Nonlinear amplification of microwave signals in spin-torque oscillators

Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring com...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 2183 - 9
Main Authors Zhu, Keqiang, Carpentieri, Mario, Zhang, Like, Fang, Bin, Cai, Jialin, Verba, Roman, Giordano, Anna, Puliafito, Vito, Zhang, Baoshun, Finocchio, Giovanni, Zeng, Zhongming
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.04.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (| S 11  | > 2) for input power on the order of nW (<−40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems. Microwave devices are instrumental in wireless communications. Recently, spintronic-based microwave devices have seen significant interest, with the potential for smaller size, and lower power consumption. Here, Zhu et al demonstrate a spintronic amplifier with record gain, which uses material stacks already employed in industrially fabricated magnetic memories.
AbstractList Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (|S11 | > 2) for input power on the order of nW (<−40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.Microwave devices are instrumental in wireless communications. Recently, spintronic-based microwave devices have seen significant interest, with the potential for smaller size, and lower power consumption. Here, Zhu et al demonstrate a spintronic amplifier with record gain, which uses material stacks already employed in industrially fabricated magnetic memories.
Abstract Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (|S 11 | > 2) for input power on the order of nW (<−40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.
Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (| S 11  | > 2) for input power on the order of nW (<−40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.
Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (| S 11  | > 2) for input power on the order of nW (<−40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems. Microwave devices are instrumental in wireless communications. Recently, spintronic-based microwave devices have seen significant interest, with the potential for smaller size, and lower power consumption. Here, Zhu et al demonstrate a spintronic amplifier with record gain, which uses material stacks already employed in industrially fabricated magnetic memories.
Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (|S11 | > 2) for input power on the order of nW (<-40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (|S11 | > 2) for input power on the order of nW (<-40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.
Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (|S  | > 2) for input power on the order of nW (<-40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.
ArticleNumber 2183
Author Carpentieri, Mario
Zeng, Zhongming
Zhu, Keqiang
Finocchio, Giovanni
Verba, Roman
Puliafito, Vito
Cai, Jialin
Fang, Bin
Zhang, Like
Giordano, Anna
Zhang, Baoshun
Author_xml – sequence: 1
  givenname: Keqiang
  surname: Zhu
  fullname: Zhu, Keqiang
  organization: Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 2
  givenname: Mario
  orcidid: 0000-0001-5165-5873
  surname: Carpentieri
  fullname: Carpentieri, Mario
  organization: Department of Electrical and Information Engineering, Politecnico di Bari
– sequence: 3
  givenname: Like
  surname: Zhang
  fullname: Zhang, Like
  organization: Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, School of Electronics and Information Engineering, Wuxi University
– sequence: 4
  givenname: Bin
  surname: Fang
  fullname: Fang, Bin
  email: bfang2013@sinano.ac.cn
  organization: Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 5
  givenname: Jialin
  orcidid: 0000-0001-9462-5586
  surname: Cai
  fullname: Cai, Jialin
  organization: Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 6
  givenname: Roman
  surname: Verba
  fullname: Verba, Roman
  organization: Institute of Magnetism
– sequence: 7
  givenname: Anna
  surname: Giordano
  fullname: Giordano, Anna
  organization: Department of Engineering, University of Messina
– sequence: 8
  givenname: Vito
  orcidid: 0000-0003-4438-538X
  surname: Puliafito
  fullname: Puliafito, Vito
  organization: Department of Electrical and Information Engineering, Politecnico di Bari
– sequence: 9
  givenname: Baoshun
  surname: Zhang
  fullname: Zhang, Baoshun
  organization: Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 10
  givenname: Giovanni
  orcidid: 0000-0002-1043-3876
  surname: Finocchio
  fullname: Finocchio, Giovanni
  email: gfinocchio@unime.it
  organization: Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina
– sequence: 11
  givenname: Zhongming
  orcidid: 0000-0001-7240-2058
  surname: Zeng
  fullname: Zeng, Zhongming
  email: zmzeng2012@sinano.ac.cn
  organization: Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Division of Nano-Devices and Technologies & Nanchang Key Laboratory of Advanced Packaging, Jiangxi Institute of Nanotechnology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37069148$$D View this record in MEDLINE/PubMed
BookMark eNp9UktPFTEYbQhGEPkDLswkbtyM9jXTdmUMUSAhutF102m_Xnoz017buRD-PeUOyGNBm6avc05Ovu-8Q_sxRUDoA8FfCGbya-GE96LFlLVMKNK3ag8dUsxJSwRl-0_OB-i4lDWugykiOX-LDpjAvSJcHqLTXymOIYLJjZk2Y_DBmjmk2CTfTMHmdG2uoClhFc1YmhCbsgmxnVP-t4UmFRvG0dRbeY_e-IqA4_v9CP39-ePPyVl78fv0_OT7RWs7TubWgzKk77u6LOuAUuGtdRL6zlBn6uTegWcDJZySwUvsYXCEUcmcp8J5doTOF12XzFpvcphMvtHJBL17SHmlTZ6DHUHTvndOCuyloxwwHhQFJjx4yhX1zFWtb4vWZjtM4CzEOZvxmejznxgu9SpdaYIJwR3vq8Lne4WcakHKrKdQLNSaREjboqnEVMpOdaxCP72ArtM231V1hyJKdlhU1Menlv57eWhYBcgFUFtTSgavbZh3HasOw1it6bt46CUeusZD7-KhVaXSF9QH9VdJbCGVCo4ryI-2X2HdAlLlzcc
CitedBy_id crossref_primary_10_1063_5_0191447
crossref_primary_10_1103_PhysRevApplied_21_034063
crossref_primary_10_1088_2752_5724_ace3af
crossref_primary_10_1021_acs_nanolett_3c02036
crossref_primary_10_1038_s41567_024_02728_1
crossref_primary_10_1063_5_0195602
Cites_doi 10.1364/OL.40.004198
10.1039/c2nr33407k
10.1038/nmat1905
10.1103/PhysRevApplied.13.044050
10.1038/nmat2804
10.1063/1.4942398
10.1038/srep30747
10.1038/ncomms11259
10.1038/srep18134
10.1038/s41565-018-0306-9
10.1063/5.0048947
10.1038/s41586-018-0632-y
10.1038/s41598-019-49699-5
10.1063/1.3133356
10.1143/APEX.2.063004
10.1103/PhysRevLett.95.067203
10.1103/PhysRevB.77.054440
10.1038/nmat3778
10.1103/PhysRevB.86.014438
10.1063/1.5019729
10.1103/PhysRevB.82.020407
10.1038/s41565-019-0593-9
10.1140/epjb/e2009-00091-9
10.1016/j.jmmm.2009.03.013
10.1088/0022-3727/45/32/323001
10.1109/TMAG.2008.2009935
10.1088/0268-1242/31/11/113006
10.1038/s41467-020-20631-0
10.1038/s41928-020-0461-5
10.1103/PhysRevLett.105.104101
10.1103/PhysRevLett.100.017207
10.1088/0022-3727/46/7/074003
10.1103/PhysRevLett.108.207203
10.1063/1.2496202
10.1103/PhysRevLett.101.017201
10.1109/LMWC.2013.2291858
10.1063/1.4752008
10.1063/1.4803050
10.1063/1.3606550
10.1103/PhysRevB.72.092407
10.1016/j.jmmm.2020.167506
10.1063/1.5047547
10.1038/nature01967
10.1021/nn301222v
10.1103/PhysRevLett.105.217204
10.1007/978-3-030-19311-9_19
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-37916-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_266dd870f8d24e00b92e37fef2492f3d
PMC10110546
37069148
10_1038_s41467_023_37916_9
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12204357; 11974379
  funderid: https://doi.org/10.13039/501100001809
– fundername: Agenzia Spaziale Italiana (Italian Space Agency)
  grantid: Grant 2019-1-U.0
  funderid: https://doi.org/10.13039/501100003981
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
  grantid: PRIN 2020LWPKH7; PRIN 2020LWPKH7
  funderid: https://doi.org/10.13039/501100003407
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11974379
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12204357
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
  grantid: PRIN 2020LWPKH7
– fundername: Agenzia Spaziale Italiana (Italian Space Agency)
  grantid: Grant 2019-1-U.0
– fundername: ;
  grantid: Grant 2019-1-U.0
– fundername: ;
– fundername: ;
  grantid: PRIN 2020LWPKH7; PRIN 2020LWPKH7
– fundername: ;
  grantid: 12204357; 11974379
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-fe9a1665166c35e227fccd8e65a2dadad4fdef3b21421bf80febd13283df27df3
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:12 EDT 2025
Thu Aug 21 18:37:42 EDT 2025
Fri Jul 11 10:32:17 EDT 2025
Wed Aug 13 11:12:22 EDT 2025
Wed Feb 19 02:24:37 EST 2025
Tue Jul 01 00:58:48 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-fe9a1665166c35e227fccd8e65a2dadad4fdef3b21421bf80febd13283df27df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7240-2058
0000-0001-9462-5586
0000-0003-4438-538X
0000-0002-1043-3876
0000-0001-5165-5873
OpenAccessLink https://www.proquest.com/docview/2802198507?pq-origsite=%requestingapplication%
PMID 37069148
PQID 2802198507
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_266dd870f8d24e00b92e37fef2492f3d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10110546
proquest_miscellaneous_2802885953
proquest_journals_2802198507
pubmed_primary_37069148
crossref_citationtrail_10_1038_s41467_023_37916_9
crossref_primary_10_1038_s41467_023_37916_9
springer_journals_10_1038_s41467_023_37916_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-17
PublicationDateYYYYMMDD 2023-04-17
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Tabor (CR19) 2010; 82
Bonetti (CR33) 2010; 105
Zahedinejad (CR42) 2019; 15
Finocchio (CR47) 2007; 101
Goto (CR7) 2018; 14
Makarov (CR9) 2016; 31
Tamaru (CR36) 2015; 5
Chou (CR41) 2019; 9
Wang (CR10) 2013; 46
Zhang (CR20) 2018; 113
Tiwari (CR29) 2016; 108
Marković (CR45) 2020; 13
Romera (CR39) 2018; 563
Lin (CR24) 2014; 24
Finocchio (CR37) 2012; 86
Finocchio (CR43) 2021; 521
Houssameddine (CR13) 2007; 6
Zeng (CR44) 2013; 5
Xue (CR8) 2011; 99
Finocchio (CR21) 2021; 118
Georges (CR23) 2008; 101
Fang (CR12) 2016; 7
Bonin (CR18) 2009; 68
Ikeda (CR26) 2010; 9
Slavin (CR27) 2005; 72
Konishi (CR5) 2009; 2
CR2
Zeng (CR14) 2012; 6
Kim (CR25) 2015; 40
Keller (CR34) 2009; 94
Miwa (CR11) 2014; 13
Juė (CR38) 2018; 112
Kumar (CR4) 2016; 6
Lopez-Diaz (CR46) 2012; 45
Dixit (CR3) 2012; 101
Konishi (CR6) 2013; 102
Muduli (CR15) 2012; 108
Krivorotov (CR30) 2008; 77
Slavin (CR31) 2009; 45
Rippard (CR16) 2005; 95
Urazhdin (CR17) 2010; 105
Tiberkevich (CR32) 2009; 321
Kim (CR35) 2008; 100
Goto (CR22) 2021; 12
CR40
Kiselev (CR28) 2003; 425
Dieny (CR1) 2020; 3
D Houssameddine (37916_CR13) 2007; 6
M Goto (37916_CR22) 2021; 12
D Kumar (37916_CR4) 2016; 6
E Juė (37916_CR38) 2018; 112
L Xue (37916_CR8) 2011; 99
G Finocchio (37916_CR43) 2021; 521
D Dixit (37916_CR3) 2012; 101
P Tabor (37916_CR19) 2010; 82
D Marković (37916_CR45) 2020; 13
K Konishi (37916_CR5) 2009; 2
M Zahedinejad (37916_CR42) 2019; 15
I Krivorotov (37916_CR30) 2008; 77
KL Wang (37916_CR10) 2013; 46
S Ikeda (37916_CR26) 2010; 9
JV Kim (37916_CR35) 2008; 100
L Lopez-Diaz (37916_CR46) 2012; 45
M Romera (37916_CR39) 2018; 563
MW Keller (37916_CR34) 2009; 94
37916_CR2
S Bonetti (37916_CR33) 2010; 105
S Miwa (37916_CR11) 2014; 13
37916_CR40
B Fang (37916_CR12) 2016; 7
L Zhang (37916_CR20) 2018; 113
D Tiwari (37916_CR29) 2016; 108
J Chou (37916_CR41) 2019; 9
AN Slavin (37916_CR27) 2005; 72
PK Muduli (37916_CR15) 2012; 108
J Kim (37916_CR25) 2015; 40
AN Slavin (37916_CR31) 2009; 45
G Finocchio (37916_CR21) 2021; 118
Tamaru (37916_CR36) 2015; 5
Z Zeng (37916_CR44) 2013; 5
S Urazhdin (37916_CR17) 2010; 105
S Kiselev (37916_CR28) 2003; 425
W Rippard (37916_CR16) 2005; 95
B Georges (37916_CR23) 2008; 101
J Lin (37916_CR24) 2014; 24
A Makarov (37916_CR9) 2016; 31
B Dieny (37916_CR1) 2020; 3
K Konishi (37916_CR6) 2013; 102
M Goto (37916_CR7) 2018; 14
Z Zeng (37916_CR14) 2012; 6
G Finocchio (37916_CR37) 2012; 86
R Bonin (37916_CR18) 2009; 68
V Tiberkevich (37916_CR32) 2009; 321
G Finocchio (37916_CR47) 2007; 101
References_xml – volume: 40
  start-page: 18
  year: 2015
  ident: CR25
  article-title: Optical injection locking-based amplification in phase-coherent transfer of optical frequencies
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.004198
– volume: 5
  start-page: 2219
  year: 2013
  ident: CR44
  article-title: Spin transfer nano-oscillators
  publication-title: Nanoscale
  doi: 10.1039/c2nr33407k
– volume: 6
  start-page: 447
  year: 2007
  end-page: 453
  ident: CR13
  article-title: Spin-torque oscillator using a perpendicular polarizer and a planar free layer
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1905
– volume: 13
  start-page: 044050
  year: 2020
  ident: CR45
  article-title: Detection of the microwave emission from a spin-torque oscillator by a spin diode
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.044050
– volume: 9
  start-page: 721
  year: 2010
  end-page: 724
  ident: CR26
  article-title: A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2804
– volume: 108
  start-page: 082402
  year: 2016
  ident: CR29
  article-title: Enhancement of spin-torque diode sensitivity in a magnetic tunnel junction by parametric synchronization
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4942398
– volume: 6
  year: 2016
  ident: CR4
  article-title: Coherent microwave generation by spintronic feedback oscillator
  publication-title: Sci. Rep.
  doi: 10.1038/srep30747
– volume: 7
  year: 2016
  ident: CR12
  article-title: Giant spin-torque diode sensitivity in the absence of bias magnetic field
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11259
– volume: 5
  year: 2015
  ident: CR36
  article-title: Extremely coherent microwave emission from spin torque oscillator stabilized by phase locked loop
  publication-title: Sci. Rep.
  doi: 10.1038/srep18134
– ident: CR2
– volume: 14
  start-page: 40
  year: 2018
  end-page: 43
  ident: CR7
  article-title: Microwave amplification in a magnetic tunnel junction induced by heat-to-spin conversion at the nanoscale
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0306-9
– volume: 118
  start-page: 160502
  year: 2021
  ident: CR21
  article-title: Perspectives on spintronic diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0048947
– volume: 563
  start-page: 230
  year: 2018
  end-page: 234
  ident: CR39
  article-title: Vowel recognition with four coupled spin-torque nano-oscillators
  publication-title: Nature
  doi: 10.1038/s41586-018-0632-y
– volume: 9
  year: 2019
  ident: CR41
  article-title: Analog coupled oscillator based weighted ising machine
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49699-5
– volume: 94
  start-page: 193105
  year: 2009
  ident: CR34
  article-title: Time domain measurement of phase noise in a spin torque oscillator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3133356
– volume: 2
  start-page: 063004
  year: 2009
  ident: CR5
  article-title: Current-field driven “spin transistor”
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.2.063004
– volume: 95
  start-page: 067203
  year: 2005
  ident: CR16
  article-title: Injection locking and phase control of spin transfer nano-oscillators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.067203
– volume: 77
  start-page: 054440
  year: 2008
  ident: CR30
  article-title: Time-domain studies of very-large-angle magnetization dynamics excited by spin transfer torques
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.054440
– volume: 13
  start-page: 50
  year: 2014
  end-page: 56
  ident: CR11
  article-title: Highly sensitive nanoscale spin-torque diode
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3778
– volume: 86
  start-page: 014438
  year: 2012
  ident: CR37
  article-title: Non-Adlerian phase slip and nonstationary synchronization of spin-torque oscillators to a microwave source
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.014438
– volume: 112
  start-page: 102403
  year: 2018
  ident: CR38
  article-title: Comparison of the spin-transfer torque mechanisms in a three-terminal spin-torque oscillator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5019729
– volume: 82
  start-page: 020407(R)
  year: 2010
  ident: CR19
  article-title: Hysteretic synchronization of nonlinear spin-torque oscillators
  publication-title: Phy. Rev. B
  doi: 10.1103/PhysRevB.82.020407
– volume: 15
  start-page: 47
  year: 2019
  end-page: 52
  ident: CR42
  article-title: Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0593-9
– ident: CR40
– volume: 68
  start-page: 221
  year: 2009
  end-page: 231
  ident: CR18
  article-title: Analytical treatment of synchronization of spin-torque oscillators by microwave magnetic fields
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00091-9
– volume: 321
  start-page: L53
  year: 2009
  end-page: L55
  ident: CR32
  article-title: Compensation of nonlinear phase noise in an in-plane-magnetized anisotropic spin-torque oscillator
  publication-title: J. Magn. Mag. Mater.
  doi: 10.1016/j.jmmm.2009.03.013
– volume: 45
  start-page: 323001
  year: 2012
  ident: CR46
  article-title: Micromagnetic simulations using graphics processing units
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/45/32/323001
– volume: 45
  start-page: 1875
  year: 2009
  end-page: 1918
  ident: CR31
  article-title: Nonlinear Auto-oscillator theory of microwave generation by spin-polarized current
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2008.2009935
– volume: 31
  start-page: 113006
  year: 2016
  ident: CR9
  article-title: CMOS-compatible spintronic devices: a review
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/11/113006
– volume: 12
  year: 2021
  ident: CR22
  article-title: Uncooled sub-GHz spin bolometer driven by auto-oscillation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20631-0
– volume: 3
  start-page: 446
  year: 2020
  end-page: 459
  ident: CR1
  article-title: Opportunities and challenges for spintronics in the microelectronics industry
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0461-5
– volume: 105
  start-page: 104101
  year: 2010
  ident: CR17
  article-title: Fractional synchronization of spin-torque nano-oscillators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.104101
– volume: 100
  start-page: 017207
  year: 2008
  ident: CR35
  article-title: Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.017207
– volume: 46
  start-page: 074003
  year: 2013
  ident: CR10
  article-title: Low-power non-volatile spintronic memory: STT-RAM and beyond
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/7/074003
– volume: 108
  start-page: 207203
  year: 2012
  ident: CR15
  article-title: Decoherence and mode hopping in a magnetic tunnel junction based spin torque oscillator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.207203
– volume: 101
  start-page: 063914
  year: 2007
  ident: CR47
  article-title: Micromagnetic modeling of magnetization switching driven by spin-polarized current in magnetic tunnel junctions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2496202
– volume: 101
  start-page: 017201
  year: 2008
  ident: CR23
  article-title: Coupling efficiency for phase locking of a spin transfer Nano-Oscillator to a microwave current
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.017201
– volume: 24
  start-page: 182
  year: 2014
  ident: CR24
  article-title: A Compact single stage V-Band CMOS injection-locked power amplifier with 17.3% efficiency
  publication-title: IEEE Microw. Wirel. Comp. Lett.
  doi: 10.1109/LMWC.2013.2291858
– volume: 101
  start-page: 122410
  year: 2012
  ident: CR3
  article-title: Spintronic oscillator based on magnetic field feedback
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4752008
– volume: 102
  start-page: 162409
  year: 2013
  ident: CR6
  article-title: Radio-frequency amplification property of the MgO-based magnetic tunnel junction using field-induced ferromagnetic resonance
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4803050
– volume: 99
  start-page: 022505
  year: 2011
  ident: CR8
  article-title: Conditions for microwave amplification due to spin-torque dynamics in magnetic tunnel junctions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3606550
– volume: 72
  start-page: 092407
  year: 2005
  ident: CR27
  article-title: Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.092407
– volume: 521
  start-page: 167506
  year: 2021
  ident: CR43
  article-title: The promise of spintronics for unconventional computing
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.167506
– volume: 113
  start-page: 102401
  year: 2018
  ident: CR20
  article-title: Ultrahigh detection sensitivity exceeding 10 V/W in spin-torque diode
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5047547
– volume: 425
  start-page: 380
  year: 2003
  end-page: 383
  ident: CR28
  article-title: Microwave oscillations of a nanomagnet driven by a spin-polarized current
  publication-title: Nature
  doi: 10.1038/nature01967
– volume: 6
  start-page: 6115
  year: 2012
  end-page: 6121
  ident: CR14
  article-title: High-power coherent microwave emission from magnetic tunnel junction nano-oscillators with perpendicular anisotropy
  publication-title: ACS Nano
  doi: 10.1021/nn301222v
– volume: 105
  start-page: 217204
  year: 2010
  ident: CR33
  article-title: Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.217204
– volume: 24
  start-page: 182
  year: 2014
  ident: 37916_CR24
  publication-title: IEEE Microw. Wirel. Comp. Lett.
  doi: 10.1109/LMWC.2013.2291858
– volume: 102
  start-page: 162409
  year: 2013
  ident: 37916_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4803050
– volume: 77
  start-page: 054440
  year: 2008
  ident: 37916_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.054440
– volume: 105
  start-page: 104101
  year: 2010
  ident: 37916_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.104101
– volume: 118
  start-page: 160502
  year: 2021
  ident: 37916_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0048947
– volume: 100
  start-page: 017207
  year: 2008
  ident: 37916_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.017207
– volume: 6
  year: 2016
  ident: 37916_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/srep30747
– volume: 2
  start-page: 063004
  year: 2009
  ident: 37916_CR5
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.2.063004
– volume: 108
  start-page: 207203
  year: 2012
  ident: 37916_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.207203
– volume: 9
  year: 2019
  ident: 37916_CR41
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49699-5
– ident: 37916_CR2
– volume: 82
  start-page: 020407(R)
  year: 2010
  ident: 37916_CR19
  publication-title: Phy. Rev. B
  doi: 10.1103/PhysRevB.82.020407
– volume: 563
  start-page: 230
  year: 2018
  ident: 37916_CR39
  publication-title: Nature
  doi: 10.1038/s41586-018-0632-y
– volume: 45
  start-page: 1875
  year: 2009
  ident: 37916_CR31
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2008.2009935
– volume: 6
  start-page: 447
  year: 2007
  ident: 37916_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1905
– volume: 113
  start-page: 102401
  year: 2018
  ident: 37916_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5047547
– volume: 3
  start-page: 446
  year: 2020
  ident: 37916_CR1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0461-5
– volume: 5
  start-page: 2219
  year: 2013
  ident: 37916_CR44
  publication-title: Nanoscale
  doi: 10.1039/c2nr33407k
– volume: 101
  start-page: 122410
  year: 2012
  ident: 37916_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4752008
– volume: 9
  start-page: 721
  year: 2010
  ident: 37916_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2804
– volume: 94
  start-page: 193105
  year: 2009
  ident: 37916_CR34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3133356
– ident: 37916_CR40
  doi: 10.1007/978-3-030-19311-9_19
– volume: 68
  start-page: 221
  year: 2009
  ident: 37916_CR18
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00091-9
– volume: 521
  start-page: 167506
  year: 2021
  ident: 37916_CR43
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.167506
– volume: 46
  start-page: 074003
  year: 2013
  ident: 37916_CR10
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/7/074003
– volume: 40
  start-page: 18
  year: 2015
  ident: 37916_CR25
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.004198
– volume: 72
  start-page: 092407
  year: 2005
  ident: 37916_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.092407
– volume: 12
  year: 2021
  ident: 37916_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20631-0
– volume: 13
  start-page: 044050
  year: 2020
  ident: 37916_CR45
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.044050
– volume: 425
  start-page: 380
  year: 2003
  ident: 37916_CR28
  publication-title: Nature
  doi: 10.1038/nature01967
– volume: 321
  start-page: L53
  year: 2009
  ident: 37916_CR32
  publication-title: J. Magn. Mag. Mater.
  doi: 10.1016/j.jmmm.2009.03.013
– volume: 86
  start-page: 014438
  year: 2012
  ident: 37916_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.014438
– volume: 112
  start-page: 102403
  year: 2018
  ident: 37916_CR38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5019729
– volume: 45
  start-page: 323001
  year: 2012
  ident: 37916_CR46
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/45/32/323001
– volume: 105
  start-page: 217204
  year: 2010
  ident: 37916_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.217204
– volume: 108
  start-page: 082402
  year: 2016
  ident: 37916_CR29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4942398
– volume: 13
  start-page: 50
  year: 2014
  ident: 37916_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3778
– volume: 99
  start-page: 022505
  year: 2011
  ident: 37916_CR8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3606550
– volume: 7
  year: 2016
  ident: 37916_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11259
– volume: 95
  start-page: 067203
  year: 2005
  ident: 37916_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.067203
– volume: 5
  year: 2015
  ident: 37916_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/srep18134
– volume: 101
  start-page: 017201
  year: 2008
  ident: 37916_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.017201
– volume: 15
  start-page: 47
  year: 2019
  ident: 37916_CR42
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0593-9
– volume: 14
  start-page: 40
  year: 2018
  ident: 37916_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0306-9
– volume: 6
  start-page: 6115
  year: 2012
  ident: 37916_CR14
  publication-title: ACS Nano
  doi: 10.1021/nn301222v
– volume: 31
  start-page: 113006
  year: 2016
  ident: 37916_CR9
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/11/113006
– volume: 101
  start-page: 063914
  year: 2007
  ident: 37916_CR47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2496202
SSID ssj0000391844
Score 2.4630353
Snippet Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential...
Abstract Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2183
SubjectTerms 142/126
639/166/987
639/925/927/1062
Amplification
Amplifiers
CMOS
Design
Emissions
Frequency locking
Humanities and Social Sciences
Hybrid systems
multidisciplinary
Oscillators
Power consumption
Power management
Receivers & amplifiers
Science
Science (multidisciplinary)
Spintronics
Stacks
Torque
Tunnel junctions
Wireless communications
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqSkhcEN-kFGQkbmA1iZ3EPgKiVJXoqZV6s_w1YiXIVt1tK_49M3Z26UIplx5ySRxp9PzsmYknbxh766GOPToW0UPnhWqCEa4PtfBNdNElrwLQz8lfj_qDE3V42p1ea_VFNWFFHrgAt4cOJEYkFejYqlTX3rRJDpCApO5ARtp90eddS6byHiwNpi5q-kumlnpvofKegC4K1xTGRMJseKIs2H9TlPl3seQfJ6bZEe0_ZA-mCJJ_KJY_YltpfMzulZ6SP5-wL0dF_MKdc0fV4jB9lONz4D-o-u7KXSZOZRtIPD4b-eJsNgrMvNEgTsqWyAvqwPOUnex_Pv50IKZuCSJ0qlkKSMY1fd_hFWSX2naAEKJOfedawj0qiAmkJ421xoOuIfmIuaiWEdohgnzGtsf5mF4w7gIGBg4TIcReAdBY56IBOqVPeL9izQo5GyYpcepo8d3mI22pbUHbIto2o21Nxd6t3zkrQhq3jv5IE7IeSSLY-QZSw07UsP-jRsV2V9Npp5W5sK3GqMZoDIMr9mb9GNcUHZS4Mc0vyhhNwm-yYs_L7K8tkUPdG8whK6Y3eLFh6uaTcfYt63Y3FGt1CuF7v6LQb7v-jcXOXWDxkt1vifukUjnssu3l-UV6heHU0r_OK-cXe3kdQQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuqLwDBQWJGxiS2HGcQ1UBolRI7YmVerMc2wMrlWzZ3bb033cmj0ULSw-5OGPJGc94vontbwBeN5gFTYFFaCwboXJfC6d9Jpo8uOBiozzy5eSjY304UV9PypMtGMsdDQpcbEztuJ7UZH767vevq31y-L3-yrh5v1Cdu1P0IXchuCPqW3CbIlPFjno0wP1uZZY1JTRquDuzuetafOpo_Ddhz3-PUP61j9qFp4MduDfgyvRDbwj3YSu2D-BOX2ny6iF8Oe4pMdw8dXyGHIdfdekM0598Ju_SXcSUD3OQWtJpmy7Opq2gfJwGlDLfJVkL1-V5BJODz98-HYqhhoLwpcqXAmPtcq1LerwsY1FU6H0wUZeu4NkICkNE2TDzWt6gyTA2gTJUIwMWVUD5GLbbWRufQuo8wQVH6ZHW1AtZ1rlQI-_dR2pPIB81Z_1AMM51Lk5tt9Etje21bUnbttO2rRN4s-pz1tNr3Cj9kSdkJcnU2F3DbP7dDp5mCXGEQKsQmlComGVNXURZYUTmRkQZEtgdp9OO5mYLQ1inNgSOE3i1ek2extsnro2z817GMB2cTOBJP_urkcgq0zVllgmYNbtYG-r6m3b6o2PzzhmBlYrU93Y0oT_j-r8unt38Gc_hbsFWzayU1S5sL-fn8QXBp2XzsvOJa_RmF8o
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfAifrtaZQVvGtzdZLPZoz6sRbAnC72FZJPRB3Zfee9V6X_fmeyHPK2Ch71kJzBMZpJfMpNfAF55LIKmhUVorL1QZdcKp7tC-DK44KJXHfLl5M_H-uhEfTqtT_egmu7CpKL9RGmZpumpOuztRqWQphWGQoIgjWhvwE2mbmevXujFfK7CjOdGqfF-TCHNNV131qBE1X8dvvyzTPK3XGlagg7vwp0RO-bvBm3vwV7s78Ot4TXJywfw8XigvXDr3HGdOI7HcfkK8zOuu_vpfsScCzbI5fJln2_Ol72gPTcplDOnJXkEv73zEE4OP3xZHInxnQTR1arcCoytK7Wu6etkHauqwa4LJuraVWzxoDBElJ7Z1UqPpsDoA-1CjQxYNQHlI9jvV318ArnrCBI42gJpTb2QZZ0LLXJ-PlJ7BuVkOduNJOL8lsV3m5LZ0tjB2pasbZO1bZvB67nP-UCh8U_p9zwgsyTTX6eG1fqrHd3BEqoIgWYaNKFSsSh8W0XZYETmP0QZMjiYhtOOMbmxlSE80xoCwBm8nH9TNHGKxPVxdTHIGKZ8kxk8HkZ_1kQ2hW5p95iB2fGLHVV3__TLb4mxu2SUVSsy35vJhX7p9XdbPP0_8Wdwu2IvZybK5gD2t-uL-Jwg09a_SDFyBc2dEnI
  priority: 102
  providerName: Springer Nature
Title Nonlinear amplification of microwave signals in spin-torque oscillators
URI https://link.springer.com/article/10.1038/s41467-023-37916-9
https://www.ncbi.nlm.nih.gov/pubmed/37069148
https://www.proquest.com/docview/2802198507
https://www.proquest.com/docview/2802885953
https://pubmed.ncbi.nlm.nih.gov/PMC10110546
https://doaj.org/article/266dd870f8d24e00b92e37fef2492f3d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8CowoSb2AtiR3HeUJdtW6qtAoBk_pmOf6ASpCUtgPx33PnuJnKxx7iSI4jOec73_nu8jtCXjc-swIUCxW-bCjPTU21MBltcqutdg03Hn9OvpiL80s-W5SL6HDbxLTK3Z4YNmrbGfSRHxcStFEtwXx5t_pOsWoURldjCY3b5BChyzClq1pUg48F0c8l5_FfmYzJ4w0POwMoKpAssIxovaePAmz_v2zNv1Mm_4ibBnU0vU_uRTsyHfcL_4Dccu1DcqevLPnrETmb9xAYep1qzBn30TWXdj79hjl4P_UPl2LyBrBfumzTzWrZUjh_w4RSxLcE7sA6PI_J5fT00-ScxpoJ1JQ831Lvap0LUcJlWOmKovLGWOlEqQukvuXeOs8aRFrLGy8z7xoLJ1LJrC8q69kTctB2rXtGUm3APNBwHBIC3vI4Vmtbe4zVO-hPSL6jnDIRUBzrWnxVIbDNpOqprYDaKlBb1Ql5M7yz6uE0bhx9ggsyjEQo7NDRrT-rKFkKLAxrYdfx0hbcZVlTF45V3nnEQvTMJuRot5wqyudGXXNTQl4Nj0GyMFyiW9dd9WMkwr-xhDztV3-YCasyUcNJMiFyjy_2prr_pF1-CejdOVpcJQfyvd2x0PW8_k-L5zd_xgtyt0CuRhTK6ogcbNdX7iWYS9tmFGQCWjk9G5HD8Xj2cQb3k9P5-w_QOxGTUXBEQHvB5W_1ZBtO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImtuM4B4R4lS1t99RKezNObMNKkF12t1T9U_xGZvKqlkdvPeSSONFkPE97_A3AszIkTqFjiVXIylimVRFbVSVxmTrrrC9lFehw8sFYjY7kp0k22YBf_VkYKqvsbWJjqN2sojXyba7RGxUaw5fX8x8xdY2i3dW-hUYrFnv-9ARTtuWr3fc4v8853_lw-G4Ud10F4iqT6SoOvrCpUhlelcg853moKqe9yiwn-pwMzgdREhZZWgadBF86zNm0cIHnLgj87iW4jI43IY3KJ_mwpkNo61rK7mxOIvT2UjaWCB0jajJGYnGx5v-aNgH_im3_LtH8Y5-2cX87N-B6F7eyN62g3YQNX9-CK20ny9Pb8HHcQm7YBbNUox66pUA2C-w71fyd2J-eUbEIijub1mw5n9Yx5vtIECM8TZRG6vtzB44uhJt3YbOe1f4-MFthOGIx_VIK3wo01lpXBKoN8Hg_grTnnKk6AHPqo_HNNBvpQpuW2wa5bRpumyKCF8M78xa-49zRb2lChpEEvd3cmC2-mE6TDUY0zqGVC9px6ZOkLLgXefCBsBeDcBFs9dNpOnuwNGfSG8HT4TFqMm3P2NrPjtsxmuDmRAT32tkfKBF5ogrMXCPQa3KxRur6k3r6tUELTynCyySy72UvQmd0_Z8XD87_jSdwdXR4sG_2d8d7D-EaJwknBMx8CzZXi2P_CEO1Vfm40Q8Gny9aIX8DVoxTxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJNbCdxDggBZWkprDhQaW-uE9t0pZIsu1uq_jV-HTN5Vcujtx5ySZxoMp6nPf4G4FnhI5uiYwlTnxShjMs8NGkZhUVsjTWukKWnw8mfJ-nOvvw4TaYb8Ks_C0Nllb1NbAy1rUtaIx9xhd4oVxi-jHxXFvFle_x6_iOkDlK009q302hFZM-dnmD6tny1u41z_Zzz8fuv73bCrsNAWCYyXoXe5SZO0wSvUiSO88yXpVUuTQwnWq301nlREC5ZXHgVeVdYzN-UsJ5n1gv87iW4nIkkJh3LptmwvkPI60rK7pxOJNRoKRurhE4StRqjsjBf84VNy4B_xbl_l2v-sWfbuMLxDbjexbDsTSt0N2HDVbfgStvV8vQ2fJi08BtmwQzVq_tuWZDVnn2n-r8T89MxKhxB0Wezii3nsyrE3B8JYoStiZJJPYDuwP6FcPMubFZ15e4DMyWGJgZTsTTFtzyNNcbmnuoEHN4PIO45p8sOzJx6ahzpZlNdKN1yWyO3dcNtnQfwYnhn3kJ5nDv6LU3IMJJguJsb9eKb7rRaY3RjLVo8ryyXLoqKnDuReecJh9ELG8BWP526sw1LfSbJATwdHqNW01aNqVx93I5RBD0nArjXzv5AiciiNMcsNgC1JhdrpK4_qWaHDXJ4TNFeIpF9L3sROqPr_7x4cP5vPIGrqIr60-5k7yFc4yTgBIaZbcHmanHsHmHUtioeN-rB4OCi9fE3DGlX-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+amplification+of+microwave+signals+in+spin-torque+oscillators&rft.jtitle=Nature+communications&rft.au=Zhu%2C+Keqiang&rft.au=Carpentieri%2C+Mario&rft.au=Zhang%2C+Like&rft.au=Fang%2C+Bin&rft.date=2023-04-17&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=2183&rft_id=info:doi/10.1038%2Fs41467-023-37916-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon