Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization
Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen ( 1 O 2 ) for water decontamination. Advanced theoretical s...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5771 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (
1
O
2
) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of
1
O
2
from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.
Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Here, authors present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen for sustainable water decontamination. |
---|---|
AbstractList | Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (
1
O
2
) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of
1
O
2
from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification. Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Here, authors present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen for sustainable water decontamination. Abstract Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification. Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen ( 1 O 2 ) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1 O 2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification. Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Here, authors present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen for sustainable water decontamination. Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification. Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen ( O ) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of O from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification. |
ArticleNumber | 5771 |
Author | Wang, Song Yu, Han-Qing Gu, Chao-Hai Jiang, Jun Zhang, Ai-Yong Liu, Chang |
Author_xml | – sequence: 1 givenname: Chao-Hai orcidid: 0000-0002-8109-5464 surname: Gu fullname: Gu, Chao-Hai organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China – sequence: 2 givenname: Song surname: Wang fullname: Wang, Song organization: Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China – sequence: 3 givenname: Ai-Yong orcidid: 0000-0003-3463-3466 surname: Zhang fullname: Zhang, Ai-Yong email: ayzhang@hfut.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology – sequence: 4 givenname: Chang surname: Liu fullname: Liu, Chang organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China – sequence: 5 givenname: Jun orcidid: 0000-0002-6116-5605 surname: Jiang fullname: Jiang, Jun email: jiangj1@ustc.edu.cn organization: Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China – sequence: 6 givenname: Han-Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han-Qing email: hqyu@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38982107$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kj1vFDEQhlcoiISQP0CBLNHQLNhee9euEIr4iBSJJtSWz549fPLZhz-iHBU_Hd9dAkmKuLBH4_d9NJqZl91RiAG67jXB7wkexIfMCBunHlPW83bhHj_rTihmpCcTHY7uxcfdWc4r3M4giWDsRXc8CCkowdNJ9-eqBheWCDyYkmJwBuWSqik1AYozWkPRvp8TALK1RdkVQEa35DYXBEEvPGQEN8bX7K4B5QbzUFC82S4hoE2KtsFcDEgHi1zYASqqxXn3W-_yr7rns_YZzm7f0-7Hl89X59_6y-9fL84_XfaGM1L6GWaYGJkYcGGJnfBkNKEcC7OwVHBCJyEpE3aUo1lQgBlzoq0d-cICpcwMp93FgWujXqlNcmudtipqp_aJmJZKp-KMBzXTUUvS-seJZGKkeh7HYeKcgxylJENjfTywNnWxBmsglKT9A-jDn-B-qmW8VoTwgeNxR3h3S0jxV4Vc1NplA97rALFmNeBpkrKNiDbp20fSVawptF7tVVxiQnaqN_dL-lfL3aSbQBwEJsWcE8zKuLKfQKvQeUWw2u2VOuyVaiul9nulcLPSR9Y7-pOm4WDKTRyWkP6X_YTrL4R_4O0 |
CitedBy_id | crossref_primary_10_1016_j_jece_2025_115325 crossref_primary_10_1016_j_envres_2024_120636 crossref_primary_10_1016_j_apcatb_2025_125070 crossref_primary_10_1016_j_nantod_2025_102663 crossref_primary_10_1016_j_seppur_2025_132593 crossref_primary_10_1016_j_jallcom_2024_176093 crossref_primary_10_1016_j_watres_2024_122960 crossref_primary_10_1038_s41467_024_52471_7 crossref_primary_10_1016_j_seppur_2025_132377 crossref_primary_10_1016_j_jhazmat_2024_136266 crossref_primary_10_1002_anie_202423157 crossref_primary_10_1016_j_seppur_2025_131742 crossref_primary_10_1016_j_surfin_2024_105605 crossref_primary_10_1016_j_jece_2025_115328 crossref_primary_10_1016_j_seppur_2024_130601 crossref_primary_10_1016_j_susmat_2025_e01322 crossref_primary_10_1038_s41467_025_56246_6 crossref_primary_10_1002_smll_202407427 crossref_primary_10_1016_j_cej_2024_156624 crossref_primary_10_1016_j_cej_2024_156524 crossref_primary_10_1016_j_seppur_2024_131079 crossref_primary_10_1016_j_jhazmat_2025_137930 crossref_primary_10_1021_jacs_4c15718 crossref_primary_10_1021_acs_est_4c11311 crossref_primary_10_1016_j_watres_2025_123488 crossref_primary_10_1002_ange_202423157 crossref_primary_10_1002_adma_202417834 crossref_primary_10_1039_D4CS00338A crossref_primary_10_1016_j_jhazmat_2024_136035 crossref_primary_10_1016_j_seppur_2025_132367 crossref_primary_10_1016_j_jhazmat_2025_137482 crossref_primary_10_1002_smll_202408723 crossref_primary_10_1016_j_seppur_2024_130751 crossref_primary_10_1021_acs_inorgchem_4c04369 crossref_primary_10_1360_SSC_2024_0183 crossref_primary_10_1021_acs_est_5c00767 |
Cites_doi | 10.1073/pnas.2221228120 10.1038/s41467-023-40467-8 10.1002/anie.202308044 10.1038/s41467-020-16848-8 10.1038/s41893-020-00635-w 10.1002/ange.201802055 10.1002/anie.202014472 10.1073/pnas.1819382116 10.1002/anie.202310934 10.1002/adma.202300905 10.1002/anie.201903531 10.1002/adma.201907690 10.1038/s41467-023-38677-1 10.1002/adma.202206516 10.1038/s41467-023-39048-6 10.1038/s41467-022-33149-4 10.1002/smll.202101576 10.1016/j.watres.2023.119925 10.1016/j.seppur.2023.124806 10.1016/j.apcatb.2021.120714 10.1016/j.apcatb.2022.121157 10.1021/jacs.8b05992 10.1016/j.apcatb.2023.123029 10.1002/anie.202109488 10.1038/s41467-023-39228-4 10.1021/acs.est.3c04712 10.1002/anie.202109530 10.1038/s41467-019-12362-8 10.1016/j.apcatb.2021.120783 10.1016/j.apcatb.2020.119721 10.1073/pnas.2219923120 10.1021/acscatal.3c03303 10.1073/pnas.2311585120 10.1021/jacs.3c05234 10.1002/anie.202303267 10.1002/ange.202108937 10.1038/s41467-023-39505-2 10.1007/s40820-019-0240-x 10.1039/D1TA07749J 10.1038/nenergy.2017.36 10.1073/pnas.2305705120 10.1016/j.apcatb.2021.120759 10.1016/j.cej.2021.131655 10.1016/j.chempr.2023.02.011 10.1021/acs.est.1c04600 10.1021/acscatal.0c05089 10.1021/acs.est.3c01553 10.1039/D2EE01337A |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-50240-0 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_f26a912045194862af6637555e969913 PMC11535063 38982107 10_1038_s41467_024_50240_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52192684, 51821006, 52027815, 22025304, 22076036, 22203082 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52192684, 51821006, 52027815, 22025304, 22076036, 22203082 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-fefe74174e58d1d707ca12508cbd28512789248d696cb2eef051add65bde224c3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:21:13 EDT 2025 Thu Aug 21 18:43:50 EDT 2025 Fri Jul 11 09:20:07 EDT 2025 Wed Aug 13 04:10:18 EDT 2025 Mon Jul 21 06:05:19 EDT 2025 Tue Jul 01 02:11:16 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Fri Feb 21 02:36:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-fefe74174e58d1d707ca12508cbd28512789248d696cb2eef051add65bde224c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5247-6244 0000-0002-6116-5605 0000-0002-8109-5464 0000-0003-3463-3466 |
OpenAccessLink | https://www.nature.com/articles/s41467-024-50240-0 |
PMID | 38982107 |
PQID | 3077590112 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f26a912045194862af6637555e969913 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11535063 proquest_miscellaneous_3077992102 proquest_journals_3077590112 pubmed_primary_38982107 crossref_citationtrail_10_1038_s41467_024_50240_0 crossref_primary_10_1038_s41467_024_50240_0 springer_journals_10_1038_s41467_024_50240_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-10 |
PublicationDateYYYYMMDD | 2024-07-10 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Shang (CR40) 2020; 11 Zhou (CR26) 2023; 14 Weng (CR1) 2023; 62 Zheng (CR2) 2022; 307 Li (CR11) 2018; 140 Mu (CR29) 2022; 15 Zong (CR10) 2023; 57 Chang (CR33) 2021; 284 Du (CR17) 2023; 14 Xu (CR28) 2023; 62 Zhao (CR7) 2022; 300 Xu (CR48) 2021; 4 Xie (CR32) 2018; 130 Liu (CR35) 2020; 32 Gao (CR5) 2021; 60 Chen, Zhang, Liu, Qu (CR9) 2019; 58 Zhang (CR23) 2023; 14 Li (CR41) 2023; 35 Zhong (CR36) 2021; 17 Li (CR21) 2021; 11 Liu (CR25) 2022; 427 Li (CR20) 2023; 62 Duan (CR47) 2021; 299 Hu, Zhang (CR34) 2021; 9 Gu (CR22) 2023; 120 Liu (CR14) 2023; 14 Su (CR37) 2021; 133 Yin (CR43) 2023; 338 Wang, Xiao, Zhao (CR4) 2023; 235 Mi (CR6) 2021; 60 Zuo (CR15) 2022; 301 Wu (CR44) 2021; 55 Wu, Yang, Wang, Wang (CR46) 2023; 120 Wang (CR24) 2023; 326 Pan (CR38) 2019; 10 Zhang (CR30) 2021; 60 Ding (CR27) 2023; 9 Gong (CR31) 2019; 11 Mahne (CR42) 2017; 2 Jin (CR8) 2022; 34 Yang, Qian, Yu, Pan (CR13) 2019; 116 Li (CR16) 2023; 120 Yang (CR19) 2023; 13 Xie (CR3) 2022; 13 Yu (CR12) 2023; 120 Huang (CR45) 2023; 57 Dai (CR18) 2023; 14 Li (CR39) 2023; 145 Y Gao (50240_CR5) 2021; 60 K Yin (50240_CR43) 2023; 338 M Li (50240_CR16) 2023; 120 X Mi (50240_CR6) 2021; 60 L Wang (50240_CR4) 2023; 235 M Wang (50240_CR24) 2023; 326 J Xu (50240_CR28) 2023; 62 Z Li (50240_CR41) 2023; 35 S Jin (50240_CR8) 2022; 34 Y Zhou (50240_CR26) 2023; 14 S Liu (50240_CR25) 2022; 427 L Xie (50240_CR3) 2022; 13 J Du (50240_CR17) 2023; 14 Y Pan (50240_CR38) 2019; 10 Z Yang (50240_CR13) 2019; 116 X Li (50240_CR20) 2023; 62 S Zuo (50240_CR15) 2022; 301 D Zhang (50240_CR23) 2023; 14 Y Liu (50240_CR35) 2020; 32 N Zheng (50240_CR2) 2022; 307 X Li (50240_CR21) 2021; 11 C Gu (50240_CR22) 2023; 120 P Duan (50240_CR47) 2021; 299 X Zhao (50240_CR7) 2022; 300 H Shang (50240_CR40) 2020; 11 N Mahne (50240_CR42) 2017; 2 Z Weng (50240_CR1) 2023; 62 Y Chang (50240_CR33) 2021; 284 LS Zhang (50240_CR30) 2021; 60 Y Zong (50240_CR10) 2023; 57 L Su (50240_CR37) 2021; 133 Y Chen (50240_CR9) 2019; 58 X Li (50240_CR11) 2018; 140 X Mu (50240_CR29) 2022; 15 J Xu (50240_CR48) 2021; 4 J Xie (50240_CR32) 2018; 130 P Yang (50240_CR19) 2023; 13 J Ding (50240_CR27) 2023; 9 L Wu (50240_CR44) 2021; 55 Q Wu (50240_CR46) 2023; 120 B Huang (50240_CR45) 2023; 57 X Yu (50240_CR12) 2023; 120 T Gong (50240_CR31) 2019; 11 J Hu (50240_CR34) 2021; 9 T Liu (50240_CR14) 2023; 14 YL Zhong (50240_CR36) 2021; 17 Q Li (50240_CR39) 2023; 145 Y Dai (50240_CR18) 2023; 14 |
References_xml | – volume: 120 start-page: e2221228120 year: 2023 ident: CR12 article-title: A green edge-hosted zinc single-site heterogeneous catalyst for superior Fenton-like activity publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.2221228120 – volume: 14 year: 2023 ident: CR17 article-title: CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid publication-title: Nat. Commun. doi: 10.1038/s41467-023-40467-8 – volume: 62 start-page: e202308044 year: 2023 ident: CR28 article-title: Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202308044 – volume: 11 year: 2020 ident: CR40 article-title: Engineering unsymmetrically coordinated Cu-S N single atom sites with enhanced oxygen reduction activity publication-title: Nat. Commun. doi: 10.1038/s41467-020-16848-8 – volume: 4 start-page: 233 year: 2021 end-page: 241 ident: CR48 article-title: Organic wastewater treatment by a single-atom catalyst and electrolytically produced H O publication-title: Nat. Sustain. doi: 10.1038/s41893-020-00635-w – volume: 130 start-page: 9788 year: 2018 end-page: 9792 ident: CR32 article-title: Metal‐free fluorine‐doped carbon electrocatalyst for CO reduction outcompeting hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201802055 – volume: 60 start-page: 4588 year: 2021 end-page: 4593 ident: CR6 article-title: Almost 100% peroxymonosulfate conversion to singlet oxygen on single‐atom CoN sites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014472 – volume: 116 start-page: 6659 year: 2019 end-page: 6664 ident: CR13 article-title: Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1819382116 – volume: 62 start-page: e202310934 year: 2023 ident: CR1 article-title: Site engineering of covalent organic frameworks for regulating peroxymonosulfate activation to generate singlet oxygen with 100% selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202310934 – volume: 35 start-page: 2300905 year: 2023 ident: CR41 article-title: Geometric and electronic engineering of atomically dispersed copper‐cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries publication-title: Adv. Mater. doi: 10.1002/adma.202300905 – volume: 58 start-page: 8134 year: 2019 end-page: 8138 ident: CR9 article-title: Confining free radicals in close vicinity to contaminants enables ultrafast Fenton‐like processes in the interspacing of MoS membranes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903531 – volume: 32 start-page: 1907690 year: 2020 ident: CR35 article-title: A highly efficient metal‐free electrocatalyst of F‐doped porous carbon toward N electroreduction publication-title: Adv. Mater. doi: 10.1002/adma.201907690 – volume: 14 year: 2023 ident: CR14 article-title: Water decontamination via nonradical process by nanoconfined Fenton-like catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-023-38677-1 – volume: 34 start-page: 2206516 year: 2022 ident: CR8 article-title: Spatial band separation in a surface doped heterolayered structure for realizing efficient singlet oxygen generation publication-title: Adv. Mater. doi: 10.1002/adma.202206516 – volume: 14 year: 2023 ident: CR18 article-title: Manipulating local coordination of copper single atom catalyst enables efficient CO -to-CH conversion publication-title: Nat. Commun. doi: 10.1038/s41467-023-39048-6 – volume: 13 year: 2022 ident: CR3 article-title: Pauling-type adsorption of O induced electrocatalytic singlet oxygen production on N-CuO for organic pollutants degradation publication-title: Nat. Commun. doi: 10.1038/s41467-022-33149-4 – volume: 17 year: 2021 ident: CR36 article-title: Nitrogen and fluorine dual doping of soft carbon nanofibers as advanced anode for potassium ion batteries publication-title: Small doi: 10.1002/smll.202101576 – volume: 235 start-page: 119925 year: 2023 ident: CR4 article-title: The debatable role of singlet oxygen in persulfate-based advanced oxidation processes publication-title: Water Res. doi: 10.1016/j.watres.2023.119925 – volume: 326 start-page: 124806 year: 2023 ident: CR24 article-title: Highly efficient and selective organic pollutants degradation via peroxymonosulfate activation over micron-sized Co-MOF: nearly 100% singlet oxygen mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.124806 – volume: 299 year: 2021 ident: CR47 article-title: Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120714 – volume: 307 year: 2022 ident: CR2 article-title: In-situ production of singlet oxygen by dioxygen activation on iron phosphide for advanced oxidation processes publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121157 – volume: 140 start-page: 12469 year: 2018 end-page: 12475 ident: CR11 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05992 – volume: 338 year: 2023 ident: CR43 article-title: Redox potentials of pollutants determining the dominate oxidation pathways in manganese single-atom catalyst (Mn-SAC)/peroxymonosulfate system: selective catalytic mechanisms for versatile pollutants publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2023.123029 – volume: 60 start-page: 21751 year: 2021 end-page: 21755 ident: CR30 article-title: Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate O with 100% selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109488 – volume: 14 year: 2023 ident: CR23 article-title: Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment publication-title: Nat. Commun. doi: 10.1038/s41467-023-39228-4 – volume: 57 start-page: 14071 year: 2023 end-page: 14081 ident: CR45 article-title: Modulating electronic structure engineering of atomically dispersed cobalt catalyst in Fenton-like reaction for efficient degradation of organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c04712 – volume: 60 start-page: 22513 year: 2021 end-page: 22521 ident: CR5 article-title: Activity trends and mechanisms in peroxymonosulfate‐assisted catalytic production of singlet oxygen over atomic metal‐N‐C catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109530 – volume: 10 year: 2019 ident: CR38 article-title: Regulating the coordination structure of single-atom Fe-N C catalytic sites for benzene oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-12362-8 – volume: 301 year: 2022 ident: CR15 article-title: Boosting Fenton-like reaction efficiency by co-construction of the adsorption and reactive sites on N/O co-doped carbon publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120783 – volume: 284 year: 2021 ident: CR33 article-title: The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119721 – volume: 120 start-page: e2219923120 year: 2023 ident: CR46 article-title: Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt-oxo species formation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2219923120 – volume: 13 start-page: 12414 year: 2023 end-page: 12424 ident: CR19 article-title: Regulating the local electronic structure of copper single atoms with unsaturated B,O-coordination for selective O generation publication-title: ACS Catal. doi: 10.1021/acscatal.3c03303 – volume: 120 start-page: e2311585120 year: 2023 ident: CR22 article-title: Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2311585120 – volume: 145 start-page: 20837 year: 2023 end-page: 20848 ident: CR39 article-title: Shear stress triggers ultrathin-nanosheet carbon nitride assembly for photocatalytic H O production coupled with selective alcohol oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c05234 – volume: 62 start-page: e202303267 year: 2023 ident: CR20 article-title: CoN O single-atom catalyst for efficient peroxymonosulfate activation and selective cobalt(IV)=O generation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202303267 – volume: 133 start-page: 21431 year: 2021 end-page: 21436 ident: CR37 article-title: Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo‐Fenton process publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202108937 – volume: 14 year: 2023 ident: CR26 article-title: Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO electroreduction publication-title: Nat. Commun. doi: 10.1038/s41467-023-39505-2 – volume: 11 start-page: 1 year: 2019 end-page: 11 ident: CR31 article-title: F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0240-x – volume: 9 start-page: 27560 year: 2021 end-page: 27567 ident: CR34 article-title: Achieving F-doped porous hollow carbon nanospheres with ultrahigh pore volume via a gas-solid interface reaction publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07749J – volume: 2 year: 2017 ident: CR42 article-title: Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2017.36 – volume: 120 start-page: e2305705120 year: 2023 ident: CR16 article-title: Single cobalt atoms anchored on Ti C T with dual reaction sites for efficient adsorption-degradation of antibiotic resistance genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2305705120 – volume: 300 year: 2022 ident: CR7 article-title: Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120759 – volume: 427 start-page: 131655 year: 2022 ident: CR25 article-title: Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131655 – volume: 9 start-page: 1017 year: 2023 end-page: 1035 ident: CR27 article-title: Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH to CH OH publication-title: Chem doi: 10.1016/j.chempr.2023.02.011 – volume: 55 start-page: 15400 year: 2021 end-page: 15411 ident: CR44 article-title: Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O ) in the Fe-Co LDH/peroxymonosulfate system publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04600 – volume: 11 start-page: 4848 year: 2021 end-page: 4861 ident: CR21 article-title: Fine-tuning radical/nonradical pathways on graphene by porous engineering and doping strategies publication-title: ACS Catal. doi: 10.1021/acscatal.0c05089 – volume: 57 start-page: 9394 year: 2023 end-page: 9404 ident: CR10 article-title: Do we appropriately detect and understand singlet oxygen possibly generated in advanced oxidation processes by electron paramagnetic resonance spectroscopy? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c01553 – volume: 15 start-page: 4048 year: 2022 end-page: 4057 ident: CR29 article-title: Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting publication-title: Energy Environ. Sci. doi: 10.1039/D2EE01337A – volume: 11 start-page: 1 year: 2019 ident: 50240_CR31 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0240-x – volume: 35 start-page: 2300905 year: 2023 ident: 50240_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.202300905 – volume: 299 year: 2021 ident: 50240_CR47 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120714 – volume: 14 year: 2023 ident: 50240_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38677-1 – volume: 62 start-page: e202308044 year: 2023 ident: 50240_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202308044 – volume: 13 year: 2022 ident: 50240_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33149-4 – volume: 62 start-page: e202303267 year: 2023 ident: 50240_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202303267 – volume: 13 start-page: 12414 year: 2023 ident: 50240_CR19 publication-title: ACS Catal. doi: 10.1021/acscatal.3c03303 – volume: 145 start-page: 20837 year: 2023 ident: 50240_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c05234 – volume: 34 start-page: 2206516 year: 2022 ident: 50240_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.202206516 – volume: 133 start-page: 21431 year: 2021 ident: 50240_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202108937 – volume: 11 start-page: 4848 year: 2021 ident: 50240_CR21 publication-title: ACS Catal. doi: 10.1021/acscatal.0c05089 – volume: 307 year: 2022 ident: 50240_CR2 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121157 – volume: 235 start-page: 119925 year: 2023 ident: 50240_CR4 publication-title: Water Res. doi: 10.1016/j.watres.2023.119925 – volume: 9 start-page: 27560 year: 2021 ident: 50240_CR34 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07749J – volume: 300 year: 2022 ident: 50240_CR7 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120759 – volume: 284 year: 2021 ident: 50240_CR33 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119721 – volume: 120 start-page: e2311585120 year: 2023 ident: 50240_CR22 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2311585120 – volume: 301 year: 2022 ident: 50240_CR15 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120783 – volume: 10 year: 2019 ident: 50240_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12362-8 – volume: 14 year: 2023 ident: 50240_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39048-6 – volume: 17 year: 2021 ident: 50240_CR36 publication-title: Small doi: 10.1002/smll.202101576 – volume: 60 start-page: 4588 year: 2021 ident: 50240_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014472 – volume: 427 start-page: 131655 year: 2022 ident: 50240_CR25 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131655 – volume: 57 start-page: 14071 year: 2023 ident: 50240_CR45 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c04712 – volume: 57 start-page: 9394 year: 2023 ident: 50240_CR10 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c01553 – volume: 14 year: 2023 ident: 50240_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39505-2 – volume: 9 start-page: 1017 year: 2023 ident: 50240_CR27 publication-title: Chem doi: 10.1016/j.chempr.2023.02.011 – volume: 130 start-page: 9788 year: 2018 ident: 50240_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201802055 – volume: 120 start-page: e2219923120 year: 2023 ident: 50240_CR46 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2219923120 – volume: 55 start-page: 15400 year: 2021 ident: 50240_CR44 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04600 – volume: 14 year: 2023 ident: 50240_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39228-4 – volume: 60 start-page: 22513 year: 2021 ident: 50240_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109530 – volume: 140 start-page: 12469 year: 2018 ident: 50240_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05992 – volume: 32 start-page: 1907690 year: 2020 ident: 50240_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201907690 – volume: 2 year: 2017 ident: 50240_CR42 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.36 – volume: 116 start-page: 6659 year: 2019 ident: 50240_CR13 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1819382116 – volume: 14 year: 2023 ident: 50240_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-023-40467-8 – volume: 58 start-page: 8134 year: 2019 ident: 50240_CR9 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903531 – volume: 326 start-page: 124806 year: 2023 ident: 50240_CR24 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.124806 – volume: 15 start-page: 4048 year: 2022 ident: 50240_CR29 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE01337A – volume: 4 start-page: 233 year: 2021 ident: 50240_CR48 publication-title: Nat. Sustain. doi: 10.1038/s41893-020-00635-w – volume: 62 start-page: e202310934 year: 2023 ident: 50240_CR1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202310934 – volume: 120 start-page: e2305705120 year: 2023 ident: 50240_CR16 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2305705120 – volume: 60 start-page: 21751 year: 2021 ident: 50240_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109488 – volume: 338 year: 2023 ident: 50240_CR43 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2023.123029 – volume: 120 start-page: e2221228120 year: 2023 ident: 50240_CR12 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.2221228120 – volume: 11 year: 2020 ident: 50240_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16848-8 |
SSID | ssj0000391844 |
Score | 2.6428294 |
Snippet | Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and... Abstract Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5771 |
SubjectTerms | 140/131 140/146 147/135 147/137 147/143 147/28 639/301/299/1013 639/638/169/896 639/638/77/887 Adaptability Carbon Catalysts Chemical synthesis Contaminants Decomposition reactions Decontamination Electron distribution Electronic structure Fluorine Humanities and Social Sciences Mass transfer Metals Montmorillonite multidisciplinary Nitrogen Oxidants Oxidizing agents Oxygen Oxygen enrichment Oxygen production Phenols Pyrolysis Reactive oxygen species Science Science (multidisciplinary) Selectivity Singlet oxygen Sustainable development Utilization Water purification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoNBLafrpJi0q9NaK2JZky8c0JIRCe0ogN2FLYxrYekN2Ddlbf3pmJO8m289Lryt5EZo3mieN5gngvWUWHXSQnW2V1FgVsml7LznJ1JWtIh_jc8gvX6vTc_35wlzce-qL74QleeA0cQd9WbVNUUYZFE30u-0pRtbGGGwq4jZR55Ni3r3NVFyDVUNbFz1VyeTKHix0XBMoJEnDul4y34pEUbD_dyzz18uSP2VMYyA6eQKPJwYpDtPId-EBDk_hYXpTcvUMfpyNfNQh7t63EUkjdrxGMe_FdyS6LftrRMFlWJKzxyIe4qwWS4GxlGoh8MbPRr7ZLvgsgWwr5jcrwpq4SgqxZE3RDkFcDvwHoyD4zqaKzudwfnJ8dnQqp2cWpDe6WMoeeyReUWs0NhShzmvfEu3Jre9CSYSMa2VLbUPVVL4rEXvyY1oVK9MFJALg1QvYGeYDvgKhausDkZimC0SzaDNH5KGmGBj6KJ2mMyjWU-78pEHOT2HMXMyFK-uSmRx1d9FMLs_gw-abq6TA8dfen9iSm56snh1_IEy5CVPuX5jKYH-NAze59MIpFgvkQt0yg3ebZnJGzrC0A87H1KdpeBedwcsEm81IiBlaaqkzsFuA2hrqdstw-S0KfhNrV4a4ZAYf19i7G9ef5-L1_5iLPXhUstOwlmi-DzuEWHxDPGzZvY0udwtBdir3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPBF_LZ6SgTfNFzbpE36JCoeh6BPd7BvoU1SPVjbdbuF2zf_dGfSbJf1416btKSZmeSXmcxvAF5rQtFOOt7oWnDpy4xXdWs5BZmavBZoY-SH_PK1PLuQnxfFIjrchnitcrcmhoXa9ZZ85CeCuNooTzJ_t_rJqWoURVdjCY2bcIuoy-hKl1qo2cdC7Odaypgrkwp9MsiwMuDGxAti9-LpwX4UaPv_hTX_vjL5R9w0bEen9-BuxJHs_ST4-3DDdw_g9lRZcvsQfp2P5PBg-yo3bGKKHdee9S374RF083btPaNkLE5_yYIrZztsmA8JVQPzV3Y50v12Rh4FlDDrr7aocWw18cSiTFndOXbZ0QdGhkq8jHmdj-Di9NP5xzMeiy1wW8hsw1vfekQXSvpCu8ypVNkawU-qbeNyhGWUMZtL7cqqtE3ufYvWjGtjWTTOIwyw4jEcdX3nnwITSluHUKZqHIItPNIhhFC4E7o2EKjJBLLdlBsbmcipIMbShIi40GYSk8HuJojJpAm8md9ZTTwc1_b-QJKcexKHdnjQr7-ZaJKmzcu6yvJAsCPxYFe3iL5UURS-KhE1iwSOd3pgomEPZq-GCbyam9EkKc5Sd74fpz5VRWfpBJ5MajOPBPGhxhaVgD5QqIOhHrZ0l98D7Tdid1Egokzg7U739uP6_1w8u_43nsOdnMyBuELTYzhCXfQvEGdtmpfBmH4DKvckyA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5KRfBFvJu2ygq-6WKyl2TzqAdLEfSphb4tyV60cExKzznQ8-ZP78zmUo5WwdfsJGwyM5lvZ3a-BXhrCEV75XlrGslVKAteN9FxKjK1opHoY5SH_PqtPDlTX871-R6IqRcmbdpPlJbpNz3tDvuwUsmlMaJwTbRcHJfp94i6nax6US7mvAoxnhulxv6YXJo7bt2JQYmq_y58-ec2yd9qpSkEHT-ChyN2ZB-H2T6GvdA9gfvDaZLbp_DrdENJDnZ7sg0b2GHxNVkf2c-AQJvHqxAYNWBxqhuzlL7ZrtYspCaqFQvXbrmhPe2MsgioVdZfb9HK2OXADYt6ZE3n2UVHD9gwNNzl2Mv5DM6OP58uTvh4wAJ3WhVrHkMMiCgqFbTxha_yyjUIeHLjWi8QilGXrFDGl3XpWhFCRA_G_2GpWx8w9Dv5HPa7vgsvgcnKOI_wpW49AixcxiFsqDD6-ZhI01QGxfTJrRvZx-kQjKVNVXBp7KAmi-I2qcnmGbyb77kcuDf-Kf2JNDlLEm92utBffbejHdkoyqYuRCLVUbiYayIirkprHeoSkbLM4GiyAzs688pKogmkFl2RwZt5GN2QaitNF_rNIFPXtH7O4MVgNvNMEBMaHKkyMDsGtTPV3ZHu4kei-ka8LjWiyAzeT7Z3O6-_f4uD_xM_hAeC3IP4QvMj2EfbDK8Qa63b18m5bgAx6CKE priority: 102 providerName: Springer Nature |
Title | Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization |
URI | https://link.springer.com/article/10.1038/s41467-024-50240-0 https://www.ncbi.nlm.nih.gov/pubmed/38982107 https://www.proquest.com/docview/3077590112 https://www.proquest.com/docview/3077992102 https://pubmed.ncbi.nlm.nih.gov/PMC11535063 https://doaj.org/article/f26a912045194862af6637555e969913 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_OOwRfxG-jZ1nBN13Nxya7eRDplatH4Q7RK_RtSbIbPajJ2TbQvvmnO7NJelSr-NJAdhuW3ZnMb2YyvwF4pQhFG2F4rrKIC5sEPM3KglOSKQ-zCHWM4pDnF8nZVExm8ewA-nZH3QYu97p21E9qupi_Xf_YfECFf9-WjKt3S-HUHa0Nj4myi6MLf4SWSZKinndw372ZoxQdGko0h74IONruqKuj2f-YHVvlKP334dA_P6f8LafqTNX4HtztMCYbtkJxHw5s9QBut10nNw_h52VDwRB20wGHtSyyzcKyumTfLe4FLxfWMirU4pRfZi7Ms1mumHXFVktm18W8oW_fGUUb8PRZvd6gNLLrlkMWz5tllWFXFT2gYSjg867m8xFMx6eXozPeNWLgRSyCFS9taRF5SGFjZQIjfVlkCIx8VeQmRMhG1bShUCZJkyIPrS1R0_G9mcS5sQgRiugxHFZ1ZZ8Ci6QqDMKcNDcIxNDdQ3gh0Uqa0pGrCQ-Cfst10bGUU7OMuXbZ8kjp9pg0TtfumLTvwevtf65bjo5_zj6hk9zOJH5td6NefNWduuoyTLI0CB35jkCnLysRmck4jm2aIKKOPDju5UD3MqsjohOkUt7Qg5fbYVRXysFkla2bdk6akp_twZNWbLYrQeyocER6oHYEamepuyPV1TdHCY64PooRbXrwppe9m3X9fS-e_cc6n8OdkHSCyET9YzhEgbQvEIit8gHckjOJv2r8cQBHw-HkywSvJ6cXnz7j3VEyGrgQx8Bp4S-pNjKR |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEM8lsICR4ATWpo6TOAeEeK267OPUlXozSezASiUpTSO2N34Rv5EZ51GVx972WjtRan8z8_kx3wA8V8SijTQ8U2nApY1GPEmLnNMhUybSAG2M9iGPT6Lxqfw0Dadb8KvPhaFrlb1PdI7aVDntke8FpNVGeZLizfw7p6pRdLral9BoYXFoVz9wyVa_PviA8_tCiP2Pk_dj3lUV4HkoR0te2MJiGI2lDZUZmdiP8xSjvK_yzAjkH5QaKqQyURLlmbC2QNiiE4jCzFiMd3mA770CVzHw-mRR8TQe9nRIbV1J2eXm-IHaq6XzRBgIeUhqYtzfiH-uTMC_uO3fVzT_OKd14W__FtzseCt72wLtNmzZ8g5caytZru7Cz0lDGyxsXVWHtcq0zcKyqmDfLJJ8XiysZZT8xWlUmds6WtVLZl0CV83seT5r6D49ox0MRBSrzleIcDZvdWkRQywtDTsr6QUNQ6OZdXmk9-D0UqbhPmyXVWkfAAtilRukTklmkNzhEhIpS4yR1xROsE16MOqHXOed8jkV4JhpdwIfKN1Ok8bu2k2T9j14OTwzb3U_Luz9jmZy6Ema3e6HavFFdy5AFyJKk5Fwgj4SF5JpgWwvDsPQJhGy9MCD3R4HunMktV7D3oNnQzO6ADrXSUtbNW2fJKG1uwc7LWyGL0E-qrAl9kBtAGrjUzdbyrOvTmYc1wpBiAzWg1c99tbf9f-xeHjx33gK18eT4yN9dHBy-AhuCDIN0in1d2EbcWkfI8dbZk-cYTH4fNmW_Bu8EWHP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJTmBtHnbiHBACyqqlUHFopb2ZJHag0pIsuxvRvfG7-HXMOI_V8uit19iJHHsen8eebwCeKkLRRhieqyziwsYBT7Oy4HTIlIdZhDpGcciPR_H-iXg_kZMt-NXnwtC1yt4mOkNt6oJi5KOIuNooTzIcld21iE9741ez75wqSNFJa19OoxWRQ7v6gdu3xcuDPVzrZ2E4fnf8dp93FQZ4IUWw5KUtLbrURFipTGASPyky9Pi-KnITIhahNNFQKBOncZGH1pYowmgQYpkbi76viPC7l-ByEsmAdCyZJEN8h5jXlRBdno4fqdFCOKuETpFLYhbj_oYvdCUD_oVz_76u-ceZrXOF4xtwvcOw7HUrdDdhy1a34Epb1XJ1G34eNxRsYesKO6xlqW3mltUl-2YR8PNybi2jRDBOs8pcGGm1WDLrkrkWzJ4V04bu1jOKZqB0sfpshdLOZi1HLcoTyyrDTiv6QMNQgaZdTukdOLmQZbgL21Vd2XvAokQVBmFUmhsEeridRPiSoBc2pSNvEx4E_ZTromNBp2IcU-1O4yOl22XS2F27ZdK-B8-Hd2YtB8i5vd_QSg49ib_bPajnX3RnDnQZxlkahI7cR-CmMisR-SVSSpvGiNgjD3Z7OdCdUVnotQp48GRoRnNAZzxZZeum7ZOmtI_3YKcVm2EkiE0VtiQeqA2B2hjqZkt1-tVRjuO-IZKIZj140cveelz_n4v75__GY7iKOqw_HBwdPoBrIWkGUZb6u7CNYmkfItxb5o-cXjH4fNGK_BtW0mYF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+electronic+structure+of+metal-free+dual-site+catalyst+enables+exclusive+singlet+oxygen+production+and+in-situ+utilization&rft.jtitle=Nature+communications&rft.au=Gu%2C+Chao-Hai&rft.au=Wang%2C+Song&rft.au=Zhang%2C+Ai-Yong&rft.au=Liu%2C+Chang&rft.date=2024-07-10&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5771&rft_id=info:doi/10.1038%2Fs41467-024-50240-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |