Optimization of table tennis target detection algorithm guided by multi-scale feature fusion of deep learning

This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 1401 - 16
Main Author Rong, Zhang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life.
AbstractList This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life.
Abstract This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life.
This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life.This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the detection accuracy of the ball in table tennis competition, optimize the training process of athletes, and improve the technical level. In this paper, DL technology is used to improve the accuracy of table tennis TD through MFF guidance. Initially, based on the FAST Region-based Convolutional Neural Network (FAST R-CNN), the TD is carried out in the table tennis match. Then, through the method of MFF guidance, different levels of feature information are fused, which improves the accuracy of TD. Through the experimental verification on the test set, it is found that the mean Average Precision (mAP) value of the target detection algorithm (TDA) proposed here reaches 87.3%, which is obviously superior to other TDAs and has higher robustness. The DL TDA combined with the proposed MFF can be applied to various detection fields and can help the application of TD in real life.
ArticleNumber 1401
Author Rong, Zhang
Author_xml – sequence: 1
  givenname: Zhang
  surname: Rong
  fullname: Rong, Zhang
  email: 18192058698@163.com
  organization: Shaanxi Energy Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38228726$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAYjFARLUv_AAcUiQuXgJ9Z-4RQxaNSpV7gbDn259SrxF5sB6n8ekx2C20PtQ9-zYxGnnnZnIQYoGleY_QeIyo-ZIa5FB0irONY9Lyjz5ozghjvCCXk5N7-tDnPeYfq4EQyLF80p1QQIrakP2vm633xs_-ti4-hja4tepigLRCCz_WQRiithQJmBehpjMmXm7kdF2_BtsNtOy9T8V02uvIc6LKkui75qGcB9u0EOgUfxlfNc6enDOfHddP8-PL5-8W37ur66-XFp6vOcIZL54CSHmvE3VabLXNG2B4z2hurrRgcGeTA0CC3gJkRwlIsELZYOgED7S1zdNNcHnRt1Du1T37W6VZF7dV6EdOodCreTKB6BFxqg_lAHeuNk70WWnChreYU17lpPh609sswgzUQStLTA9GHL8HfqDH-UhhtJUGCV4V3R4UUfy6Qi5p9NjBNOkBcsiKyRikRQ6xC3z6C7uKSQv2rFcU4r4FW1Jv7lv55uYu1AsQBYFLMOYFTxpc14urQT9Wa-lsidSiRqiVSa4kUrVTyiHqn_iSJHki5gsMI6b_tJ1h_AAs_2to
CitedBy_id crossref_primary_10_1038_s41598_024_80056_3
crossref_primary_10_1371_journal_pone_0319558
Cites_doi 10.3390/app13148290
10.3390/rs11040382
10.1038/s41592-023-01775-5
10.3390/rs13224706
10.3390/s19020281
10.1080/2150704X.2019.1706007
10.1109/TPAMI.2019.2956516
10.1021/acsnano.2c02609
10.3390/en12071204
10.3390/s20041142
10.3390/s23218693
10.3390/rs13020281
10.3390/electronics8050481
10.3390/app12199761
10.3390/rs12030389
10.3390/e22080811
10.1109/TPAMI.2020.2983686
10.1371/journal.pone.0245259
10.1007/s00521-021-06391-y
10.1049/sil2.12194
10.3390/rs12050872
10.3390/s23031726
10.3390/ijgi11030158
10.3390/rs14020420
10.3390/rs12050762
10.3390/rs11050594
10.3390/rs13101909
10.3390/s22103935
10.3390/rs14010143
10.1007/s13042-021-01496-1
10.3390/app122211534
10.1109/JAS.2020.1003099
10.1109/TITS.2022.3164407
10.1109/JBHI.2020.3042069
10.1007/s40747-022-00859-7
10.3390/s22031215
10.3390/s20154276
10.3390/app132412977
10.3390/app122312116
10.3390/s20185315
10.3390/s22103813
10.3390/rs13050847
10.1002/cpe.6517
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-51865-3
DatabaseName Springer Nature Link OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_60e59ac15b3f46cf96a8a858ada53131
PMC10792085
38228726
10_1038_s41598_024_51865_3
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-fe3261a05f7ac74fc8d61436cdad8bf2b9b40b97e14c88d31801d19f8eb36d4f3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:50 EDT 2025
Thu Aug 21 18:35:45 EDT 2025
Sun Aug 24 03:07:28 EDT 2025
Wed Aug 13 03:25:37 EDT 2025
Thu Apr 03 07:00:30 EDT 2025
Tue Jul 01 00:51:03 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Fri Feb 21 02:37:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-fe3261a05f7ac74fc8d61436cdad8bf2b9b40b97e14c88d31801d19f8eb36d4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-51865-3
PMID 38228726
PQID 2915455322
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_60e59ac15b3f46cf96a8a858ada53131
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10792085
proquest_miscellaneous_2915990404
proquest_journals_2915455322
pubmed_primary_38228726
crossref_citationtrail_10_1038_s41598_024_51865_3
crossref_primary_10_1038_s41598_024_51865_3
springer_journals_10_1038_s41598_024_51865_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-16
PublicationDateYYYYMMDD 2024-01-16
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li, Huang, Pei (CR38) 2020; 12
Xu, Zhao, Shi (CR26) 2022; 22
Yan, Wang, Zhang (CR32) 2020; 25
Wang, Wu, Ming (CR33) 2020; 20
Dong, Jiang, Tao (CR19) 2023; 9
Jiang, Fu, Qin (CR8) 2021; 13
Zhuang, Wang, Jiang (CR21) 2019; 11
Bai, Pang, Wang (CR29) 2020; 12
Yaguchi, Ono, Makihara (CR24) 2022; 12
Yang, Liu, Ren (CR34) 2020; 22
Wu, Xiao (CR42) 2022; 12
Sun, Gu, Huang (CR30) 2019; 8
Qiao (CR2) 2021; 16
Liao, Du, Guo (CR28) 2021; 14
Zhang, Li, Lv (CR22) 2020; 7
Qi, Zhang, Wang (CR20) 2022; 14
Xu, Wu (CR36) 2020; 20
Lin, Zhang, Huang (CR4) 2023; 17
Zhao, Zhen, Zhang (CR27) 2019; 12
Ding, Zhuang, Liu (CR37) 2020; 20
Wu, Dong (CR40) 2023; 13
Dong, Lin (CR25) 2020; 11
Cheng, Li, Xu (CR6) 2021; 13
Zhou, Zheng, Yan (CR3) 2022; 11
Li, Liu, An (CR1) 2023; 23
Huang, Li, Chen (CR7) 2021; 13
Wang, Sun, Cheng (CR12) 2020; 43
Francies, Ata, Mohamed (CR41) 2022; 34
Meimetis, Daramouskas, Perikos (CR17) 2023; 35
Vicente-Martínez, Márquez-Olivera, García-Aliaga (CR39) 2023; 23
Peng, Kim (CR43) 2023; 13
Neupane, Horanont, Aryal (CR15) 2022; 22
Hou, Wang, Sun (CR14) 2022; 16
Li, Ji, Qu (CR10) 2022; 23
Zhang, Xu, Song (CR11) 2021; 13
Zhang, Peng (CR35) 2019; 11
Cai, Vasconcelos (CR13) 2019; 43
Fu, Shi, Luo (CR16) 2023; 20
Li, Gao, Yang (CR18) 2023; 14
Liu, Ma, Zheng (CR23) 2022; 22
Hoang, Nguyen, Truong (CR9) 2019; 19
Shang, Zhang, Jiao (CR31) 2020; 12
Wang, Chen, Wu (CR5) 2022; 12
H Zhang (51865_CR22) 2020; 7
Z Zhao (51865_CR27) 2019; 12
Y Li (51865_CR38) 2020; 12
F Qiao (51865_CR2) 2021; 16
L Zhou (51865_CR3) 2022; 11
TM Hoang (51865_CR9) 2019; 19
T Wu (51865_CR40) 2023; 13
B Neupane (51865_CR15) 2022; 22
W Li (51865_CR1) 2023; 23
D Meimetis (51865_CR17) 2023; 35
Y Dong (51865_CR19) 2023; 9
T Bai (51865_CR29) 2020; 12
JA Vicente-Martínez (51865_CR39) 2023; 23
S Fu (51865_CR16) 2023; 20
D Wu (51865_CR42) 2022; 12
Y Hou (51865_CR14) 2022; 16
Z Dong (51865_CR25) 2020; 11
Z Cai (51865_CR13) 2019; 43
ML Francies (51865_CR41) 2022; 34
K Wang (51865_CR5) 2022; 12
X Wang (51865_CR33) 2020; 20
J Jiang (51865_CR8) 2021; 13
J Wang (51865_CR12) 2020; 43
J Peng (51865_CR43) 2023; 13
Y Lin (51865_CR4) 2023; 17
X Sun (51865_CR30) 2019; 8
G Li (51865_CR10) 2022; 23
F Li (51865_CR18) 2023; 14
L Zhang (51865_CR35) 2019; 11
A Yaguchi (51865_CR24) 2022; 12
M Liu (51865_CR23) 2022; 22
F Ding (51865_CR37) 2020; 20
R Shang (51865_CR31) 2020; 12
S Zhuang (51865_CR21) 2019; 11
D Yang (51865_CR34) 2020; 22
B Cheng (51865_CR6) 2021; 13
W Huang (51865_CR7) 2021; 13
D Xu (51865_CR36) 2020; 20
M Zhang (51865_CR11) 2021; 13
L Liao (51865_CR28) 2021; 14
X Xu (51865_CR26) 2022; 22
Q Yan (51865_CR32) 2020; 25
G Qi (51865_CR20) 2022; 14
References_xml – volume: 13
  start-page: 8290
  issue: 14
  year: 2023
  ident: CR43
  article-title: Psychological training method for table tennis players using deep learning
  publication-title: Appl. Sci.
  doi: 10.3390/app13148290
– volume: 11
  start-page: 382
  issue: 4
  year: 2019
  ident: CR35
  article-title: Infrared small target detection based on partial sum of the tensor nuclear norm
  publication-title: Remote Sens.
  doi: 10.3390/rs11040382
– volume: 20
  start-page: 459
  issue: 3
  year: 2023
  end-page: 468
  ident: CR16
  article-title: Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-01775-5
– volume: 13
  start-page: 4706
  issue: 22
  year: 2021
  ident: CR11
  article-title: Lightweight underwater object detection based on yolo v4 and multi-scale attentional feature fusion
  publication-title: Remote Sens.
  doi: 10.3390/rs13224706
– volume: 19
  start-page: 281
  issue: 2
  year: 2019
  ident: CR9
  article-title: Deep retinanet-based detection and classification of road markings by visible light camera sensors
  publication-title: Sensors
  doi: 10.3390/s19020281
– volume: 11
  start-page: 215
  issue: 3
  year: 2020
  end-page: 224
  ident: CR25
  article-title: BMF-CNN: an object detection method based on multi-scale feature fusion in VHR remote sensing images
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2019.1706007
– volume: 43
  start-page: 1483
  issue: 5
  year: 2019
  end-page: 1498
  ident: CR13
  article-title: Cascade R-CNN: High quality object detection and instance segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2956516
– volume: 16
  start-page: 8358
  issue: 5
  year: 2022
  end-page: 8369
  ident: CR14
  article-title: Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c02609
– volume: 12
  start-page: 1204
  issue: 7
  year: 2019
  ident: CR27
  article-title: Insulator detection method in inspection image based on improved faster R-CNN
  publication-title: Energies
  doi: 10.3390/en12071204
– volume: 20
  start-page: 1142
  issue: 4
  year: 2020
  ident: CR33
  article-title: Remote sensing imagery super resolution based on adaptive multi-scale feature fusion network
  publication-title: Sensors
  doi: 10.3390/s20041142
– volume: 23
  start-page: 8693
  issue: 21
  year: 2023
  ident: CR39
  article-title: Adaptation of YOLOv7 and YOLOv7_tiny for soccer-ball multi-detection with DeepSORT for tracking by semi-supervised system
  publication-title: Sensors
  doi: 10.3390/s23218693
– volume: 13
  start-page: 281
  issue: 2
  year: 2021
  ident: CR6
  article-title: Structured object-level relational reasoning CNN-based target detection algorithm in a remote sensing image
  publication-title: Remote Sens.
  doi: 10.3390/rs13020281
– volume: 8
  start-page: 481
  issue: 5
  year: 2019
  ident: CR30
  article-title: Surface defects recognition of wheel hub based on improved faster R-CNN
  publication-title: Electronics
  doi: 10.3390/electronics8050481
– volume: 12
  start-page: 9761
  issue: 19
  year: 2022
  ident: CR24
  article-title: Multi-scale feature fusion for interior style detection
  publication-title: Appl. Sci.
  doi: 10.3390/app12199761
– volume: 12
  start-page: 389
  issue: 3
  year: 2020
  ident: CR38
  article-title: RADet: Refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs12030389
– volume: 22
  start-page: 811
  issue: 8
  year: 2020
  ident: CR34
  article-title: A multi-scale feature fusion method based on u-net for retinal vessel segmentation
  publication-title: Entropy
  doi: 10.3390/e22080811
– volume: 43
  start-page: 3349
  issue: 10
  year: 2020
  end-page: 3364
  ident: CR12
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
– volume: 16
  issue: 3
  year: 2021
  ident: CR2
  article-title: Application of deep learning in automatic detection of technical and tactical indicators of table tennis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0245259
– volume: 35
  start-page: 89
  issue: 1
  year: 2023
  end-page: 118
  ident: CR17
  article-title: Real-time multiple object tracking using deep learning methods
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06391-y
– volume: 17
  issue: 3
  year: 2023
  ident: CR4
  article-title: Multiscale feature cross-layer fusion remote sensing target detection method
  publication-title: IET Signal Process.
  doi: 10.1049/sil2.12194
– volume: 12
  start-page: 872
  issue: 5
  year: 2020
  ident: CR31
  article-title: Multi-scale adaptive feature fusion network for semantic segmentation in remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs12050872
– volume: 23
  start-page: 1726
  issue: 3
  year: 2023
  ident: CR1
  article-title: Table tennis track detection based on temporal feature multiplexing network
  publication-title: Sensors
  doi: 10.3390/s23031726
– volume: 11
  start-page: 158
  issue: 3
  year: 2022
  ident: CR3
  article-title: RepDarkNet: A multi-branched detector for small-target detection in remote sensing images
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi11030158
– volume: 14
  start-page: 420
  issue: 2
  year: 2022
  ident: CR20
  article-title: Small object detection method based on adaptive spatial parallel convolution and fast multi-scale fusion
  publication-title: Remote Sens.
  doi: 10.3390/rs14020420
– volume: 12
  start-page: 762
  issue: 5
  year: 2020
  ident: CR29
  article-title: An optimized faster R-CNN method based on DRNet and RoI align for building detection in remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs12050762
– volume: 11
  start-page: 594
  issue: 5
  year: 2019
  ident: CR21
  article-title: A single shot framework with multi-scale feature fusion for geospatial object detection
  publication-title: Remote Sens.
  doi: 10.3390/rs11050594
– volume: 13
  start-page: 1909
  issue: 10
  year: 2021
  ident: CR8
  article-title: High-speed lightweight ship detection algorithm based on YOLO-v4 for three-channels RGB SAR image
  publication-title: Remote Sens.
  doi: 10.3390/rs13101909
– volume: 22
  start-page: 3935
  issue: 10
  year: 2022
  ident: CR23
  article-title: 3D object detection based on attention and multi-scale feature fusion
  publication-title: Sensors
  doi: 10.3390/s22103935
– volume: 14
  start-page: 143
  issue: 1
  year: 2021
  ident: CR28
  article-title: Semi-supervised SAR target detection based on an improved faster R-CNN
  publication-title: Remote Sens.
  doi: 10.3390/rs14010143
– volume: 14
  start-page: 387
  issue: 2
  year: 2023
  end-page: 394
  ident: CR18
  article-title: Small target deep convolution recognition algorithm based on improved YOLOv4
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-021-01496-1
– volume: 12
  start-page: 11534
  issue: 22
  year: 2022
  ident: CR5
  article-title: Improved matching algorithm with anchor argument for rotate target detection
  publication-title: Appl. Sci.
  doi: 10.3390/app122211534
– volume: 7
  start-page: 790
  issue: 3
  year: 2020
  end-page: 799
  ident: CR22
  article-title: A real-time and ubiquitous network attack detection based on deep belief network and support vector machine
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003099
– volume: 23
  start-page: 17729
  issue: 10
  year: 2022
  end-page: 17743
  ident: CR10
  article-title: Stepwise domain adaptation (SDA) for object detection in autonomous vehicles using an adaptive CenterNet
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2022.3164407
– volume: 25
  start-page: 2629
  issue: 7
  year: 2020
  end-page: 2642
  ident: CR32
  article-title: Attention-guided deep neural network with multi-scale feature fusion for liver vessel segmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3042069
– volume: 9
  start-page: 1347
  issue: 2
  year: 2023
  end-page: 1362
  ident: CR19
  article-title: Multiple spatial residual network for object detection
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00859-7
– volume: 22
  start-page: 1215
  issue: 3
  year: 2022
  ident: CR26
  article-title: Crack detection and comparison study based on faster R-CNN and mask R-CNN
  publication-title: Sensors
  doi: 10.3390/s22031215
– volume: 20
  start-page: 4276
  issue: 15
  year: 2020
  ident: CR36
  article-title: Improved YOLO-V3 with DenseNet for multi-scale remote sensing target detection
  publication-title: Sensors
  doi: 10.3390/s20154276
– volume: 13
  start-page: 12977
  issue: 24
  year: 2023
  ident: CR40
  article-title: YOLO-SE: Improved YOLOv8 for remote sensing object detection and recognition
  publication-title: Appl. Sci.
  doi: 10.3390/app132412977
– volume: 12
  start-page: 12116
  issue: 23
  year: 2022
  ident: CR42
  article-title: Deep learning-based algorithm for recognizing tennis balls
  publication-title: Appl. Sci.
  doi: 10.3390/app122312116
– volume: 20
  start-page: 5315
  issue: 18
  year: 2020
  ident: CR37
  article-title: Detecting defects on solid wood panels based on an improved SSD algorithm
  publication-title: Sensors
  doi: 10.3390/s20185315
– volume: 22
  start-page: 3813
  issue: 10
  year: 2022
  ident: CR15
  article-title: Real-time vehicle classification and tracking using a transfer learning-improved deep learning network
  publication-title: Sensors
  doi: 10.3390/s22103813
– volume: 13
  start-page: 847
  issue: 5
  year: 2021
  ident: CR7
  article-title: CF2PN: A cross-scale feature fusion pyramid network based remote sensing target detection
  publication-title: Remote Sens.
  doi: 10.3390/rs13050847
– volume: 34
  issue: 1
  year: 2022
  ident: CR41
  article-title: A robust multiclass 3D object recognition based on modern YOLO deep learning algorithms
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6517
– volume: 8
  start-page: 481
  issue: 5
  year: 2019
  ident: 51865_CR30
  publication-title: Electronics
  doi: 10.3390/electronics8050481
– volume: 19
  start-page: 281
  issue: 2
  year: 2019
  ident: 51865_CR9
  publication-title: Sensors
  doi: 10.3390/s19020281
– volume: 14
  start-page: 420
  issue: 2
  year: 2022
  ident: 51865_CR20
  publication-title: Remote Sens.
  doi: 10.3390/rs14020420
– volume: 11
  start-page: 382
  issue: 4
  year: 2019
  ident: 51865_CR35
  publication-title: Remote Sens.
  doi: 10.3390/rs11040382
– volume: 43
  start-page: 1483
  issue: 5
  year: 2019
  ident: 51865_CR13
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2956516
– volume: 12
  start-page: 9761
  issue: 19
  year: 2022
  ident: 51865_CR24
  publication-title: Appl. Sci.
  doi: 10.3390/app12199761
– volume: 43
  start-page: 3349
  issue: 10
  year: 2020
  ident: 51865_CR12
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
– volume: 23
  start-page: 1726
  issue: 3
  year: 2023
  ident: 51865_CR1
  publication-title: Sensors
  doi: 10.3390/s23031726
– volume: 13
  start-page: 281
  issue: 2
  year: 2021
  ident: 51865_CR6
  publication-title: Remote Sens.
  doi: 10.3390/rs13020281
– volume: 9
  start-page: 1347
  issue: 2
  year: 2023
  ident: 51865_CR19
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00859-7
– volume: 11
  start-page: 215
  issue: 3
  year: 2020
  ident: 51865_CR25
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2019.1706007
– volume: 12
  start-page: 12116
  issue: 23
  year: 2022
  ident: 51865_CR42
  publication-title: Appl. Sci.
  doi: 10.3390/app122312116
– volume: 14
  start-page: 387
  issue: 2
  year: 2023
  ident: 51865_CR18
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-021-01496-1
– volume: 11
  start-page: 594
  issue: 5
  year: 2019
  ident: 51865_CR21
  publication-title: Remote Sens.
  doi: 10.3390/rs11050594
– volume: 13
  start-page: 12977
  issue: 24
  year: 2023
  ident: 51865_CR40
  publication-title: Appl. Sci.
  doi: 10.3390/app132412977
– volume: 14
  start-page: 143
  issue: 1
  year: 2021
  ident: 51865_CR28
  publication-title: Remote Sens.
  doi: 10.3390/rs14010143
– volume: 35
  start-page: 89
  issue: 1
  year: 2023
  ident: 51865_CR17
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06391-y
– volume: 22
  start-page: 3935
  issue: 10
  year: 2022
  ident: 51865_CR23
  publication-title: Sensors
  doi: 10.3390/s22103935
– volume: 23
  start-page: 8693
  issue: 21
  year: 2023
  ident: 51865_CR39
  publication-title: Sensors
  doi: 10.3390/s23218693
– volume: 34
  issue: 1
  year: 2022
  ident: 51865_CR41
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6517
– volume: 12
  start-page: 11534
  issue: 22
  year: 2022
  ident: 51865_CR5
  publication-title: Appl. Sci.
  doi: 10.3390/app122211534
– volume: 11
  start-page: 158
  issue: 3
  year: 2022
  ident: 51865_CR3
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi11030158
– volume: 20
  start-page: 1142
  issue: 4
  year: 2020
  ident: 51865_CR33
  publication-title: Sensors
  doi: 10.3390/s20041142
– volume: 20
  start-page: 459
  issue: 3
  year: 2023
  ident: 51865_CR16
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-01775-5
– volume: 13
  start-page: 8290
  issue: 14
  year: 2023
  ident: 51865_CR43
  publication-title: Appl. Sci.
  doi: 10.3390/app13148290
– volume: 17
  issue: 3
  year: 2023
  ident: 51865_CR4
  publication-title: IET Signal Process.
  doi: 10.1049/sil2.12194
– volume: 13
  start-page: 1909
  issue: 10
  year: 2021
  ident: 51865_CR8
  publication-title: Remote Sens.
  doi: 10.3390/rs13101909
– volume: 22
  start-page: 3813
  issue: 10
  year: 2022
  ident: 51865_CR15
  publication-title: Sensors
  doi: 10.3390/s22103813
– volume: 13
  start-page: 4706
  issue: 22
  year: 2021
  ident: 51865_CR11
  publication-title: Remote Sens.
  doi: 10.3390/rs13224706
– volume: 13
  start-page: 847
  issue: 5
  year: 2021
  ident: 51865_CR7
  publication-title: Remote Sens.
  doi: 10.3390/rs13050847
– volume: 22
  start-page: 811
  issue: 8
  year: 2020
  ident: 51865_CR34
  publication-title: Entropy
  doi: 10.3390/e22080811
– volume: 16
  issue: 3
  year: 2021
  ident: 51865_CR2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0245259
– volume: 12
  start-page: 762
  issue: 5
  year: 2020
  ident: 51865_CR29
  publication-title: Remote Sens.
  doi: 10.3390/rs12050762
– volume: 7
  start-page: 790
  issue: 3
  year: 2020
  ident: 51865_CR22
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003099
– volume: 12
  start-page: 872
  issue: 5
  year: 2020
  ident: 51865_CR31
  publication-title: Remote Sens.
  doi: 10.3390/rs12050872
– volume: 12
  start-page: 1204
  issue: 7
  year: 2019
  ident: 51865_CR27
  publication-title: Energies
  doi: 10.3390/en12071204
– volume: 25
  start-page: 2629
  issue: 7
  year: 2020
  ident: 51865_CR32
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3042069
– volume: 22
  start-page: 1215
  issue: 3
  year: 2022
  ident: 51865_CR26
  publication-title: Sensors
  doi: 10.3390/s22031215
– volume: 23
  start-page: 17729
  issue: 10
  year: 2022
  ident: 51865_CR10
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2022.3164407
– volume: 16
  start-page: 8358
  issue: 5
  year: 2022
  ident: 51865_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c02609
– volume: 20
  start-page: 4276
  issue: 15
  year: 2020
  ident: 51865_CR36
  publication-title: Sensors
  doi: 10.3390/s20154276
– volume: 20
  start-page: 5315
  issue: 18
  year: 2020
  ident: 51865_CR37
  publication-title: Sensors
  doi: 10.3390/s20185315
– volume: 12
  start-page: 389
  issue: 3
  year: 2020
  ident: 51865_CR38
  publication-title: Remote Sens.
  doi: 10.3390/rs12030389
SSID ssj0000529419
Score 2.4417317
Snippet This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the...
Abstract This paper aims to propose a table tennis target detection (TD) method based on deep learning (DL) and multi-scale feature fusion (MFF) to improve the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1401
SubjectTerms 639/705/117
639/705/258
Accuracy
Algorithms
Athletes
Deep learning
Humanities and Social Sciences
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Table tennis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbhu10kk5yVHFZBPXiwt5COo_ZgZ2eZbvnsP_eymPGHZ8Xr52kKeqRqiJVXyH02oNPCOBJiPROEt4PA9EuOKIc4-0gdScymM7nL_3JKf90Js5ujPpKNWEFHrgw7qhvg9DWUTGwyHsXdW-VVUJZb0F9cgd1Bz7vRjJVUL07zamuXTItU0cTeKrUTdZxIqjqBWF7nigD9v8uyvy1WPKnF9PsiI7vobs1gsTvCuX30a0wPkC3y0zJ64do9RUugVXtrsTriOfUHIXnVMUy4VL4jX2YcwnWiO3FYn21nM9XeLFZ-uDxcI1zkSGZQHoBx5CRP3HcTPV_PoRLXIdNLB6h0-OP3z6ckDpTgTjB6UxigHiN2lZEaZ3k0SkPDpr1zluvhtgNegAZaRkod0p5sPiWeqqjgqS79zyyx-hgXI_hKcLCRaUjk5Z6z5WTVovgo_Qi5Tgg4wbRLX-Nq4Djae7FhckP30yZIhMDMjFZJgbOvNmduSxwG3_d_T6JbbczQWXnD6BApiqQ-ZcCNehwK3RT7XcynU6hpYDbrkGvdstgeek5xY5hvSl7wJfzljfoSdGRHSUM4i4lu75Bak979kjdXxmX5xndG_JxnQanNujtVtF-0PVnXjz7H7x4ju50yULaNDz8EB3MV5vwAoKueXiZ7es7EGkotA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbxQhFCdaY-LF-O1oNZh4U9JhgAFORo1NY6JebLI3wvCxbdKdWTuzh_73Phh2m_Wj1wEmwO893oP3hdBbDzIhgCQh0jtJeNt1RLvgiHKM153UjcjJdL59b09O-deFWJQHt7G4VW7PxHxQ-8GlN_KjRidhL4D-Pqx_kVQ1KllXSwmN2-hOSl2WXLrkQu7eWJIVi1NdYmVqpo5GkFcppqzhRFDVCsL25FFO2_8vXfNvl8k_7KZZHB0_QPeLHok_zsA_RLdC_wjdnStLXj1Gqx9wFKxKjCUeIp5SiBSeki_LiGf3b-zDlB2xemwvlrDW6WyFl5tzHzzurnB2NSQjYBhwDDn_J46bsfzPh7DGpeTE8gk6Pf7y8_MJKZUViBOcTiQG0NqorUWU1kkenfIgplnrvPWqi02nO0BKy0C5U8oD39fUUx0VXL1bzyN7ig76oQ_PERYuKh2ZtNR7rpy0WgQfpRfppgNIV4hu99e4knY8Vb-4MNn8zZSZMTGAicmYGBjzbjdmPSfduLH3pwTbrmdKmJ0_DJdLU_jPtHUQ2joqOhZ566JurbJKKOstnEKMVuhwC7opXDyaa5qr0JtdM_BfMqrYPgybuQ9IdF7zCj2baWQ3Ewbal5JNWyG1Rz17U91v6c_Pco5vuJXrVD61Qu-3hHY9r__vxYubl_ES3WsS7depOPghOpguN-EVKFVT9zpzzm_HqiAX
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxLtpCzISN7CI4_cRVlQVEnChUm-R48d2pW5SbbKH_nvGTrJooSBxTcbRyN-MZ5x5IfTWg00IYEmI8k4RLpuGGBcc0Y7xslGmErmZztdv8vyCf7kUlweommthctJ-bmmZj-k5O-xDD4YmFYNVnAiqpSDsHrqfWrcnqV7Ixe6_SopccWqm-piS6TuW7tmg3Kr_Lv_yzzTJ32Kl2QSdPUaPJt8Rfxy5fYIOQvsUPRinSd4-Q-vvoP7rqa4SdxEPqSwKDyl_pcdjyjf2YcjJVy2218tusxqu1ni5XfngcXOLc3oh6QG3gGPIG4Tjtp--50O4wdOYieVzdHH2-cfinEzTFIgTnA4kBvDUqC1FVNYpHp32YJqZdN563cSqMQ2gY1Sg3GntQddL6qmJGq7b0vPIXqDDtmvDEcLCRW0iU5Z6z7VT1ojgo_Ii3W4A3QLReX9rN7UaTxMvrusc8ma6HjGpAZM6Y1LDmne7NTdjo41_Un9KsO0oU5Ps_KDbLOtJaGpZBmGso6JhkUsXjbTaaqGtt3DyMFqg0xn0etLcvq5McioFnHMFerN7DTqXAim2Dd12pAErzkteoJejjOw4YeBxaVXJAuk96dljdf9Nu7rKfb3hJm7SyNQCvZ8F7Rdff9-L4_8jP0EPq6QLZRoQfooOh802vALHamheZ036CT57Hfk
  priority: 102
  providerName: Springer Nature
Title Optimization of table tennis target detection algorithm guided by multi-scale feature fusion of deep learning
URI https://link.springer.com/article/10.1038/s41598-024-51865-3
https://www.ncbi.nlm.nih.gov/pubmed/38228726
https://www.proquest.com/docview/2915455322
https://www.proquest.com/docview/2915990404
https://pubmed.ncbi.nlm.nih.gov/PMC10792085
https://doaj.org/article/60e59ac15b3f46cf96a8a858ada53131
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2IdBeEJ8jMCoj8QaBOLFj-wGhrto0VdpAQKW9RY4_ukptOtpUov89ZycpFDqeIjl2ZPnu_DvHd79D6I0BTLCAJDE3msc0L8tYaqtjoTOalFymLJDpXF7lFyM6vGbXe6grd9Qu4HLn0c7Xkxotpu9__lh_AoP_2KSMiw9LACGfKJbSmBGRszjbR4eATNwb6mXr7jdc36mkRLa5M7uHHqH7GYCm4J5u4Q-oCoz-u9zQf6Mp_7pSDUh1_hA9aF1M3G904hHas9VjdK8pOrl-gmafYZeYtemXeO5w7bOncO3DXJa4iQzHxtYhRqvCajqeLyb1zQyPVxNjDS7XOEQhxksQr8XOBmpQ7FbL9nvG2lvcVqMYP0Wj87Pvg4u4LboQa0ZJHTsLDh1RCXNcaU6dFgYQPMu1UUaULi1lCUKU3BKqhTCwJSTEEOkEnMpzQ132DB1U88o-R5hpJ6TLuCLGUKG5kswaxw3zhyBQggiRbn0L3TKS-8IY0yLcjGeiaMRTgHiKIJ4CxrzdjLlt-Dj-2_vUi23T03Nph4b5Yly0plnkiWVSacLKzNFcO5kroQQTyijYoDISoZNO6EWnn0Uqve_JYDuM0OvNazBNf9-iKjtfNX0A7GlCI3Tc6MhmJp2ORUhsac_WVLffVJObQP8NB3bpK6tG6F2naL_ndfdavLhzDi_RUeotIPElw0_QQb1Y2VfgatVlD-3za95Dh_3-8NsQnqdnV1--QusgH_TC74tesLBfkWMpEA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKKwSXip1AASPBCazGiZ3YB4QotJrSdkColXpzHS_TSp3MtMkIzZ_iN_KcZaph6a3XxI4cv-8t9tsQemNBJzjQJCS3JicsKwoijTNEmJTFRS4T3hTTORhmgyP29Zgfr6BffS5MCKvsZWIjqO3EhDvyzUQGZc8Bfx-nFyR0jQre1b6FRguLPTf_CUe26sPuF6Dv2yTZ2T78PCBdVwFiOKM18Q4sFqpj7nNtcuaNsKCi0sxYbUXhk0IWsEqZO8qMEBYwH1NLpRdw7Mws8yl89xZagxkxCIK1re3h9x-LW53gN2NUdtk5cSo2K9CQIYstYYRTkXGSLmnAplHAv6zbv4M0__DUNgpw5x5a7yxX_KmF2n204soH6Hbby3L-EI2_gfAZd1mdeOJxHZKycB2iZyrcBpxj6-om9KvE-nwEu1ufjvFodmadxcUcN8GNpALUOOxdU3EU-1nVfc86N8Vdk4vRI3R0I7v-GK2Wk9I9RZgbL6RPc02tZcLkWnJnfW55OFsBtiJE-_1Vpit0HvptnKvG4Z4K1dJEAU1UQxMFc94t5kzbMh_Xjt4KZFuMDCW6mweTy5HqOF5lseNSG8qL1LPMeJlpoQUX2mqQeymN0EZPdNXJjUpdoTxCrxevgeODG0eXbjJrx4ANwWIWoSctRhYrScHeE3mSRUgsoWdpqctvyrPTpqo4jYEzwQCP0PseaFfr-v9ePLv-N16hO4PDg321vzvce47uJoEP4tCafAOt1pcz9wJMurp42fERRic3zbq_AXnzX0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYidQwEhwgmji2I7tA0JAGbUUCgcq9ZY6XqaVOpmhyQjNX-PX8ewkUw1Lb73GjuX4fW9x3obQCws6wYEmSYU1ImVFVaXKOJNKQ1lWCZXzWEzny36xc8A-HfLDDfRryIUJYZWDTIyC2s5M-Ec-ylVQ9hzwN_J9WMS37fHb-Y80dJAKntahnUYHkT23_AnXt-bN7jbQ-mWejz9-_7CT9h0GUsMZaVPvwHohOuNeaCOYN9KCuqKFsdrKyueVqmDHSjjCjJQW8J8RS5SXcAUtLPMU1r2CrgrKSeAxcShW_3eCB40R1efpZFSOGtCVIZ8tZyknsuApXdOFsWXAv-zcv8M1__DZRlU4voVu9jYsfteB7jbacPUddK3rarm8i6ZfQQxN-_xOPPO4DelZuA1xNA3uQs-xdW0MAquxPp3A2bbHUzxZnFhncbXEMcwxbQA_DnsXa49iv2j69axzc9y3u5jcQweXcub30WY9q91DhLnxUnkqNLGWSSO04s56YXm4ZQHKEkSG8y1NX_I8dN44LaPrncqyo0kJNCkjTUp459XqnXlX8OPC2e8D2VYzQ7Hu-GB2Nil73i-LzHGlDeEV9awwXhVaasmlthokICUJ2hqIXvYSpCnP8Z6g56th4P3g0NG1my26OWBNsIwl6EGHkdVOKFh-UuRFguQaeta2uj5SnxzH-uIkAx4FUzxBrwegne_r_2fx6OLPeIauA8OWn3f39x6jG3lggyz0KN9Cm-3Zwj0B266tnkYmwujosrn2N9qcYhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+table+tennis+target+detection+algorithm+guided+by+multi-scale+feature+fusion+of+deep+learning&rft.jtitle=Scientific+reports&rft.au=Rong%2C+Zhang&rft.date=2024-01-16&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1401&rft_id=info:doi/10.1038%2Fs41598-024-51865-3&rft_id=info%3Apmid%2F38228726&rft.externalDocID=38228726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon