Optimization of table tennis target detection algorithm guided by multi-scale feature fusion of deep learning
This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 1401 - 16 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.01.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life. |
---|---|
AbstractList | This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life. Abstract This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life. This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life.This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life. |
ArticleNumber | 1401 |
Author | Rong, Zhang |
Author_xml | – sequence: 1 givenname: Zhang surname: Rong fullname: Rong, Zhang email: 18192058698@163.com organization: Shaanxi Energy Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38228726$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAYjFARLUv_AAcUiQuXgJ9Z-4RQxaNSpV7gbDn259SrxF5sB6n8ekx2C20PtQ9-zYxGnnnZnIQYoGleY_QeIyo-ZIa5FB0irONY9Lyjz5ozghjvCCXk5N7-tDnPeYfq4EQyLF80p1QQIrakP2vm633xs_-ti4-hja4tepigLRCCz_WQRiithQJmBehpjMmXm7kdF2_BtsNtOy9T8V02uvIc6LKkui75qGcB9u0EOgUfxlfNc6enDOfHddP8-PL5-8W37ur66-XFp6vOcIZL54CSHmvE3VabLXNG2B4z2hurrRgcGeTA0CC3gJkRwlIsELZYOgED7S1zdNNcHnRt1Du1T37W6VZF7dV6EdOodCreTKB6BFxqg_lAHeuNk70WWnChreYU17lpPh609sswgzUQStLTA9GHL8HfqDH-UhhtJUGCV4V3R4UUfy6Qi5p9NjBNOkBcsiKyRikRQ6xC3z6C7uKSQv2rFcU4r4FW1Jv7lv55uYu1AsQBYFLMOYFTxpc14urQT9Wa-lsidSiRqiVSa4kUrVTyiHqn_iSJHki5gsMI6b_tJ1h_AAs_2to |
CitedBy_id | crossref_primary_10_1038_s41598_024_80056_3 crossref_primary_10_1371_journal_pone_0319558 |
Cites_doi | 10.3390/app13148290 10.3390/rs11040382 10.1038/s41592-023-01775-5 10.3390/rs13224706 10.3390/s19020281 10.1080/2150704X.2019.1706007 10.1109/TPAMI.2019.2956516 10.1021/acsnano.2c02609 10.3390/en12071204 10.3390/s20041142 10.3390/s23218693 10.3390/rs13020281 10.3390/electronics8050481 10.3390/app12199761 10.3390/rs12030389 10.3390/e22080811 10.1109/TPAMI.2020.2983686 10.1371/journal.pone.0245259 10.1007/s00521-021-06391-y 10.1049/sil2.12194 10.3390/rs12050872 10.3390/s23031726 10.3390/ijgi11030158 10.3390/rs14020420 10.3390/rs12050762 10.3390/rs11050594 10.3390/rs13101909 10.3390/s22103935 10.3390/rs14010143 10.1007/s13042-021-01496-1 10.3390/app122211534 10.1109/JAS.2020.1003099 10.1109/TITS.2022.3164407 10.1109/JBHI.2020.3042069 10.1007/s40747-022-00859-7 10.3390/s22031215 10.3390/s20154276 10.3390/app132412977 10.3390/app122312116 10.3390/s20185315 10.3390/s22103813 10.3390/rs13050847 10.1002/cpe.6517 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-51865-3 |
DatabaseName | Springer Nature Link OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_60e59ac15b3f46cf96a8a858ada53131 PMC10792085 38228726 10_1038_s41598_024_51865_3 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-fe3261a05f7ac74fc8d61436cdad8bf2b9b40b97e14c88d31801d19f8eb36d4f3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 21 18:35:45 EDT 2025 Sun Aug 24 03:07:28 EDT 2025 Wed Aug 13 03:25:37 EDT 2025 Thu Apr 03 07:00:30 EDT 2025 Tue Jul 01 00:51:03 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Fri Feb 21 02:37:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-fe3261a05f7ac74fc8d61436cdad8bf2b9b40b97e14c88d31801d19f8eb36d4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-51865-3 |
PMID | 38228726 |
PQID | 2915455322 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_60e59ac15b3f46cf96a8a858ada53131 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10792085 proquest_miscellaneous_2915990404 proquest_journals_2915455322 pubmed_primary_38228726 crossref_citationtrail_10_1038_s41598_024_51865_3 crossref_primary_10_1038_s41598_024_51865_3 springer_journals_10_1038_s41598_024_51865_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-16 |
PublicationDateYYYYMMDD | 2024-01-16 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li, Huang, Pei (CR38) 2020; 12 Xu, Zhao, Shi (CR26) 2022; 22 Yan, Wang, Zhang (CR32) 2020; 25 Wang, Wu, Ming (CR33) 2020; 20 Dong, Jiang, Tao (CR19) 2023; 9 Jiang, Fu, Qin (CR8) 2021; 13 Zhuang, Wang, Jiang (CR21) 2019; 11 Bai, Pang, Wang (CR29) 2020; 12 Yaguchi, Ono, Makihara (CR24) 2022; 12 Yang, Liu, Ren (CR34) 2020; 22 Wu, Xiao (CR42) 2022; 12 Sun, Gu, Huang (CR30) 2019; 8 Qiao (CR2) 2021; 16 Liao, Du, Guo (CR28) 2021; 14 Zhang, Li, Lv (CR22) 2020; 7 Qi, Zhang, Wang (CR20) 2022; 14 Xu, Wu (CR36) 2020; 20 Lin, Zhang, Huang (CR4) 2023; 17 Zhao, Zhen, Zhang (CR27) 2019; 12 Ding, Zhuang, Liu (CR37) 2020; 20 Wu, Dong (CR40) 2023; 13 Dong, Lin (CR25) 2020; 11 Cheng, Li, Xu (CR6) 2021; 13 Zhou, Zheng, Yan (CR3) 2022; 11 Li, Liu, An (CR1) 2023; 23 Huang, Li, Chen (CR7) 2021; 13 Wang, Sun, Cheng (CR12) 2020; 43 Francies, Ata, Mohamed (CR41) 2022; 34 Meimetis, Daramouskas, Perikos (CR17) 2023; 35 Vicente-Martínez, Márquez-Olivera, García-Aliaga (CR39) 2023; 23 Peng, Kim (CR43) 2023; 13 Neupane, Horanont, Aryal (CR15) 2022; 22 Hou, Wang, Sun (CR14) 2022; 16 Li, Ji, Qu (CR10) 2022; 23 Zhang, Xu, Song (CR11) 2021; 13 Zhang, Peng (CR35) 2019; 11 Cai, Vasconcelos (CR13) 2019; 43 Fu, Shi, Luo (CR16) 2023; 20 Li, Gao, Yang (CR18) 2023; 14 Liu, Ma, Zheng (CR23) 2022; 22 Hoang, Nguyen, Truong (CR9) 2019; 19 Shang, Zhang, Jiao (CR31) 2020; 12 Wang, Chen, Wu (CR5) 2022; 12 H Zhang (51865_CR22) 2020; 7 Z Zhao (51865_CR27) 2019; 12 Y Li (51865_CR38) 2020; 12 F Qiao (51865_CR2) 2021; 16 L Zhou (51865_CR3) 2022; 11 TM Hoang (51865_CR9) 2019; 19 T Wu (51865_CR40) 2023; 13 B Neupane (51865_CR15) 2022; 22 W Li (51865_CR1) 2023; 23 D Meimetis (51865_CR17) 2023; 35 Y Dong (51865_CR19) 2023; 9 T Bai (51865_CR29) 2020; 12 JA Vicente-Martínez (51865_CR39) 2023; 23 S Fu (51865_CR16) 2023; 20 D Wu (51865_CR42) 2022; 12 Y Hou (51865_CR14) 2022; 16 Z Dong (51865_CR25) 2020; 11 Z Cai (51865_CR13) 2019; 43 ML Francies (51865_CR41) 2022; 34 K Wang (51865_CR5) 2022; 12 X Wang (51865_CR33) 2020; 20 J Jiang (51865_CR8) 2021; 13 J Wang (51865_CR12) 2020; 43 J Peng (51865_CR43) 2023; 13 Y Lin (51865_CR4) 2023; 17 X Sun (51865_CR30) 2019; 8 G Li (51865_CR10) 2022; 23 F Li (51865_CR18) 2023; 14 L Zhang (51865_CR35) 2019; 11 A Yaguchi (51865_CR24) 2022; 12 M Liu (51865_CR23) 2022; 22 F Ding (51865_CR37) 2020; 20 R Shang (51865_CR31) 2020; 12 S Zhuang (51865_CR21) 2019; 11 D Yang (51865_CR34) 2020; 22 B Cheng (51865_CR6) 2021; 13 W Huang (51865_CR7) 2021; 13 D Xu (51865_CR36) 2020; 20 M Zhang (51865_CR11) 2021; 13 L Liao (51865_CR28) 2021; 14 X Xu (51865_CR26) 2022; 22 Q Yan (51865_CR32) 2020; 25 G Qi (51865_CR20) 2022; 14 |
References_xml | – volume: 13 start-page: 8290 issue: 14 year: 2023 ident: CR43 article-title: Psychological training method for table tennis players using deep learning publication-title: Appl. Sci. doi: 10.3390/app13148290 – volume: 11 start-page: 382 issue: 4 year: 2019 ident: CR35 article-title: Infrared small target detection based on partial sum of the tensor nuclear norm publication-title: Remote Sens. doi: 10.3390/rs11040382 – volume: 20 start-page: 459 issue: 3 year: 2023 end-page: 468 ident: CR16 article-title: Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging publication-title: Nat. Methods doi: 10.1038/s41592-023-01775-5 – volume: 13 start-page: 4706 issue: 22 year: 2021 ident: CR11 article-title: Lightweight underwater object detection based on yolo v4 and multi-scale attentional feature fusion publication-title: Remote Sens. doi: 10.3390/rs13224706 – volume: 19 start-page: 281 issue: 2 year: 2019 ident: CR9 article-title: Deep retinanet-based detection and classification of road markings by visible light camera sensors publication-title: Sensors doi: 10.3390/s19020281 – volume: 11 start-page: 215 issue: 3 year: 2020 end-page: 224 ident: CR25 article-title: BMF-CNN: an object detection method based on multi-scale feature fusion in VHR remote sensing images publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2019.1706007 – volume: 43 start-page: 1483 issue: 5 year: 2019 end-page: 1498 ident: CR13 article-title: Cascade R-CNN: High quality object detection and instance segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2956516 – volume: 16 start-page: 8358 issue: 5 year: 2022 end-page: 8369 ident: CR14 article-title: Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition publication-title: ACS Nano doi: 10.1021/acsnano.2c02609 – volume: 12 start-page: 1204 issue: 7 year: 2019 ident: CR27 article-title: Insulator detection method in inspection image based on improved faster R-CNN publication-title: Energies doi: 10.3390/en12071204 – volume: 20 start-page: 1142 issue: 4 year: 2020 ident: CR33 article-title: Remote sensing imagery super resolution based on adaptive multi-scale feature fusion network publication-title: Sensors doi: 10.3390/s20041142 – volume: 23 start-page: 8693 issue: 21 year: 2023 ident: CR39 article-title: Adaptation of YOLOv7 and YOLOv7_tiny for soccer-ball multi-detection with DeepSORT for tracking by semi-supervised system publication-title: Sensors doi: 10.3390/s23218693 – volume: 13 start-page: 281 issue: 2 year: 2021 ident: CR6 article-title: Structured object-level relational reasoning CNN-based target detection algorithm in a remote sensing image publication-title: Remote Sens. doi: 10.3390/rs13020281 – volume: 8 start-page: 481 issue: 5 year: 2019 ident: CR30 article-title: Surface defects recognition of wheel hub based on improved faster R-CNN publication-title: Electronics doi: 10.3390/electronics8050481 – volume: 12 start-page: 9761 issue: 19 year: 2022 ident: CR24 article-title: Multi-scale feature fusion for interior style detection publication-title: Appl. Sci. doi: 10.3390/app12199761 – volume: 12 start-page: 389 issue: 3 year: 2020 ident: CR38 article-title: RADet: Refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images publication-title: Remote Sens. doi: 10.3390/rs12030389 – volume: 22 start-page: 811 issue: 8 year: 2020 ident: CR34 article-title: A multi-scale feature fusion method based on u-net for retinal vessel segmentation publication-title: Entropy doi: 10.3390/e22080811 – volume: 43 start-page: 3349 issue: 10 year: 2020 end-page: 3364 ident: CR12 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983686 – volume: 16 issue: 3 year: 2021 ident: CR2 article-title: Application of deep learning in automatic detection of technical and tactical indicators of table tennis publication-title: PLoS One doi: 10.1371/journal.pone.0245259 – volume: 35 start-page: 89 issue: 1 year: 2023 end-page: 118 ident: CR17 article-title: Real-time multiple object tracking using deep learning methods publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06391-y – volume: 17 issue: 3 year: 2023 ident: CR4 article-title: Multiscale feature cross-layer fusion remote sensing target detection method publication-title: IET Signal Process. doi: 10.1049/sil2.12194 – volume: 12 start-page: 872 issue: 5 year: 2020 ident: CR31 article-title: Multi-scale adaptive feature fusion network for semantic segmentation in remote sensing images publication-title: Remote Sens. doi: 10.3390/rs12050872 – volume: 23 start-page: 1726 issue: 3 year: 2023 ident: CR1 article-title: Table tennis track detection based on temporal feature multiplexing network publication-title: Sensors doi: 10.3390/s23031726 – volume: 11 start-page: 158 issue: 3 year: 2022 ident: CR3 article-title: RepDarkNet: A multi-branched detector for small-target detection in remote sensing images publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi11030158 – volume: 14 start-page: 420 issue: 2 year: 2022 ident: CR20 article-title: Small object detection method based on adaptive spatial parallel convolution and fast multi-scale fusion publication-title: Remote Sens. doi: 10.3390/rs14020420 – volume: 12 start-page: 762 issue: 5 year: 2020 ident: CR29 article-title: An optimized faster R-CNN method based on DRNet and RoI align for building detection in remote sensing images publication-title: Remote Sens. doi: 10.3390/rs12050762 – volume: 11 start-page: 594 issue: 5 year: 2019 ident: CR21 article-title: A single shot framework with multi-scale feature fusion for geospatial object detection publication-title: Remote Sens. doi: 10.3390/rs11050594 – volume: 13 start-page: 1909 issue: 10 year: 2021 ident: CR8 article-title: High-speed lightweight ship detection algorithm based on YOLO-v4 for three-channels RGB SAR image publication-title: Remote Sens. doi: 10.3390/rs13101909 – volume: 22 start-page: 3935 issue: 10 year: 2022 ident: CR23 article-title: 3D object detection based on attention and multi-scale feature fusion publication-title: Sensors doi: 10.3390/s22103935 – volume: 14 start-page: 143 issue: 1 year: 2021 ident: CR28 article-title: Semi-supervised SAR target detection based on an improved faster R-CNN publication-title: Remote Sens. doi: 10.3390/rs14010143 – volume: 14 start-page: 387 issue: 2 year: 2023 end-page: 394 ident: CR18 article-title: Small target deep convolution recognition algorithm based on improved YOLOv4 publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-021-01496-1 – volume: 12 start-page: 11534 issue: 22 year: 2022 ident: CR5 article-title: Improved matching algorithm with anchor argument for rotate target detection publication-title: Appl. Sci. doi: 10.3390/app122211534 – volume: 7 start-page: 790 issue: 3 year: 2020 end-page: 799 ident: CR22 article-title: A real-time and ubiquitous network attack detection based on deep belief network and support vector machine publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003099 – volume: 23 start-page: 17729 issue: 10 year: 2022 end-page: 17743 ident: CR10 article-title: Stepwise domain adaptation (SDA) for object detection in autonomous vehicles using an adaptive CenterNet publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2022.3164407 – volume: 25 start-page: 2629 issue: 7 year: 2020 end-page: 2642 ident: CR32 article-title: Attention-guided deep neural network with multi-scale feature fusion for liver vessel segmentation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3042069 – volume: 9 start-page: 1347 issue: 2 year: 2023 end-page: 1362 ident: CR19 article-title: Multiple spatial residual network for object detection publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00859-7 – volume: 22 start-page: 1215 issue: 3 year: 2022 ident: CR26 article-title: Crack detection and comparison study based on faster R-CNN and mask R-CNN publication-title: Sensors doi: 10.3390/s22031215 – volume: 20 start-page: 4276 issue: 15 year: 2020 ident: CR36 article-title: Improved YOLO-V3 with DenseNet for multi-scale remote sensing target detection publication-title: Sensors doi: 10.3390/s20154276 – volume: 13 start-page: 12977 issue: 24 year: 2023 ident: CR40 article-title: YOLO-SE: Improved YOLOv8 for remote sensing object detection and recognition publication-title: Appl. Sci. doi: 10.3390/app132412977 – volume: 12 start-page: 12116 issue: 23 year: 2022 ident: CR42 article-title: Deep learning-based algorithm for recognizing tennis balls publication-title: Appl. Sci. doi: 10.3390/app122312116 – volume: 20 start-page: 5315 issue: 18 year: 2020 ident: CR37 article-title: Detecting defects on solid wood panels based on an improved SSD algorithm publication-title: Sensors doi: 10.3390/s20185315 – volume: 22 start-page: 3813 issue: 10 year: 2022 ident: CR15 article-title: Real-time vehicle classification and tracking using a transfer learning-improved deep learning network publication-title: Sensors doi: 10.3390/s22103813 – volume: 13 start-page: 847 issue: 5 year: 2021 ident: CR7 article-title: CF2PN: A cross-scale feature fusion pyramid network based remote sensing target detection publication-title: Remote Sens. doi: 10.3390/rs13050847 – volume: 34 issue: 1 year: 2022 ident: CR41 article-title: A robust multiclass 3D object recognition based on modern YOLO deep learning algorithms publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.6517 – volume: 8 start-page: 481 issue: 5 year: 2019 ident: 51865_CR30 publication-title: Electronics doi: 10.3390/electronics8050481 – volume: 19 start-page: 281 issue: 2 year: 2019 ident: 51865_CR9 publication-title: Sensors doi: 10.3390/s19020281 – volume: 14 start-page: 420 issue: 2 year: 2022 ident: 51865_CR20 publication-title: Remote Sens. doi: 10.3390/rs14020420 – volume: 11 start-page: 382 issue: 4 year: 2019 ident: 51865_CR35 publication-title: Remote Sens. doi: 10.3390/rs11040382 – volume: 43 start-page: 1483 issue: 5 year: 2019 ident: 51865_CR13 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2956516 – volume: 12 start-page: 9761 issue: 19 year: 2022 ident: 51865_CR24 publication-title: Appl. Sci. doi: 10.3390/app12199761 – volume: 43 start-page: 3349 issue: 10 year: 2020 ident: 51865_CR12 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983686 – volume: 23 start-page: 1726 issue: 3 year: 2023 ident: 51865_CR1 publication-title: Sensors doi: 10.3390/s23031726 – volume: 13 start-page: 281 issue: 2 year: 2021 ident: 51865_CR6 publication-title: Remote Sens. doi: 10.3390/rs13020281 – volume: 9 start-page: 1347 issue: 2 year: 2023 ident: 51865_CR19 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00859-7 – volume: 11 start-page: 215 issue: 3 year: 2020 ident: 51865_CR25 publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2019.1706007 – volume: 12 start-page: 12116 issue: 23 year: 2022 ident: 51865_CR42 publication-title: Appl. Sci. doi: 10.3390/app122312116 – volume: 14 start-page: 387 issue: 2 year: 2023 ident: 51865_CR18 publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-021-01496-1 – volume: 11 start-page: 594 issue: 5 year: 2019 ident: 51865_CR21 publication-title: Remote Sens. doi: 10.3390/rs11050594 – volume: 13 start-page: 12977 issue: 24 year: 2023 ident: 51865_CR40 publication-title: Appl. Sci. doi: 10.3390/app132412977 – volume: 14 start-page: 143 issue: 1 year: 2021 ident: 51865_CR28 publication-title: Remote Sens. doi: 10.3390/rs14010143 – volume: 35 start-page: 89 issue: 1 year: 2023 ident: 51865_CR17 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06391-y – volume: 22 start-page: 3935 issue: 10 year: 2022 ident: 51865_CR23 publication-title: Sensors doi: 10.3390/s22103935 – volume: 23 start-page: 8693 issue: 21 year: 2023 ident: 51865_CR39 publication-title: Sensors doi: 10.3390/s23218693 – volume: 34 issue: 1 year: 2022 ident: 51865_CR41 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.6517 – volume: 12 start-page: 11534 issue: 22 year: 2022 ident: 51865_CR5 publication-title: Appl. Sci. doi: 10.3390/app122211534 – volume: 11 start-page: 158 issue: 3 year: 2022 ident: 51865_CR3 publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi11030158 – volume: 20 start-page: 1142 issue: 4 year: 2020 ident: 51865_CR33 publication-title: Sensors doi: 10.3390/s20041142 – volume: 20 start-page: 459 issue: 3 year: 2023 ident: 51865_CR16 publication-title: Nat. Methods doi: 10.1038/s41592-023-01775-5 – volume: 13 start-page: 8290 issue: 14 year: 2023 ident: 51865_CR43 publication-title: Appl. Sci. doi: 10.3390/app13148290 – volume: 17 issue: 3 year: 2023 ident: 51865_CR4 publication-title: IET Signal Process. doi: 10.1049/sil2.12194 – volume: 13 start-page: 1909 issue: 10 year: 2021 ident: 51865_CR8 publication-title: Remote Sens. doi: 10.3390/rs13101909 – volume: 22 start-page: 3813 issue: 10 year: 2022 ident: 51865_CR15 publication-title: Sensors doi: 10.3390/s22103813 – volume: 13 start-page: 4706 issue: 22 year: 2021 ident: 51865_CR11 publication-title: Remote Sens. doi: 10.3390/rs13224706 – volume: 13 start-page: 847 issue: 5 year: 2021 ident: 51865_CR7 publication-title: Remote Sens. doi: 10.3390/rs13050847 – volume: 22 start-page: 811 issue: 8 year: 2020 ident: 51865_CR34 publication-title: Entropy doi: 10.3390/e22080811 – volume: 16 issue: 3 year: 2021 ident: 51865_CR2 publication-title: PLoS One doi: 10.1371/journal.pone.0245259 – volume: 12 start-page: 762 issue: 5 year: 2020 ident: 51865_CR29 publication-title: Remote Sens. doi: 10.3390/rs12050762 – volume: 7 start-page: 790 issue: 3 year: 2020 ident: 51865_CR22 publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003099 – volume: 12 start-page: 872 issue: 5 year: 2020 ident: 51865_CR31 publication-title: Remote Sens. doi: 10.3390/rs12050872 – volume: 12 start-page: 1204 issue: 7 year: 2019 ident: 51865_CR27 publication-title: Energies doi: 10.3390/en12071204 – volume: 25 start-page: 2629 issue: 7 year: 2020 ident: 51865_CR32 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3042069 – volume: 22 start-page: 1215 issue: 3 year: 2022 ident: 51865_CR26 publication-title: Sensors doi: 10.3390/s22031215 – volume: 23 start-page: 17729 issue: 10 year: 2022 ident: 51865_CR10 publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2022.3164407 – volume: 16 start-page: 8358 issue: 5 year: 2022 ident: 51865_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.2c02609 – volume: 20 start-page: 4276 issue: 15 year: 2020 ident: 51865_CR36 publication-title: Sensors doi: 10.3390/s20154276 – volume: 20 start-page: 5315 issue: 18 year: 2020 ident: 51865_CR37 publication-title: Sensors doi: 10.3390/s20185315 – volume: 12 start-page: 389 issue: 3 year: 2020 ident: 51865_CR38 publication-title: Remote Sens. doi: 10.3390/rs12030389 |
SSID | ssj0000529419 |
Score | 2.4417317 |
Snippet | This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the... Abstract This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1401 |
SubjectTerms | 639/705/117 639/705/258 Accuracy Algorithms Athletes Deep learning Humanities and Social Sciences multidisciplinary Neural networks Science Science (multidisciplinary) Table tennis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbhu10kk5yVHFZBPXiwt5COo_ZgZ2eZbvnsP_eymPGHZ8Xr52kKeqRqiJVXyH02oNPCOBJiPROEt4PA9EuOKIc4-0gdScymM7nL_3JKf90Js5ujPpKNWEFHrgw7qhvg9DWUTGwyHsXdW-VVUJZb0F9cgd1Bz7vRjJVUL07zamuXTItU0cTeKrUTdZxIqjqBWF7nigD9v8uyvy1WPKnF9PsiI7vobs1gsTvCuX30a0wPkC3y0zJ64do9RUugVXtrsTriOfUHIXnVMUy4VL4jX2YcwnWiO3FYn21nM9XeLFZ-uDxcI1zkSGZQHoBx5CRP3HcTPV_PoRLXIdNLB6h0-OP3z6ckDpTgTjB6UxigHiN2lZEaZ3k0SkPDpr1zluvhtgNegAZaRkod0p5sPiWeqqjgqS79zyyx-hgXI_hKcLCRaUjk5Z6z5WTVovgo_Qi5Tgg4wbRLX-Nq4Djae7FhckP30yZIhMDMjFZJgbOvNmduSxwG3_d_T6JbbczQWXnD6BApiqQ-ZcCNehwK3RT7XcynU6hpYDbrkGvdstgeek5xY5hvSl7wJfzljfoSdGRHSUM4i4lu75Bak979kjdXxmX5xndG_JxnQanNujtVtF-0PVnXjz7H7x4ju50yULaNDz8EB3MV5vwAoKueXiZ7es7EGkotA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbxQhFCdaY-LF-O1oNZh4U9JhgAFORo1NY6JebLI3wvCxbdKdWTuzh_73Phh2m_Wj1wEmwO893oP3hdBbDzIhgCQh0jtJeNt1RLvgiHKM153UjcjJdL59b09O-deFWJQHt7G4VW7PxHxQ-8GlN_KjRidhL4D-Pqx_kVQ1KllXSwmN2-hOSl2WXLrkQu7eWJIVi1NdYmVqpo5GkFcppqzhRFDVCsL25FFO2_8vXfNvl8k_7KZZHB0_QPeLHok_zsA_RLdC_wjdnStLXj1Gqx9wFKxKjCUeIp5SiBSeki_LiGf3b-zDlB2xemwvlrDW6WyFl5tzHzzurnB2NSQjYBhwDDn_J46bsfzPh7DGpeTE8gk6Pf7y8_MJKZUViBOcTiQG0NqorUWU1kkenfIgplnrvPWqi02nO0BKy0C5U8oD39fUUx0VXL1bzyN7ig76oQ_PERYuKh2ZtNR7rpy0WgQfpRfppgNIV4hu99e4knY8Vb-4MNn8zZSZMTGAicmYGBjzbjdmPSfduLH3pwTbrmdKmJ0_DJdLU_jPtHUQ2joqOhZ566JurbJKKOstnEKMVuhwC7opXDyaa5qr0JtdM_BfMqrYPgybuQ9IdF7zCj2baWQ3Ewbal5JNWyG1Rz17U91v6c_Pco5vuJXrVD61Qu-3hHY9r__vxYubl_ES3WsS7depOPghOpguN-EVKFVT9zpzzm_HqiAX priority: 102 providerName: ProQuest – databaseName: Springer Nature Link OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxLtpCzISN7CI4_cRVlQVEnChUm-R48d2pW5SbbKH_nvGTrJooSBxTcbRyN-MZ5x5IfTWg00IYEmI8k4RLpuGGBcc0Y7xslGmErmZztdv8vyCf7kUlweommthctJ-bmmZj-k5O-xDD4YmFYNVnAiqpSDsHrqfWrcnqV7Ixe6_SopccWqm-piS6TuW7tmg3Kr_Lv_yzzTJ32Kl2QSdPUaPJt8Rfxy5fYIOQvsUPRinSd4-Q-vvoP7rqa4SdxEPqSwKDyl_pcdjyjf2YcjJVy2218tusxqu1ni5XfngcXOLc3oh6QG3gGPIG4Tjtp--50O4wdOYieVzdHH2-cfinEzTFIgTnA4kBvDUqC1FVNYpHp32YJqZdN563cSqMQ2gY1Sg3GntQddL6qmJGq7b0vPIXqDDtmvDEcLCRW0iU5Z6z7VT1ojgo_Ii3W4A3QLReX9rN7UaTxMvrusc8ma6HjGpAZM6Y1LDmne7NTdjo41_Un9KsO0oU5Ps_KDbLOtJaGpZBmGso6JhkUsXjbTaaqGtt3DyMFqg0xn0etLcvq5McioFnHMFerN7DTqXAim2Dd12pAErzkteoJejjOw4YeBxaVXJAuk96dljdf9Nu7rKfb3hJm7SyNQCvZ8F7Rdff9-L4_8jP0EPq6QLZRoQfooOh802vALHamheZ036CT57Hfk priority: 102 providerName: Springer Nature |
Title | Optimization of table tennis target detection algorithm guided by multi-scale feature fusion of deep learning |
URI | https://link.springer.com/article/10.1038/s41598-024-51865-3 https://www.ncbi.nlm.nih.gov/pubmed/38228726 https://www.proquest.com/docview/2915455322 https://www.proquest.com/docview/2915990404 https://pubmed.ncbi.nlm.nih.gov/PMC10792085 https://doaj.org/article/60e59ac15b3f46cf96a8a858ada53131 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2IdBeEJ8jMCoj8QaBOLFj-wGhrto0VdpAQKW9RY4_ukptOtpUov89ZycpFDqeIjl2ZPnu_DvHd79D6I0BTLCAJDE3msc0L8tYaqtjoTOalFymLJDpXF7lFyM6vGbXe6grd9Qu4HLn0c7Xkxotpu9__lh_AoP_2KSMiw9LACGfKJbSmBGRszjbR4eATNwb6mXr7jdc36mkRLa5M7uHHqH7GYCm4J5u4Q-oCoz-u9zQf6Mp_7pSDUh1_hA9aF1M3G904hHas9VjdK8pOrl-gmafYZeYtemXeO5w7bOncO3DXJa4iQzHxtYhRqvCajqeLyb1zQyPVxNjDS7XOEQhxksQr8XOBmpQ7FbL9nvG2lvcVqMYP0Wj87Pvg4u4LboQa0ZJHTsLDh1RCXNcaU6dFgYQPMu1UUaULi1lCUKU3BKqhTCwJSTEEOkEnMpzQ132DB1U88o-R5hpJ6TLuCLGUKG5kswaxw3zhyBQggiRbn0L3TKS-8IY0yLcjGeiaMRTgHiKIJ4CxrzdjLlt-Dj-2_vUi23T03Nph4b5Yly0plnkiWVSacLKzNFcO5kroQQTyijYoDISoZNO6EWnn0Uqve_JYDuM0OvNazBNf9-iKjtfNX0A7GlCI3Tc6MhmJp2ORUhsac_WVLffVJObQP8NB3bpK6tG6F2naL_ndfdavLhzDi_RUeotIPElw0_QQb1Y2VfgatVlD-3za95Dh_3-8NsQnqdnV1--QusgH_TC74tesLBfkWMpEA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKKwSXip1AASPBCazGiZ3YB4QotJrSdkColXpzHS_TSp3MtMkIzZ_iN_KcZaph6a3XxI4cv-8t9tsQemNBJzjQJCS3JicsKwoijTNEmJTFRS4T3hTTORhmgyP29Zgfr6BffS5MCKvsZWIjqO3EhDvyzUQGZc8Bfx-nFyR0jQre1b6FRguLPTf_CUe26sPuF6Dv2yTZ2T78PCBdVwFiOKM18Q4sFqpj7nNtcuaNsKCi0sxYbUXhk0IWsEqZO8qMEBYwH1NLpRdw7Mws8yl89xZagxkxCIK1re3h9x-LW53gN2NUdtk5cSo2K9CQIYstYYRTkXGSLmnAplHAv6zbv4M0__DUNgpw5x5a7yxX_KmF2n204soH6Hbby3L-EI2_gfAZd1mdeOJxHZKycB2iZyrcBpxj6-om9KvE-nwEu1ufjvFodmadxcUcN8GNpALUOOxdU3EU-1nVfc86N8Vdk4vRI3R0I7v-GK2Wk9I9RZgbL6RPc02tZcLkWnJnfW55OFsBtiJE-_1Vpit0HvptnKvG4Z4K1dJEAU1UQxMFc94t5kzbMh_Xjt4KZFuMDCW6mweTy5HqOF5lseNSG8qL1LPMeJlpoQUX2mqQeymN0EZPdNXJjUpdoTxCrxevgeODG0eXbjJrx4ANwWIWoSctRhYrScHeE3mSRUgsoWdpqctvyrPTpqo4jYEzwQCP0PseaFfr-v9ePLv-N16hO4PDg321vzvce47uJoEP4tCafAOt1pcz9wJMurp42fERRic3zbq_AXnzX0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYidQwEhwgmji2I7tA0JAGbUUCgcq9ZY6XqaVOpmhyQjNX-PX8ewkUw1Lb73GjuX4fW9x3obQCws6wYEmSYU1ImVFVaXKOJNKQ1lWCZXzWEzny36xc8A-HfLDDfRryIUJYZWDTIyC2s5M-Ec-ylVQ9hzwN_J9WMS37fHb-Y80dJAKntahnUYHkT23_AnXt-bN7jbQ-mWejz9-_7CT9h0GUsMZaVPvwHohOuNeaCOYN9KCuqKFsdrKyueVqmDHSjjCjJQW8J8RS5SXcAUtLPMU1r2CrgrKSeAxcShW_3eCB40R1efpZFSOGtCVIZ8tZyknsuApXdOFsWXAv-zcv8M1__DZRlU4voVu9jYsfteB7jbacPUddK3rarm8i6ZfQQxN-_xOPPO4DelZuA1xNA3uQs-xdW0MAquxPp3A2bbHUzxZnFhncbXEMcwxbQA_DnsXa49iv2j69axzc9y3u5jcQweXcub30WY9q91DhLnxUnkqNLGWSSO04s56YXm4ZQHKEkSG8y1NX_I8dN44LaPrncqyo0kJNCkjTUp459XqnXlX8OPC2e8D2VYzQ7Hu-GB2Nil73i-LzHGlDeEV9awwXhVaasmlthokICUJ2hqIXvYSpCnP8Z6g56th4P3g0NG1my26OWBNsIwl6EGHkdVOKFh-UuRFguQaeta2uj5SnxzH-uIkAx4FUzxBrwegne_r_2fx6OLPeIauA8OWn3f39x6jG3lggyz0KN9Cm-3Zwj0B266tnkYmwujosrn2N9qcYhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+table+tennis+target+detection+algorithm+guided+by+multi-scale+feature+fusion+of+deep+learning&rft.jtitle=Scientific+reports&rft.au=Rong%2C+Zhang&rft.date=2024-01-16&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1401&rft_id=info:doi/10.1038%2Fs41598-024-51865-3&rft_id=info%3Apmid%2F38228726&rft.externalDocID=38228726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |