Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry

Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H 2 O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance....

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 4303 - 12
Main Authors Nian, Qingshun, Luo, Xuan, Ruan, Digen, Li, Yecheng, Xiong, Bing-Qing, Cui, Zhuangzhuang, Wang, Zihong, Dong, Qi, Fan, Jiajia, Jiang, Jinyu, Ma, Jun, Ma, Zhihao, Wang, Dazhuang, Ren, Xiaodi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.05.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H 2 O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI – anions at the Zn|electrolyte interface creates an H 2 O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm –2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV 6 O 9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles. Trace amounts of strong acid can suppress Zn corrosion and promote uniform Zn deposition. Here, the authors use HTFSI to create a hydrophobic micro-environment at the Zn-electrolyte interface, enabling high efficiency and cycling stability.
AbstractList Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI- anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm-2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI- anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm-2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.
Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H 2 O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI – anions at the Zn|electrolyte interface creates an H 2 O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm –2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV 6 O 9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.
Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI– anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm–2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.Trace amounts of strong acid can suppress Zn corrosion and promote uniform Zn deposition. Here, the authors use HTFSI to create a hydrophobic micro-environment at the Zn-electrolyte interface, enabling high efficiency and cycling stability.
Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI anions at the Zn|electrolyte interface creates an H O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV O full cells exhibit a high capacity retention of 76.8% after 2000 cycles.
Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H 2 O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI – anions at the Zn|electrolyte interface creates an H 2 O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm –2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV 6 O 9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles. Trace amounts of strong acid can suppress Zn corrosion and promote uniform Zn deposition. Here, the authors use HTFSI to create a hydrophobic micro-environment at the Zn-electrolyte interface, enabling high efficiency and cycling stability.
Abstract Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI– anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm–2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.
ArticleNumber 4303
Author Wang, Zihong
Dong, Qi
Li, Yecheng
Cui, Zhuangzhuang
Nian, Qingshun
Ren, Xiaodi
Wang, Dazhuang
Jiang, Jinyu
Xiong, Bing-Qing
Luo, Xuan
Ruan, Digen
Ma, Jun
Fan, Jiajia
Ma, Zhihao
Author_xml – sequence: 1
  givenname: Qingshun
  orcidid: 0000-0002-4534-2616
  surname: Nian
  fullname: Nian, Qingshun
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 2
  givenname: Xuan
  surname: Luo
  fullname: Luo, Xuan
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 3
  givenname: Digen
  surname: Ruan
  fullname: Ruan, Digen
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 4
  givenname: Yecheng
  surname: Li
  fullname: Li, Yecheng
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 5
  givenname: Bing-Qing
  surname: Xiong
  fullname: Xiong, Bing-Qing
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 6
  givenname: Zhuangzhuang
  surname: Cui
  fullname: Cui, Zhuangzhuang
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 7
  givenname: Zihong
  surname: Wang
  fullname: Wang, Zihong
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 8
  givenname: Qi
  surname: Dong
  fullname: Dong, Qi
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 9
  givenname: Jiajia
  surname: Fan
  fullname: Fan, Jiajia
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 10
  givenname: Jinyu
  surname: Jiang
  fullname: Jiang, Jinyu
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 11
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 12
  givenname: Zhihao
  surname: Ma
  fullname: Ma, Zhihao
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 13
  givenname: Dazhuang
  surname: Wang
  fullname: Wang, Dazhuang
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
– sequence: 14
  givenname: Xiaodi
  orcidid: 0000-0002-2025-7554
  surname: Ren
  fullname: Ren, Xiaodi
  email: xdren@ustc.edu.cn
  organization: Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38773073$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURH_oC7BAkdiwCfgvdrxCtKK0UiU2sLYc-zrjUcYe7Eyl8GTseTGcTgttF_XCtq6_c3R1fY6rgxADVNUbjD5gRLuPmWHGRYMIa1jHGGvaF9URQQw3WBB68OB-WJ3mvEZlUYkL-qo6pJ0QFAl6VPlLP6zGuU5wAyn7foT6lw-m3sCkx1qHaKGGoEvd1v1c5ynFMNRn6c_vkKdS08aXLdh6NdsUt6vYe1P7MEFy5alYmBVsfJHNr6uXTo8ZTu_Ok-rHxZfv55fN9bevV-efrxvTMjw1TksMLe8sMhSbnnaai9Yi0hHOuUOk1VSQHksHFJy1pjeMS9SCRAYZZgk9qa72vjbqtdomv9FpVlF7dVuIaVA6Td6MoITrkWCu44Ack4hIaXgvO-IEF7zXonh92nttd_0GrIEwJT0-Mn38EvxKDfFGYYyRxHJxeH_nkOLPHeRJlWkYGEcdIO6yoqjtOJWUy4K-e4Ku4y6FMquFEi1jnC3U24ct_evl_ksL0O0Bk2LOCZwyftKTj0uHflQYqSVAah8gVQKkbgOk2iIlT6T37s-K6F6UCxwGSP_bfkb1Fxmu2UQ
CitedBy_id crossref_primary_10_1002_adfm_202424398
crossref_primary_10_1002_smll_202501242
crossref_primary_10_1016_j_ensm_2025_104189
crossref_primary_10_1016_j_cej_2025_161391
crossref_primary_10_1016_j_cis_2024_103373
crossref_primary_10_1002_adfm_202425423
crossref_primary_10_1002_adfm_202418993
crossref_primary_10_1002_adfm_202417462
crossref_primary_10_1016_j_cej_2024_158660
crossref_primary_10_1039_D4EE05382F
crossref_primary_10_1038_s41467_024_52611_z
crossref_primary_10_1002_cssc_202402105
crossref_primary_10_1002_ange_202418242
crossref_primary_10_1002_aenm_202403392
crossref_primary_10_1021_acsami_4c18774
crossref_primary_10_3390_ma17184456
crossref_primary_10_1016_j_corsci_2025_112762
crossref_primary_10_1016_j_jcis_2025_137338
crossref_primary_10_1016_j_jechem_2024_11_051
crossref_primary_10_1002_anie_202411427
crossref_primary_10_1016_j_jechem_2025_01_007
crossref_primary_10_1016_j_ensm_2025_104154
crossref_primary_10_1002_ange_202423252
crossref_primary_10_1039_D5SC00364D
crossref_primary_10_1002_anie_202423252
crossref_primary_10_1002_ange_202411427
crossref_primary_10_1021_jacs_4c16932
crossref_primary_10_1002_adfm_202412791
crossref_primary_10_1016_j_cej_2024_158737
crossref_primary_10_1002_anie_202418242
crossref_primary_10_1016_j_cej_2025_160013
Cites_doi 10.1002/anie.202202780
10.1002/eem2.12067
10.1002/anie.202200598
10.1002/adma.202007406
10.1021/acsenergylett.1c00833
10.1002/adma.202007416
10.1002/jcc.21224
10.1016/j.corsci.2004.01.002
10.1016/j.cej.2022.136231
10.1016/j.joule.2022.04.017
10.1002/aenm.202201322
10.1021/acs.chemrev.1c00191
10.1038/s41578-022-00511-3
10.1038/s41467-022-29987-x
10.1016/0263-7855(96)00018-5
10.1016/j.ensm.2022.04.032
10.1002/adma.202007428
10.1002/anie.202112304
10.1039/C9EE02526J
10.1038/s41893-022-01028-x
10.1021/acs.chemrev.2c00289
10.1038/s41565-021-00905-4
10.1360/TB-2020-0352
10.1021/acsenergylett.8b01426
10.1021/acs.nanolett.2c03919
10.1021/acsami.1c15742
10.1002/aenm.202202603
10.1002/chem.201601428
10.1039/D1TA06987J
10.1002/adma.202201744
10.1002/anie.202016531
10.1002/anie.202105756
10.1016/j.esci.2021.10.004
10.1039/D1EE03749H
10.1021/acs.chemrev.8b00279
10.1021/jacs.1c07614
10.1038/s41467-017-00467-x
10.1002/aenm.202203189
10.1002/anie.202109682
10.1002/adma.202206963
10.1002/anie.201904174
10.1021/jacs.6b05958
10.1038/s41563-018-0063-z
10.1002/wcms.1159
10.1038/s41893-023-01092-x
10.1039/D2EE03682G
10.1021/acsmaterialslett.1c00566
10.1039/D3EE00462G
10.1021/jacs.0c09794
10.1038/s41467-022-31461-7
10.1002/anie.202303557
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-48444-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database
PubMed



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_7fb074f86e0f490299c6b982f7676ba7
PMC11109197
38773073
10_1038_s41467_024_48444_5
Genre Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China (2021YFA1201800) Fundamental Research Funds for the Central Universities (WK3430000007)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22179124; 21905265
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22179124
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21905265
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-fa91e568d0c31cb38a675d0282666f025a372b19fe3efddcbc46905e90c0c4d23
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:17:42 EDT 2025
Thu Aug 21 18:35:31 EDT 2025
Mon Jul 21 10:55:21 EDT 2025
Wed Aug 13 09:51:28 EDT 2025
Mon Jul 21 06:00:02 EDT 2025
Tue Jul 01 02:11:08 EDT 2025
Thu Apr 24 23:44:04 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-fa91e568d0c31cb38a675d0282666f025a372b19fe3efddcbc46905e90c0c4d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4534-2616
0000-0002-2025-7554
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-48444-5
PMID 38773073
PQID 3057544649
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_7fb074f86e0f490299c6b982f7676ba7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11109197
proquest_miscellaneous_3058639369
proquest_journals_3057544649
pubmed_primary_38773073
crossref_citationtrail_10_1038_s41467_024_48444_5
crossref_primary_10_1038_s41467_024_48444_5
springer_journals_10_1038_s41467_024_48444_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-21
PublicationDateYYYYMMDD 2024-05-21
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Muster, Cole (CR21) 2004; 46
Ruan (CR13) 2022; 61
Han (CR46) 2023; 16
Yang (CR48) 2022; 61
Chen (CR31) 2021; 9
Li (CR5) 2022; 13
Zeng (CR24) 2021; 33
Fang, Zhou, Pan, Liang (CR11) 2018; 3
Zhao, Sun (CR44) 2018; 118
Li (CR42) 2022; 6
Li (CR19) 2020; 3
Zhang (CR4) 2017; 8
Zhang (CR8) 2016; 138
Liu (CR35) 2023; 23
Liang, Yao (CR3) 2022; 8
CR49
Liang (CR18) 2022; 15
Hutter (CR51) 2014; 4
Humphrey (CR53) 1996; 14
Zhu (CR1) 2022; 122
Tang (CR12) 2019; 12
Hao (CR27) 2022; 34
Nian (CR32) 2021; 13
Ma (CR10) 2021; 33
Wu (CR47) 2021; 33
Cao (CR26) 2021; 16
Klare (CR45) 2021; 143
Hao (CR14) 2021; 60
Sui, Ji (CR2) 2021; 121
Hasani, Yarger, Angell (CR43) 2016; 22
CR50
Yuan (CR39) 2022; 442
Tian (CR28) 2022; 13
Xin (CR22) 2021; 3
Yang (CR37) 2023; 6
Ma (CR6) 2022; 12
Kim (CR23) 2022; 13
Zhang (CR17) 2021; 60
Martínez (CR52) 2009; 30
Nian (CR15) 2021; 6
Zhou (CR20) 2020; 65
Kim (CR40) 2022; 13
Sun (CR25) 2021; 60
CR29
Miao (CR36) 2022; 49
Ji (CR9) 2021; 1
Chen (CR34) 2023; 16
Cao (CR33) 2020; 142
Wang (CR30) 2018; 17
Li (CR7) 2022; 61
Chao (CR41) 2019; 58
Yang (CR16) 2022; 34
Jiang (CR38) 2023; 6
G Liang (48444_CR18) 2022; 15
48444_CR50
H Tian (48444_CR28) 2022; 13
L Ma (48444_CR10) 2021; 33
Q Nian (48444_CR15) 2021; 6
W Humphrey (48444_CR53) 1996; 14
Y Sui (48444_CR2) 2021; 121
Q Zhang (48444_CR17) 2021; 60
C Li (48444_CR19) 2020; 3
M Liu (48444_CR35) 2023; 23
G Fang (48444_CR11) 2018; 3
Q Li (48444_CR5) 2022; 13
Y Kim (48444_CR23) 2022; 13
J Han (48444_CR46) 2023; 16
48444_CR49
Z Zhu (48444_CR1) 2022; 122
Q Li (48444_CR7) 2022; 61
HJ Kim (48444_CR40) 2022; 13
D Chao (48444_CR41) 2019; 58
N Zhang (48444_CR8) 2016; 138
F Wang (48444_CR30) 2018; 17
C Yuan (48444_CR39) 2022; 442
H Jiang (48444_CR38) 2023; 6
C Li (48444_CR42) 2022; 6
W Zhao (48444_CR44) 2018; 118
J Hutter (48444_CR51) 2014; 4
B Tang (48444_CR12) 2019; 12
HFT Klare (48444_CR45) 2021; 143
J Hao (48444_CR27) 2022; 34
J Zhou (48444_CR20) 2020; 65
R Chen (48444_CR34) 2023; 16
P Ruan (48444_CR13) 2022; 61
M Yang (48444_CR16) 2022; 34
L Martínez (48444_CR52) 2009; 30
P Sun (48444_CR25) 2021; 60
L Cao (48444_CR33) 2020; 142
L Miao (48444_CR36) 2022; 49
W Xin (48444_CR22) 2021; 3
S Chen (48444_CR31) 2021; 9
N Zhang (48444_CR4) 2017; 8
M Hasani (48444_CR43) 2016; 22
Y Liang (48444_CR3) 2022; 8
TH Muster (48444_CR21) 2004; 46
48444_CR29
L Ma (48444_CR6) 2022; 12
J Wu (48444_CR47) 2021; 33
Q Nian (48444_CR32) 2021; 13
X Zeng (48444_CR24) 2021; 33
L Cao (48444_CR26) 2021; 16
J Hao (48444_CR14) 2021; 60
Q Yang (48444_CR48) 2022; 61
X Ji (48444_CR9) 2021; 1
C Yang (48444_CR37) 2023; 6
References_xml – volume: 61
  start-page: e202202780
  year: 2022
  ident: CR7
  article-title: Dendrite Issues for Zinc Anodes in a Flexible Cell Configuration for Zinc-Based Wearable Energy-Storage Devices
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202780
– volume: 3
  start-page: 146
  year: 2020
  end-page: 159
  ident: CR19
  article-title: Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12067
– ident: CR49
– volume: 61
  start-page: e202200598
  year: 2022
  ident: CR13
  article-title: Design Strategies for High-Energy-Density Aqueous Zinc Batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200598
– volume: 33
  start-page: 2007406
  year: 2021
  ident: CR10
  article-title: Toward Practical High‐Areal‐Capacity Aqueous Zinc‐Metal Batteries: Quantifying Hydrogen Evolution and a Solid‐Ion Conductor for Stable Zinc Anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007406
– volume: 6
  start-page: 2174
  year: 2021
  end-page: 2180
  ident: CR15
  article-title: Designing Electrolyte Structure to Suppress Hydrogen Evolution Reaction in Aqueous Batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00833
– volume: 33
  start-page: e2007416
  year: 2021
  ident: CR24
  article-title: Electrolyte Design for In Situ Construction of Highly Zn -Conductive Solid Electrolyte Interphase to Enable High-Performance Aqueous Zn-Ion Batteries under Practical Conditions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007416
– volume: 30
  start-page: 2157
  year: 2009
  end-page: 2164
  ident: CR52
  article-title: PACKMOL: A package for building initial configurations for molecular dynamics simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– ident: CR29
– volume: 46
  start-page: 2319
  year: 2004
  end-page: 2335
  ident: CR21
  article-title: The protective nature of passivation films on zinc: surface charge
  publication-title: Corro. Sci.
  doi: 10.1016/j.corsci.2004.01.002
– volume: 442
  start-page: 136231
  year: 2022
  ident: CR39
  article-title: Microgroove-patterned Zn metal anode enables ultra-stable and low-overpotential Zn deposition for long-cycling aqueous batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136231
– volume: 6
  start-page: 1103
  year: 2022
  end-page: 1120
  ident: CR42
  article-title: Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry
  publication-title: Joule
  doi: 10.1016/j.joule.2022.04.017
– volume: 12
  start-page: 2201322
  year: 2022
  ident: CR6
  article-title: Electrocatalytic Selenium Redox Reaction for High‐Mass‐Loading Zinc‐Selenium Batteries with Improved Kinetics and Selenium Utilization
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201322
– volume: 121
  start-page: 6654
  year: 2021
  end-page: 6695
  ident: CR2
  article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00191
– volume: 8
  start-page: 109
  year: 2022
  end-page: 122
  ident: CR3
  article-title: Designing modern aqueous batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-022-00511-3
– volume: 13
  year: 2022
  ident: CR23
  article-title: Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29987-x
– ident: CR50
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: CR53
  article-title: VMD: Visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 49
  start-page: 445
  year: 2022
  end-page: 453
  ident: CR36
  article-title: Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.04.032
– volume: 33
  year: 2021
  ident: CR47
  article-title: Polycationic Polymer Layer for Air-Stable and Dendrite-Free Li Metal Anodes in Carbonate Electrolytes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007428
– volume: 61
  start-page: e202112304
  year: 2022
  ident: CR48
  article-title: Stabilizing Interface pH by N-Modified Graphdiyne for Dendrite-Free and High-Rate Aqueous Zn-Ion Batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112304
– volume: 12
  start-page: 3288
  year: 2019
  end-page: 3304
  ident: CR12
  article-title: Issues and opportunities facing aqueous zinc-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02526J
– volume: 6
  start-page: 325
  year: 2023
  end-page: 335
  ident: CR37
  article-title: All-temperature zinc batteries with high-entropy aqueous electrolyte
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-022-01028-x
– volume: 122
  start-page: 16610
  year: 2022
  end-page: 16751
  ident: CR1
  article-title: Rechargeable batteries for grid scale energy storage
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00289
– volume: 16
  start-page: 902
  year: 2021
  end-page: 910
  ident: CR26
  article-title: Fluorinated interphase enables reversible aqueous zinc battery chemistries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00905-4
– volume: 65
  start-page: 3562
  year: 2020
  end-page: 3584
  ident: CR20
  article-title: Development and challenges of aqueous rechargeable zinc batteries
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/TB-2020-0352
– volume: 3
  start-page: 2480
  year: 2018
  end-page: 2501
  ident: CR11
  article-title: Recent Advances in Aqueous Zinc-Ion Batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 23
  start-page: 541
  year: 2023
  end-page: 549
  ident: CR35
  article-title: Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c03919
– volume: 13
  start-page: 51048
  year: 2021
  end-page: 51056
  ident: CR32
  article-title: An Overcrowded Water-Ion Solvation Structure for a Robust Anode Interphase in Aqueous Lithium-Ion Batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15742
– volume: 13
  start-page: 2202603
  year: 2022
  ident: CR28
  article-title: Steel Anti‐Corrosion Strategy Enables Long‐Cycle Zn Anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202603
– volume: 22
  start-page: 13312
  year: 2016
  end-page: 13319
  ident: CR43
  article-title: On the Use of a Protic Ionic Liquid with a Novel Cation To Study Anion Basicity
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201601428
– volume: 9
  start-page: 22347
  year: 2021
  end-page: 22352
  ident: CR31
  article-title: Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06987J
– volume: 34
  start-page: e2201744
  year: 2022
  ident: CR16
  article-title: A Binary Hydrate-Melt Electrolyte with Acetate-Oriented Cross-Linking Solvation Shells for Stable Zinc Anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201744
– volume: 60
  start-page: 7366
  year: 2021
  end-page: 7375
  ident: CR14
  article-title: Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016531
– volume: 60
  start-page: 18247
  year: 2021
  end-page: 18255
  ident: CR25
  article-title: Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105756
– volume: 1
  start-page: 99
  year: 2021
  end-page: 107
  ident: CR9
  article-title: A perspective of ZnCl electrolytes: The physical and electrochemical properties
  publication-title: eScience
  doi: 10.1016/j.esci.2021.10.004
– volume: 15
  start-page: 1086
  year: 2022
  end-page: 1096
  ident: CR18
  article-title: Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03749H
– volume: 118
  start-page: 10349
  year: 2018
  end-page: 10392
  ident: CR44
  article-title: Triflimide (HNTf ) in Organic Synthesis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00279
– volume: 143
  start-page: 15490
  year: 2021
  end-page: 15507
  ident: CR45
  article-title: The Power of the Proton: From Superacidic Media to Superelectrophile Catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07614
– volume: 8
  year: 2017
  ident: CR4
  article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00467-x
– volume: 13
  start-page: 2203189
  year: 2022
  ident: CR40
  article-title: Nature of Zinc‐Derived Dendrite and Its Suppression in Mildly Acidic Aqueous Zinc‐Ion Battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203189
– volume: 60
  start-page: 23357
  year: 2021
  end-page: 23364
  ident: CR17
  article-title: Designing Anion-Type Water-Free Zn Solvation Structure for Robust Zn Metal Anode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109682
– volume: 34
  start-page: e2206963
  year: 2022
  ident: CR27
  article-title: Triple-Function Electrolyte Regulation toward Advanced Aqueous Zn-Ion Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206963
– volume: 58
  start-page: 7823
  year: 2019
  end-page: 7828
  ident: CR41
  article-title: An Electrolytic Zn-MnO Battery for High-Voltage and Scalable Energy Storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904174
– volume: 138
  start-page: 12894
  year: 2016
  end-page: 12901
  ident: CR8
  article-title: Cation-Deficient Spinel ZnMn O Cathode in Zn(CF SO ) Electrolyte for Rechargeable Aqueous Zn-Ion Battery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  ident: CR30
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 4
  start-page: 15
  year: 2014
  end-page: 25
  ident: CR51
  article-title: cp2k: atomistic simulations of condensed matter systems
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1159
– volume: 6
  start-page: 806
  year: 2023
  end-page: 815
  ident: CR38
  article-title: Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-023-01092-x
– volume: 16
  start-page: 1480
  year: 2023
  end-page: 1501
  ident: CR46
  article-title: A perspective on the role of anions in highly concentrated aqueous electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03682G
– volume: 3
  start-page: 1819
  year: 2021
  end-page: 1825
  ident: CR22
  article-title: Turning the Byproduct Zn (OH) SO · H O into a Uniform Solid Electrolyte Interphase to Stabilize Aqueous Zn Anode
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00566
– volume: 16
  start-page: 2540
  year: 2023
  end-page: 2549
  ident: CR34
  article-title: A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00462G
– volume: 142
  start-page: 21404
  year: 2020
  end-page: 21409
  ident: CR33
  article-title: Solvation Structure Design for Aqueous Zn Metal Batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09794
– volume: 13
  year: 2022
  ident: CR5
  article-title: Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31461-7
– volume: 58
  start-page: 7823
  year: 2019
  ident: 48444_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904174
– volume: 13
  year: 2022
  ident: 48444_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31461-7
– volume: 3
  start-page: 146
  year: 2020
  ident: 48444_CR19
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12067
– volume: 60
  start-page: 18247
  year: 2021
  ident: 48444_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105756
– ident: 48444_CR50
– volume: 46
  start-page: 2319
  year: 2004
  ident: 48444_CR21
  publication-title: Corro. Sci.
  doi: 10.1016/j.corsci.2004.01.002
– volume: 22
  start-page: 13312
  year: 2016
  ident: 48444_CR43
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201601428
– volume: 3
  start-page: 1819
  year: 2021
  ident: 48444_CR22
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00566
– volume: 13
  start-page: 2202603
  year: 2022
  ident: 48444_CR28
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202603
– volume: 12
  start-page: 2201322
  year: 2022
  ident: 48444_CR6
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201322
– volume: 118
  start-page: 10349
  year: 2018
  ident: 48444_CR44
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00279
– volume: 13
  start-page: 51048
  year: 2021
  ident: 48444_CR32
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15742
– volume: 65
  start-page: 3562
  year: 2020
  ident: 48444_CR20
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/TB-2020-0352
– volume: 6
  start-page: 806
  year: 2023
  ident: 48444_CR38
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-023-01092-x
– volume: 8
  start-page: 109
  year: 2022
  ident: 48444_CR3
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-022-00511-3
– volume: 138
  start-page: 12894
  year: 2016
  ident: 48444_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 442
  start-page: 136231
  year: 2022
  ident: 48444_CR39
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136231
– volume: 121
  start-page: 6654
  year: 2021
  ident: 48444_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00191
– volume: 30
  start-page: 2157
  year: 2009
  ident: 48444_CR52
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 14
  start-page: 33
  year: 1996
  ident: 48444_CR53
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 16
  start-page: 1480
  year: 2023
  ident: 48444_CR46
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03682G
– volume: 61
  start-page: e202200598
  year: 2022
  ident: 48444_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200598
– volume: 12
  start-page: 3288
  year: 2019
  ident: 48444_CR12
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02526J
– volume: 49
  start-page: 445
  year: 2022
  ident: 48444_CR36
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.04.032
– volume: 16
  start-page: 2540
  year: 2023
  ident: 48444_CR34
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00462G
– volume: 33
  start-page: e2007416
  year: 2021
  ident: 48444_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007416
– volume: 16
  start-page: 902
  year: 2021
  ident: 48444_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00905-4
– volume: 60
  start-page: 23357
  year: 2021
  ident: 48444_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109682
– volume: 4
  start-page: 15
  year: 2014
  ident: 48444_CR51
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1159
– ident: 48444_CR29
  doi: 10.1002/anie.202303557
– volume: 142
  start-page: 21404
  year: 2020
  ident: 48444_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09794
– volume: 6
  start-page: 1103
  year: 2022
  ident: 48444_CR42
  publication-title: Joule
  doi: 10.1016/j.joule.2022.04.017
– volume: 3
  start-page: 2480
  year: 2018
  ident: 48444_CR11
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 6
  start-page: 325
  year: 2023
  ident: 48444_CR37
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-022-01028-x
– volume: 17
  start-page: 543
  year: 2018
  ident: 48444_CR30
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 13
  start-page: 2203189
  year: 2022
  ident: 48444_CR40
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203189
– volume: 34
  start-page: e2201744
  year: 2022
  ident: 48444_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201744
– volume: 143
  start-page: 15490
  year: 2021
  ident: 48444_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07614
– volume: 33
  start-page: 2007406
  year: 2021
  ident: 48444_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007406
– volume: 15
  start-page: 1086
  year: 2022
  ident: 48444_CR18
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03749H
– volume: 13
  year: 2022
  ident: 48444_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29987-x
– volume: 23
  start-page: 541
  year: 2023
  ident: 48444_CR35
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c03919
– volume: 6
  start-page: 2174
  year: 2021
  ident: 48444_CR15
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00833
– volume: 8
  year: 2017
  ident: 48444_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00467-x
– volume: 34
  start-page: e2206963
  year: 2022
  ident: 48444_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206963
– volume: 33
  year: 2021
  ident: 48444_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007428
– volume: 61
  start-page: e202112304
  year: 2022
  ident: 48444_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112304
– volume: 1
  start-page: 99
  year: 2021
  ident: 48444_CR9
  publication-title: eScience
  doi: 10.1016/j.esci.2021.10.004
– volume: 122
  start-page: 16610
  year: 2022
  ident: 48444_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00289
– ident: 48444_CR49
– volume: 61
  start-page: e202202780
  year: 2022
  ident: 48444_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202780
– volume: 9
  start-page: 22347
  year: 2021
  ident: 48444_CR31
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06987J
– volume: 60
  start-page: 7366
  year: 2021
  ident: 48444_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016531
SSID ssj0000391844
Score 2.6129682
Snippet Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H 2 O...
Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H O...
Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O...
Abstract Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4303
SubjectTerms 119/118
140/133
140/146
147/28
639/301/299/891
639/638/161/891
Anions
Corrosion
Cycles
Deposition
Electrolytes
Electrolytic cells
Humanities and Social Sciences
Hydrogen evolution
Hydrophobicity
Interface stability
multidisciplinary
Science
Science (multidisciplinary)
Zinc
Zinc plating
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLchI3CBq_Ix9pIiq4sCJSr1ZfrKRlqTKbg_LL-POH2PsZJcuzwuXPawn0mhm7PnGj28QeglZzxKaMr8dZTWXItXKEVFrzx0NkvKUygXZD_L8gr-_FJc3Wn3lO2ETPfBkuJM2OchyScnYJK4bWD29dFrR1MpWOlvekUPOu1FMlTWYaShd-PxKpmHqZMXLmgApqeYwwmuxl4kKYf_vUOavlyV_OjEtiejsHro7I0j8ZtL8EN2K_X10e-opuXmAunxzY7nBmZpphHhfRvyl6z3-HAFmY9sPIeJYHkwF7DZ4lbfCP-HT8dvXPu98Yus7-OkDXmzCOFwtBtd5nEklxmTz9jr22xZxD9HF2buPb8_ruZ9C7QUn6zpZTaKQKjSeEe-YslAthFx0QQ2TAPxY1lJHdIosphC887l2FlE3vvE8UPYIHfRDH58gTJOKQlgN6ChDsKicb0Fequg48cJWiGxta_xMNp57XixNOfRmykz-MOAPU_xhRIVe7b65mqg2_ip9ml22k8w02eUPCB4zB4_5V_BU6HjrcDPP3ZVhGcJClcx1hV7shsGy-SjF9nG4LjIKsB2TIPN4io-dJky1bV45K6T2ImdP1f2RvlsUZm-S-V-JBr1eb4Psh15_tsXT_2GLI3SH5tnRiJqSY3SwHq_jMwBca_e8zK3vjQ4mVA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6hxbCfOCVHEUnHgRKXeIj-7kZZkyW4P21_WO3-MGedRLY9ecljPSo5n7PlmPPmGkLfg9TTLA_Lb5TwVhQypMkymlRUmd0UuQogFst-Kk1Px9UyejQm3zVhWOZ2J8aB2ncUc-RFHYAGxi6g-rH-m2DUKb1fHFhq3yR0GngZLutTiy5xjQfZzJcT4rUzG1dFGxJMBHFMqYESkcs8fRdr-f2HNv0sm_7g3je5o8YDcH3Ek_Tgo_iG55dtH5O7QWXL3mDRYv7HaUSRo6sHqV55eNq2lPzyAbarbznnq42dTjpod3WBC_Jwe97-uWsx_Um0beLSOLneu79bLzjSWIrVEHzQm2amdGsU9IaeLz98_naRjV4XUSsG2adAV87JQLrOcWcOVhpjBYegFkUwACKR5mRtWBc99cM4aixG09FVmMytczp-Sg7Zr_XNC86C8lLoCjIRAzCtjS5AvlDeCWakTwqa1re1IOY6dL1Z1vPrmqh70UYM-6qiPWibk3fyf9UC4caP0MapslkSy7PhD15_X496ry2AAKAVV-CyIKgMHbAtTqTyURVkYXSbkcFJ4Pe7gTX1tbwl5Mw_DyuKFim59dxFlFCA8XoDMs8E-5plwVZZ4fiZE7VnO3lT3R9pmGfm9GbLAsgrm9X4ysut5_X8tXtz8Gi_JvRztPpNpzg7Jwba_8K8AUG3N67hrfgN9pR5G
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHcDBRmJG0TEzzjHLaKq9sAFKvVm2Y7djbQkVXZ7WH4Zd_4YY-eBFgoSlxzisTTyjD3f2OPPCL2BqGcIDZHfjrKcSxFyZYnIK8ctrSXlIaQC2U_y_IIvL8XlAaLTXZhUtJ8oLdMyPVWHvd_wNKUhouRccc5zcQcdRap28O2jxWL5eTnvrETOcxAZb8gUTN3SeS8KJbL-2xDmn4WSv52WpiB09gDdH9EjXgz6PkQHvn2E7g7vSe4eoyZWbax3ONIy9eDra4-_Na3DXz1AbGzarvbYp8tSNbY7vInb4Ff4tP_xvY27nti4Bj5tjVe7uu-uV51tHI6EEn0wcWsdu-l5uCfo4uzjlw_n-fiWQu4EJ9s8mIp4IVVdOEacZcpAplDHhAvylwDAx7CSWlIFz3yoa2ddzJuFrwpXOF5T9hQdtl3rjxGmQXkhTAXIKMIvr6wrQV4qbzlxwmSITGOr3Ug0Ht-7WOt04M2UHuyhwR462UOLDL2d-1wPNBv_lD6NJpslI0V2-tH1V3p0GV0GC_AoKOmLwKsCwq6TtlI0lLKU1pQZOpkMrsd5u9EswlfIkHmVoddzM4xsPEYxre9ukowCXMckyDwb_GPWhKmyjKtmhtSe5-yput_SNqvE6k0i9yupQK93k5P90uvvY_H8_8RfoHs0zoNC5JScoMNtf-NfAqza2lfjPPoJe7EdbQ
  priority: 102
  providerName: Springer Nature
Title Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry
URI https://link.springer.com/article/10.1038/s41467-024-48444-5
https://www.ncbi.nlm.nih.gov/pubmed/38773073
https://www.proquest.com/docview/3057544649
https://www.proquest.com/docview/3058639369
https://pubmed.ncbi.nlm.nih.gov/PMC11109197
https://doaj.org/article/7fb074f86e0f490299c6b982f7676ba7
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB72guCLeN_qWkbwTaOZayYPIm3ZuhRcRC30LWQmM9tCTda0C9Zf5rt_zDOTpFKtgi8JJKdlOJec78zlOwg9g6yXE-o8vx1lEZfCRUoTEaWGa1pIyp0LG2Qv5PmUT2ZidoC6dketAld7SzvfT2paL19-_bJ5AwH_ujkyrl6teAh3yDYRV5zzSByiY8hMie9o8K6F--HLzFIoaPxCM405iUCAtedo9v_NTq4KlP77cOif2yl_W1MNqWp8G91qMSYeNE5xBx3Y8i660XSd3NxDC7-3Y7nBnryphohYWvxtURr82YIOcF5WhcU2HKkqsN7glZ8sv8TD-sf30s-N4tws4FIWeL4p6upqXumFwZ52ona5n4DHpmsidx9Nx2efRudR23EhMoKTdeTylFghVREbRoxmKod6ovBlGVQ5DuBRzhKqSeoss64ojDa-uhY2jU1seEHZA3RUVqU9QZg6ZYXIU8BPHqRZpU0C8lJZzYkReQ-RTreZaenIfVeMZRaWxZnKGntkYI8s2CMTPfR8-5urhozjn9JDb7KtpCfSDg-q-jJr4zJLnAYQ5ZS0seNpDMnZSJ0q6hKZSJ0nPXTaGTzrnDNjHuRCHc3THnq6fQ2a9YsteWmr6yCjAP0xCTIPG__YjoSpJPHf1h5SO56zM9TdN-ViHri_iWeIJSmM60XnZL_G9XddPPovzT1GN6kPg1hElJyio3V9bZ8A9lrrPjpMZglc1fhtHx0PBpOPE7gPzy7ef4CnIznqh1mNfgi8nytvLdc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIgQXxLuBAkaCE6y668eu94AQBUJKS0-t1JtZe-0mUtgNm1Qo_CjO3PljzHh3U4VHb73kEE8kx_P6PLa_IeQZZL0iYR757RiPRCp9pEwio9wKw8qUCe_DBdnDdHQsPp7Ikw3yo38Lg9cq-5gYAnVZW6yR73AEFrB3Efnr2dcIu0bh6WrfQqM1i323_AZbtvmrvXeg3-eMDd8fvR1FXVeByEqRLCJf5ImTqSpjyxNruCoAM5e49QAk7wECFDxjJsm9486XpTUWd5DS5bGNrSiR6ABC_hXBIZPjy_Thh1VNB9nWlRDd25yYq525CJEIEmEkYEREci3_hTYB_8K2f1_R_OOcNqS_4U1yo8Ot9E1raLfIhqtuk6ttJ8vlHTLB-yLTJUVCqAa8bOro90ll6RcH4J4WVV066sIzrZKaJZ1jAf6U7ja_flZYb6WFncBHVdLxsmzq2bg2E0uRyqLxBRb1qe0b090lx5ey3vfIZlVXbotQ5pWTssgBkyHwc8rYDORT5YxIrCwGJOnXVtuO4hw7bUx1OGrnSrf60KAPHfSh5YC8WP1m1hJ8XCi9iypbSSI5d_iibk515-s68waAmVepi73IY0j4NjW5Yj5Ls9QU2YBs9wrXXcSY63P7HpCnq2FYWTzAKSpXnwUZBYiSpyBzv7WP1Uy4yjKM1wOi1ixnbarrI9VkHPjEE2SdTXKY18veyM7n9f-1eHDx33hCro2OPh3og73D_YfkOkMfiGXEkm2yuWjO3CMAcwvzOHgQJZ8v22V_Azx4W0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVCAuiHcDBYwEJ1hl7bV3vQeECG3UUhRViEq9LbbXbiKF3bBJhcIvQ1z5Y8zsI1V49NZLDvFEcjyvb8bjGUKeg9fTjHvsb8ejQMTSB8owGaRWGJ7HXHhfF8iO44MT8f5Unm6Rn91bGCyr7Gxibajz0mKOfBAhsIDYRaQD35ZFHO-N3sy_BjhBCm9au3EajYgcudU3CN8Wrw_3gNcvOB_tf3p3ELQTBgIrBVsGXqfMyVjloY2YNZHSgJ9zDEMA1XuAAzpKuGGpd5HzeW6NxWhSujS0oRU5Nj0A87-dYFTUI9vD_fHxx3WGB3uvKyHalzphpAYLUdslcIuBgBURyA1vWA8N-BfS_btg849b29oZjm6Rmy2KpW8bsbtNtlxxh1xr5lqu7pIpVo_MVhTbQ1WgczNHv08LS784gPpUF2XuqKsfbeXUrOgC0_FndFj9-lFg9pVqO4WPIqeTVV6V80lpppZiY4vKa0zxU9uNqbtHTq7kxO-TXlEWbodQ7pWTUqeA0BAGOmVsAvSxckYwK3WfsO5sM9s2PMe5G7OsvniPVNbwIwN-ZDU_MtknL9e_mTftPi6lHiLL1pTYqrv-oqzOslbzs8QbgGlexS70Ig3B_dvYpIr7JE5io5M-2e0YnrX2Y5FdSHufPFsvw8nidY4uXHle0yjAl1EMNA8a-VjvJFJJgta7T9SG5GxsdXOlmE7q7uIMe9CyFPb1qhOyi339_yweXv43npLroK7Zh8Px0SNyg6MKhDLgbJf0ltW5ewzIbmmetCpEyeer1trfO99g0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+reversible+zinc+metal+anode+enabled+by+strong+Br%C3%B8nsted+acid+and+hydrophobic+interfacial+chemistry&rft.jtitle=Nature+communications&rft.au=Nian%2C+Qingshun&rft.au=Luo%2C+Xuan&rft.au=Ruan%2C+Digen&rft.au=Li%2C+Yecheng&rft.date=2024-05-21&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-48444-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_48444_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon