Deep learning for transesophageal echocardiography view classification
Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex cardiac pathology and the management of cardiac surgery patients. A key limitation to the application of deep learning strategies to intraoperative and intraprocedural TEE data is the complexity and unst...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; p. 11 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.01.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex cardiac pathology and the management of cardiac surgery patients. A key limitation to the application of deep learning strategies to intraoperative and intraprocedural TEE data is the complexity and unstructured nature of these images. In the present study, we developed a deep learning-based, multi-category TEE view classification model that can be used to add structure to intraoperative and intraprocedural TEE imaging data. More specifically, we trained a convolutional neural network (CNN) to predict standardized TEE views using labeled intraoperative and intraprocedural TEE videos from Cedars-Sinai Medical Center (CSMC). We externally validated our model on intraoperative TEE videos from Stanford University Medical Center (SUMC). Accuracy of our model was high across all labeled views. The highest performance was achieved for the Trans-Gastric Left Ventricular Short Axis View (area under the receiver operating curve [AUC] = 0.971 at CSMC, 0.957 at SUMC), the Mid-Esophageal Long Axis View (AUC = 0.954 at CSMC, 0.905 at SUMC), the Mid-Esophageal Aortic Valve Short Axis View (AUC = 0.946 at CSMC, 0.898 at SUMC), and the Mid-Esophageal 4-Chamber View (AUC = 0.939 at CSMC, 0.902 at SUMC). Ultimately, we demonstrate that our deep learning model can accurately classify standardized TEE views, which will facilitate further downstream deep learning analyses for intraoperative and intraprocedural TEE imaging. |
---|---|
AbstractList | Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex cardiac pathology and the management of cardiac surgery patients. A key limitation to the application of deep learning strategies to intraoperative and intraprocedural TEE data is the complexity and unstructured nature of these images. In the present study, we developed a deep learning-based, multi-category TEE view classification model that can be used to add structure to intraoperative and intraprocedural TEE imaging data. More specifically, we trained a convolutional neural network (CNN) to predict standardized TEE views using labeled intraoperative and intraprocedural TEE videos from Cedars-Sinai Medical Center (CSMC). We externally validated our model on intraoperative TEE videos from Stanford University Medical Center (SUMC). Accuracy of our model was high across all labeled views. The highest performance was achieved for the Trans-Gastric Left Ventricular Short Axis View (area under the receiver operating curve [AUC] = 0.971 at CSMC, 0.957 at SUMC), the Mid-Esophageal Long Axis View (AUC = 0.954 at CSMC, 0.905 at SUMC), the Mid-Esophageal Aortic Valve Short Axis View (AUC = 0.946 at CSMC, 0.898 at SUMC), and the Mid-Esophageal 4-Chamber View (AUC = 0.939 at CSMC, 0.902 at SUMC). Ultimately, we demonstrate that our deep learning model can accurately classify standardized TEE views, which will facilitate further downstream deep learning analyses for intraoperative and intraprocedural TEE imaging. Abstract Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex cardiac pathology and the management of cardiac surgery patients. A key limitation to the application of deep learning strategies to intraoperative and intraprocedural TEE data is the complexity and unstructured nature of these images. In the present study, we developed a deep learning-based, multi-category TEE view classification model that can be used to add structure to intraoperative and intraprocedural TEE imaging data. More specifically, we trained a convolutional neural network (CNN) to predict standardized TEE views using labeled intraoperative and intraprocedural TEE videos from Cedars-Sinai Medical Center (CSMC). We externally validated our model on intraoperative TEE videos from Stanford University Medical Center (SUMC). Accuracy of our model was high across all labeled views. The highest performance was achieved for the Trans-Gastric Left Ventricular Short Axis View (area under the receiver operating curve [AUC] = 0.971 at CSMC, 0.957 at SUMC), the Mid-Esophageal Long Axis View (AUC = 0.954 at CSMC, 0.905 at SUMC), the Mid-Esophageal Aortic Valve Short Axis View (AUC = 0.946 at CSMC, 0.898 at SUMC), and the Mid-Esophageal 4-Chamber View (AUC = 0.939 at CSMC, 0.902 at SUMC). Ultimately, we demonstrate that our deep learning model can accurately classify standardized TEE views, which will facilitate further downstream deep learning analyses for intraoperative and intraprocedural TEE imaging. |
ArticleNumber | 11 |
Author | Bowdish, Michael Zou, James Gill, George Steffner, Kirsten R. Rhee, Justin Kumaresan, Abirami Christensen, Matthew He, Bryan Ouyang, David |
Author_xml | – sequence: 1 givenname: Kirsten R. surname: Steffner fullname: Steffner, Kirsten R. email: ksteffner@stanford.edu organization: Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University – sequence: 2 givenname: Matthew surname: Christensen fullname: Christensen, Matthew organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center – sequence: 3 givenname: George surname: Gill fullname: Gill, George organization: Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center – sequence: 4 givenname: Michael surname: Bowdish fullname: Bowdish, Michael organization: Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center – sequence: 5 givenname: Justin surname: Rhee fullname: Rhee, Justin organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center – sequence: 6 givenname: Abirami surname: Kumaresan fullname: Kumaresan, Abirami organization: Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Department of Anesthesiology, Cedars-Sinai Medical Center – sequence: 7 givenname: Bryan surname: He fullname: He, Bryan organization: Department of Computer Science, Stanford University – sequence: 8 givenname: James surname: Zou fullname: Zou, James organization: Department of Biomedical Data Science, Stanford University – sequence: 9 givenname: David surname: Ouyang fullname: Ouyang, David organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38167849$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1UREvpC7BAkdiwSfFvbK8QKpRWqsQG1pbjjHN9lWsHO7dV3x63KaVlgTdjec58npnzGh3EFAGhtwSfEszUx8KJ0KrFlLUCSyZa9QIdUcxFSxmlB0_uh-iklC2uR1DNiX6FDpkinVRcH6HzLwBzM4HNMcSx8Sk3S7axQEnzxo5gpwbcJjmbh5DGbOfNbXMd4KZxky0l-ODsElJ8g156OxU4eYjH6Of51x9nF-3V92-XZ5-vWic4WVoPkvXACe2ZZhgI77AizAsAx_AA4KGTEoANVgrfaa4FwVLw3mpsJek5O0aXK3dIdmvmHHY235pkg7l_SHk0Ni_BTWA49VL3tqtcxS0e-oGD7KiWauio6kllfVpZ877fweAg1smnZ9DnmRg2ZkzXpvbUEdWxSvjwQMjp1x7KYnahOJgmGyHti6GaYKIxlbhK3_8j3aZ9jnVXVYWV1oSQOyBdVS6nUjL4x24INne2m9V2U20397YbVYvePZ3jseSPyVXAVkGpqThC_vv3f7C_Ae6oujc |
CitedBy_id | crossref_primary_10_1053_j_jvca_2024_02_004 crossref_primary_10_3390_diagnostics14070767 crossref_primary_10_3390_jpm14060656 crossref_primary_10_4103_aca_aca_12_24 |
Cites_doi | 10.1067/mje.2001.113368 10.1016/j.ultrasmedbio.2018.07.024 10.1001/jamanetworkopen.2021.47820 10.1016/j.echo.2018.06.004 10.1016/j.echo.2022.08.009 10.1038/s41746-019-0216-8 10.1016/S0140-6736(20)30925-9 10.1016/j.echo.2020.03.002 10.1016/j.ebiom.2021.103613 10.1016/j.jacc.2017.07.732 10.1016/j.artmed.2023.102646 10.1016/j.jacc.2021.04.064 10.1016/j.jtcvs.2018.12.061 10.1016/j.echo.2013.07.009 10.1038/s41467-021-25503-9 10.1016/j.athoracsur.2004.02.075 10.1038/s41586-023-05947-3 10.1038/s41746-017-0013-1 10.1038/s41586-020-2145-8 10.3390/jpm12030437 10.1001/jamacardio.2021.6059 10.1053/j.jvca.2019.06.017 10.1038/s41746-018-0065-x 10.1007/978-3-030-87240-3_44 10.1109/ICCV.2015.510 10.1109/cvpr.2018.00675 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-50735-8 |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (ProQuest) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_42f79ba60de84a0dbd4e762978d628b1 10_1038_s41598_023_50735_8 38167849 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS sequence: 0 grantid: R00 HL157421 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c541t-fe73be412b3930e1460813f5eec30deefe677ee3da75f6949510754ba90a71b43 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:14:54 EDT 2024 Tue Sep 17 21:29:00 EDT 2024 Wed Dec 04 01:04:32 EST 2024 Fri Nov 08 21:00:38 EST 2024 Fri Dec 06 05:09:41 EST 2024 Sun Dec 08 01:35:53 EST 2024 Fri Oct 11 20:46:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-fe73be412b3930e1460813f5eec30deefe677ee3da75f6949510754ba90a71b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761863/ |
PMID | 38167849 |
PQID | 2908991113 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_42f79ba60de84a0dbd4e762978d628b1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10761863 proquest_miscellaneous_2910190270 proquest_journals_2908991113 crossref_primary_10_1038_s41598_023_50735_8 pubmed_primary_38167849 springer_journals_10_1038_s41598_023_50735_8 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-02 |
PublicationDateYYYYMMDD | 2024-01-02 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | MacKay, Zhang, Augoustides, Groeneveld, Desai (CR28) 2022; 5 Madani, Ong, Tibrewal, Mofrad (CR6) 2018; 1 CR19 Andreassen, Veronesi, Gerard, Solberg, Samset (CR14) 2020; 24 CR18 CR17 Li (CR22) 2022; 12 CR13 Thalappillil (CR21) 2020; 34 Ghorbani (CR9) 2020; 3 Metkus (CR29) 2021; 78 Østvik, Smistad, Aase, Haugen, Lovstakken (CR8) 2019; 45 He (CR24) 2023 Doherty (CR3) 2019; 157 Mitchell (CR25) 2019; 32 Hahn (CR16) 2013; 26 Doherty, Kort, Mehran, Schoenhagen, Soman (CR2) 2017; 70 Madani, Arnaout, Mofrad, Arnaout (CR5) 2018; 1 Gearhart, Goto, Deo, Powell (CR7) 2022; 35 Nicoara (CR4) 2020; 33 Taskén (CR15) 2023; 144 Nowrangi, Connolly, Freeman, Click (CR26) 2001; 14 Vos (CR1) 2020; 396 Duffy (CR11) 2022; 7 Shad (CR12) 2021; 12 Shapira (CR27) 2004; 78 van der Maaten, Hinton (CR20) 2008; 9 Hughes (CR23) 2021; 73 Ouyang (CR10) 2020; 580 50735_CR13 A Madani (50735_CR6) 2018; 1 AA Taskén (50735_CR15) 2023; 144 50735_CR17 50735_CR18 B He (50735_CR24) 2023 SK Nowrangi (50735_CR26) 2001; 14 50735_CR19 A Gearhart (50735_CR7) 2022; 35 C Li (50735_CR22) 2022; 12 RT Hahn (50735_CR16) 2013; 26 Y Shapira (50735_CR27) 2004; 78 EJ MacKay (50735_CR28) 2022; 5 A Østvik (50735_CR8) 2019; 45 JW Hughes (50735_CR23) 2021; 73 JU Doherty (50735_CR3) 2019; 157 T Vos (50735_CR1) 2020; 396 BS Andreassen (50735_CR14) 2020; 24 A Madani (50735_CR5) 2018; 1 L van der Maaten (50735_CR20) 2008; 9 A Ghorbani (50735_CR9) 2020; 3 C Mitchell (50735_CR25) 2019; 32 A Nicoara (50735_CR4) 2020; 33 R Shad (50735_CR12) 2021; 12 TS Metkus (50735_CR29) 2021; 78 R Thalappillil (50735_CR21) 2020; 34 JU Doherty (50735_CR2) 2017; 70 D Ouyang (50735_CR10) 2020; 580 G Duffy (50735_CR11) 2022; 7 |
References_xml | – volume: 14 start-page: 863 year: 2001 end-page: 866 ident: CR26 article-title: Impact of intraoperative transesophageal echocardiography among patients undergoing aortic valve replacement for aortic stenosis publication-title: J. Am. Soc. Echocardiogr. doi: 10.1067/mje.2001.113368 contributor: fullname: Click – volume: 45 start-page: 374 year: 2019 end-page: 384 ident: CR8 article-title: Real-time standard view classification in transthoracic echocardiography using convolutional neural networks publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.07.024 contributor: fullname: Lovstakken – ident: CR18 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR20 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. contributor: fullname: Hinton – volume: 5 start-page: e2147820 year: 2022 ident: CR28 article-title: Association of intraoperative transesophageal echocardiography and clinical outcomes after open cardiac valve or proximal aortic surgery publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2021.47820 contributor: fullname: Desai – volume: 32 start-page: 1 year: 2019 end-page: 64 ident: CR25 article-title: Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: Recommendations from the american society of echocardiography publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2018.06.004 contributor: fullname: Mitchell – volume: 35 start-page: 1238 year: 2022 end-page: 1246 ident: CR7 article-title: An automated view classification model for pediatric echocardiography using artificial intelligence publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2022.08.009 contributor: fullname: Powell – volume: 3 start-page: 1 year: 2020 end-page: 10 ident: CR9 article-title: Deep learning interpretation of echocardiograms publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0216-8 contributor: fullname: Ghorbani – volume: 396 start-page: 1204 year: 2020 end-page: 1222 ident: CR1 article-title: Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019 publication-title: Lancet doi: 10.1016/S0140-6736(20)30925-9 contributor: fullname: Vos – volume: 33 start-page: 692 year: 2020 end-page: 734 ident: CR4 article-title: Guidelines for the use of transesophageal echocardiography to assist with surgical decision-making in the operating room: A surgery-based approach publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2020.03.002 contributor: fullname: Nicoara – volume: 73 start-page: 103613 year: 2021 ident: CR23 article-title: Deep learning evaluation of biomarkers from echocardiogram videos publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103613 contributor: fullname: Hughes – volume: 70 start-page: 1647 year: 2017 end-page: 1672 ident: CR2 article-title: ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2017 Appropriate Use Criteria for Multimodality Imaging in Valvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.07.732 contributor: fullname: Soman – volume: 144 start-page: 102646 year: 2023 ident: CR15 article-title: Automated estimation of mitral annular plane systolic excursion by artificial intelligence from 3D ultrasound recordings publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102646 contributor: fullname: Taskén – volume: 78 start-page: 112 year: 2021 end-page: 122 ident: CR29 article-title: Transesophageal echocardiography in patients undergoing coronary artery bypass graft surgery publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2021.04.064 contributor: fullname: Metkus – ident: CR19 – volume: 157 start-page: e153 year: 2019 end-page: e182 ident: CR3 article-title: ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 appropriate use criteria for multimodality imaging in the assessment of cardiac structure and function in nonvalvular heart disease: A report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2018.12.061 contributor: fullname: Doherty – volume: 26 start-page: 921 year: 2013 end-page: 964 ident: CR16 article-title: Guidelines for performing a comprehensive transesophageal echocardiographic examination: Recommendations from the American Society of Echocardiography and the society of cardiovascular anesthesiologists publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2013.07.009 contributor: fullname: Hahn – volume: 12 start-page: 5192 year: 2021 ident: CR12 article-title: Predicting post-operative right ventricular failure using video-based deep learning publication-title: Nat. Commun. doi: 10.1038/s41467-021-25503-9 contributor: fullname: Shad – volume: 78 start-page: 579 year: 2004 end-page: 583 ident: CR27 article-title: Impact of intraoperative transesophageal echocardiography in patients undergoing valve replacement publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2004.02.075 contributor: fullname: Shapira – ident: CR17 – year: 2023 ident: CR24 article-title: Blinded, randomized trial of sonographer versus AI cardiac function assessment publication-title: Nature doi: 10.1038/s41586-023-05947-3 contributor: fullname: He – ident: CR13 – volume: 1 start-page: 1 year: 2018 end-page: 8 ident: CR5 article-title: Fast and accurate view classification of echocardiograms using deep learning publication-title: NPJ Digit. Med. doi: 10.1038/s41746-017-0013-1 contributor: fullname: Arnaout – volume: 580 start-page: 252 year: 2020 end-page: 256 ident: CR10 article-title: Video-based AI for beat-to-beat assessment of cardiac function publication-title: Nature doi: 10.1038/s41586-020-2145-8 contributor: fullname: Ouyang – volume: 12 start-page: 145 year: 2022 ident: CR22 article-title: Machine learning model-based simple clinical information to predict decreased left atrial appendage flow velocity publication-title: J. Pers. Med. doi: 10.3390/jpm12030437 contributor: fullname: Li – volume: 7 start-page: 386 year: 2022 end-page: 395 ident: CR11 article-title: High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2021.6059 contributor: fullname: Duffy – volume: 34 start-page: 65 year: 2020 end-page: 71 ident: CR21 article-title: Artificial intelligence for the measurement of the aortic valve annulus publication-title: J. Cardiothorac. Vasc. Anesth. doi: 10.1053/j.jvca.2019.06.017 contributor: fullname: Thalappillil – volume: 1 start-page: 59 year: 2018 ident: CR6 article-title: Deep echocardiography: Data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease publication-title: NPJ Digit. Med. doi: 10.1038/s41746-018-0065-x contributor: fullname: Mofrad – volume: 24 start-page: 2168 year: 2020 end-page: 2194 ident: CR14 article-title: Mitral annulus segmentation using deep learning in 3-D transesophageal echocardiography publication-title: IEEE J. Biomed. Health Inf. contributor: fullname: Samset – volume: 1 start-page: 1 year: 2018 ident: 50735_CR5 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-017-0013-1 contributor: fullname: A Madani – volume: 580 start-page: 252 year: 2020 ident: 50735_CR10 publication-title: Nature doi: 10.1038/s41586-020-2145-8 contributor: fullname: D Ouyang – ident: 50735_CR13 doi: 10.1007/978-3-030-87240-3_44 – year: 2023 ident: 50735_CR24 publication-title: Nature doi: 10.1038/s41586-023-05947-3 contributor: fullname: B He – volume: 3 start-page: 1 year: 2020 ident: 50735_CR9 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0216-8 contributor: fullname: A Ghorbani – volume: 78 start-page: 579 year: 2004 ident: 50735_CR27 publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2004.02.075 contributor: fullname: Y Shapira – volume: 34 start-page: 65 year: 2020 ident: 50735_CR21 publication-title: J. Cardiothorac. Vasc. Anesth. doi: 10.1053/j.jvca.2019.06.017 contributor: fullname: R Thalappillil – volume: 45 start-page: 374 year: 2019 ident: 50735_CR8 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.07.024 contributor: fullname: A Østvik – ident: 50735_CR19 – volume: 32 start-page: 1 year: 2019 ident: 50735_CR25 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2018.06.004 contributor: fullname: C Mitchell – volume: 12 start-page: 5192 year: 2021 ident: 50735_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25503-9 contributor: fullname: R Shad – volume: 24 start-page: 2168 year: 2020 ident: 50735_CR14 publication-title: IEEE J. Biomed. Health Inf. contributor: fullname: BS Andreassen – volume: 5 start-page: e2147820 year: 2022 ident: 50735_CR28 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2021.47820 contributor: fullname: EJ MacKay – volume: 78 start-page: 112 year: 2021 ident: 50735_CR29 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2021.04.064 contributor: fullname: TS Metkus – volume: 73 start-page: 103613 year: 2021 ident: 50735_CR23 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103613 contributor: fullname: JW Hughes – volume: 70 start-page: 1647 year: 2017 ident: 50735_CR2 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.07.732 contributor: fullname: JU Doherty – volume: 26 start-page: 921 year: 2013 ident: 50735_CR16 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2013.07.009 contributor: fullname: RT Hahn – ident: 50735_CR17 doi: 10.1109/ICCV.2015.510 – volume: 14 start-page: 863 year: 2001 ident: 50735_CR26 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1067/mje.2001.113368 contributor: fullname: SK Nowrangi – volume: 33 start-page: 692 year: 2020 ident: 50735_CR4 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2020.03.002 contributor: fullname: A Nicoara – volume: 396 start-page: 1204 year: 2020 ident: 50735_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(20)30925-9 contributor: fullname: T Vos – volume: 144 start-page: 102646 year: 2023 ident: 50735_CR15 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102646 contributor: fullname: AA Taskén – volume: 9 start-page: 2579 year: 2008 ident: 50735_CR20 publication-title: J. Mach. Learn. Res. contributor: fullname: L van der Maaten – volume: 7 start-page: 386 year: 2022 ident: 50735_CR11 publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2021.6059 contributor: fullname: G Duffy – volume: 12 start-page: 145 year: 2022 ident: 50735_CR22 publication-title: J. Pers. Med. doi: 10.3390/jpm12030437 contributor: fullname: C Li – volume: 1 start-page: 59 year: 2018 ident: 50735_CR6 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-018-0065-x contributor: fullname: A Madani – volume: 35 start-page: 1238 year: 2022 ident: 50735_CR7 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2022.08.009 contributor: fullname: A Gearhart – volume: 157 start-page: e153 year: 2019 ident: 50735_CR3 publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2018.12.061 contributor: fullname: JU Doherty – ident: 50735_CR18 doi: 10.1109/cvpr.2018.00675 |
SSID | ssj0000529419 |
Score | 2.4834592 |
Snippet | Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex cardiac pathology and the management of cardiac surgery... Abstract Transesophageal echocardiography (TEE) imaging is a vital tool used in the evaluation of complex cardiac pathology and the management of cardiac... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 11 |
SubjectTerms | 631/114/1305 692/4019 Aortic Valve Cardiac Surgical Procedures Classification Deep Learning Echocardiography Echocardiography - methods Echocardiography, Transesophageal - methods Esophagus Heart Heart surgery Humanities and Social Sciences Humans multidisciplinary Neural networks Science Science (multidisciplinary) Ventricle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VlSr1goAWCBQUpN5aq_EjsX2EwqrqgVMr9WbF8QS4pBXdHvrvmbGz2y4PceFqO4n1TeZhzwvgUNnYouyjUDZFYXqbRBxdEj4NMnWmdSnlaIsv3dmlOb9qrx61-uKYsFIeuAB3YtRofey7JqEzfZNiMkgMTIef1CkXy8GnUY8OU6Wqt_JG-jlLptHu5JY0FWeTKS3IBNKtcBuaKBfs_5OV-Xuw5C8e06yIFk_hyWxB1h_Kzp_BFk7PYaf0lLzfg8UnxJt6bgbxtSabtF6yPkLuV0DCgx5FEnlDjkMt5aprdg_UA9vRHDiUabUPl4vPF6dnYm6WIIbWyKUY0eqIRqqovW6QBCApez22iIMm7HDEzlpEnXrbjp03bFnZ1sTeN72V0egXsD1dT_gK6hQlp6DSsImGkI-DNfTmmNToudx9BUcr4MJNqYkRsi9bu1BgDgRzyDAHV8FHxna9kutZ5wGicpipHP5F5QoOVpQJM5PdBpV9liSsdQXv19PEHuzz6Ce8vuM1krPllW0qeFkIud4J-0ytM74Ct0Hija1uzkzfv-US3JKvf1xHHz5e_Q0P-_o7Fq__BxZvYFeRZZXvgdQBbC9_3OFbsoyW8V1mgp_oXwpf priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcEG9SCgoSN7AaPxI7J0Shq4pDhRCVerPieFJ6yS7d7YF_3xnHu9XyutpO7MzYM19mxjMAb5UNNcouCGVjEKazUYTBRdHGXsbG1C7GFG1x2pycmS_n9Xk2uK1yWOVGJiZBHRc928gPVXJQcWH0D8ufgqtGsXc1l9C4C3tKaudmsHd0fPr129bKwn4sI9t8W6bS7nBFGotvlSktCArpWrgdjZQS9_8Nbf4ZNPmb5zQppPlDeJCRZPlxYv0juIPjY7g31Zb89QTmnxGXZS4KcVESNi3XrJeQ6xaQEKFHkURfn-JRp7TVJZOg7BlPcwBR4tlTOJsff_90InLRBNHXRq7FgFYHNFIF3eoKSRCS0tdDjdjrKiIO2FiLqGNn66FpDSMsW5vQtVVnZTD6GczGxYgvoIxB8lVUajbBdE0VemvozSGqoeW09wW82xDOL6fcGD75tLXzE5k9kdknMntXwBHTdjuS81qnhsXVhc_HxBs12DbQXBGd6aoYokES1_SrGxvlAk15sOGMz4dt5W-3RgFvtt10TNj30Y24uOYxkm_NK1sV8Hxi5HYl7Du1zrQFuB0W7yx1t2e8_JFScUs2A7mGJn6_2Q236_o3Lfb__xkv4b4i7JQsPeoAZuura3xF2GcdXucNfgPdsAMj priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIiQuFeUZKChI3CAQPxLbB4QosKqQ4MRKvVlxPGkrVdmy3Urtv2fGSRYtLDeudhxbnx_z2fMCeCVNqFA0oZAmhkI3Jhahs7FwsRWx1pWNMVlbfK-P5vrrcXW8A1O6oxHAy61XO84nNV-ev73-efOBNvz7wWXcvrskIcSOYlIVxG5UVdhbcFuSZGQTr28j3R9ifUunhRt9Z7Y33ZBPKYz_Nu75twnlH3rUJJ5m92Bv5JX5x2Eh7MMO9vfhzpBp8uYBzD4jXuRjioiTnJhqvmIphZzFgI4UaoqERZusU4cg1jkrDfKW2TWbE6UZfAjz2Zcfn46KMYVC0VZarIoOjQqohQzKqRLpWCQKoLoKsVVlROywNgZRxcZUXe008y1T6dC4sjEiaPUIdvtFj08gj0GwYyoV66Cbugyt0fTnEGXnOAh-Bq8n4PzFECnDJw23sn6A2RPMPsHsbQaHjO36S45ynQoWyxM_bhqvZWdcoL4iWt2UMUSNdHjTxTfW0gbq8mCaGT-tHC-TJpOOcJXBy3U1bRrWhDQ9Lq74G8E-9NKUGTweJnI9EtakGqtdBnZjijeGulnTn52mwNyCH4VsTR2_mVbD73H9G4un_wOLZ3BXEt9Kr0PyAHZXyyt8TnxpFV6kTfALShgSCg priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT90wEB5RUKVeENCFlEWp1BtYjZfEzhEePCEOnIrEzYrjSdtLQPA48O-ZcfJelRYOXL3E1ow9M_E3C8B3ZUOJsglC2RiEaWwUoXNR1LGVsTKlizF5W1xVF9fm8qa8GdPkcCzMBL_X7scDKRgOAlNakOWiS-HewQbpYMuneVbNVu8pjFgZWY9xMS9PneielKL_Jbvyf_fIfzDSpHrmW7A52oz5ycDkbVjDfgfeD1Uknz7C_AzxLh_LP_zKyQrNF6yBkCsUkLigqUhCrk2ep0OC6pwBgbxly5ldhRJ3PsH1_Pzn7EKM5RFEWxq5EB1aHdBIFXStCySRR-pddyViq4uI2GFlLaKOjS27qjZsS9nShKYuGiuD0Z9hvb_tcRfyGCQHnVKzCaapitBaQ18OUXU1J7jP4GhJOH83ZMHwCb3Wzg9k9kRmn8jsXQanTNvVSM5gnRqIsX68EN6oztaB1oroTFPEEA2SYKaf2lgpF2jJ_SVn_HitHrxKKCWJZ53Bt1U3XQhGOZoebx95jOT4eGWLDL4MjFzthFFS60ydgZuweLLVaU__53dKui35wcdVtPDx8jT83dfrtPj6tuF78EGR1ZTeeNQ-rC_uH_GArJ5FOEzH_Rl7nvqg priority: 102 providerName: Springer Nature |
Title | Deep learning for transesophageal echocardiography view classification |
URI | https://link.springer.com/article/10.1038/s41598-023-50735-8 https://www.ncbi.nlm.nih.gov/pubmed/38167849 https://www.proquest.com/docview/2908991113 https://search.proquest.com/docview/2910190270 https://pubmed.ncbi.nlm.nih.gov/PMC10761863 https://doaj.org/article/42f79ba60de84a0dbd4e762978d628b1 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcNQWIXFBvAmUVZC4gbvxI7F9pEtXFVKrClFpb1YcT9pKNLtqtwf-nrGTLCyPC5dIsZ14NGPPjD0vgHdC-xJ57ZnQwTNV68B8awKzoeGhUqUJIXlbnFbH5-rzolzsQDXGwiSn_cZfHXTfrg-6q8vkW7m6bqajn9j07GTG4-HbVHK6C7skf385o_cZvYVV3A4RMoU001uSUjGSTEhG6o8smdmSQilZ_980zD8dJX-zliYhNH8EDwftMf_YQ_kYdrB7Avf7epLfn8L8E-IqHwpBXOSkj-brKIsw1iogxkGfIrG7Jvmg9qmq82gayJuoQ0enoUSnZ3A-P_o6O2ZDoQTWlIqvWYtaelRceGllgcT8SNDLtkRsZBEQW6y0RpSh1mVbWRW1Kl0qX9ui1twr-Rz2umWHLyEPnsfwU2pWXtVV4Rut6M8-iNbGVPcZvB8R51Z9PgyX7NjSuB7NjtDsEpqdyeAw4nYzMuayTg3Lmws3UNQp0Wrraa6ARtVF8EEhsWg63oZKGE9T7o-UccMGu3Ui2SuJUcsM3m66aWtEe0fd4fIujuExUl7oIoMXPSE3kER7qTbKZmC2SLwF6nYPrcaUfntcfRl8GFfDT7j-jYtX_z_Ta3ggSJdKNz9iH_bWN3f4hnShtZ_QBljoCdw7PDo9-0Jvs2o2SfcK9DxRZpK2xg9nnw6O |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,51576,53791,53793,73745,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfgJgQviM9RGFAk3iBam6RN-oQY7HTAOCG0SXuLmsYdvNzddreH_ffYae6m4-s1SZvUTuxfbccGeC2Nr7BsvZAmeKFbE4TvbRBN6MpQ68qGEKMtpvXkRH8-rU6TwW2ZwirXMjEK6jDv2Ea-L6ODigujv1ucC64axd7VVELjJuxw5vRqBDsHh9Nv3zdWFvZj6bJJt2UKZfeXpLH4VplUgqCQqoTd0kgxcf_f0OafQZO_eU6jQhrfg7sJSebvB9bfhxs4ewC3htqSVw9h_BFxkaeiEGc5YdN8xXoJuW4BCRF6FEn0dTEedUhbnTMJ8o7xNAcQRZ49gpPx4fGHiUhFE0RX6XIlejTKoy6lV40qkAQhKX3VV4idKgJij7UxiCq0purrRjPCMpX2bVO0pvRaPYbRbD7DJ5AHX_JVVGrWXrd14Tuj6c0-yL7htPcZvFkTzi2G3Bgu-rSVdQOZHZHZRTI7m8EB03YzkvNax4b5xZlLx8Rp2ZvG01wBrW6L4INGEtf0qxtqaT1NubfmjEuHbemut0YGrzbddEzY99HOcH7JY0q-NS9NkcHuwMjNSth3aqxuMrBbLN5a6nbP7OePmIq7ZDOQrWnit-vdcL2uf9Pi6f8_4yXcnhx_PXJHn6ZfnsEdSTgqWn3kHoxWF5f4nHDQyr9Im_0XHQ0GCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfgJhAviG8KA4rEG0TXJmmTPiHGdhofOk2ISXuLmsYdvPSO3e2B_x47zd10fL0maZM6jv2r7dgAr6TxFZatF9IEL3RrgvC9DaIJXRlqXdkQYrTFvD4-1R_PqrMU_7RKYZUbmRgFdVh0bCOfyuig4sLo0z6FRZwczt4ufwiuIMWe1lRO4zrskVYs5AT2Do7mJ1-2Fhf2aemySTdnCmWnK9JefMNMKkGwSFXC7minmMT_b8jzzwDK37yoUTnN7sDthCrzdyMb3IVrONyDG2OdyZ_3YXaIuMxTgYjznHBqvmYdhVzDgAQKPYokBrsYmzqmsM6ZHHnH2JqDieL-PYDT2dHX98ciFVAQXaXLtejRKI-6lF41qkASigQAVF8hdqoIiD3WxiCq0JqqrxvNaMtU2rdN0ZrSa_UQJsNiwMeQB1_ytVRq1l63deE7o-nNPsi-4RT4GbzeEM4txzwZLvq3lXUjmR2R2UUyO5vBAdN2O5JzXMeGxcW5S0fGadmbxtNcAa1ui-CDRhLd9Nsbamk9Tbm_2RmXDt7KXbFJBi-33XRk2A_SDri45DEl36CXpsjg0biR25WwH9VY3WRgd7Z4Z6m7PcP3bzEtd8kmIVvTxG823HC1rn_T4sn_P-MF3CQ-d58_zD89hVuSIFU0AMl9mKwvLvEZQaK1f554_RdjfAo4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+transesophageal+echocardiography+view+classification&rft.jtitle=Scientific+reports&rft.au=Kirsten+R.+Steffner&rft.au=Matthew+Christensen&rft.au=George+Gill&rft.au=Michael+Bowdish&rft.date=2024-01-02&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41598-023-50735-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_42f79ba60de84a0dbd4e762978d628b1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |