3-D breast nodule detection on automated breast ultrasound using faster region-based convolutional neural networks and U-Net

Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental scre...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 22625 - 14
Main Authors Oh, Kangrok, Lee, Si Eun, Kim, Eun-Kyung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of 93.65 % with 8.6 false positives is achieved on unseen test data at best.
AbstractList Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of $$93.65\%$$ 93.65 % with 8.6 false positives is achieved on unseen test data at best.
Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of 93.65% with 8.6 false positives is achieved on unseen test data at best.
Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of [Formula: see text] with 8.6 false positives is achieved on unseen test data at best.
Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of 93.65 % with 8.6 false positives is achieved on unseen test data at best.
Abstract Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of $$93.65\%$$ 93.65 % with 8.6 false positives is achieved on unseen test data at best.
Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of [Formula: see text] with 8.6 false positives is achieved on unseen test data at best.Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of [Formula: see text] with 8.6 false positives is achieved on unseen test data at best.
Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.65\%$$\end{document} 93.65 % with 8.6 false positives is achieved on unseen test data at best.
ArticleNumber 22625
Author Kim, Eun-Kyung
Lee, Si Eun
Oh, Kangrok
Author_xml – sequence: 1
  givenname: Kangrok
  surname: Oh
  fullname: Oh, Kangrok
  organization: Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine
– sequence: 2
  givenname: Si Eun
  surname: Lee
  fullname: Lee, Si Eun
  organization: Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine
– sequence: 3
  givenname: Eun-Kyung
  surname: Kim
  fullname: Kim, Eun-Kyung
  email: ekkim@yuhs.ac
  organization: Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38114666$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBIrFhY4gfcewVQqVApQo2dG35cTNkyNjFjyKk_ng8kw60XdSyZMs-59Ox733eHPjgoWle4u4t7qh4lxjupUAdoYjJQTIknjRHpGM9IpSQgzv7w-YkpXVXR08kw_JZc0gFxoxzftTcUPSxNRF0yq0PrszQOshg8xR8W6cuOWx0BrcXlTlHnULxri1p8qt2rKcQ2wirakFGp6q1wV-HuWwhem49lLhb8u8Qf6ZWV-8l-gr5RfN01HOCk9v1uLn8dPb99Au6-Pb5_PTDBbI9wxmNo5SGgnMEM4ctFY4KyiRxbiRCcCOhG50gduSMDEbYjlnaO8MGw4w2BNPj5nzhuqDX6ipOGx3_qKAntTsIcaV0zJOdQfWWEMsl5aArTWADhjpGuCEg5DgOlfV-YV0VswFnwdf_mO9B79_46YdahWuFu4F29T2V8OaWEMOvAimrzZQszLP2EEpSRHa1trzHvEpfP5CuQ4n1T3cqOlDJmaiqV3cj_cuyr3IViEVgY0gpwqjslPW2OjXhNNdoattTaukpVXtK7XpKbdnkgXVPf9REF1OqYr-C-D_2I66_mVTgbw
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_109829
crossref_primary_10_1016_j_metrad_2025_100138
Cites_doi 10.1016/j.acra.2018.02.014
10.1109/TPAMI.2015.2389824
10.1111/j.1469-8137.1912.tb05611.x
10.1109/JBHI.2017.2731873
10.3389/fonc.2022.938413
10.1007/s11547-020-01209-8
10.1093/comjnl/16.1.30
10.1016/j.cmpb.2020.105866
10.1007/s00330-017-5011-9
10.1109/TMI.2012.2230403
10.1016/j.compbiomed.2020.103912
10.1118/1.2795825
10.1007/s00330-020-07197-7
10.1016/j.artmed.2020.101880
10.1214/aoms/1177729586
10.1007/s10549-020-05625-2
10.1016/j.ultras.2022.106891
10.3389/fonc.2022.848271
10.47102/annals-acadmedsg.V41N10p432
10.1016/j.ics.2005.03.053
10.1158/0008-5472.CAN-18-0494
10.1016/j.cmpb.2020.105360
10.1109/TMI.2014.2315206
10.1186/s12880-019-0349-x
10.1109/TMI.2018.2860257
10.1007/s11547-017-0805-z
10.1109/5.726791
10.1109/2945.817348
10.1002/mp.14569
10.1016/j.eswa.2020.114410
10.3390/jpm11080703
10.1118/1.3377775
10.1007/978-3-319-46448-0_2
10.1117/12.2581144
10.2307/2331554
10.1007/978-3-319-24574-4_28
10.1007/978-3-319-10602-1_48
10.1038/s41598-020-79139-8
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-49794-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_5c22c6936ea64281beb3d426b2e89ff7
PMC10730541
38114666
10_1038_s41598_023_49794_8
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
  grantid: NRF-2020R1A2C2005936
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-ff99b3edd214d1c38d383492ddf2886b9e0fd82cf6427b8c04c35db47b4bab213
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:38 EDT 2025
Thu Aug 21 18:37:41 EDT 2025
Fri Jul 11 01:24:49 EDT 2025
Wed Aug 13 05:12:29 EDT 2025
Wed Feb 19 02:10:18 EST 2025
Tue Jul 01 00:50:50 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Fri Feb 21 02:37:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-ff99b3edd214d1c38d383492ddf2886b9e0fd82cf6427b8c04c35db47b4bab213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2903739648?pq-origsite=%requestingapplication%
PMID 38114666
PQID 2903739648
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_5c22c6936ea64281beb3d426b2e89ff7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10730541
proquest_miscellaneous_2904156516
proquest_journals_2903739648
pubmed_primary_38114666
crossref_citationtrail_10_1038_s41598_023_49794_8
crossref_primary_10_1038_s41598_023_49794_8
springer_journals_10_1038_s41598_023_49794_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-18
PublicationDateYYYYMMDD 2023-12-18
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rosati (CR43) 2020; 123
Lei (CR33) 2021; 48
Li, Gu, Wang, Qin, Wang (CR25) 2022; 12
Demšar (CR53) 2006; 7
Boca, Ciurea, Ciortea, Dudea (CR12) 2021; 11
CR39
CR36
Rella (CR2) 2018; 25
CR34
Yap (CR13) 2018; 22
CR30
Chang (CR3) 2005; 1281
Yap (CR24) 2020; 107
Lo (CR27) 2014; 33
Jaccard (CR50) 1912; 11
Zhou (CR38) 2021; 168
Lu (CR41) 2018; 78
Leong (CR1) 2012; 41
CR47
Moon (CR6) 2013; 32
Ren, He, Girshick, Sun (CR20) 2015; 28
Lin (CR11) 2021; 31
He, Zhang, Ren, Sun (CR45) 2015; 37
CR40
Sibson (CR49) 1973; 16
Mangan, Whitaker (CR28) 1999; 5
Deng (CR51) 2009; 2009
Chiang, Huang, Chen, Huang, Chang (CR32) 2019; 38
Zanotel (CR8) 2018; 123
Long, Shelhamer, Darrell (CR16) 2015; 2015
CR17
CR15
Redmon, Divvala, Girshick, Farhadi (CR21) 2016; 2016
Vourtsis, Kachulis (CR7) 2018; 28
Moon (CR31) 2020; 190
CR52
Cao, Duan, Yang, Yue, Chen (CR18) 2019; 19
He, Zhang, Ren, Sun (CR26) 2016; 2016
Robbins, Monro (CR48) 1951; 22
Li (CR42) 2018; 8
Zhang (CR29) 2021; 11
Girshick, Donahue, Darrell, Malik (CR46) 2014; 2014
Chang (CR5) 2010; 37
Malekmohammadi, Barekatrezaei, Kozegar, Soryani (CR37) 2023; 129
Girshick (CR19) 2015; 2015
Su, Li, Chen (CR44) 2021; 200
Zhang (CR35) 2022; 12
CR23
Ikedo (CR4) 2007; 34
CR22
Brunetti (CR9) 2020; 125
LeCun, Bottou, Bengio, Haffner (CR14) 1998; 86
Jia (CR10) 2020; 181
A Malekmohammadi (49794_CR37) 2023; 129
49794_CR15
J Long (49794_CR16) 2015; 2015
49794_CR17
MH Yap (49794_CR13) 2018; 22
Y LeCun (49794_CR14) 1998; 86
J Deng (49794_CR51) 2009; 2009
T-C Chiang (49794_CR32) 2019; 38
Y Su (49794_CR44) 2021; 200
LC Leong (49794_CR1) 2012; 41
R Rella (49794_CR2) 2018; 25
S Ren (49794_CR20) 2015; 28
R Girshick (49794_CR46) 2014; 2014
R Girshick (49794_CR19) 2015; 2015
M Zanotel (49794_CR8) 2018; 123
J Demšar (49794_CR53) 2006; 7
I Boca (49794_CR12) 2021; 11
H Li (49794_CR42) 2018; 8
49794_CR47
K He (49794_CR26) 2016; 2016
Y Zhou (49794_CR38) 2021; 168
Z Cao (49794_CR18) 2019; 19
N Brunetti (49794_CR9) 2020; 125
Y Li (49794_CR25) 2022; 12
Y Lei (49794_CR33) 2021; 48
49794_CR52
49794_CR34
R Rosati (49794_CR43) 2020; 123
49794_CR36
R-F Chang (49794_CR5) 2010; 37
49794_CR39
R Sibson (49794_CR49) 1973; 16
P Jaccard (49794_CR50) 1912; 11
X Lin (49794_CR11) 2021; 31
C-M Lo (49794_CR27) 2014; 33
AP Mangan (49794_CR28) 1999; 5
K He (49794_CR45) 2015; 37
A Vourtsis (49794_CR7) 2018; 28
49794_CR40
WK Moon (49794_CR31) 2020; 190
49794_CR22
49794_CR23
J Zhang (49794_CR35) 2022; 12
Y Ikedo (49794_CR4) 2007; 34
R-F Chang (49794_CR3) 2005; 1281
J Redmon (49794_CR21) 2016; 2016
M Jia (49794_CR10) 2020; 181
J Zhang (49794_CR29) 2021; 11
MH Yap (49794_CR24) 2020; 107
H Robbins (49794_CR48) 1951; 22
Y Lu (49794_CR41) 2018; 78
WK Moon (49794_CR6) 2013; 32
49794_CR30
References_xml – ident: CR22
– volume: 2016
  start-page: 770
  year: 2016
  end-page: 778
  ident: CR26
  article-title: Deep residual learning for image recognition
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– ident: CR39
– volume: 25
  start-page: 1457
  year: 2018
  end-page: 1470
  ident: CR2
  article-title: Automated breast ultrasonography (ABUS) in the screening and diagnostic setting: Indications and practical use
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2018.02.014
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: CR45
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 11
  start-page: 37
  year: 1912
  end-page: 50
  ident: CR50
  article-title: The distribution of the flora in the alpine zone 1
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– volume: 2015
  start-page: 3431
  year: 2015
  end-page: 3440
  ident: CR16
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 2015
  start-page: 1440
  year: 2015
  end-page: 1448
  ident: CR19
  article-title: Fast R-CNN
  publication-title: Proc. IEEE Int. Conf. Comput. Vis. ICCV
– volume: 2016
  start-page: 779
  year: 2016
  end-page: 788
  ident: CR21
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 22
  start-page: 1218
  year: 2018
  end-page: 1226
  ident: CR13
  article-title: Automated breast ultrasound lesions detection using convolutional neural networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2731873
– ident: CR15
– volume: 12
  year: 2022
  ident: CR35
  article-title: Application of convolution neural network algorithm based on multicenter abus images in breast lesion detection
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.938413
– volume: 125
  start-page: 1243
  year: 2020
  end-page: 1248
  ident: CR9
  article-title: Comparison between execution and reading time of 3D ABUS versus HHUS
  publication-title: La Radiologia Medica
  doi: 10.1007/s11547-020-01209-8
– volume: 16
  start-page: 30
  year: 1973
  end-page: 34
  ident: CR49
  article-title: Slink: An optimally efficient algorithm for the single-link cluster method
  publication-title: Comput. J.
  doi: 10.1093/comjnl/16.1.30
– ident: CR36
– volume: 200
  year: 2021
  ident: CR44
  article-title: Lung nodule detection based on Faster R-CNN framework
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105866
– volume: 28
  start-page: 592
  year: 2018
  end-page: 601
  ident: CR7
  article-title: The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-5011-9
– volume: 2014
  start-page: 580
  year: 2014
  end-page: 587
  ident: CR46
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 32
  start-page: 1191
  year: 2013
  end-page: 1200
  ident: CR6
  article-title: Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2230403
– volume: 123
  year: 2020
  ident: CR43
  article-title: Faster R-CNN approach for detection and quantification of DNA damage in comet assay images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103912
– volume: 34
  start-page: 4378
  year: 2007
  end-page: 4388
  ident: CR4
  article-title: Development of a fully automatic scheme for detection of masses in whole breast ultrasound images
  publication-title: Med. Phys.
  doi: 10.1118/1.2795825
– volume: 31
  start-page: 947
  year: 2021
  end-page: 957
  ident: CR11
  article-title: The diagnostic performance of automated versus handheld breast ultrasound and mammography in symptomatic outpatient women: A multicenter, cross-sectional study in china
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07197-7
– volume: 107
  year: 2020
  ident: CR24
  article-title: Breast ultrasound region of interest detection and lesion localisation
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101880
– volume: 22
  start-page: 400
  year: 1951
  end-page: 407
  ident: CR48
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– ident: CR47
– volume: 181
  start-page: 589
  year: 2020
  end-page: 597
  ident: CR10
  article-title: Diagnostic performance of automated breast ultrasound and handheld ultrasound in women with dense breasts
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-020-05625-2
– volume: 129
  year: 2023
  ident: CR37
  article-title: Mass detection in automated 3-d breast ultrasound using a patch bi-convlstm network
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2022.106891
– ident: CR30
– volume: 12
  year: 2022
  ident: CR25
  article-title: BUSnet: A deep learning model of breast tumor lesion detection for ultrasound images
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.848271
– volume: 41
  start-page: 432
  year: 2012
  ident: CR1
  article-title: Supplementary breast ultrasound screening in asian women with negative but dense mammograms-a pilot study
  publication-title: Ann. Acad. Med. Singapore
  doi: 10.47102/annals-acadmedsg.V41N10p432
– volume: 1281
  start-page: 1075
  year: 2005
  end-page: 1080
  ident: CR3
  article-title: Whole breast computer-aided screening using free-hand ultrasound
  publication-title: Int. Congress Ser.
  doi: 10.1016/j.ics.2005.03.053
– volume: 78
  start-page: 5135
  year: 2018
  end-page: 5143
  ident: CR41
  article-title: Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-0494
– volume: 190
  year: 2020
  ident: CR31
  article-title: Computer-aided tumor detection in automated breast ultrasound using a 3-d convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105360
– ident: CR40
– volume: 33
  start-page: 1503
  year: 2014
  end-page: 1511
  ident: CR27
  article-title: Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2315206
– volume: 28
  start-page: 91
  year: 2015
  end-page: 99
  ident: CR20
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR23
– volume: 19
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR18
  article-title: An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-019-0349-x
– volume: 38
  start-page: 240
  year: 2019
  end-page: 249
  ident: CR32
  article-title: Tumor detection in automated breast ultrasound using 3-d cnn and prioritized candidate aggregation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2860257
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR53
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 123
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR8
  article-title: Automated breast ultrasound: Basic principles and emerging clinical applications
  publication-title: La Radiologia Medica
  doi: 10.1007/s11547-017-0805-z
– volume: 11
  start-page: 1
  year: 2021
  end-page: 8
  ident: CR29
  article-title: Fast and accurate automated recognition of the dominant cells from fecal images based on Faster R-CNN
  publication-title: Sci. Rep.
– ident: CR52
– ident: CR17
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR14
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 5
  start-page: 308
  year: 1999
  end-page: 321
  ident: CR28
  article-title: Partitioning 3d surface meshes using watershed segmentation
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/2945.817348
– volume: 48
  start-page: 204
  year: 2021
  end-page: 214
  ident: CR33
  article-title: Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN
  publication-title: Med. Phys.
  doi: 10.1002/mp.14569
– ident: CR34
– volume: 168
  year: 2021
  ident: CR38
  article-title: 3D multi-view tumor detection in automated whole breast ultrasound using deep convolutional neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114410
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR42
  article-title: An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images
  publication-title: Sci. Rep.
– volume: 11
  start-page: 703
  year: 2021
  ident: CR12
  article-title: Pros and cons for automated breast ultrasound (abus): A narrative review
  publication-title: J. Personal. Med.
  doi: 10.3390/jpm11080703
– volume: 37
  start-page: 2063
  year: 2010
  end-page: 2073
  ident: CR5
  article-title: Rapid image stitching and computer-aided detection for multipass automated breast ultrasound
  publication-title: Med. Phys.
  doi: 10.1118/1.3377775
– volume: 2009
  start-page: 248
  year: 2009
  end-page: 255
  ident: CR51
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– ident: 49794_CR30
– ident: 49794_CR23
  doi: 10.1007/978-3-319-46448-0_2
– volume: 32
  start-page: 1191
  year: 2013
  ident: 49794_CR6
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2230403
– volume: 125
  start-page: 1243
  year: 2020
  ident: 49794_CR9
  publication-title: La Radiologia Medica
  doi: 10.1007/s11547-020-01209-8
– ident: 49794_CR40
– volume: 86
  start-page: 2278
  year: 1998
  ident: 49794_CR14
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 8
  start-page: 1
  year: 2018
  ident: 49794_CR42
  publication-title: Sci. Rep.
– volume: 190
  year: 2020
  ident: 49794_CR31
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105360
– volume: 11
  start-page: 703
  year: 2021
  ident: 49794_CR12
  publication-title: J. Personal. Med.
  doi: 10.3390/jpm11080703
– volume: 28
  start-page: 91
  year: 2015
  ident: 49794_CR20
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 49794_CR34
  doi: 10.1117/12.2581144
– volume: 2015
  start-page: 1440
  year: 2015
  ident: 49794_CR19
  publication-title: Proc. IEEE Int. Conf. Comput. Vis. ICCV
– volume: 123
  start-page: 1
  year: 2018
  ident: 49794_CR8
  publication-title: La Radiologia Medica
  doi: 10.1007/s11547-017-0805-z
– ident: 49794_CR52
  doi: 10.2307/2331554
– volume: 1281
  start-page: 1075
  year: 2005
  ident: 49794_CR3
  publication-title: Int. Congress Ser.
  doi: 10.1016/j.ics.2005.03.053
– volume: 2016
  start-page: 770
  year: 2016
  ident: 49794_CR26
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 2015
  start-page: 3431
  year: 2015
  ident: 49794_CR16
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 33
  start-page: 1503
  year: 2014
  ident: 49794_CR27
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2315206
– volume: 200
  year: 2021
  ident: 49794_CR44
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105866
– ident: 49794_CR15
  doi: 10.1007/978-3-319-24574-4_28
– volume: 107
  year: 2020
  ident: 49794_CR24
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101880
– volume: 37
  start-page: 1904
  year: 2015
  ident: 49794_CR45
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 2014
  start-page: 580
  year: 2014
  ident: 49794_CR46
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– ident: 49794_CR47
  doi: 10.1007/978-3-319-10602-1_48
– volume: 12
  year: 2022
  ident: 49794_CR25
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.848271
– volume: 19
  start-page: 1
  year: 2019
  ident: 49794_CR18
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-019-0349-x
– volume: 2016
  start-page: 779
  year: 2016
  ident: 49794_CR21
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 123
  year: 2020
  ident: 49794_CR43
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103912
– volume: 2009
  start-page: 248
  year: 2009
  ident: 49794_CR51
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 25
  start-page: 1457
  year: 2018
  ident: 49794_CR2
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2018.02.014
– volume: 78
  start-page: 5135
  year: 2018
  ident: 49794_CR41
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-0494
– volume: 41
  start-page: 432
  year: 2012
  ident: 49794_CR1
  publication-title: Ann. Acad. Med. Singapore
  doi: 10.47102/annals-acadmedsg.V41N10p432
– volume: 168
  year: 2021
  ident: 49794_CR38
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114410
– volume: 28
  start-page: 592
  year: 2018
  ident: 49794_CR7
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-5011-9
– volume: 37
  start-page: 2063
  year: 2010
  ident: 49794_CR5
  publication-title: Med. Phys.
  doi: 10.1118/1.3377775
– ident: 49794_CR22
– ident: 49794_CR17
– volume: 38
  start-page: 240
  year: 2019
  ident: 49794_CR32
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2860257
– volume: 48
  start-page: 204
  year: 2021
  ident: 49794_CR33
  publication-title: Med. Phys.
  doi: 10.1002/mp.14569
– volume: 22
  start-page: 400
  year: 1951
  ident: 49794_CR48
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– volume: 5
  start-page: 308
  year: 1999
  ident: 49794_CR28
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/2945.817348
– ident: 49794_CR36
– volume: 12
  year: 2022
  ident: 49794_CR35
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.938413
– volume: 7
  start-page: 1
  year: 2006
  ident: 49794_CR53
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 1218
  year: 2018
  ident: 49794_CR13
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2731873
– volume: 129
  year: 2023
  ident: 49794_CR37
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2022.106891
– volume: 11
  start-page: 37
  year: 1912
  ident: 49794_CR50
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– volume: 181
  start-page: 589
  year: 2020
  ident: 49794_CR10
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-020-05625-2
– volume: 16
  start-page: 30
  year: 1973
  ident: 49794_CR49
  publication-title: Comput. J.
  doi: 10.1093/comjnl/16.1.30
– ident: 49794_CR39
– volume: 34
  start-page: 4378
  year: 2007
  ident: 49794_CR4
  publication-title: Med. Phys.
  doi: 10.1118/1.2795825
– volume: 11
  start-page: 1
  year: 2021
  ident: 49794_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79139-8
– volume: 31
  start-page: 947
  year: 2021
  ident: 49794_CR11
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07197-7
SSID ssj0000529419
Score 2.4175339
Snippet Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts....
Abstract Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22625
SubjectTerms 631/67/1347
692/4028/67
Automation
Breast - diagnostic imaging
Breast cancer
Breast Density
Breast Neoplasms - diagnostic imaging
Cancer screening
Early Detection of Cancer - methods
Female
Humanities and Social Sciences
Humans
Mammography
Mammography - methods
Medical screening
multidisciplinary
Neural networks
Neural Networks, Computer
Nodules
Science
Science (multidisciplinary)
Ultrasonic imaging
Ultrasonography, Mammary - methods
Ultrasound
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbhp08OlM5-loWwT05sLfQeakw9IjTfRD88Vale8YdnxehoaGTkFCPVFWn8hVjT6HNRYeoRbssRhhLOmelFQZK0gUs6Aqm8-7cnq3M24v24lKpL8oJm-CBJ8KdtFGpaJ22uSNXWQaM_hKalaAy0P9G2n3R5l0KpiZUb-WMdPMtmYWGky1aKrpNpjQVVXNGwIElqoD9v_Myf02W_OnEtBqi0xvs-uxB8hfTym-yK7m_xa5ONSW_3mbftHjNA6WaD7zfpHGdecpDTbjqOT7dOGzQS81p12lc44Rbqq7EKQn-Ay8dgSdwKtmw6QWZucQpOX0WUpybQDDrq6aQb3mHY1fiPA932Or0zftXZ2IusSBia-QgSnEu6JySkibJqCFhxGqcSqkoABtcXpQEKhak_TJAXJio2xTMMpjQBSX1XXbUb_p8n_EOkC3on6kOnCHcvUBnmlYHdPB0iqlhckduH2f8cSqDsfb1HFyDn1jkkUW-sshDw57tx3ye0Df-2vslcXHfk5Cz6weUJz_Lk_-XPDXseCcDflbnrVduoZfaWYNzPNk3oyLS6UrX581Y-1Aw3ErbsHuTyOxXgm4RWiSLLXAgTAdLPWzpP32sYN-S9mDkVcOe7-Tux7r-TIsH_4MWD9k1RQojlZBwzI6GL2N-hD7YEB5XdfsOPVgtDg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA-1IvhS_Pa0SgTfNHr52GzyIOJXKUL75EHfwmaTtMKxq3e70IJ_vDPZ3ZPTs3CwcElILjOzM3OZ_H6EvDRFTNLXkhVlUkxptDnNNVMmBZmMNjKD6Zyc6uOF-npWnO2Rie5o3MD1ztQO-aQWq-Wby59X78Hg3w1Xxs3bNTghvCgmJPKlWcXMDXITPFOJjAYnY7g_YH0Lq7gd787sHrrlnzKM_67Y898Syr_OUbN7OrpDDsa4kn4YFOEu2YvNPXJrYJq8uk9-SfaZeixA72jThn4ZaYhdLsNqKHyqvmshdo1h6tQvYcI1ci5RLI0_p6lCSAWKRA5tw9D5BYol66PqwtwIjZkfubB8TSsYu2CnsXtAFkdfvn06ZiPxAqsLxTuWkrVexhAEV4HX0gTIY5UVISRhjPY2zlMwok6QvJTe1HNVyyJ4VXrlKy-4fEj2m7aJjwmtTFAQgQhRGasQjc_jSaeWHsI-GeowI3zablePqORIjrF0-XRcGjeIyIGIXBaRMzPyajPmx4DJcW3vjyjFTU_E085ftKtzN5qnK2oham2ljhUmZNxHL2Hh2oto8F_tGTmcdMBNOuqEnctSWq1gjhebZjBPPHOpmtj2uQ-myAXXM_JoUJnNSiBYAj-locVsKdPWUrdbmu8XGQKc45sZZDUjrye9-7Ou_-_Fk-t_xlNyW6ApcMG4OST73aqPzyDm6vzzbEi_AQYZJ7A
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIv4rfVUyL4psHNR7PJ4_pxHAveiy7cW2m-TmFp5bZ9EO6Pv5n0Q1ZPQSgUmgkZOjOdSWfyG0JemzIm6bxk5TIppjTanOaaKZOCTEYbmcF0Pp_p041an5fnB0RMZ2Fy0X6GtMyf6ak67N0OHA0eBhMSe6JZxcwtcoRQ7aDbR6vV-st6_rOCuSvF7XhCZiHNDZP3vFAG678pwvyzUPK3bGl2Qif3yN0xeqSrgd_75CA2D8jtoZ_kz4fkSrKP1GGZeUebNvTbSEPscrFVQ-Gq-66FCDWGiajfwoI77KxEsQD-gqYagRMotmtoG4YuLlAsTB8VFNZGAMx8y-XjO1rD3A07i90jsjn59PXDKRvbKzBfKt6xlKx1MoYguArcSxNgt6qsCCEJY7SzcZGCET7BFmXpjF8oL8vg1NIpVzvB5WNy2LRNfEpobYKCOEOI2liFmHsO85laOgjuZPChIHx63ZUfscexBca2yjlwaapBRBWIqMoiqkxB3sxzfgzIG_-kfo9SnCkRNTs_aC8vqlGLqtIL4bWVOta47eIuOgmMayeiwX_XBTmedKAaTXlXCbuQS2m1gjVezcNghJhZqZvY9pkGN8Il1wV5MqjMzAmEROCNNIyYPWXaY3V_pPn-LQN9c_z-gqwK8nbSu198_f1dPPs_8ufkjkDT4IJxc0wOu8s-voBIq3MvR9O6BtG6I7U
  priority: 102
  providerName: Springer Nature
Title 3-D breast nodule detection on automated breast ultrasound using faster region-based convolutional neural networks and U-Net
URI https://link.springer.com/article/10.1038/s41598-023-49794-8
https://www.ncbi.nlm.nih.gov/pubmed/38114666
https://www.proquest.com/docview/2903739648
https://www.proquest.com/docview/2904156516
https://pubmed.ncbi.nlm.nih.gov/PMC10730541
https://doaj.org/article/5c22c6936ea64281beb3d426b2e89ff7
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96h-CL-G31XCL4puE2H03TJ9lb7zgWbhF1Yd9K89FTWNrz2j4I_vHOpN091o-D0kKTkrQzk5nMTH9DyFuThkpaJ1maVYopjTKnuWbKVF5WRhsZwXQulvp8pRbrdD063NoxrXK7JsaF2jcOfeTHIp_KTOZamQ9XPxhWjcLo6lhC4y45ROgy5Opsne18LBjFUjwf_5WZSnPcgr7Cf8qExNJquWJmTx9F2P5_2Zp_p0z-ETeN6ujsIXkw2pF0NhD-EbkT6sfk3lBZ8ucT8kuyj9RiwnlH68b3m0B96GLaVU3hKPuuAVs1-G2nfgMDtlhjiWIq_CWtSoRQoFi4oakZKjtPMUV9ZFUYG6Ew4yUmkre0hGdXbBm6p2R1dvp1fs7GQgvMpYp3rKry3MrgveDKcyeNh32ryoX3lTBG2zxMK2-Eq2CzklnjpsrJ1FuVWWVLK7h8Rg7qpg4vCC2NV2BxCFGaXCH6nsXIppYWzDzpnU8I337uwo0o5FgMY1PEaLg0xUCiAkhURBIVJiHvds9cDRgct_Y-QSrueiJ-drzRXF8WozgWqRPC6VzqUOIGjNtgJUxcWxEMerETcrTlgWIU6ra4YcGEvNk1gzhijKWsQ9PHPrglTrlOyPOBZXYzAeMI9JKGFrPHTHtT3W-pv3-LkN8cV2KgVULeb_nuZl7__xYvb3-NV-S-QFHggnFzRA666z68Bhurs5MoSBNyOJstvizgenK6_PQZ7s71fBL9FnC-UOY37voqTA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ7C6fsRxDggBpdrSdk9daW8hfqQgrZLSzQpV4jfxG5lxkq2WR2-VIkWKncTJzHhmPOP5CHlp0lBJ6yRLs0oxpVHmNNdMmcrLymgjYzGdo4keT9XnWTrbIL-GvTCYVjnMiXGi9o3DNfIdkY9kJnOtzLvT7wxRozC6OkBodGxxEM5_gMu2eLu_C_R9JcTep-OPY9ajCjCXKt6yqspzK4P3givPnTQenDSVC-8rYYy2eRhV3ghXgWWeWeNGysnUW5VZZUsruITnXiPXQfGO0NnLZtlqTQejZorn_d6ckTQ7C9CPuIdNSIRyyxUza_ovwgT8y7b9O0XzjzhtVH97d8jt3m6l7ztGu0s2Qn2P3OiQLM_vk5-S7VKLCe4trRu_nAfqQxvTvGoKR7lsG7CNgx86LefwwgViOlFMvT-hVYklGygCRTQ1Q-XqKabE96IB78bSm_EUE9cXtIR7p2wS2gdkeiUkeEg266YOjwgtjVdg4QhRmlxhtT-LkVQtLZiV0jufED787sL1Vc8RfGNexOi7NEVHogJIVEQSFSYhr1f3nHY1Py7t_QGpuOqJ9brjhebspOjFv0idEE7nUocSHT5ug5UwcG1FMLhqnpDtgQeKfhJZFBcsn5AXq2YQf4zplHVolrEPuuAp1wnZ6lhmNRIwxkAPamgxa8y0NtT1lvrb11hinOPMD7RKyJuB7y7G9f9_8fjyz3hObo6Pjw6Lw_3JwRNyS6BYcMG42Sab7dkyPAX7rrXPolBR8uWqpfg3HThiQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuBAUaCJ7BaX-I6DwgxumpjUE2ISXsz8W0gVclYU6FJ_DJ-HT5O0qlc9japUqXaaZycu8_x-RB6rnIfuLGc5OMgiJAgc5JKIlRwPCipeGqm83Emdw_F-6P8aAP96s_CQFllrxOTona1hT3yIStGfMwLKdQwdGURB5Ppm5PvBBCkINPaw2m0LLLvz37E8G3xem8Saf2CsenO53e7pEMYIDYXtCEhFIXh3jlGhaOWKxcDNlEw5wJTSprCj4JTzIbopY-NsiNhee6MGBthSsMoj_97BW2OISoaoM3tndnBp9UOD-TQBC26kzojroaLaC3hRBvjAOxWCKLWrGECDfiXp_t3weYfWdtkDKc30Y3Oi8VvW7a7hTZ8dRtdbXEtz-6gn5xMsIFy9wZXtVvOPXa-SUVfFY6fctnU0VP2rp-0nMcbLgDhCUMh_jEOJTRwwAAbUVcETK3DUCDfCUq8NzTiTF-pjH2By3jtIZn55i46vBQi3EODqq78A4RL5UT0dxgrVSGg95-BvKrkJjqZ3FmXIdq_bm27HugAxTHXKRfPlW5JpCOJdCKRVhl6ubrmpO0AcuHsbaDiaiZ0704_1KfHulMGOreMWVlw6UsI_6jxhseFS8O8gj30DG31PKA7lbLQ5wKQoWer4agMIMNTVr5epjkQkOdUZuh-yzKrlUTXLFpFGUfUGjOtLXV9pPr2NTUcp2AHIq0y9Krnu_N1_f9dPLz4MZ6ia1GC9Ye92f4jdJ2BVFBGqNpCg-Z06R9HZ68xTzqpwujLZQvyb6udZ94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+breast+nodule+detection+on+automated+breast+ultrasound+using+faster+region-based+convolutional+neural+networks+and+U-Net&rft.jtitle=Scientific+reports&rft.au=Oh%2C+Kangrok&rft.au=Lee%2C+Si+Eun&rft.au=Kim%2C+Eun-Kyung&rft.date=2023-12-18&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=22625&rft_id=info:doi/10.1038%2Fs41598-023-49794-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon