Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization

Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen ( 1 O 2 ) for water decontamination. Advanced theoretical s...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5771 - 11
Main Authors Gu, Chao-Hai, Wang, Song, Zhang, Ai-Yong, Liu, Chang, Jiang, Jun, Yu, Han-Qing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen ( 1 O 2 ) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1 O 2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification. Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Here, authors present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen for sustainable water decontamination.
AbstractList Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen ( 1 O 2 ) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1 O 2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.
Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Here, authors present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen for sustainable water decontamination.
Abstract Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.
Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen ( 1 O 2 ) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1 O 2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification. Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Here, authors present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen for sustainable water decontamination.
Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.
Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen ( O ) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of O from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.
ArticleNumber 5771
Author Wang, Song
Yu, Han-Qing
Gu, Chao-Hai
Jiang, Jun
Zhang, Ai-Yong
Liu, Chang
Author_xml – sequence: 1
  givenname: Chao-Hai
  orcidid: 0000-0002-8109-5464
  surname: Gu
  fullname: Gu, Chao-Hai
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China
– sequence: 2
  givenname: Song
  surname: Wang
  fullname: Wang, Song
  organization: Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China
– sequence: 3
  givenname: Ai-Yong
  orcidid: 0000-0003-3463-3466
  surname: Zhang
  fullname: Zhang, Ai-Yong
  email: ayzhang@hfut.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology
– sequence: 4
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China
– sequence: 5
  givenname: Jun
  orcidid: 0000-0002-6116-5605
  surname: Jiang
  fullname: Jiang, Jun
  email: jiangj1@ustc.edu.cn
  organization: Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China
– sequence: 6
  givenname: Han-Qing
  orcidid: 0000-0001-5247-6244
  surname: Yu
  fullname: Yu, Han-Qing
  email: hqyu@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38982107$$D View this record in MEDLINE/PubMed
BookMark eNp9kj1vFDEQhlcoiISQP0CBLNHQLNhee9euEIr4iBSJJtSWz549fPLZhz-iHBU_Hd9dAkmKuLBH4_d9NJqZl91RiAG67jXB7wkexIfMCBunHlPW83bhHj_rTihmpCcTHY7uxcfdWc4r3M4giWDsRXc8CCkowdNJ9-eqBheWCDyYkmJwBuWSqik1AYozWkPRvp8TALK1RdkVQEa35DYXBEEvPGQEN8bX7K4B5QbzUFC82S4hoE2KtsFcDEgHi1zYASqqxXn3W-_yr7rns_YZzm7f0-7Hl89X59_6y-9fL84_XfaGM1L6GWaYGJkYcGGJnfBkNKEcC7OwVHBCJyEpE3aUo1lQgBlzoq0d-cICpcwMp93FgWujXqlNcmudtipqp_aJmJZKp-KMBzXTUUvS-seJZGKkeh7HYeKcgxylJENjfTywNnWxBmsglKT9A-jDn-B-qmW8VoTwgeNxR3h3S0jxV4Vc1NplA97rALFmNeBpkrKNiDbp20fSVawptF7tVVxiQnaqN_dL-lfL3aSbQBwEJsWcE8zKuLKfQKvQeUWw2u2VOuyVaiul9nulcLPSR9Y7-pOm4WDKTRyWkP6X_YTrL4R_4O0
CitedBy_id crossref_primary_10_1016_j_jece_2025_115325
crossref_primary_10_1016_j_envres_2024_120636
crossref_primary_10_1016_j_apcatb_2025_125070
crossref_primary_10_1016_j_nantod_2025_102663
crossref_primary_10_1016_j_seppur_2025_132593
crossref_primary_10_1016_j_jallcom_2024_176093
crossref_primary_10_1016_j_watres_2024_122960
crossref_primary_10_1038_s41467_024_52471_7
crossref_primary_10_1016_j_seppur_2025_132377
crossref_primary_10_1016_j_jhazmat_2024_136266
crossref_primary_10_1002_anie_202423157
crossref_primary_10_1016_j_seppur_2025_131742
crossref_primary_10_1016_j_surfin_2024_105605
crossref_primary_10_1016_j_jece_2025_115328
crossref_primary_10_1016_j_seppur_2024_130601
crossref_primary_10_1016_j_susmat_2025_e01322
crossref_primary_10_1038_s41467_025_56246_6
crossref_primary_10_1002_smll_202407427
crossref_primary_10_1016_j_cej_2024_156624
crossref_primary_10_1016_j_cej_2024_156524
crossref_primary_10_1016_j_seppur_2024_131079
crossref_primary_10_1016_j_jhazmat_2025_137930
crossref_primary_10_1021_jacs_4c15718
crossref_primary_10_1021_acs_est_4c11311
crossref_primary_10_1016_j_watres_2025_123488
crossref_primary_10_1002_ange_202423157
crossref_primary_10_1002_adma_202417834
crossref_primary_10_1039_D4CS00338A
crossref_primary_10_1016_j_jhazmat_2024_136035
crossref_primary_10_1016_j_seppur_2025_132367
crossref_primary_10_1016_j_jhazmat_2025_137482
crossref_primary_10_1002_smll_202408723
crossref_primary_10_1016_j_seppur_2024_130751
crossref_primary_10_1021_acs_inorgchem_4c04369
crossref_primary_10_1360_SSC_2024_0183
crossref_primary_10_1021_acs_est_5c00767
Cites_doi 10.1073/pnas.2221228120
10.1038/s41467-023-40467-8
10.1002/anie.202308044
10.1038/s41467-020-16848-8
10.1038/s41893-020-00635-w
10.1002/ange.201802055
10.1002/anie.202014472
10.1073/pnas.1819382116
10.1002/anie.202310934
10.1002/adma.202300905
10.1002/anie.201903531
10.1002/adma.201907690
10.1038/s41467-023-38677-1
10.1002/adma.202206516
10.1038/s41467-023-39048-6
10.1038/s41467-022-33149-4
10.1002/smll.202101576
10.1016/j.watres.2023.119925
10.1016/j.seppur.2023.124806
10.1016/j.apcatb.2021.120714
10.1016/j.apcatb.2022.121157
10.1021/jacs.8b05992
10.1016/j.apcatb.2023.123029
10.1002/anie.202109488
10.1038/s41467-023-39228-4
10.1021/acs.est.3c04712
10.1002/anie.202109530
10.1038/s41467-019-12362-8
10.1016/j.apcatb.2021.120783
10.1016/j.apcatb.2020.119721
10.1073/pnas.2219923120
10.1021/acscatal.3c03303
10.1073/pnas.2311585120
10.1021/jacs.3c05234
10.1002/anie.202303267
10.1002/ange.202108937
10.1038/s41467-023-39505-2
10.1007/s40820-019-0240-x
10.1039/D1TA07749J
10.1038/nenergy.2017.36
10.1073/pnas.2305705120
10.1016/j.apcatb.2021.120759
10.1016/j.cej.2021.131655
10.1016/j.chempr.2023.02.011
10.1021/acs.est.1c04600
10.1021/acscatal.0c05089
10.1021/acs.est.3c01553
10.1039/D2EE01337A
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-50240-0
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_f26a912045194862af6637555e969913
PMC11535063
38982107
10_1038_s41467_024_50240_0
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52192684, 51821006, 52027815, 22025304, 22076036, 22203082
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52192684, 51821006, 52027815, 22025304, 22076036, 22203082
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-fefe74174e58d1d707ca12508cbd28512789248d696cb2eef051add65bde224c3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:21:13 EDT 2025
Thu Aug 21 18:43:50 EDT 2025
Fri Jul 11 09:20:07 EDT 2025
Wed Aug 13 04:10:18 EDT 2025
Mon Jul 21 06:05:19 EDT 2025
Tue Jul 01 02:11:16 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Fri Feb 21 02:36:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-fefe74174e58d1d707ca12508cbd28512789248d696cb2eef051add65bde224c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5247-6244
0000-0002-6116-5605
0000-0002-8109-5464
0000-0003-3463-3466
OpenAccessLink https://www.nature.com/articles/s41467-024-50240-0
PMID 38982107
PQID 3077590112
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_f26a912045194862af6637555e969913
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11535063
proquest_miscellaneous_3077992102
proquest_journals_3077590112
pubmed_primary_38982107
crossref_citationtrail_10_1038_s41467_024_50240_0
crossref_primary_10_1038_s41467_024_50240_0
springer_journals_10_1038_s41467_024_50240_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-10
PublicationDateYYYYMMDD 2024-07-10
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Shang (CR40) 2020; 11
Zhou (CR26) 2023; 14
Weng (CR1) 2023; 62
Zheng (CR2) 2022; 307
Li (CR11) 2018; 140
Mu (CR29) 2022; 15
Zong (CR10) 2023; 57
Chang (CR33) 2021; 284
Du (CR17) 2023; 14
Xu (CR28) 2023; 62
Zhao (CR7) 2022; 300
Xu (CR48) 2021; 4
Xie (CR32) 2018; 130
Liu (CR35) 2020; 32
Gao (CR5) 2021; 60
Chen, Zhang, Liu, Qu (CR9) 2019; 58
Zhang (CR23) 2023; 14
Li (CR41) 2023; 35
Zhong (CR36) 2021; 17
Li (CR21) 2021; 11
Liu (CR25) 2022; 427
Li (CR20) 2023; 62
Duan (CR47) 2021; 299
Hu, Zhang (CR34) 2021; 9
Gu (CR22) 2023; 120
Liu (CR14) 2023; 14
Su (CR37) 2021; 133
Yin (CR43) 2023; 338
Wang, Xiao, Zhao (CR4) 2023; 235
Mi (CR6) 2021; 60
Zuo (CR15) 2022; 301
Wu (CR44) 2021; 55
Wu, Yang, Wang, Wang (CR46) 2023; 120
Wang (CR24) 2023; 326
Pan (CR38) 2019; 10
Zhang (CR30) 2021; 60
Ding (CR27) 2023; 9
Gong (CR31) 2019; 11
Mahne (CR42) 2017; 2
Jin (CR8) 2022; 34
Yang, Qian, Yu, Pan (CR13) 2019; 116
Li (CR16) 2023; 120
Yang (CR19) 2023; 13
Xie (CR3) 2022; 13
Yu (CR12) 2023; 120
Huang (CR45) 2023; 57
Dai (CR18) 2023; 14
Li (CR39) 2023; 145
Y Gao (50240_CR5) 2021; 60
K Yin (50240_CR43) 2023; 338
M Li (50240_CR16) 2023; 120
X Mi (50240_CR6) 2021; 60
L Wang (50240_CR4) 2023; 235
M Wang (50240_CR24) 2023; 326
J Xu (50240_CR28) 2023; 62
Z Li (50240_CR41) 2023; 35
S Jin (50240_CR8) 2022; 34
Y Zhou (50240_CR26) 2023; 14
S Liu (50240_CR25) 2022; 427
L Xie (50240_CR3) 2022; 13
J Du (50240_CR17) 2023; 14
Y Pan (50240_CR38) 2019; 10
Z Yang (50240_CR13) 2019; 116
X Li (50240_CR20) 2023; 62
S Zuo (50240_CR15) 2022; 301
D Zhang (50240_CR23) 2023; 14
Y Liu (50240_CR35) 2020; 32
N Zheng (50240_CR2) 2022; 307
X Li (50240_CR21) 2021; 11
C Gu (50240_CR22) 2023; 120
P Duan (50240_CR47) 2021; 299
X Zhao (50240_CR7) 2022; 300
H Shang (50240_CR40) 2020; 11
N Mahne (50240_CR42) 2017; 2
Z Weng (50240_CR1) 2023; 62
Y Chang (50240_CR33) 2021; 284
LS Zhang (50240_CR30) 2021; 60
Y Zong (50240_CR10) 2023; 57
L Su (50240_CR37) 2021; 133
Y Chen (50240_CR9) 2019; 58
X Li (50240_CR11) 2018; 140
X Mu (50240_CR29) 2022; 15
J Xu (50240_CR48) 2021; 4
J Xie (50240_CR32) 2018; 130
P Yang (50240_CR19) 2023; 13
J Ding (50240_CR27) 2023; 9
L Wu (50240_CR44) 2021; 55
Q Wu (50240_CR46) 2023; 120
B Huang (50240_CR45) 2023; 57
X Yu (50240_CR12) 2023; 120
T Gong (50240_CR31) 2019; 11
J Hu (50240_CR34) 2021; 9
T Liu (50240_CR14) 2023; 14
YL Zhong (50240_CR36) 2021; 17
Q Li (50240_CR39) 2023; 145
Y Dai (50240_CR18) 2023; 14
References_xml – volume: 120
  start-page: e2221228120
  year: 2023
  ident: CR12
  article-title: A green edge-hosted zinc single-site heterogeneous catalyst for superior Fenton-like activity
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.2221228120
– volume: 14
  year: 2023
  ident: CR17
  article-title: CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40467-8
– volume: 62
  start-page: e202308044
  year: 2023
  ident: CR28
  article-title: Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202308044
– volume: 11
  year: 2020
  ident: CR40
  article-title: Engineering unsymmetrically coordinated Cu-S N single atom sites with enhanced oxygen reduction activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16848-8
– volume: 4
  start-page: 233
  year: 2021
  end-page: 241
  ident: CR48
  article-title: Organic wastewater treatment by a single-atom catalyst and electrolytically produced H O
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-00635-w
– volume: 130
  start-page: 9788
  year: 2018
  end-page: 9792
  ident: CR32
  article-title: Metal‐free fluorine‐doped carbon electrocatalyst for CO reduction outcompeting hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201802055
– volume: 60
  start-page: 4588
  year: 2021
  end-page: 4593
  ident: CR6
  article-title: Almost 100% peroxymonosulfate conversion to singlet oxygen on single‐atom CoN sites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014472
– volume: 116
  start-page: 6659
  year: 2019
  end-page: 6664
  ident: CR13
  article-title: Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1819382116
– volume: 62
  start-page: e202310934
  year: 2023
  ident: CR1
  article-title: Site engineering of covalent organic frameworks for regulating peroxymonosulfate activation to generate singlet oxygen with 100% selectivity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202310934
– volume: 35
  start-page: 2300905
  year: 2023
  ident: CR41
  article-title: Geometric and electronic engineering of atomically dispersed copper‐cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300905
– volume: 58
  start-page: 8134
  year: 2019
  end-page: 8138
  ident: CR9
  article-title: Confining free radicals in close vicinity to contaminants enables ultrafast Fenton‐like processes in the interspacing of MoS membranes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903531
– volume: 32
  start-page: 1907690
  year: 2020
  ident: CR35
  article-title: A highly efficient metal‐free electrocatalyst of F‐doped porous carbon toward N electroreduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907690
– volume: 14
  year: 2023
  ident: CR14
  article-title: Water decontamination via nonradical process by nanoconfined Fenton-like catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38677-1
– volume: 34
  start-page: 2206516
  year: 2022
  ident: CR8
  article-title: Spatial band separation in a surface doped heterolayered structure for realizing efficient singlet oxygen generation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206516
– volume: 14
  year: 2023
  ident: CR18
  article-title: Manipulating local coordination of copper single atom catalyst enables efficient CO -to-CH conversion
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39048-6
– volume: 13
  year: 2022
  ident: CR3
  article-title: Pauling-type adsorption of O induced electrocatalytic singlet oxygen production on N-CuO for organic pollutants degradation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33149-4
– volume: 17
  year: 2021
  ident: CR36
  article-title: Nitrogen and fluorine dual doping of soft carbon nanofibers as advanced anode for potassium ion batteries
  publication-title: Small
  doi: 10.1002/smll.202101576
– volume: 235
  start-page: 119925
  year: 2023
  ident: CR4
  article-title: The debatable role of singlet oxygen in persulfate-based advanced oxidation processes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.119925
– volume: 326
  start-page: 124806
  year: 2023
  ident: CR24
  article-title: Highly efficient and selective organic pollutants degradation via peroxymonosulfate activation over micron-sized Co-MOF: nearly 100% singlet oxygen mechanism
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.124806
– volume: 299
  year: 2021
  ident: CR47
  article-title: Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120714
– volume: 307
  year: 2022
  ident: CR2
  article-title: In-situ production of singlet oxygen by dioxygen activation on iron phosphide for advanced oxidation processes
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2022.121157
– volume: 140
  start-page: 12469
  year: 2018
  end-page: 12475
  ident: CR11
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05992
– volume: 338
  year: 2023
  ident: CR43
  article-title: Redox potentials of pollutants determining the dominate oxidation pathways in manganese single-atom catalyst (Mn-SAC)/peroxymonosulfate system: selective catalytic mechanisms for versatile pollutants
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2023.123029
– volume: 60
  start-page: 21751
  year: 2021
  end-page: 21755
  ident: CR30
  article-title: Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate O with 100% selectivity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109488
– volume: 14
  year: 2023
  ident: CR23
  article-title: Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39228-4
– volume: 57
  start-page: 14071
  year: 2023
  end-page: 14081
  ident: CR45
  article-title: Modulating electronic structure engineering of atomically dispersed cobalt catalyst in Fenton-like reaction for efficient degradation of organic pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c04712
– volume: 60
  start-page: 22513
  year: 2021
  end-page: 22521
  ident: CR5
  article-title: Activity trends and mechanisms in peroxymonosulfate‐assisted catalytic production of singlet oxygen over atomic metal‐N‐C catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109530
– volume: 10
  year: 2019
  ident: CR38
  article-title: Regulating the coordination structure of single-atom Fe-N C catalytic sites for benzene oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12362-8
– volume: 301
  year: 2022
  ident: CR15
  article-title: Boosting Fenton-like reaction efficiency by co-construction of the adsorption and reactive sites on N/O co-doped carbon
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120783
– volume: 284
  year: 2021
  ident: CR33
  article-title: The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.119721
– volume: 120
  start-page: e2219923120
  year: 2023
  ident: CR46
  article-title: Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt-oxo species formation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2219923120
– volume: 13
  start-page: 12414
  year: 2023
  end-page: 12424
  ident: CR19
  article-title: Regulating the local electronic structure of copper single atoms with unsaturated B,O-coordination for selective O generation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c03303
– volume: 120
  start-page: e2311585120
  year: 2023
  ident: CR22
  article-title: Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2311585120
– volume: 145
  start-page: 20837
  year: 2023
  end-page: 20848
  ident: CR39
  article-title: Shear stress triggers ultrathin-nanosheet carbon nitride assembly for photocatalytic H O production coupled with selective alcohol oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c05234
– volume: 62
  start-page: e202303267
  year: 2023
  ident: CR20
  article-title: CoN O single-atom catalyst for efficient peroxymonosulfate activation and selective cobalt(IV)=O generation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202303267
– volume: 133
  start-page: 21431
  year: 2021
  end-page: 21436
  ident: CR37
  article-title: Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo‐Fenton process
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202108937
– volume: 14
  year: 2023
  ident: CR26
  article-title: Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39505-2
– volume: 11
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR31
  article-title: F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0240-x
– volume: 9
  start-page: 27560
  year: 2021
  end-page: 27567
  ident: CR34
  article-title: Achieving F-doped porous hollow carbon nanospheres with ultrahigh pore volume via a gas-solid interface reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07749J
– volume: 2
  year: 2017
  ident: CR42
  article-title: Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.36
– volume: 120
  start-page: e2305705120
  year: 2023
  ident: CR16
  article-title: Single cobalt atoms anchored on Ti C T with dual reaction sites for efficient adsorption-degradation of antibiotic resistance genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2305705120
– volume: 300
  year: 2022
  ident: CR7
  article-title: Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120759
– volume: 427
  start-page: 131655
  year: 2022
  ident: CR25
  article-title: Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131655
– volume: 9
  start-page: 1017
  year: 2023
  end-page: 1035
  ident: CR27
  article-title: Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH to CH OH
  publication-title: Chem
  doi: 10.1016/j.chempr.2023.02.011
– volume: 55
  start-page: 15400
  year: 2021
  end-page: 15411
  ident: CR44
  article-title: Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O ) in the Fe-Co LDH/peroxymonosulfate system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04600
– volume: 11
  start-page: 4848
  year: 2021
  end-page: 4861
  ident: CR21
  article-title: Fine-tuning radical/nonradical pathways on graphene by porous engineering and doping strategies
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05089
– volume: 57
  start-page: 9394
  year: 2023
  end-page: 9404
  ident: CR10
  article-title: Do we appropriately detect and understand singlet oxygen possibly generated in advanced oxidation processes by electron paramagnetic resonance spectroscopy?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c01553
– volume: 15
  start-page: 4048
  year: 2022
  end-page: 4057
  ident: CR29
  article-title: Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE01337A
– volume: 11
  start-page: 1
  year: 2019
  ident: 50240_CR31
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0240-x
– volume: 35
  start-page: 2300905
  year: 2023
  ident: 50240_CR41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300905
– volume: 299
  year: 2021
  ident: 50240_CR47
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120714
– volume: 14
  year: 2023
  ident: 50240_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38677-1
– volume: 62
  start-page: e202308044
  year: 2023
  ident: 50240_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202308044
– volume: 13
  year: 2022
  ident: 50240_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33149-4
– volume: 62
  start-page: e202303267
  year: 2023
  ident: 50240_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202303267
– volume: 13
  start-page: 12414
  year: 2023
  ident: 50240_CR19
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c03303
– volume: 145
  start-page: 20837
  year: 2023
  ident: 50240_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c05234
– volume: 34
  start-page: 2206516
  year: 2022
  ident: 50240_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206516
– volume: 133
  start-page: 21431
  year: 2021
  ident: 50240_CR37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202108937
– volume: 11
  start-page: 4848
  year: 2021
  ident: 50240_CR21
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05089
– volume: 307
  year: 2022
  ident: 50240_CR2
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2022.121157
– volume: 235
  start-page: 119925
  year: 2023
  ident: 50240_CR4
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.119925
– volume: 9
  start-page: 27560
  year: 2021
  ident: 50240_CR34
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07749J
– volume: 300
  year: 2022
  ident: 50240_CR7
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120759
– volume: 284
  year: 2021
  ident: 50240_CR33
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.119721
– volume: 120
  start-page: e2311585120
  year: 2023
  ident: 50240_CR22
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2311585120
– volume: 301
  year: 2022
  ident: 50240_CR15
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120783
– volume: 10
  year: 2019
  ident: 50240_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12362-8
– volume: 14
  year: 2023
  ident: 50240_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39048-6
– volume: 17
  year: 2021
  ident: 50240_CR36
  publication-title: Small
  doi: 10.1002/smll.202101576
– volume: 60
  start-page: 4588
  year: 2021
  ident: 50240_CR6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014472
– volume: 427
  start-page: 131655
  year: 2022
  ident: 50240_CR25
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131655
– volume: 57
  start-page: 14071
  year: 2023
  ident: 50240_CR45
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c04712
– volume: 57
  start-page: 9394
  year: 2023
  ident: 50240_CR10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c01553
– volume: 14
  year: 2023
  ident: 50240_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39505-2
– volume: 9
  start-page: 1017
  year: 2023
  ident: 50240_CR27
  publication-title: Chem
  doi: 10.1016/j.chempr.2023.02.011
– volume: 130
  start-page: 9788
  year: 2018
  ident: 50240_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201802055
– volume: 120
  start-page: e2219923120
  year: 2023
  ident: 50240_CR46
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2219923120
– volume: 55
  start-page: 15400
  year: 2021
  ident: 50240_CR44
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04600
– volume: 14
  year: 2023
  ident: 50240_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39228-4
– volume: 60
  start-page: 22513
  year: 2021
  ident: 50240_CR5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109530
– volume: 140
  start-page: 12469
  year: 2018
  ident: 50240_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05992
– volume: 32
  start-page: 1907690
  year: 2020
  ident: 50240_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907690
– volume: 2
  year: 2017
  ident: 50240_CR42
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.36
– volume: 116
  start-page: 6659
  year: 2019
  ident: 50240_CR13
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1819382116
– volume: 14
  year: 2023
  ident: 50240_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40467-8
– volume: 58
  start-page: 8134
  year: 2019
  ident: 50240_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903531
– volume: 326
  start-page: 124806
  year: 2023
  ident: 50240_CR24
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.124806
– volume: 15
  start-page: 4048
  year: 2022
  ident: 50240_CR29
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE01337A
– volume: 4
  start-page: 233
  year: 2021
  ident: 50240_CR48
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-00635-w
– volume: 62
  start-page: e202310934
  year: 2023
  ident: 50240_CR1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202310934
– volume: 120
  start-page: e2305705120
  year: 2023
  ident: 50240_CR16
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2305705120
– volume: 60
  start-page: 21751
  year: 2021
  ident: 50240_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109488
– volume: 338
  year: 2023
  ident: 50240_CR43
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2023.123029
– volume: 120
  start-page: e2221228120
  year: 2023
  ident: 50240_CR12
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.2221228120
– volume: 11
  year: 2020
  ident: 50240_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16848-8
SSID ssj0000391844
Score 2.6428294
Snippet Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and...
Abstract Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5771
SubjectTerms 140/131
140/146
147/135
147/137
147/143
147/28
639/301/299/1013
639/638/169/896
639/638/77/887
Adaptability
Carbon
Catalysts
Chemical synthesis
Contaminants
Decomposition reactions
Decontamination
Electron distribution
Electronic structure
Fluorine
Humanities and Social Sciences
Mass transfer
Metals
Montmorillonite
multidisciplinary
Nitrogen
Oxidants
Oxidizing agents
Oxygen
Oxygen enrichment
Oxygen production
Phenols
Pyrolysis
Reactive oxygen species
Science
Science (multidisciplinary)
Selectivity
Singlet oxygen
Sustainable development
Utilization
Water purification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoNBLafrpJi0q9NaK2JZky8c0JIRCe0ogN2FLYxrYekN2Ddlbf3pmJO8m289Lryt5EZo3mieN5gngvWUWHXSQnW2V1FgVsml7LznJ1JWtIh_jc8gvX6vTc_35wlzce-qL74QleeA0cQd9WbVNUUYZFE30u-0pRtbGGGwq4jZR55Ni3r3NVFyDVUNbFz1VyeTKHix0XBMoJEnDul4y34pEUbD_dyzz18uSP2VMYyA6eQKPJwYpDtPId-EBDk_hYXpTcvUMfpyNfNQh7t63EUkjdrxGMe_FdyS6LftrRMFlWJKzxyIe4qwWS4GxlGoh8MbPRr7ZLvgsgWwr5jcrwpq4SgqxZE3RDkFcDvwHoyD4zqaKzudwfnJ8dnQqp2cWpDe6WMoeeyReUWs0NhShzmvfEu3Jre9CSYSMa2VLbUPVVL4rEXvyY1oVK9MFJALg1QvYGeYDvgKhausDkZimC0SzaDNH5KGmGBj6KJ2mMyjWU-78pEHOT2HMXMyFK-uSmRx1d9FMLs_gw-abq6TA8dfen9iSm56snh1_IEy5CVPuX5jKYH-NAze59MIpFgvkQt0yg3ebZnJGzrC0A87H1KdpeBedwcsEm81IiBlaaqkzsFuA2hrqdstw-S0KfhNrV4a4ZAYf19i7G9ef5-L1_5iLPXhUstOwlmi-DzuEWHxDPGzZvY0udwtBdir3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPBF_LZ6SgTfNFzbpE36JCoeh6BPd7BvoU1SPVjbdbuF2zf_dGfSbJf1416btKSZmeSXmcxvAF5rQtFOOt7oWnDpy4xXdWs5BZmavBZoY-SH_PK1PLuQnxfFIjrchnitcrcmhoXa9ZZ85CeCuNooTzJ_t_rJqWoURVdjCY2bcIuoy-hKl1qo2cdC7Odaypgrkwp9MsiwMuDGxAti9-LpwX4UaPv_hTX_vjL5R9w0bEen9-BuxJHs_ST4-3DDdw_g9lRZcvsQfp2P5PBg-yo3bGKKHdee9S374RF083btPaNkLE5_yYIrZztsmA8JVQPzV3Y50v12Rh4FlDDrr7aocWw18cSiTFndOXbZ0QdGhkq8jHmdj-Di9NP5xzMeiy1wW8hsw1vfekQXSvpCu8ypVNkawU-qbeNyhGWUMZtL7cqqtE3ufYvWjGtjWTTOIwyw4jEcdX3nnwITSluHUKZqHIItPNIhhFC4E7o2EKjJBLLdlBsbmcipIMbShIi40GYSk8HuJojJpAm8md9ZTTwc1_b-QJKcexKHdnjQr7-ZaJKmzcu6yvJAsCPxYFe3iL5UURS-KhE1iwSOd3pgomEPZq-GCbyam9EkKc5Sd74fpz5VRWfpBJ5MajOPBPGhxhaVgD5QqIOhHrZ0l98D7Tdid1Egokzg7U739uP6_1w8u_43nsOdnMyBuELTYzhCXfQvEGdtmpfBmH4DKvckyA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5KRfBFvJu2ygq-6WKyl2TzqAdLEfSphb4tyV60cExKzznQ8-ZP78zmUo5WwdfsJGwyM5lvZ3a-BXhrCEV75XlrGslVKAteN9FxKjK1opHoY5SH_PqtPDlTX871-R6IqRcmbdpPlJbpNz3tDvuwUsmlMaJwTbRcHJfp94i6nax6US7mvAoxnhulxv6YXJo7bt2JQYmq_y58-ec2yd9qpSkEHT-ChyN2ZB-H2T6GvdA9gfvDaZLbp_DrdENJDnZ7sg0b2GHxNVkf2c-AQJvHqxAYNWBxqhuzlL7ZrtYspCaqFQvXbrmhPe2MsgioVdZfb9HK2OXADYt6ZE3n2UVHD9gwNNzl2Mv5DM6OP58uTvh4wAJ3WhVrHkMMiCgqFbTxha_yyjUIeHLjWi8QilGXrFDGl3XpWhFCRA_G_2GpWx8w9Dv5HPa7vgsvgcnKOI_wpW49AixcxiFsqDD6-ZhI01QGxfTJrRvZx-kQjKVNVXBp7KAmi-I2qcnmGbyb77kcuDf-Kf2JNDlLEm92utBffbejHdkoyqYuRCLVUbiYayIirkprHeoSkbLM4GiyAzs688pKogmkFl2RwZt5GN2QaitNF_rNIFPXtH7O4MVgNvNMEBMaHKkyMDsGtTPV3ZHu4kei-ka8LjWiyAzeT7Z3O6-_f4uD_xM_hAeC3IP4QvMj2EfbDK8Qa63b18m5bgAx6CKE
  priority: 102
  providerName: Springer Nature
Title Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization
URI https://link.springer.com/article/10.1038/s41467-024-50240-0
https://www.ncbi.nlm.nih.gov/pubmed/38982107
https://www.proquest.com/docview/3077590112
https://www.proquest.com/docview/3077992102
https://pubmed.ncbi.nlm.nih.gov/PMC11535063
https://doaj.org/article/f26a912045194862af6637555e969913
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_OOwRfxG-jZ1nBN13Nxya7eRDplatH4Q7RK_RtSbIbPajJ2TbQvvmnO7NJelSr-NJAdhuW3ZnMb2YyvwF4pQhFG2F4rrKIC5sEPM3KglOSKQ-zCHWM4pDnF8nZVExm8ewA-nZH3QYu97p21E9qupi_Xf_YfECFf9-WjKt3S-HUHa0Nj4myi6MLf4SWSZKinndw372ZoxQdGko0h74IONruqKuj2f-YHVvlKP334dA_P6f8LafqTNX4HtztMCYbtkJxHw5s9QBut10nNw_h52VDwRB20wGHtSyyzcKyumTfLe4FLxfWMirU4pRfZi7Ms1mumHXFVktm18W8oW_fGUUb8PRZvd6gNLLrlkMWz5tllWFXFT2gYSjg867m8xFMx6eXozPeNWLgRSyCFS9taRF5SGFjZQIjfVlkCIx8VeQmRMhG1bShUCZJkyIPrS1R0_G9mcS5sQgRiugxHFZ1ZZ8Ci6QqDMKcNDcIxNDdQ3gh0Uqa0pGrCQ-Cfst10bGUU7OMuXbZ8kjp9pg0TtfumLTvwevtf65bjo5_zj6hk9zOJH5td6NefNWduuoyTLI0CB35jkCnLysRmck4jm2aIKKOPDju5UD3MqsjohOkUt7Qg5fbYVRXysFkla2bdk6akp_twZNWbLYrQeyocER6oHYEamepuyPV1TdHCY64PooRbXrwppe9m3X9fS-e_cc6n8OdkHSCyET9YzhEgbQvEIit8gHckjOJv2r8cQBHw-HkywSvJ6cXnz7j3VEyGrgQx8Bp4S-pNjKR
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEM8lsICR4ATWpo6TOAeEeK267OPUlXozSezASiUpTSO2N34Rv5EZ51GVx972WjtRan8z8_kx3wA8V8SijTQ8U2nApY1GPEmLnNMhUybSAG2M9iGPT6Lxqfw0Dadb8KvPhaFrlb1PdI7aVDntke8FpNVGeZLizfw7p6pRdLral9BoYXFoVz9wyVa_PviA8_tCiP2Pk_dj3lUV4HkoR0te2MJiGI2lDZUZmdiP8xSjvK_yzAjkH5QaKqQyURLlmbC2QNiiE4jCzFiMd3mA770CVzHw-mRR8TQe9nRIbV1J2eXm-IHaq6XzRBgIeUhqYtzfiH-uTMC_uO3fVzT_OKd14W__FtzseCt72wLtNmzZ8g5caytZru7Cz0lDGyxsXVWHtcq0zcKyqmDfLJJ8XiysZZT8xWlUmds6WtVLZl0CV83seT5r6D49ox0MRBSrzleIcDZvdWkRQywtDTsr6QUNQ6OZdXmk9-D0UqbhPmyXVWkfAAtilRukTklmkNzhEhIpS4yR1xROsE16MOqHXOed8jkV4JhpdwIfKN1Ok8bu2k2T9j14OTwzb3U_Luz9jmZy6Ema3e6HavFFdy5AFyJKk5Fwgj4SF5JpgWwvDsPQJhGy9MCD3R4HunMktV7D3oNnQzO6ADrXSUtbNW2fJKG1uwc7LWyGL0E-qrAl9kBtAGrjUzdbyrOvTmYc1wpBiAzWg1c99tbf9f-xeHjx33gK18eT4yN9dHBy-AhuCDIN0in1d2EbcWkfI8dbZk-cYTH4fNmW_Bu8EWHP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJTmBtHnbiHBACyqqlUHFopb2ZJHag0pIsuxvRvfG7-HXMOI_V8uit19iJHHsen8eebwCeKkLRRhieqyziwsYBT7Oy4HTIlIdZhDpGcciPR_H-iXg_kZMt-NXnwtC1yt4mOkNt6oJi5KOIuNooTzIcld21iE9741ez75wqSNFJa19OoxWRQ7v6gdu3xcuDPVzrZ2E4fnf8dp93FQZ4IUWw5KUtLbrURFipTGASPyky9Pi-KnITIhahNNFQKBOncZGH1pYowmgQYpkbi76viPC7l-ByEsmAdCyZJEN8h5jXlRBdno4fqdFCOKuETpFLYhbj_oYvdCUD_oVz_76u-ceZrXOF4xtwvcOw7HUrdDdhy1a34Epb1XJ1G34eNxRsYesKO6xlqW3mltUl-2YR8PNybi2jRDBOs8pcGGm1WDLrkrkWzJ4V04bu1jOKZqB0sfpshdLOZi1HLcoTyyrDTiv6QMNQgaZdTukdOLmQZbgL21Vd2XvAokQVBmFUmhsEeridRPiSoBc2pSNvEx4E_ZTromNBp2IcU-1O4yOl22XS2F27ZdK-B8-Hd2YtB8i5vd_QSg49ib_bPajnX3RnDnQZxlkahI7cR-CmMisR-SVSSpvGiNgjD3Z7OdCdUVnotQp48GRoRnNAZzxZZeum7ZOmtI_3YKcVm2EkiE0VtiQeqA2B2hjqZkt1-tVRjuO-IZKIZj140cveelz_n4v75__GY7iKOqw_HBwdPoBrIWkGUZb6u7CNYmkfItxb5o-cXjH4fNGK_BtW0mYF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+electronic+structure+of+metal-free+dual-site+catalyst+enables+exclusive+singlet+oxygen+production+and+in-situ+utilization&rft.jtitle=Nature+communications&rft.au=Gu%2C+Chao-Hai&rft.au=Wang%2C+Song&rft.au=Zhang%2C+Ai-Yong&rft.au=Liu%2C+Chang&rft.date=2024-07-10&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5771&rft_id=info:doi/10.1038%2Fs41467-024-50240-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon