Global Transcriptional Start Site Mapping Using Differential RNA Sequencing Reveals Novel Antisense RNAs in Escherichia coli

While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish b...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 197; no. 1; pp. 18 - 28
Main Authors Thomason, Maureen K., Bischler, Thorsten, Eisenbart, Sara K., Förstner, Konrad U., Zhang, Aixia, Herbig, Alexander, Nieselt, Kay, Sharma, Cynthia M., Storz, Gisela
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.
AbstractList While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.
While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.
While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.
Author Herbig, Alexander
Nieselt, Kay
Sharma, Cynthia M.
Storz, Gisela
Eisenbart, Sara K.
Bischler, Thorsten
Förstner, Konrad U.
Zhang, Aixia
Thomason, Maureen K.
Author_xml – sequence: 1
  givenname: Maureen K.
  surname: Thomason
  fullname: Thomason, Maureen K.
  organization: Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 2
  givenname: Thorsten
  surname: Bischler
  fullname: Bischler, Thorsten
  organization: Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
– sequence: 3
  givenname: Sara K.
  surname: Eisenbart
  fullname: Eisenbart, Sara K.
  organization: Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA, Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
– sequence: 4
  givenname: Konrad U.
  surname: Förstner
  fullname: Förstner, Konrad U.
  organization: Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
– sequence: 5
  givenname: Aixia
  surname: Zhang
  fullname: Zhang, Aixia
  organization: Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
– sequence: 6
  givenname: Alexander
  surname: Herbig
  fullname: Herbig, Alexander
  organization: Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany
– sequence: 7
  givenname: Kay
  surname: Nieselt
  fullname: Nieselt, Kay
  organization: Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany
– sequence: 8
  givenname: Cynthia M.
  surname: Sharma
  fullname: Sharma, Cynthia M.
  organization: Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA, Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
– sequence: 9
  givenname: Gisela
  surname: Storz
  fullname: Storz, Gisela
  organization: Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25266388$$D View this record in MEDLINE/PubMed
BookMark eNqNks9rFDEUx4NU7LZ68i4BL4JMzcuvyVyEba3VUit023PIZDPdlNlkmswuCP7xZmwrWjz08sLjfd6XfPm-PbQTYnAIvQZyAEDVh9PDA0JJIyvgz9AMSKMqIRjZQTNCKFQNNGwX7eV8QwhwLugLtEsFlZIpNUM_T_rYmh5fJhOyTX4YfQylX4wmjXjhR4e_mWHw4Rpf5al-8l3nkgujL9TF-Rwv3O3GBTvNLtzWmT7j87h1PZ4XJruQ3YRl7AM-znblkrcrb7CNvX-JnneFd6_u33109fn48uhLdfb95OvR_KyygsNYdR1tgLYMiDVAWmUZo8Br5pbctKQWEkTHrXS0lk3HuGgtkbCkZimUUG27ZPvo453usGnXbmnL75Pp9ZD82qQfOhqv_50Ev9LXcas5VUrWdRF4dy-QYnGbR7322bq-N8HFTdYgayVkI1nzBFRw2QiqxBNQxidPkhT07SP0Jm5SCWqieImc1VQV6s3fPv8YfIi7AHAH2BRzTq7T1o9mirzY9r0GoqeT0qeH-vdJaeBl5_2jnQfZ_9G_AMZjy0E
CODEN JOBAAY
CitedBy_id crossref_primary_10_1080_15476286_2020_1827784
crossref_primary_10_1002_adbi_202100834
crossref_primary_10_1007_s12033_018_0123_2
crossref_primary_10_1093_nar_gky1243
crossref_primary_10_1128_mbio_03298_22
crossref_primary_10_3389_fmolb_2021_610453
crossref_primary_10_1038_ismej_2017_88
crossref_primary_10_1038_s41564_021_00898_9
crossref_primary_10_1073_pnas_1914229117
crossref_primary_10_1261_rna_078937_121
crossref_primary_10_1128_msystems_00526_21
crossref_primary_10_1080_15476286_2018_1509661
crossref_primary_10_1128_mBio_02819_18
crossref_primary_10_1128_mSphere_00483_17
crossref_primary_10_7554_eLife_62438
crossref_primary_10_1093_nar_gkad807
crossref_primary_10_1093_nar_gkv1156
crossref_primary_10_1128_mBio_01041_21
crossref_primary_10_1128_microbiolspec_RWR_0020_2018
crossref_primary_10_1038_s41467_024_48986_8
crossref_primary_10_1074_jbc_RA119_011367
crossref_primary_10_1073_pnas_1815288116
crossref_primary_10_1111_1462_2920_13326
crossref_primary_10_1128_mBio_02253_19
crossref_primary_10_1016_j_ymeth_2015_06_012
crossref_primary_10_1038_srep35307
crossref_primary_10_1093_nar_gkac1025
crossref_primary_10_1016_j_tibs_2022_03_007
crossref_primary_10_1038_s41596_018_0093_7
crossref_primary_10_1093_nar_gkw600
crossref_primary_10_1093_femsec_fiy013
crossref_primary_10_1016_j_biochi_2023_07_009
crossref_primary_10_1128_JB_00385_17
crossref_primary_10_1371_journal_pgen_1006286
crossref_primary_10_3389_fmicb_2019_00591
crossref_primary_10_1016_j_bbagrm_2020_194565
crossref_primary_10_1093_bib_bbad209
crossref_primary_10_1128_msystems_00183_25
crossref_primary_10_1038_s41564_019_0500_z
crossref_primary_10_1128_mbio_02585_23
crossref_primary_10_1371_journal_pone_0142002
crossref_primary_10_1093_nar_gkz791
crossref_primary_10_3390_microorganisms11082048
crossref_primary_10_1080_15476286_2017_1306175
crossref_primary_10_1093_nar_gkw1180
crossref_primary_10_3390_ijms23010576
crossref_primary_10_1261_rna_074112_119
crossref_primary_10_3390_biom12081019
crossref_primary_10_1186_s11658_016_0007_z
crossref_primary_10_1038_srep09209
crossref_primary_10_1128_msystems_00333_23
crossref_primary_10_1016_j_molcel_2016_07_026
crossref_primary_10_1128_JB_00476_18
crossref_primary_10_1016_j_mib_2015_01_013
crossref_primary_10_3389_fmicb_2021_687632
crossref_primary_10_3390_microorganisms9122608
crossref_primary_10_1093_nar_gky118
crossref_primary_10_1111_mmi_13941
crossref_primary_10_1128_mbio_01643_22
crossref_primary_10_1128_JB_00202_17
crossref_primary_10_1073_pnas_2307382120
crossref_primary_10_1002_anie_201409033
crossref_primary_10_1002_ggn2_202300184
crossref_primary_10_1093_femsle_fnw175
crossref_primary_10_1002_bies_201600193
crossref_primary_10_1038_s41467_018_05997_6
crossref_primary_10_1038_s42003_023_05097_2
crossref_primary_10_7717_peerj_6304
crossref_primary_10_1093_nar_gkac504
crossref_primary_10_1093_nar_gkac748
crossref_primary_10_1093_nar_gkaa325
crossref_primary_10_1073_pnas_1500203112
crossref_primary_10_1128_microbiolspec_RWR_0029_2018
crossref_primary_10_1101_gr_230615_117
crossref_primary_10_1002_ange_201409033
crossref_primary_10_1186_s13059_021_02514_9
crossref_primary_10_1038_s41594_022_00877_6
crossref_primary_10_1371_journal_pgen_1011335
crossref_primary_10_1016_j_mam_2021_101002
crossref_primary_10_1128_mSystems_00064_16
crossref_primary_10_1093_femsre_fuv017
crossref_primary_10_1186_s12864_015_2231_8
crossref_primary_10_1093_bib_bbae398
crossref_primary_10_1016_j_molcel_2019_10_022
crossref_primary_10_1038_nrm_2016_174
crossref_primary_10_1186_s12864_020_07077_w
crossref_primary_10_1021_acs_biochem_7b01069
crossref_primary_10_1128_microbiolspec_RWR_0015_2017
crossref_primary_10_1261_rna_079836_123
crossref_primary_10_1128_JB_02410_14
crossref_primary_10_1038_s41467_023_43534_2
crossref_primary_10_1074_jbc_C117_818807
crossref_primary_10_1371_journal_pgen_1007749
crossref_primary_10_1038_s41467_021_21150_2
crossref_primary_10_1099_mic_0_001099
crossref_primary_10_1128_mSphere_00650_21
crossref_primary_10_1128_mBio_00009_19
crossref_primary_10_1128_jb_00583_21
crossref_primary_10_1093_pnasnexus_pgad187
crossref_primary_10_1126_scitranslmed_aau7975
crossref_primary_10_1371_journal_pone_0215986
crossref_primary_10_1016_j_molcel_2017_12_023
crossref_primary_10_1016_j_ymeth_2018_11_006
crossref_primary_10_1093_nar_gkw404
crossref_primary_10_1128_mbio_03443_21
crossref_primary_10_1371_journal_pgen_1005796
crossref_primary_10_1073_pnas_1700230114
crossref_primary_10_1016_j_biochi_2019_04_015
crossref_primary_10_1016_j_isci_2024_111207
crossref_primary_10_1016_j_bbagrm_2020_194524
crossref_primary_10_1515_hsz_2020_0230
crossref_primary_10_1016_j_jmb_2021_166860
crossref_primary_10_1128_msystems_01204_23
crossref_primary_10_1038_s41467_022_30857_9
crossref_primary_10_1080_15476286_2016_1146855
crossref_primary_10_1016_j_mib_2017_01_010
crossref_primary_10_1128_mSystems_00250_20
crossref_primary_10_1093_abbs_gmw037
crossref_primary_10_1093_nar_gkw894
crossref_primary_10_1093_nar_gkz485
crossref_primary_10_3389_fcimb_2017_00225
crossref_primary_10_1080_15476286_2023_2189331
crossref_primary_10_1093_nar_gkab530
crossref_primary_10_1073_pnas_2106964118
crossref_primary_10_1007_s11274_023_03540_4
crossref_primary_10_1093_nar_gkz616
crossref_primary_10_1186_s12864_016_2602_9
crossref_primary_10_7554_eLife_87151_3
crossref_primary_10_1128_AEM_01966_17
crossref_primary_10_1007_s00239_017_9793_9
crossref_primary_10_3389_fcimb_2020_596277
crossref_primary_10_1073_pnas_2010087117
crossref_primary_10_7554_eLife_54655
crossref_primary_10_1128_AEM_03236_16
crossref_primary_10_21769_BioProtoc_3757
crossref_primary_10_3390_genes11091049
crossref_primary_10_1128_JB_00262_16
crossref_primary_10_1128_JB_00411_18
crossref_primary_10_3390_microorganisms10071301
crossref_primary_10_1016_j_ymeth_2017_04_016
crossref_primary_10_1007_s12275_023_00099_5
crossref_primary_10_1128_IAI_00048_16
crossref_primary_10_1016_j_synbio_2017_09_003
crossref_primary_10_1093_bib_bby045
crossref_primary_10_3389_fmicb_2017_02505
crossref_primary_10_1038_s41564_023_01558_w
crossref_primary_10_1016_j_biochi_2018_10_004
crossref_primary_10_1073_pnas_1522159113
crossref_primary_10_3389_fcimb_2019_00194
crossref_primary_10_3390_ijms252313137
crossref_primary_10_1080_15476286_2023_2179582
crossref_primary_10_1128_IAI_00307_17
crossref_primary_10_3390_genes10040280
crossref_primary_10_1093_gigascience_giz039
crossref_primary_10_1186_s12915_018_0555_y
crossref_primary_10_1186_s12864_016_2920_y
crossref_primary_10_1128_JB_00159_16
crossref_primary_10_1128_JB_00117_17
crossref_primary_10_1186_s12866_023_02988_6
crossref_primary_10_1093_femsre_fuad049
crossref_primary_10_1128_mbio_02535_22
crossref_primary_10_1128_microbiolspec_RWR_0016_2017
crossref_primary_10_1128_JB_00187_16
crossref_primary_10_1038_s41576_021_00326_y
crossref_primary_10_1073_pnas_2405510121
crossref_primary_10_1186_s12864_016_2539_z
crossref_primary_10_1042_BST20180171
crossref_primary_10_1128_mBio_00485_20
crossref_primary_10_1016_j_jbiotec_2017_06_1203
crossref_primary_10_1186_s12864_020_6565_5
crossref_primary_10_1099_mic_0_000619
crossref_primary_10_15252_msb_20156540
crossref_primary_10_1186_s12864_016_3398_3
crossref_primary_10_3389_fmicb_2016_00694
crossref_primary_10_1007_s10142_024_01437_5
crossref_primary_10_1261_rna_048470_114
crossref_primary_10_1093_nar_gky563
crossref_primary_10_1371_journal_pgen_1011059
crossref_primary_10_7554_eLife_64543
crossref_primary_10_1093_nar_gkae1131
crossref_primary_10_1038_s41467_017_01613_1
crossref_primary_10_1002_bmb_21055
crossref_primary_10_1093_nar_gky1175
crossref_primary_10_1016_j_resmic_2019_10_005
crossref_primary_10_1016_j_copbio_2017_12_006
crossref_primary_10_1016_j_molcel_2015_10_029
crossref_primary_10_1371_journal_pone_0178483
crossref_primary_10_1093_bib_bbab162
crossref_primary_10_1093_gigascience_giy096
crossref_primary_10_1016_j_jhazmat_2024_134574
crossref_primary_10_1093_nar_gkad451
crossref_primary_10_7554_eLife_87151
crossref_primary_10_1099_mgen_0_000833
crossref_primary_10_1128_microbiolspec_RWR_0011_2017
crossref_primary_10_3390_ijms22052398
crossref_primary_10_3390_microorganisms11061388
crossref_primary_10_1073_pnas_2311509120
crossref_primary_10_1128_mbio_00981_22
crossref_primary_10_3389_fmicb_2021_746320
crossref_primary_10_1016_j_jbiotec_2015_09_041
crossref_primary_10_1007_s12539_024_00637_8
crossref_primary_10_7554_eLife_42179
crossref_primary_10_3390_biom5021035
crossref_primary_10_1128_spectrum_02041_21
crossref_primary_10_1128_ecosalplus_esp_0030_2019
crossref_primary_10_1093_nar_gkae879
crossref_primary_10_1371_journal_pone_0218508
crossref_primary_10_1080_15476286_2021_2000793
crossref_primary_10_1128_mBio_02678_19
crossref_primary_10_1128_JB_00430_19
crossref_primary_10_1038_s41467_023_43322_y
crossref_primary_10_1038_ncomms13783
crossref_primary_10_1038_s41467_022_28871_y
crossref_primary_10_1128_microbiolspec_RWR_0027_2018
crossref_primary_10_1261_rna_074237_119
crossref_primary_10_1007_s00284_020_02055_7
Cites_doi 10.1016/j.jmb.2010.12.009
10.1093/nar/gkt444
10.1371/journal.pone.0007526
10.1128/mBio.01442-14
10.1093/nar/gkn601
10.1038/nature06475
10.1016/j.mib.2014.06.010
10.1073/pnas.1015154108
10.1016/j.chom.2013.11.010
10.1371/journal.pcbi.1000502
10.1073/pnas.1304795110
10.1146/annurev-micro-092412-155737
10.1186/1471-2105-15-89
10.1186/1741-7007-12-4
10.1073/pnas.1113521108
10.1038/nature08756
10.1073/pnas.1201061109
10.1371/journal.pgen.1002867
10.1146/annurev-genet-102209-163523
10.1101/gad.196741.112
10.1093/nar/gks1201
10.1371/journal.pone.0043350
10.1038/nmeth.1226
10.1093/nar/gkt1021
10.1111/j.1574-6968.2009.01767.x
10.1128/MMBR.00025-08
10.1093/nar/gkt1048
10.1186/1471-2164-14-620
10.1073/pnas.1315974111
10.1101/gad.1127103
10.1002/j.1460-2075.1990.tb07405.x
10.1093/nar/gkr390
10.1073/pnas.0903846106
10.1101/gad.243485.114
10.1111/j.1365-2958.2012.07965.x
10.1128/mBio.00156-12
10.1128/jb.178.13.3917-3925.1996
10.1126/science.1206848
10.1128/MMBR.00032-10
10.1038/nrmicro2934
10.1186/1471-2164-14-520
10.1186/1471-2164-13-734
10.1038/nbt.1582
10.1128/mBio.01398-14
10.1371/journal.pgen.1003495
10.1146/annurev-micro-090110-102946
10.1016/j.mib.2010.09.009
10.1186/1471-2164-14-667
10.1038/msb.2012.11
10.1073/pnas.100127597
10.1128/mBio.00024-10
10.1093/bioinformatics/btu533
10.1186/1471-2164-12-428
10.1038/nbt.2702
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology Jan 2015
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology Jan 2015
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1128/JB.02096-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate E. coli Antisense Transcriptome
EISSN 1098-5530
EndPage 28
ExternalDocumentID PMC4288677
3540314441
25266388
10_1128_JB_02096_14
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
ADXHL
AENEX
AFFDN
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
O9-
OHT
OK1
P-O
P-S
P2P
PQQKQ
QZG
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WHG
WOQ
X7M
Y6R
YQT
YR2
YZZ
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c541t-ff2912b310ca10b8c3321473ed4ab075615f4c6e2769f345bc061d2ad5858bbd3
ISSN 0021-9193
1098-5530
IngestDate Thu Aug 21 13:57:49 EDT 2025
Thu Jul 10 19:14:09 EDT 2025
Fri Jul 11 07:03:50 EDT 2025
Fri Jul 11 11:13:46 EDT 2025
Mon Jun 30 08:37:18 EDT 2025
Thu Apr 03 07:09:57 EDT 2025
Tue Jul 01 03:26:28 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c541t-ff2912b310ca10b8c3321473ed4ab075615f4c6e2769f345bc061d2ad5858bbd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
M.K.T. and T.B. are joint first authors.
Citation Thomason MK, Bischler T, Eisenbart SK, Förstner KU, Zhang A, Herbig A, Nieselt K, Sharma CM, Storz G. 2015. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J Bacteriol 197:18–28. doi:10.1128/JB.02096-14.
Present address: Maureen K. Thomason, Department of Microbiology, University of Washington, Seattle, Washington, USA.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4288677
PMID 25266388
PQID 1640983728
PQPubID 40724
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4288677
proquest_miscellaneous_1678569639
proquest_miscellaneous_1654695285
proquest_miscellaneous_1634276960
proquest_journals_1640983728
pubmed_primary_25266388
crossref_citationtrail_10_1128_JB_02096_14
crossref_primary_10_1128_JB_02096_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
Miller KW (e_1_3_3_40_2) 1987; 262
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
Bailey TL (e_1_3_3_47_2) 1994; 2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
19052321 - Microbiol Mol Biol Rev. 2008 Dec;72(4):579-89, Table of Contents
24674136 - BMC Bioinformatics. 2014;15:89
23716638 - Nucleic Acids Res. 2013 Aug;41(14):e140
24034785 - BMC Genomics. 2013;14:620
25002089 - Annu Rev Microbiol. 2014;68:357-76
1694128 - EMBO J. 1990 Jul;9(7):2331-40
22383849 - Science. 2012 Mar 2;335(6072):1103-6
19838305 - PLoS One. 2009;4(10):e7526
20689751 - MBio. 2010 May 18;1(1):null
25006232 - MBio. 2014;5(4):e01442-14
12975324 - Genes Dev. 2003 Oct 1;17(19):2374-83
25024085 - Curr Opin Microbiol. 2014 Jun;19:97-105
24079885 - BMC Genomics. 2013;14:667
21639793 - Annu Rev Microbiol. 2011;65:189-213
23696746 - PLoS Genet. 2013 May;9(5):e1003495
19750212 - PLoS Comput Biol. 2009 Sep;5(9):e1000502
22538806 - Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1277-86
19706412 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15406-11
18812398 - Nucleic Acids Res. 2008 Oct;36(18):5955-69
20707673 - Annu Rev Genet. 2010;44:167-88
22937038 - PLoS One. 2012;7(8):e43350
25123900 - Bioinformatics. 2014 Dec 1;30(23):3421-3
24987095 - MBio. 2014;5(4):e01398-14
25030700 - Genes Dev. 2014 Jul 15;28(14):1620-34
21245330 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2124-9
18516045 - Nat Methods. 2008 Jul;5(7):621-8
19735299 - FEMS Microbiol Lett. 2010 Jan;302(1):1-7
18202662 - Nature. 2008 Jan 17;451(7176):355-8
2432063 - J Biol Chem. 1987 Jan 5;262(1):389-93
24214966 - Nucleic Acids Res. 2014 Jan;42(Database issue):D654-9
22123973 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20172-7
21646430 - Microbiol Mol Biol Rev. 2011 Jun;75(2):286-300
19881496 - Nat Biotechnol. 2009 Nov;27(11):1043-9
20888288 - Curr Opin Microbiol. 2010 Oct;13(5):619-24
24037425 - Nat Biotechnol. 2013 Nov;31(11):1015-22
23268228 - Nat Rev Microbiol. 2013 Feb;11(2):75-82
22872780 - MBio. 2012;3(4). pii: e00156-12. doi: 10.1128/mBio.00156-12
24453212 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3134-9
7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
10811905 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83
23270466 - BMC Genomics. 2012;13:734
20164839 - Nature. 2010 Mar 11;464(7286):250-5
24331466 - Cell Host Microbe. 2013 Dec 11;14(6):683-95
24198247 - Nucleic Acids Res. 2014 Feb;42(3):1414-26
23207917 - Genes Dev. 2012 Dec 1;26(23):2621-33
21147125 - J Mol Biol. 2011 Feb 11;406(1):29-43
21609952 - Nucleic Acids Res. 2011 Sep 1;39(16):6879-85
25331438 - J Bacteriol. 2015 Jan 1;197(1):4-6
23203884 - Nucleic Acids Res. 2013 Jan;41(Database issue):D203-13
21864382 - BMC Genomics. 2011;12:428
22912590 - PLoS Genet. 2012;8(8):e1002867
22289118 - Mol Microbiol. 2012 Apr;84(1):17-35
8682798 - J Bacteriol. 1996 Jul;178(13):3917-25
24461193 - BMC Biol. 2014;12:4
23878253 - Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13132-7
23899370 - BMC Genomics. 2013;14:520
22617957 - Mol Syst Biol. 2012;8:583
References_xml – ident: e_1_3_3_52_2
  doi: 10.1016/j.jmb.2010.12.009
– ident: e_1_3_3_57_2
  doi: 10.1093/nar/gkt444
– ident: e_1_3_3_21_2
  doi: 10.1371/journal.pone.0007526
– ident: e_1_3_3_20_2
  doi: 10.1128/mBio.01442-14
– ident: e_1_3_3_45_2
  doi: 10.1093/nar/gkn601
– ident: e_1_3_3_55_2
  doi: 10.1038/nature06475
– ident: e_1_3_3_30_2
  doi: 10.1016/j.mib.2014.06.010
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.1015154108
– ident: e_1_3_3_7_2
  doi: 10.1016/j.chom.2013.11.010
– ident: e_1_3_3_35_2
  doi: 10.1371/journal.pcbi.1000502
– ident: e_1_3_3_46_2
  doi: 10.1073/pnas.1304795110
– ident: e_1_3_3_48_2
  doi: 10.1146/annurev-micro-092412-155737
– ident: e_1_3_3_53_2
  doi: 10.1186/1471-2105-15-89
– ident: e_1_3_3_12_2
  doi: 10.1186/1741-7007-12-4
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.1113521108
– ident: e_1_3_3_4_2
  doi: 10.1038/nature08756
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.1201061109
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.pgen.1002867
– ident: e_1_3_3_24_2
  doi: 10.1146/annurev-genet-102209-163523
– volume: 262
  start-page: 389
  year: 1987
  ident: e_1_3_3_40_2
  article-title: Cotranscription of the Escherichia coli isoleucyl-tRNA synthetase (ileS) and prolipoprotein signal peptidase (lsp) genes
  publication-title: Fine-structure mapping of the lsp internal promoter. J Biol Chem
– ident: e_1_3_3_18_2
  doi: 10.1101/gad.196741.112
– ident: e_1_3_3_22_2
  doi: 10.1093/nar/gks1201
– ident: e_1_3_3_29_2
  doi: 10.1371/journal.pone.0043350
– ident: e_1_3_3_37_2
  doi: 10.1038/nmeth.1226
– ident: e_1_3_3_56_2
  doi: 10.1093/nar/gkt1021
– ident: e_1_3_3_3_2
  doi: 10.1111/j.1574-6968.2009.01767.x
– ident: e_1_3_3_44_2
  doi: 10.1128/MMBR.00025-08
– ident: e_1_3_3_36_2
  doi: 10.1093/nar/gkt1048
– ident: e_1_3_3_28_2
  doi: 10.1186/1471-2164-14-620
– ident: e_1_3_3_49_2
  doi: 10.1073/pnas.1315974111
– ident: e_1_3_3_50_2
  doi: 10.1101/gad.1127103
– ident: e_1_3_3_33_2
  doi: 10.1002/j.1460-2075.1990.tb07405.x
– ident: e_1_3_3_43_2
  doi: 10.1093/nar/gkr390
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0903846106
– ident: e_1_3_3_42_2
  doi: 10.1101/gad.243485.114
– ident: e_1_3_3_38_2
  doi: 10.1111/j.1365-2958.2012.07965.x
– ident: e_1_3_3_17_2
  doi: 10.1128/mBio.00156-12
– ident: e_1_3_3_51_2
  doi: 10.1128/jb.178.13.3917-3925.1996
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1206848
– volume: 2
  start-page: 28
  year: 1994
  ident: e_1_3_3_47_2
  article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers
  publication-title: Proc Int Conf Intell Syst Mol Biol
– ident: e_1_3_3_25_2
  doi: 10.1128/MMBR.00032-10
– ident: e_1_3_3_27_2
  doi: 10.1038/nrmicro2934
– ident: e_1_3_3_16_2
  doi: 10.1186/1471-2164-14-520
– ident: e_1_3_3_23_2
  doi: 10.1186/1471-2164-13-734
– ident: e_1_3_3_13_2
  doi: 10.1038/nbt.1582
– ident: e_1_3_3_41_2
  doi: 10.1128/mBio.01398-14
– ident: e_1_3_3_31_2
  doi: 10.1371/journal.pgen.1003495
– ident: e_1_3_3_39_2
  doi: 10.1146/annurev-micro-090110-102946
– ident: e_1_3_3_2_2
  doi: 10.1016/j.mib.2010.09.009
– ident: e_1_3_3_8_2
  doi: 10.1186/1471-2164-14-667
– ident: e_1_3_3_9_2
  doi: 10.1038/msb.2012.11
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.100127597
– ident: e_1_3_3_15_2
  doi: 10.1128/mBio.00024-10
– ident: e_1_3_3_34_2
  doi: 10.1093/bioinformatics/btu533
– ident: e_1_3_3_14_2
  doi: 10.1186/1471-2164-12-428
– ident: e_1_3_3_54_2
  doi: 10.1038/nbt.2702
– reference: 23878253 - Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13132-7
– reference: 24079885 - BMC Genomics. 2013;14:667
– reference: 24453212 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3134-9
– reference: 24987095 - MBio. 2014;5(4):e01398-14
– reference: 23716638 - Nucleic Acids Res. 2013 Aug;41(14):e140
– reference: 19838305 - PLoS One. 2009;4(10):e7526
– reference: 10811905 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83
– reference: 21245330 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2124-9
– reference: 22538806 - Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1277-86
– reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8
– reference: 18202662 - Nature. 2008 Jan 17;451(7176):355-8
– reference: 19706412 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15406-11
– reference: 22123973 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20172-7
– reference: 12975324 - Genes Dev. 2003 Oct 1;17(19):2374-83
– reference: 20164839 - Nature. 2010 Mar 11;464(7286):250-5
– reference: 18812398 - Nucleic Acids Res. 2008 Oct;36(18):5955-69
– reference: 22289118 - Mol Microbiol. 2012 Apr;84(1):17-35
– reference: 19881496 - Nat Biotechnol. 2009 Nov;27(11):1043-9
– reference: 25002089 - Annu Rev Microbiol. 2014;68:357-76
– reference: 23270466 - BMC Genomics. 2012;13:734
– reference: 21639793 - Annu Rev Microbiol. 2011;65:189-213
– reference: 19735299 - FEMS Microbiol Lett. 2010 Jan;302(1):1-7
– reference: 24461193 - BMC Biol. 2014;12:4
– reference: 22383849 - Science. 2012 Mar 2;335(6072):1103-6
– reference: 19750212 - PLoS Comput Biol. 2009 Sep;5(9):e1000502
– reference: 22617957 - Mol Syst Biol. 2012;8:583
– reference: 23207917 - Genes Dev. 2012 Dec 1;26(23):2621-33
– reference: 22912590 - PLoS Genet. 2012;8(8):e1002867
– reference: 1694128 - EMBO J. 1990 Jul;9(7):2331-40
– reference: 25123900 - Bioinformatics. 2014 Dec 1;30(23):3421-3
– reference: 8682798 - J Bacteriol. 1996 Jul;178(13):3917-25
– reference: 22872780 - MBio. 2012;3(4). pii: e00156-12. doi: 10.1128/mBio.00156-12
– reference: 24037425 - Nat Biotechnol. 2013 Nov;31(11):1015-22
– reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
– reference: 25024085 - Curr Opin Microbiol. 2014 Jun;19:97-105
– reference: 21646430 - Microbiol Mol Biol Rev. 2011 Jun;75(2):286-300
– reference: 19052321 - Microbiol Mol Biol Rev. 2008 Dec;72(4):579-89, Table of Contents
– reference: 25331438 - J Bacteriol. 2015 Jan 1;197(1):4-6
– reference: 24198247 - Nucleic Acids Res. 2014 Feb;42(3):1414-26
– reference: 22937038 - PLoS One. 2012;7(8):e43350
– reference: 24214966 - Nucleic Acids Res. 2014 Jan;42(Database issue):D654-9
– reference: 20888288 - Curr Opin Microbiol. 2010 Oct;13(5):619-24
– reference: 24331466 - Cell Host Microbe. 2013 Dec 11;14(6):683-95
– reference: 23899370 - BMC Genomics. 2013;14:520
– reference: 20707673 - Annu Rev Genet. 2010;44:167-88
– reference: 25030700 - Genes Dev. 2014 Jul 15;28(14):1620-34
– reference: 21147125 - J Mol Biol. 2011 Feb 11;406(1):29-43
– reference: 24034785 - BMC Genomics. 2013;14:620
– reference: 23696746 - PLoS Genet. 2013 May;9(5):e1003495
– reference: 24674136 - BMC Bioinformatics. 2014;15:89
– reference: 23268228 - Nat Rev Microbiol. 2013 Feb;11(2):75-82
– reference: 21609952 - Nucleic Acids Res. 2011 Sep 1;39(16):6879-85
– reference: 23203884 - Nucleic Acids Res. 2013 Jan;41(Database issue):D203-13
– reference: 20689751 - MBio. 2010 May 18;1(1):null
– reference: 2432063 - J Biol Chem. 1987 Jan 5;262(1):389-93
– reference: 21864382 - BMC Genomics. 2011;12:428
– reference: 25006232 - MBio. 2014;5(4):e01442-14
SSID ssj0014452
Score 2.5673106
Snippet While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here...
While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 18
SubjectTerms Algorithms
Bacteriology
Chromosome Mapping
complementary DNA
Deoxyribonucleic acid
DNA
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Gene expression
Gene Expression Regulation, Bacterial - physiology
genes
Genetics
Genome, Bacterial
Genomics
Growth conditions
mutation
prediction
ribonucleases
Ribonucleic acid
RNA
RNA, Antisense - genetics
RNA, Antisense - metabolism
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
Sequence Analysis, RNA - methods
surveys
transcription (genetics)
Transcription Initiation Site - physiology
Transcriptome
Title Global Transcriptional Start Site Mapping Using Differential RNA Sequencing Reveals Novel Antisense RNAs in Escherichia coli
URI https://www.ncbi.nlm.nih.gov/pubmed/25266388
https://www.proquest.com/docview/1640983728
https://www.proquest.com/docview/1634276960
https://www.proquest.com/docview/1654695285
https://www.proquest.com/docview/1678569639
https://pubmed.ncbi.nlm.nih.gov/PMC4288677
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1FRUhcEN-EFrRIPRE5xOtde31sIaUqTZAgkXKzvPZaGFVO1TiVQPxB_hUz3o0_0hIBlyiyJ46deR7PbN68IeTQ1yzlPJROBo8Th_MkdWSqlYNDklyRqIDF2Cg8mfqnc362EIte71eLtbQu1TD5cWtfyf94FbaBX7FL9h88Wx8UNsB78C-8gofh9a98bAT7jUD55u5HdY8SbAdfIJkcTOLLqiHKMAPe22koJS6Tf54eQaSoiNSGgnetUUp5urzWF6gpkK-gwtVoVlFmxyt0b47U6AGAJ_9DVquM-nNnsd6QkCxNP14j06dZXT3O4cC2HREMIRltmtPGeA5IOdisXTcfW5W2U-cjzkdIB_P28oUrtpYv6v-l2iTVSd6IULWDN7JJXDNQcahNvEY5VJx81AnohvHbQa4JzybU33xqMOyE-KaGkDuHvmO6Wrva3NNP0cn8_DyajRez7l6TC0Di60FtihIKdxhULDhM48OiZhvBLmGF68012FZR-Oa3re_tJkc3Kp5t4m4rE5o9IPets-mRweND0tPFI3LXDDX9_pj8NKikW6ikFSopopJaVNIKlbSNSgpwow0qqUUlrVBJa1Si2YrmBW2hkiIqn5D5yXj27tSxMz6cRHC3dLKMhS5TUGQksTtSMvGqyVmeTnmsIJ2FgJHxBCJK4IeZx4VKIAFNWZxCmSuVSr2nZK9YFvo5oVkM1b4UKgw0RJ_QU4kntRxlHIpulMXskzebHzdKrAA-zmG5iKpCmMno7DiqPAH1cJ8c1saXRvfldrODjZciGxhWketzgKUXMNknr-vdELbxv7i40Ms12ngcr8kf7bIR3A8Fk2KXTSAFHMYL--SZAUd9vkxA9u1JOIugA5vaAKXlu3uK_GslMc-ZRKHLF7svb5_ca27pA7JXXq31S8jRS_WqQv9vsivsew
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Transcriptional+Start+Site+Mapping+Using+Differential+RNA+Sequencing+Reveals+Novel+Antisense+RNAs+in+Escherichia+coli&rft.jtitle=Journal+of+bacteriology&rft.au=Thomason%2C+Maureen+K&rft.au=Bischler%2C+Thorsten&rft.au=Eisenbart%2C+Sara+K&rft.au=stner%2C+Konrad+U&rft.date=2015-01-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=197&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1128%2Fjb.02096-14&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3540314441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon