  start-page: 852
  year: 2003
  end-page: 855
  article-title: Photonic structures in biology
  publication-title: Nature
– year: 1997
– volume: 3
  start-page: 203
  year: 1978
  end-page: 243
  article-title: Ultraviolet reflection and its behavioral role in the courtship of the sulphur butterflies and (Lepidoptera, Pieridae)
  publication-title: Behavioral Ecology and Sociobiology
– volume: 260
  start-page: 199
  year: 1995
  end-page: 204
  article-title: Ultraviolet colours in butterflies: intra‐ or inter‐specific communication?
  publication-title: Proceedings of the Royal Society of London B
– volume: Vol. 11A
  start-page: 257
  year: 1998
  end-page: 287
– volume: 41
  start-page: 437
  year: 2002
  end-page: 441
  article-title: Grazing‐incidence iridescence from a butterfly wing
  publication-title: Applied Optics
– volume: 270
  start-page: 1455
  year: 2003
  end-page: 1460
  article-title: Nanostructure predicts intraspecific variation in ultraviolet‐blue plumage colour
  publication-title: Proceedings of the Royal Society of London B
– volume: 410
  start-page: 36
  year: 2001
  article-title: Structural colour: now you see it – now you don't
  publication-title: Nature
– volume: 60
  start-page: 851
  year: 2000
  end-page: 855
  article-title: Colour, fat and social status in male damselflies,
  publication-title: Animal Behaviour
– volume: 423
  start-page: 31
  year: 2003
  end-page: 32
  article-title: Polarized light as a butterfly mating signal
  publication-title: Nature
– ident: e_1_2_6_5_1
  doi: 10.1006/anbe.2000.1548
– ident: e_1_2_6_3_1
  doi: 10.1098/rspb.1995.0080
– ident: e_1_2_6_11_1
  doi: 10.1098/rspb.1999.0704
– volume-title: Fundamentals of Physics
  year: 1997
  ident: e_1_2_6_9_1
– ident: e_1_2_6_15_1
  doi: 10.1242/jeb.201.9.1307
– ident: e_1_2_6_8_1
  doi: 10.1126/science.178.4066.1214
– ident: e_1_2_6_6_1
  doi: 10.1002/jmor.1051420404
– ident: e_1_2_6_20_1
  doi: 10.1038/423031a
– volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach
  year: 2002
  ident: e_1_2_6_4_1
– ident: e_1_2_6_16_1
  doi: 10.1098/rspb.2003.2390
– volume-title: Opticks
  year: 1704
  ident: e_1_2_6_13_1
– volume: 201
  start-page: 2343
  year: 1998
  ident: e_1_2_6_14_1
  article-title: The diversity and implications of animal structural colours
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.201.16.2343
– ident: e_1_2_6_22_1
  doi: 10.1098/rspb.1999.0794
– volume: 8
  start-page: 515
  year: 2006
  ident: e_1_2_6_10_1
  article-title: Heightened phenotypic variation and age‐based fading of ultraviolet butterfly wing coloration
  publication-title: Evolutionary Ecology Research
– ident: e_1_2_6_18_1
  doi: 10.1007/BF00296311
– ident: e_1_2_6_21_1
  doi: 10.1038/nature01941
– ident: e_1_2_6_23_1
  doi: 10.1038/35065161
– ident: e_1_2_6_17_1
  doi: 10.1038/241406a0
– volume: 6
  start-page: 975
  year: 2004
  ident: e_1_2_6_2_1
  article-title: Developmental perspective on the evolution of sexual ornaments
  publication-title: Evolutionary Ecology Research
– ident: e_1_2_6_19_1
  doi: 10.1098/rspb.2004.2781
– ident: e_1_2_6_12_1
  doi: 10.1364/AO.41.000437
– start-page: 257
  volume-title: Microscopic Anatomy of Invertebrates
  year: 1998
  ident: e_1_2_6_7_1
SSID ssj0009522
Score 2.0770867
Snippet 1. Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical...
Summary 1 Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical...
Structural coloration is a striking component of sexual ornamentation, and may function as a signal of mate quality. Although the proximate optical mechanisms...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 282
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Architecture
Autoecology
Biological and medical sciences
Butterflies
Colias
Colias eurytheme
Covariance
Fundamental and applied biological sciences. Psychology
General aspects
honest signalling
Human ecology
Insecta
Invertebrates
iridescence
Optical reflection
Reflectance
Signal reflection
Spectral reflectance
structural colour
Thermal stress
Ultraviolet reflection
Title Stress-Mediated Covariance between Nano-Structural Architecture and Ultraviolet Butterfly Coloration
URI https://www.jstor.org/stable/3806562
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2435.2006.01100.x
https://www.proquest.com/docview/17197350
https://www.proquest.com/docview/33546056
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB-KUPDFalUarXYf-pojyWY3yWORO6SgD1rBt7CfFDxypXdXqk_9E_o39i_pzG7uvBQLUgqBLGQnH5uZzG8yXwDvtchdbvIi9YUv01I0Lq1t4dOGl9rbvHGSUzbyxaU8vyk_3orbPv6JcmFifYj1DzeSjPC9JgFXej4U8hChhfq-9ylQ9bMR4Uk6QPjoqtiovxsdCoVsUlS5fBjU8-SJBpoqBitS5KSa4-L52PViAEs3wW3QTpNXcLd6rhiUcjdaLvTIPPxR8vH_PPgu7PQgln2IXLcHL1z3Gl7Gtpb3OBqbfnQ4fsyjQ4L-QzLfh8_XIUfl14-fIXUFYS8zs29otxMTsj54jHWqm-GUWOOW6oOwTb8HU51ly-niqwrRBQumY9Pt6T2j60fWPoCbyfjT2XnaN31IjSjRlEXAYMo6kx73OtPaFypzDkGfUJKqkUmLnMU9Wm2Om8wiPsXNGqeEULrmOT-ErW7WuTfAGit86VFNk9WY8aqpRckRH1nrCQjXCVSrF9yaviI6NeaYthuWES51S0tN_TplG5a6_Z5Avqb8EquCPIPmIPDQmoCTT1sWCZwOeOrxhFVVScFFAu9WTNai7JNDR3VutpzjjLypuMj-PoNzQY5vmYAMLPXsu20n4zMaHf0r4TFsx79VFOT0FraQU9wJ4reFPg2S-RvSrjeP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hIgQXnq0wj3YPXB3ZXu_aPqIqUYC2B2il3qx9ConIqUiC2p74CfxGfgkzu04aI5AqhGTJe9jxYz3j-WbnBfBGi9zlJi9SX_gyLUXj0toWPm14qb3NGyc5ZSMfn8jpWfn-XJz37YAoFybWh9hsuJFkhP81CThtSA-lPIRoocLvnQpU_myEgPIuNfgO9tXHYqsCb3QpFLJJUenyYVjPH6800FUxXJFiJ9UCl8_HvhcDYLoNb4N-mjyC2frNYljKl9FqqUfm-reij__p1R_Dwx7HsreR8Z7AHdc9hXuxs-UVjsamH-2Nb1LpkKD_lyyewedPIU3l5_cfIXsFkS8z829ouhMfsj5-jHWqm-OUWOaWSoSwbdcHU51lq9nyqwoBBkumY9_t2RWj-0fu3oWzyfj0cJr2fR9SI0q0ZhEzmLLOpMezzrT2hcqcQ9wnlKSCZNIic3GPhpvjJrMIUfGwxikhlK55zvdgp5t37jmwxgpfetTUZDhmvGpqUXKESNZ6wsJ1AtX6C7emL4pOvTlm7ZZxhEvd0lJTy07ZhqVuLxPIN5QXsTDILWh2AxNtCDi5tWWRwP6AqW4uWFWVFFwkcLDmshbFn3w6qnPz1QJn5E3FRfb3GZwL8n3LBGTgqVs_bTsZH9Loxb8SHsD96enxUXv07uTDS3gQN68o5ukV7CDXuNcI55Z6P4jpLz72O6o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD5IRfHFa0tTtZ0HX7MkmUuSR2l3qbciaqFvYTIXhC7Z4u6K7ZM_wd_oL_Gcmex2IwpFhIXMw5xsMvlO5js5N4AXrcxdbvIi9YUXqZC1Sytb-LTmovU2r53ilI387kQdn4rXZ_Ksj3-iXJhYH2L9wY00I7yvScEvrB8qeYjQwv2-9ylQ9bMR8snbQmUVIfzoQ7FRgDd6FApVp7jn8mFUzx_PNNiqYrQihU7qOa6ej20vBrx0k92G7WnyAM5XNxajUs5Hy0U7Mle_1Xz8P3f-EO73LJa9jLB7BLdc9xjuxL6Wlzgam360M75OpEOB_k0yfwKfP4YklZ_ff4TcFeS9zMy-ouFOKGR99BjrdDfDKbHILRUIYZuOD6Y7y5bTxRcdwgsWrI1dt6eXjP4_YnsbTifjT4fHad_1ITVSoC2LjMGIKlMej23Wtr7QmXPI-qRWVI5MWYQW92i2OW4yiwQVf9Y4LaVuK57zHdjqZp3bBVZb6YXHfZrMxoyXdSUFR4JkrScmXCVQrh5wY_qS6NSZY9psmEa41A0tNTXsVE1Y6uZbAvla8iKWBbmBzHbA0FqAk1NbFQnsDzB1fcKyLJXkMoGDFcgaVH7y6OjOzZZznJHXJZfZ32dwLsnzrRJQAVI3vtpmMj6k0d6_Ch7A3fdHk-btq5M3T-Fe_HJFAU_PYAtB454jl1u0-0FJfwFuezpi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress%E2%80%90mediated+covariance+between+nano%E2%80%90structural+architecture+and+ultraviolet+butterfly+coloration&rft.jtitle=Functional+ecology&rft.au=KEMP%2C+D.+J.&rft.au=VUKUSIC%2C+P.&rft.au=RUTOWSKI%2C+R.+L.&rft.date=2006-04-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=20&rft.issue=2&rft.spage=282&rft.epage=289&rft_id=info:doi/10.1111%2Fj.1365-2435.2006.01100.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2435_2006_01100_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon