Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry
Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H 2 O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance....
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 4303 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.05.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H
2
O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI
–
anions at the Zn|electrolyte interface creates an H
2
O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm
–2
( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV
6
O
9
full cells exhibit a high capacity retention of 76.8% after 2000 cycles.
Trace amounts of strong acid can suppress Zn corrosion and promote uniform Zn deposition. Here, the authors use HTFSI to create a hydrophobic micro-environment at the Zn-electrolyte interface, enabling high efficiency and cycling stability. |
---|---|
AbstractList | Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI- anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm-2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI- anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm-2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles. Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H 2 O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI – anions at the Zn|electrolyte interface creates an H 2 O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm –2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV 6 O 9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles. Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI– anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm–2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.Trace amounts of strong acid can suppress Zn corrosion and promote uniform Zn deposition. Here, the authors use HTFSI to create a hydrophobic micro-environment at the Zn-electrolyte interface, enabling high efficiency and cycling stability. Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI anions at the Zn|electrolyte interface creates an H O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV O full cells exhibit a high capacity retention of 76.8% after 2000 cycles. Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H 2 O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI – anions at the Zn|electrolyte interface creates an H 2 O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm –2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV 6 O 9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles. Trace amounts of strong acid can suppress Zn corrosion and promote uniform Zn deposition. Here, the authors use HTFSI to create a hydrophobic micro-environment at the Zn-electrolyte interface, enabling high efficiency and cycling stability. Abstract Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI– anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm–2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles. |
ArticleNumber | 4303 |
Author | Wang, Zihong Dong, Qi Li, Yecheng Cui, Zhuangzhuang Nian, Qingshun Ren, Xiaodi Wang, Dazhuang Jiang, Jinyu Xiong, Bing-Qing Luo, Xuan Ruan, Digen Ma, Jun Fan, Jiajia Ma, Zhihao |
Author_xml | – sequence: 1 givenname: Qingshun orcidid: 0000-0002-4534-2616 surname: Nian fullname: Nian, Qingshun organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 2 givenname: Xuan surname: Luo fullname: Luo, Xuan organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 3 givenname: Digen surname: Ruan fullname: Ruan, Digen organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 4 givenname: Yecheng surname: Li fullname: Li, Yecheng organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 5 givenname: Bing-Qing surname: Xiong fullname: Xiong, Bing-Qing organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 6 givenname: Zhuangzhuang surname: Cui fullname: Cui, Zhuangzhuang organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 7 givenname: Zihong surname: Wang fullname: Wang, Zihong organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 8 givenname: Qi surname: Dong fullname: Dong, Qi organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 9 givenname: Jiajia surname: Fan fullname: Fan, Jiajia organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 10 givenname: Jinyu surname: Jiang fullname: Jiang, Jinyu organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 11 givenname: Jun surname: Ma fullname: Ma, Jun organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 12 givenname: Zhihao surname: Ma fullname: Ma, Zhihao organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 13 givenname: Dazhuang surname: Wang fullname: Wang, Dazhuang organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China – sequence: 14 givenname: Xiaodi orcidid: 0000-0002-2025-7554 surname: Ren fullname: Ren, Xiaodi email: xdren@ustc.edu.cn organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38773073$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURH_oC7BAkdiwCfgvdrxCtKK0UiU2sLYc-zrjUcYe7Eyl8GTseTGcTgttF_XCtq6_c3R1fY6rgxADVNUbjD5gRLuPmWHGRYMIa1jHGGvaF9URQQw3WBB68OB-WJ3mvEZlUYkL-qo6pJ0QFAl6VPlLP6zGuU5wAyn7foT6lw-m3sCkx1qHaKGGoEvd1v1c5ynFMNRn6c_vkKdS08aXLdh6NdsUt6vYe1P7MEFy5alYmBVsfJHNr6uXTo8ZTu_Ok-rHxZfv55fN9bevV-efrxvTMjw1TksMLe8sMhSbnnaai9Yi0hHOuUOk1VSQHksHFJy1pjeMS9SCRAYZZgk9qa72vjbqtdomv9FpVlF7dVuIaVA6Td6MoITrkWCu44Ack4hIaXgvO-IEF7zXonh92nttd_0GrIEwJT0-Mn38EvxKDfFGYYyRxHJxeH_nkOLPHeRJlWkYGEcdIO6yoqjtOJWUy4K-e4Ku4y6FMquFEi1jnC3U24ct_evl_ksL0O0Bk2LOCZwyftKTj0uHflQYqSVAah8gVQKkbgOk2iIlT6T37s-K6F6UCxwGSP_bfkb1Fxmu2UQ |
CitedBy_id | crossref_primary_10_1002_adfm_202424398 crossref_primary_10_1002_smll_202501242 crossref_primary_10_1016_j_ensm_2025_104189 crossref_primary_10_1016_j_cej_2025_161391 crossref_primary_10_1016_j_cis_2024_103373 crossref_primary_10_1002_adfm_202425423 crossref_primary_10_1002_adfm_202418993 crossref_primary_10_1002_adfm_202417462 crossref_primary_10_1016_j_cej_2024_158660 crossref_primary_10_1039_D4EE05382F crossref_primary_10_1038_s41467_024_52611_z crossref_primary_10_1002_cssc_202402105 crossref_primary_10_1002_ange_202418242 crossref_primary_10_1002_aenm_202403392 crossref_primary_10_1021_acsami_4c18774 crossref_primary_10_3390_ma17184456 crossref_primary_10_1016_j_corsci_2025_112762 crossref_primary_10_1016_j_jcis_2025_137338 crossref_primary_10_1016_j_jechem_2024_11_051 crossref_primary_10_1002_anie_202411427 crossref_primary_10_1016_j_jechem_2025_01_007 crossref_primary_10_1016_j_ensm_2025_104154 crossref_primary_10_1002_ange_202423252 crossref_primary_10_1039_D5SC00364D crossref_primary_10_1002_anie_202423252 crossref_primary_10_1002_ange_202411427 crossref_primary_10_1021_jacs_4c16932 crossref_primary_10_1002_adfm_202412791 crossref_primary_10_1016_j_cej_2024_158737 crossref_primary_10_1002_anie_202418242 crossref_primary_10_1016_j_cej_2025_160013 |
Cites_doi | 10.1002/anie.202202780 10.1002/eem2.12067 10.1002/anie.202200598 10.1002/adma.202007406 10.1021/acsenergylett.1c00833 10.1002/adma.202007416 10.1002/jcc.21224 10.1016/j.corsci.2004.01.002 10.1016/j.cej.2022.136231 10.1016/j.joule.2022.04.017 10.1002/aenm.202201322 10.1021/acs.chemrev.1c00191 10.1038/s41578-022-00511-3 10.1038/s41467-022-29987-x 10.1016/0263-7855(96)00018-5 10.1016/j.ensm.2022.04.032 10.1002/adma.202007428 10.1002/anie.202112304 10.1039/C9EE02526J 10.1038/s41893-022-01028-x 10.1021/acs.chemrev.2c00289 10.1038/s41565-021-00905-4 10.1360/TB-2020-0352 10.1021/acsenergylett.8b01426 10.1021/acs.nanolett.2c03919 10.1021/acsami.1c15742 10.1002/aenm.202202603 10.1002/chem.201601428 10.1039/D1TA06987J 10.1002/adma.202201744 10.1002/anie.202016531 10.1002/anie.202105756 10.1016/j.esci.2021.10.004 10.1039/D1EE03749H 10.1021/acs.chemrev.8b00279 10.1021/jacs.1c07614 10.1038/s41467-017-00467-x 10.1002/aenm.202203189 10.1002/anie.202109682 10.1002/adma.202206963 10.1002/anie.201904174 10.1021/jacs.6b05958 10.1038/s41563-018-0063-z 10.1002/wcms.1159 10.1038/s41893-023-01092-x 10.1039/D2EE03682G 10.1021/acsmaterialslett.1c00566 10.1039/D3EE00462G 10.1021/jacs.0c09794 10.1038/s41467-022-31461-7 10.1002/anie.202303557 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-48444-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_7fb074f86e0f490299c6b982f7676ba7 PMC11109197 38773073 10_1038_s41467_024_48444_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China (2021YFA1201800) Fundamental Research Funds for the Central Universities (WK3430000007) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22179124; 21905265 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22179124 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21905265 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-fa91e568d0c31cb38a675d0282666f025a372b19fe3efddcbc46905e90c0c4d23 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:17:42 EDT 2025 Thu Aug 21 18:35:31 EDT 2025 Mon Jul 21 10:55:21 EDT 2025 Wed Aug 13 09:51:28 EDT 2025 Mon Jul 21 06:00:02 EDT 2025 Tue Jul 01 02:11:08 EDT 2025 Thu Apr 24 23:44:04 EDT 2025 Fri Feb 21 02:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-fa91e568d0c31cb38a675d0282666f025a372b19fe3efddcbc46905e90c0c4d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4534-2616 0000-0002-2025-7554 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-48444-5 |
PMID | 38773073 |
PQID | 3057544649 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7fb074f86e0f490299c6b982f7676ba7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11109197 proquest_miscellaneous_3058639369 proquest_journals_3057544649 pubmed_primary_38773073 crossref_citationtrail_10_1038_s41467_024_48444_5 crossref_primary_10_1038_s41467_024_48444_5 springer_journals_10_1038_s41467_024_48444_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-21 |
PublicationDateYYYYMMDD | 2024-05-21 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Muster, Cole (CR21) 2004; 46 Ruan (CR13) 2022; 61 Han (CR46) 2023; 16 Yang (CR48) 2022; 61 Chen (CR31) 2021; 9 Li (CR5) 2022; 13 Zeng (CR24) 2021; 33 Fang, Zhou, Pan, Liang (CR11) 2018; 3 Zhao, Sun (CR44) 2018; 118 Li (CR42) 2022; 6 Li (CR19) 2020; 3 Zhang (CR4) 2017; 8 Zhang (CR8) 2016; 138 Liu (CR35) 2023; 23 Liang, Yao (CR3) 2022; 8 CR49 Liang (CR18) 2022; 15 Hutter (CR51) 2014; 4 Humphrey (CR53) 1996; 14 Zhu (CR1) 2022; 122 Tang (CR12) 2019; 12 Hao (CR27) 2022; 34 Nian (CR32) 2021; 13 Ma (CR10) 2021; 33 Wu (CR47) 2021; 33 Cao (CR26) 2021; 16 Klare (CR45) 2021; 143 Hao (CR14) 2021; 60 Sui, Ji (CR2) 2021; 121 Hasani, Yarger, Angell (CR43) 2016; 22 CR50 Yuan (CR39) 2022; 442 Tian (CR28) 2022; 13 Xin (CR22) 2021; 3 Yang (CR37) 2023; 6 Ma (CR6) 2022; 12 Kim (CR23) 2022; 13 Zhang (CR17) 2021; 60 Martínez (CR52) 2009; 30 Nian (CR15) 2021; 6 Zhou (CR20) 2020; 65 Kim (CR40) 2022; 13 Sun (CR25) 2021; 60 CR29 Miao (CR36) 2022; 49 Ji (CR9) 2021; 1 Chen (CR34) 2023; 16 Cao (CR33) 2020; 142 Wang (CR30) 2018; 17 Li (CR7) 2022; 61 Chao (CR41) 2019; 58 Yang (CR16) 2022; 34 Jiang (CR38) 2023; 6 G Liang (48444_CR18) 2022; 15 48444_CR50 H Tian (48444_CR28) 2022; 13 L Ma (48444_CR10) 2021; 33 Q Nian (48444_CR15) 2021; 6 W Humphrey (48444_CR53) 1996; 14 Y Sui (48444_CR2) 2021; 121 Q Zhang (48444_CR17) 2021; 60 C Li (48444_CR19) 2020; 3 M Liu (48444_CR35) 2023; 23 G Fang (48444_CR11) 2018; 3 Q Li (48444_CR5) 2022; 13 Y Kim (48444_CR23) 2022; 13 J Han (48444_CR46) 2023; 16 48444_CR49 Z Zhu (48444_CR1) 2022; 122 Q Li (48444_CR7) 2022; 61 HJ Kim (48444_CR40) 2022; 13 D Chao (48444_CR41) 2019; 58 N Zhang (48444_CR8) 2016; 138 F Wang (48444_CR30) 2018; 17 C Yuan (48444_CR39) 2022; 442 H Jiang (48444_CR38) 2023; 6 C Li (48444_CR42) 2022; 6 W Zhao (48444_CR44) 2018; 118 J Hutter (48444_CR51) 2014; 4 B Tang (48444_CR12) 2019; 12 HFT Klare (48444_CR45) 2021; 143 J Hao (48444_CR27) 2022; 34 J Zhou (48444_CR20) 2020; 65 R Chen (48444_CR34) 2023; 16 P Ruan (48444_CR13) 2022; 61 M Yang (48444_CR16) 2022; 34 L Martínez (48444_CR52) 2009; 30 P Sun (48444_CR25) 2021; 60 L Cao (48444_CR33) 2020; 142 L Miao (48444_CR36) 2022; 49 W Xin (48444_CR22) 2021; 3 S Chen (48444_CR31) 2021; 9 N Zhang (48444_CR4) 2017; 8 M Hasani (48444_CR43) 2016; 22 Y Liang (48444_CR3) 2022; 8 TH Muster (48444_CR21) 2004; 46 48444_CR29 L Ma (48444_CR6) 2022; 12 J Wu (48444_CR47) 2021; 33 Q Nian (48444_CR32) 2021; 13 X Zeng (48444_CR24) 2021; 33 L Cao (48444_CR26) 2021; 16 J Hao (48444_CR14) 2021; 60 Q Yang (48444_CR48) 2022; 61 X Ji (48444_CR9) 2021; 1 C Yang (48444_CR37) 2023; 6 |
References_xml | – volume: 61 start-page: e202202780 year: 2022 ident: CR7 article-title: Dendrite Issues for Zinc Anodes in a Flexible Cell Configuration for Zinc-Based Wearable Energy-Storage Devices publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202780 – volume: 3 start-page: 146 year: 2020 end-page: 159 ident: CR19 article-title: Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12067 – ident: CR49 – volume: 61 start-page: e202200598 year: 2022 ident: CR13 article-title: Design Strategies for High-Energy-Density Aqueous Zinc Batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200598 – volume: 33 start-page: 2007406 year: 2021 ident: CR10 article-title: Toward Practical High‐Areal‐Capacity Aqueous Zinc‐Metal Batteries: Quantifying Hydrogen Evolution and a Solid‐Ion Conductor for Stable Zinc Anodes publication-title: Adv. Mater. doi: 10.1002/adma.202007406 – volume: 6 start-page: 2174 year: 2021 end-page: 2180 ident: CR15 article-title: Designing Electrolyte Structure to Suppress Hydrogen Evolution Reaction in Aqueous Batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00833 – volume: 33 start-page: e2007416 year: 2021 ident: CR24 article-title: Electrolyte Design for In Situ Construction of Highly Zn -Conductive Solid Electrolyte Interphase to Enable High-Performance Aqueous Zn-Ion Batteries under Practical Conditions publication-title: Adv. Mater. doi: 10.1002/adma.202007416 – volume: 30 start-page: 2157 year: 2009 end-page: 2164 ident: CR52 article-title: PACKMOL: A package for building initial configurations for molecular dynamics simulations publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – ident: CR29 – volume: 46 start-page: 2319 year: 2004 end-page: 2335 ident: CR21 article-title: The protective nature of passivation films on zinc: surface charge publication-title: Corro. Sci. doi: 10.1016/j.corsci.2004.01.002 – volume: 442 start-page: 136231 year: 2022 ident: CR39 article-title: Microgroove-patterned Zn metal anode enables ultra-stable and low-overpotential Zn deposition for long-cycling aqueous batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136231 – volume: 6 start-page: 1103 year: 2022 end-page: 1120 ident: CR42 article-title: Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry publication-title: Joule doi: 10.1016/j.joule.2022.04.017 – volume: 12 start-page: 2201322 year: 2022 ident: CR6 article-title: Electrocatalytic Selenium Redox Reaction for High‐Mass‐Loading Zinc‐Selenium Batteries with Improved Kinetics and Selenium Utilization publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201322 – volume: 121 start-page: 6654 year: 2021 end-page: 6695 ident: CR2 article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00191 – volume: 8 start-page: 109 year: 2022 end-page: 122 ident: CR3 article-title: Designing modern aqueous batteries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00511-3 – volume: 13 year: 2022 ident: CR23 article-title: Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries publication-title: Nat. Commun. doi: 10.1038/s41467-022-29987-x – ident: CR50 – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: CR53 article-title: VMD: Visual molecular dynamics publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 49 start-page: 445 year: 2022 end-page: 453 ident: CR36 article-title: Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.04.032 – volume: 33 year: 2021 ident: CR47 article-title: Polycationic Polymer Layer for Air-Stable and Dendrite-Free Li Metal Anodes in Carbonate Electrolytes publication-title: Adv. Mater. doi: 10.1002/adma.202007428 – volume: 61 start-page: e202112304 year: 2022 ident: CR48 article-title: Stabilizing Interface pH by N-Modified Graphdiyne for Dendrite-Free and High-Rate Aqueous Zn-Ion Batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112304 – volume: 12 start-page: 3288 year: 2019 end-page: 3304 ident: CR12 article-title: Issues and opportunities facing aqueous zinc-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02526J – volume: 6 start-page: 325 year: 2023 end-page: 335 ident: CR37 article-title: All-temperature zinc batteries with high-entropy aqueous electrolyte publication-title: Nat. Sustain. doi: 10.1038/s41893-022-01028-x – volume: 122 start-page: 16610 year: 2022 end-page: 16751 ident: CR1 article-title: Rechargeable batteries for grid scale energy storage publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00289 – volume: 16 start-page: 902 year: 2021 end-page: 910 ident: CR26 article-title: Fluorinated interphase enables reversible aqueous zinc battery chemistries publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00905-4 – volume: 65 start-page: 3562 year: 2020 end-page: 3584 ident: CR20 article-title: Development and challenges of aqueous rechargeable zinc batteries publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2020-0352 – volume: 3 start-page: 2480 year: 2018 end-page: 2501 ident: CR11 article-title: Recent Advances in Aqueous Zinc-Ion Batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 23 start-page: 541 year: 2023 end-page: 549 ident: CR35 article-title: Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c03919 – volume: 13 start-page: 51048 year: 2021 end-page: 51056 ident: CR32 article-title: An Overcrowded Water-Ion Solvation Structure for a Robust Anode Interphase in Aqueous Lithium-Ion Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15742 – volume: 13 start-page: 2202603 year: 2022 ident: CR28 article-title: Steel Anti‐Corrosion Strategy Enables Long‐Cycle Zn Anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202603 – volume: 22 start-page: 13312 year: 2016 end-page: 13319 ident: CR43 article-title: On the Use of a Protic Ionic Liquid with a Novel Cation To Study Anion Basicity publication-title: Chem. Eur. J. doi: 10.1002/chem.201601428 – volume: 9 start-page: 22347 year: 2021 end-page: 22352 ident: CR31 article-title: Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06987J – volume: 34 start-page: e2201744 year: 2022 ident: CR16 article-title: A Binary Hydrate-Melt Electrolyte with Acetate-Oriented Cross-Linking Solvation Shells for Stable Zinc Anodes publication-title: Adv. Mater. doi: 10.1002/adma.202201744 – volume: 60 start-page: 7366 year: 2021 end-page: 7375 ident: CR14 article-title: Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016531 – volume: 60 start-page: 18247 year: 2021 end-page: 18255 ident: CR25 article-title: Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105756 – volume: 1 start-page: 99 year: 2021 end-page: 107 ident: CR9 article-title: A perspective of ZnCl electrolytes: The physical and electrochemical properties publication-title: eScience doi: 10.1016/j.esci.2021.10.004 – volume: 15 start-page: 1086 year: 2022 end-page: 1096 ident: CR18 article-title: Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03749H – volume: 118 start-page: 10349 year: 2018 end-page: 10392 ident: CR44 article-title: Triflimide (HNTf ) in Organic Synthesis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00279 – volume: 143 start-page: 15490 year: 2021 end-page: 15507 ident: CR45 article-title: The Power of the Proton: From Superacidic Media to Superelectrophile Catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07614 – volume: 8 year: 2017 ident: CR4 article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities publication-title: Nat. Commun. doi: 10.1038/s41467-017-00467-x – volume: 13 start-page: 2203189 year: 2022 ident: CR40 article-title: Nature of Zinc‐Derived Dendrite and Its Suppression in Mildly Acidic Aqueous Zinc‐Ion Battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203189 – volume: 60 start-page: 23357 year: 2021 end-page: 23364 ident: CR17 article-title: Designing Anion-Type Water-Free Zn Solvation Structure for Robust Zn Metal Anode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109682 – volume: 34 start-page: e2206963 year: 2022 ident: CR27 article-title: Triple-Function Electrolyte Regulation toward Advanced Aqueous Zn-Ion Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202206963 – volume: 58 start-page: 7823 year: 2019 end-page: 7828 ident: CR41 article-title: An Electrolytic Zn-MnO Battery for High-Voltage and Scalable Energy Storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904174 – volume: 138 start-page: 12894 year: 2016 end-page: 12901 ident: CR8 article-title: Cation-Deficient Spinel ZnMn O Cathode in Zn(CF SO ) Electrolyte for Rechargeable Aqueous Zn-Ion Battery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 17 start-page: 543 year: 2018 end-page: 549 ident: CR30 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 4 start-page: 15 year: 2014 end-page: 25 ident: CR51 article-title: cp2k: atomistic simulations of condensed matter systems publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1159 – volume: 6 start-page: 806 year: 2023 end-page: 815 ident: CR38 article-title: Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency publication-title: Nat. Sustain. doi: 10.1038/s41893-023-01092-x – volume: 16 start-page: 1480 year: 2023 end-page: 1501 ident: CR46 article-title: A perspective on the role of anions in highly concentrated aqueous electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03682G – volume: 3 start-page: 1819 year: 2021 end-page: 1825 ident: CR22 article-title: Turning the Byproduct Zn (OH) SO · H O into a Uniform Solid Electrolyte Interphase to Stabilize Aqueous Zn Anode publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00566 – volume: 16 start-page: 2540 year: 2023 end-page: 2549 ident: CR34 article-title: A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00462G – volume: 142 start-page: 21404 year: 2020 end-page: 21409 ident: CR33 article-title: Solvation Structure Design for Aqueous Zn Metal Batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09794 – volume: 13 year: 2022 ident: CR5 article-title: Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries publication-title: Nat. Commun. doi: 10.1038/s41467-022-31461-7 – volume: 58 start-page: 7823 year: 2019 ident: 48444_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904174 – volume: 13 year: 2022 ident: 48444_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31461-7 – volume: 3 start-page: 146 year: 2020 ident: 48444_CR19 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12067 – volume: 60 start-page: 18247 year: 2021 ident: 48444_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105756 – ident: 48444_CR50 – volume: 46 start-page: 2319 year: 2004 ident: 48444_CR21 publication-title: Corro. Sci. doi: 10.1016/j.corsci.2004.01.002 – volume: 22 start-page: 13312 year: 2016 ident: 48444_CR43 publication-title: Chem. Eur. J. doi: 10.1002/chem.201601428 – volume: 3 start-page: 1819 year: 2021 ident: 48444_CR22 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00566 – volume: 13 start-page: 2202603 year: 2022 ident: 48444_CR28 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202603 – volume: 12 start-page: 2201322 year: 2022 ident: 48444_CR6 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201322 – volume: 118 start-page: 10349 year: 2018 ident: 48444_CR44 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00279 – volume: 13 start-page: 51048 year: 2021 ident: 48444_CR32 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15742 – volume: 65 start-page: 3562 year: 2020 ident: 48444_CR20 publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2020-0352 – volume: 6 start-page: 806 year: 2023 ident: 48444_CR38 publication-title: Nat. Sustain. doi: 10.1038/s41893-023-01092-x – volume: 8 start-page: 109 year: 2022 ident: 48444_CR3 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00511-3 – volume: 138 start-page: 12894 year: 2016 ident: 48444_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 442 start-page: 136231 year: 2022 ident: 48444_CR39 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136231 – volume: 121 start-page: 6654 year: 2021 ident: 48444_CR2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00191 – volume: 30 start-page: 2157 year: 2009 ident: 48444_CR52 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 14 start-page: 33 year: 1996 ident: 48444_CR53 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 16 start-page: 1480 year: 2023 ident: 48444_CR46 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03682G – volume: 61 start-page: e202200598 year: 2022 ident: 48444_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200598 – volume: 12 start-page: 3288 year: 2019 ident: 48444_CR12 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02526J – volume: 49 start-page: 445 year: 2022 ident: 48444_CR36 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.04.032 – volume: 16 start-page: 2540 year: 2023 ident: 48444_CR34 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00462G – volume: 33 start-page: e2007416 year: 2021 ident: 48444_CR24 publication-title: Adv. Mater. doi: 10.1002/adma.202007416 – volume: 16 start-page: 902 year: 2021 ident: 48444_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00905-4 – volume: 60 start-page: 23357 year: 2021 ident: 48444_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109682 – volume: 4 start-page: 15 year: 2014 ident: 48444_CR51 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1159 – ident: 48444_CR29 doi: 10.1002/anie.202303557 – volume: 142 start-page: 21404 year: 2020 ident: 48444_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09794 – volume: 6 start-page: 1103 year: 2022 ident: 48444_CR42 publication-title: Joule doi: 10.1016/j.joule.2022.04.017 – volume: 3 start-page: 2480 year: 2018 ident: 48444_CR11 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 6 start-page: 325 year: 2023 ident: 48444_CR37 publication-title: Nat. Sustain. doi: 10.1038/s41893-022-01028-x – volume: 17 start-page: 543 year: 2018 ident: 48444_CR30 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 13 start-page: 2203189 year: 2022 ident: 48444_CR40 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203189 – volume: 34 start-page: e2201744 year: 2022 ident: 48444_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.202201744 – volume: 143 start-page: 15490 year: 2021 ident: 48444_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07614 – volume: 33 start-page: 2007406 year: 2021 ident: 48444_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202007406 – volume: 15 start-page: 1086 year: 2022 ident: 48444_CR18 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03749H – volume: 13 year: 2022 ident: 48444_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29987-x – volume: 23 start-page: 541 year: 2023 ident: 48444_CR35 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c03919 – volume: 6 start-page: 2174 year: 2021 ident: 48444_CR15 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00833 – volume: 8 year: 2017 ident: 48444_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00467-x – volume: 34 start-page: e2206963 year: 2022 ident: 48444_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.202206963 – volume: 33 year: 2021 ident: 48444_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.202007428 – volume: 61 start-page: e202112304 year: 2022 ident: 48444_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112304 – volume: 1 start-page: 99 year: 2021 ident: 48444_CR9 publication-title: eScience doi: 10.1016/j.esci.2021.10.004 – volume: 122 start-page: 16610 year: 2022 ident: 48444_CR1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00289 – ident: 48444_CR49 – volume: 61 start-page: e202202780 year: 2022 ident: 48444_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202780 – volume: 9 start-page: 22347 year: 2021 ident: 48444_CR31 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06987J – volume: 60 start-page: 7366 year: 2021 ident: 48444_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016531 |
SSID | ssj0000391844 |
Score | 2.6129682 |
Snippet | Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H
2
O... Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H O... Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O... Abstract Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4303 |
SubjectTerms | 119/118 140/133 140/146 147/28 639/301/299/891 639/638/161/891 Anions Corrosion Cycles Deposition Electrolytes Electrolytic cells Humanities and Social Sciences Hydrogen evolution Hydrophobicity Interface stability multidisciplinary Science Science (multidisciplinary) Zinc Zinc plating |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLchI3CBq_Ix9pIiq4sCJSr1ZfrKRlqTKbg_LL-POH2PsZJcuzwuXPawn0mhm7PnGj28QeglZzxKaMr8dZTWXItXKEVFrzx0NkvKUygXZD_L8gr-_FJc3Wn3lO2ETPfBkuJM2OchyScnYJK4bWD29dFrR1MpWOlvekUPOu1FMlTWYaShd-PxKpmHqZMXLmgApqeYwwmuxl4kKYf_vUOavlyV_OjEtiejsHro7I0j8ZtL8EN2K_X10e-opuXmAunxzY7nBmZpphHhfRvyl6z3-HAFmY9sPIeJYHkwF7DZ4lbfCP-HT8dvXPu98Yus7-OkDXmzCOFwtBtd5nEklxmTz9jr22xZxD9HF2buPb8_ruZ9C7QUn6zpZTaKQKjSeEe-YslAthFx0QQ2TAPxY1lJHdIosphC887l2FlE3vvE8UPYIHfRDH58gTJOKQlgN6ChDsKicb0Fequg48cJWiGxta_xMNp57XixNOfRmykz-MOAPU_xhRIVe7b65mqg2_ip9ml22k8w02eUPCB4zB4_5V_BU6HjrcDPP3ZVhGcJClcx1hV7shsGy-SjF9nG4LjIKsB2TIPN4io-dJky1bV45K6T2ImdP1f2RvlsUZm-S-V-JBr1eb4Psh15_tsXT_2GLI3SH5tnRiJqSY3SwHq_jMwBca_e8zK3vjQ4mVA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6hxbCfOCVHEUnHgRKXeIj-7kZZkyW4P21_WO3-MGedRLY9ecljPSo5n7PlmPPmGkLfg9TTLA_Lb5TwVhQypMkymlRUmd0UuQogFst-Kk1Px9UyejQm3zVhWOZ2J8aB2ncUc-RFHYAGxi6g-rH-m2DUKb1fHFhq3yR0GngZLutTiy5xjQfZzJcT4rUzG1dFGxJMBHFMqYESkcs8fRdr-f2HNv0sm_7g3je5o8YDcH3Ek_Tgo_iG55dtH5O7QWXL3mDRYv7HaUSRo6sHqV55eNq2lPzyAbarbznnq42dTjpod3WBC_Jwe97-uWsx_Um0beLSOLneu79bLzjSWIrVEHzQm2amdGsU9IaeLz98_naRjV4XUSsG2adAV87JQLrOcWcOVhpjBYegFkUwACKR5mRtWBc99cM4aixG09FVmMytczp-Sg7Zr_XNC86C8lLoCjIRAzCtjS5AvlDeCWakTwqa1re1IOY6dL1Z1vPrmqh70UYM-6qiPWibk3fyf9UC4caP0MapslkSy7PhD15_X496ry2AAKAVV-CyIKgMHbAtTqTyURVkYXSbkcFJ4Pe7gTX1tbwl5Mw_DyuKFim59dxFlFCA8XoDMs8E-5plwVZZ4fiZE7VnO3lT3R9pmGfm9GbLAsgrm9X4ysut5_X8tXtz8Gi_JvRztPpNpzg7Jwba_8K8AUG3N67hrfgN9pR5G priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHcDBRmJG0TEzzjHLaKq9sAFKvVm2Y7djbQkVXZ7WH4Zd_4YY-eBFgoSlxzisTTyjD3f2OPPCL2BqGcIDZHfjrKcSxFyZYnIK8ctrSXlIaQC2U_y_IIvL8XlAaLTXZhUtJ8oLdMyPVWHvd_wNKUhouRccc5zcQcdRap28O2jxWL5eTnvrETOcxAZb8gUTN3SeS8KJbL-2xDmn4WSv52WpiB09gDdH9EjXgz6PkQHvn2E7g7vSe4eoyZWbax3ONIy9eDra4-_Na3DXz1AbGzarvbYp8tSNbY7vInb4Ff4tP_xvY27nti4Bj5tjVe7uu-uV51tHI6EEn0wcWsdu-l5uCfo4uzjlw_n-fiWQu4EJ9s8mIp4IVVdOEacZcpAplDHhAvylwDAx7CSWlIFz3yoa2ddzJuFrwpXOF5T9hQdtl3rjxGmQXkhTAXIKMIvr6wrQV4qbzlxwmSITGOr3Ug0Ht-7WOt04M2UHuyhwR462UOLDL2d-1wPNBv_lD6NJpslI0V2-tH1V3p0GV0GC_AoKOmLwKsCwq6TtlI0lLKU1pQZOpkMrsd5u9EswlfIkHmVoddzM4xsPEYxre9ukowCXMckyDwb_GPWhKmyjKtmhtSe5-yput_SNqvE6k0i9yupQK93k5P90uvvY_H8_8RfoHs0zoNC5JScoMNtf-NfAqza2lfjPPoJe7EdbQ priority: 102 providerName: Springer Nature |
Title | Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry |
URI | https://link.springer.com/article/10.1038/s41467-024-48444-5 https://www.ncbi.nlm.nih.gov/pubmed/38773073 https://www.proquest.com/docview/3057544649 https://www.proquest.com/docview/3058639369 https://pubmed.ncbi.nlm.nih.gov/PMC11109197 https://doaj.org/article/7fb074f86e0f490299c6b982f7676ba7 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB72guCLeN_qWkbwTaOZayYPIm3ZuhRcRC30LWQmM9tCTda0C9Zf5rt_zDOTpFKtgi8JJKdlOJec78zlOwg9g6yXE-o8vx1lEZfCRUoTEaWGa1pIyp0LG2Qv5PmUT2ZidoC6dketAld7SzvfT2paL19-_bJ5AwH_ujkyrl6teAh3yDYRV5zzSByiY8hMie9o8K6F--HLzFIoaPxCM405iUCAtedo9v_NTq4KlP77cOif2yl_W1MNqWp8G91qMSYeNE5xBx3Y8i660XSd3NxDC7-3Y7nBnryphohYWvxtURr82YIOcF5WhcU2HKkqsN7glZ8sv8TD-sf30s-N4tws4FIWeL4p6upqXumFwZ52ona5n4DHpmsidx9Nx2efRudR23EhMoKTdeTylFghVREbRoxmKod6ovBlGVQ5DuBRzhKqSeoss64ojDa-uhY2jU1seEHZA3RUVqU9QZg6ZYXIU8BPHqRZpU0C8lJZzYkReQ-RTreZaenIfVeMZRaWxZnKGntkYI8s2CMTPfR8-5urhozjn9JDb7KtpCfSDg-q-jJr4zJLnAYQ5ZS0seNpDMnZSJ0q6hKZSJ0nPXTaGTzrnDNjHuRCHc3THnq6fQ2a9YsteWmr6yCjAP0xCTIPG__YjoSpJPHf1h5SO56zM9TdN-ViHri_iWeIJSmM60XnZL_G9XddPPovzT1GN6kPg1hElJyio3V9bZ8A9lrrPjpMZglc1fhtHx0PBpOPE7gPzy7ef4CnIznqh1mNfgi8nytvLdc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIgQXxLuBAkaCE6y668eu94AQBUJKS0-t1JtZe-0mUtgNm1Qo_CjO3PljzHh3U4VHb73kEE8kx_P6PLa_IeQZZL0iYR757RiPRCp9pEwio9wKw8qUCe_DBdnDdHQsPp7Ikw3yo38Lg9cq-5gYAnVZW6yR73AEFrB3Efnr2dcIu0bh6WrfQqM1i323_AZbtvmrvXeg3-eMDd8fvR1FXVeByEqRLCJf5ImTqSpjyxNruCoAM5e49QAk7wECFDxjJsm9486XpTUWd5DS5bGNrSiR6ABC_hXBIZPjy_Thh1VNB9nWlRDd25yYq525CJEIEmEkYEREci3_hTYB_8K2f1_R_OOcNqS_4U1yo8Ot9E1raLfIhqtuk6ttJ8vlHTLB-yLTJUVCqAa8bOro90ll6RcH4J4WVV066sIzrZKaJZ1jAf6U7ja_flZYb6WFncBHVdLxsmzq2bg2E0uRyqLxBRb1qe0b090lx5ey3vfIZlVXbotQ5pWTssgBkyHwc8rYDORT5YxIrCwGJOnXVtuO4hw7bUx1OGrnSrf60KAPHfSh5YC8WP1m1hJ8XCi9iypbSSI5d_iibk515-s68waAmVepi73IY0j4NjW5Yj5Ls9QU2YBs9wrXXcSY63P7HpCnq2FYWTzAKSpXnwUZBYiSpyBzv7WP1Uy4yjKM1wOi1ixnbarrI9VkHPjEE2SdTXKY18veyM7n9f-1eHDx33hCro2OPh3og73D_YfkOkMfiGXEkm2yuWjO3CMAcwvzOHgQJZ8v22V_Azx4W0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVCAuiHcDBYwEJ1hl7bV3vQeECG3UUhRViEq9LbbXbiKF3bBJhcIvQ1z5Y8zsI1V49NZLDvFEcjyvb8bjGUKeg9fTjHvsb8ejQMTSB8owGaRWGJ7HXHhfF8iO44MT8f5Unm6Rn91bGCyr7Gxibajz0mKOfBAhsIDYRaQD35ZFHO-N3sy_BjhBCm9au3EajYgcudU3CN8Wrw_3gNcvOB_tf3p3ELQTBgIrBVsGXqfMyVjloY2YNZHSgJ9zDEMA1XuAAzpKuGGpd5HzeW6NxWhSujS0oRU5Nj0A87-dYFTUI9vD_fHxx3WGB3uvKyHalzphpAYLUdslcIuBgBURyA1vWA8N-BfS_btg849b29oZjm6Rmy2KpW8bsbtNtlxxh1xr5lqu7pIpVo_MVhTbQ1WgczNHv08LS784gPpUF2XuqKsfbeXUrOgC0_FndFj9-lFg9pVqO4WPIqeTVV6V80lpppZiY4vKa0zxU9uNqbtHTq7kxO-TXlEWbodQ7pWTUqeA0BAGOmVsAvSxckYwK3WfsO5sM9s2PMe5G7OsvniPVNbwIwN-ZDU_MtknL9e_mTftPi6lHiLL1pTYqrv-oqzOslbzs8QbgGlexS70Ig3B_dvYpIr7JE5io5M-2e0YnrX2Y5FdSHufPFsvw8nidY4uXHle0yjAl1EMNA8a-VjvJFJJgta7T9SG5GxsdXOlmE7q7uIMe9CyFPb1qhOyi339_yweXv43npLroK7Zh8Px0SNyg6MKhDLgbJf0ltW5ewzIbmmetCpEyeer1trfO99g0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+reversible+zinc+metal+anode+enabled+by+strong+Br%C3%B8nsted+acid+and+hydrophobic+interfacial+chemistry&rft.jtitle=Nature+communications&rft.au=Nian%2C+Qingshun&rft.au=Luo%2C+Xuan&rft.au=Ruan%2C+Digen&rft.au=Li%2C+Yecheng&rft.date=2024-05-21&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-48444-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_48444_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |