Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads
Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretati...
Saved in:
Published in | Nature methods Vol. 18; no. 11; pp. 1322 - 1332 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.11.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished).
The PEPPER-Margin-DeepVariant pipeline achieves highly accurate variant calling using nanopore and other long-read sequencing data. |
---|---|
AbstractList | Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished). Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished).The PEPPER-Margin-DeepVariant pipeline achieves highly accurate variant calling using nanopore and other long-read sequencing data. Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished).Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished). Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read based phasing. Third-generation nanopore sequence data has demonstrated a long read length, but current interpretation methods for its novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline PEPPER-Margin-DeepVariant that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single nucleotide variant identification method at the whole genome-scale and produces high quality single nucleotide variants in segmental duplications and low-mappability regions where short-read based genotyping fails. We show that our pipeline can provide highly-contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% to 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance than the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio-HiFi-polished). Further information on research design is available in the Nature Research Reporting Summary linked to this article. Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished). The PEPPER-Margin-DeepVariant pipeline achieves highly accurate variant calling using nanopore and other long-read sequencing data. |
Audience | Academic |
Author | Carroll, Andrew Pesout, Trevor Nattestad, Maria Carnevali, Paolo Paten, Benedict Miga, Karen H. Kolesnikov, Alexey Goel, Sidharth Jain, Miten Eizenga, Jordan M. Baid, Gunjan Shafin, Kishwar Chang, Pi-Chuan Kolmogorov, Mikhail |
AuthorAffiliation | 3 Chan Zuckerberg Initiative, Redwood City, CA, USA 1 UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA 2 Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA |
AuthorAffiliation_xml | – name: 2 Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA – name: 3 Chan Zuckerberg Initiative, Redwood City, CA, USA – name: 1 UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA |
Author_xml | – sequence: 1 givenname: Kishwar orcidid: 0000-0001-5252-3434 surname: Shafin fullname: Shafin, Kishwar organization: UC Santa Cruz Genomics Institute – sequence: 2 givenname: Trevor surname: Pesout fullname: Pesout, Trevor organization: UC Santa Cruz Genomics Institute – sequence: 3 givenname: Pi-Chuan orcidid: 0000-0003-3021-6446 surname: Chang fullname: Chang, Pi-Chuan organization: Google Inc – sequence: 4 givenname: Maria surname: Nattestad fullname: Nattestad, Maria organization: Google Inc – sequence: 5 givenname: Alexey surname: Kolesnikov fullname: Kolesnikov, Alexey organization: Google Inc – sequence: 6 givenname: Sidharth surname: Goel fullname: Goel, Sidharth organization: Google Inc – sequence: 7 givenname: Gunjan surname: Baid fullname: Baid, Gunjan organization: Google Inc – sequence: 8 givenname: Mikhail surname: Kolmogorov fullname: Kolmogorov, Mikhail organization: UC Santa Cruz Genomics Institute – sequence: 9 givenname: Jordan M. surname: Eizenga fullname: Eizenga, Jordan M. organization: UC Santa Cruz Genomics Institute – sequence: 10 givenname: Karen H. orcidid: 0000-0002-3670-4507 surname: Miga fullname: Miga, Karen H. organization: UC Santa Cruz Genomics Institute – sequence: 11 givenname: Paolo surname: Carnevali fullname: Carnevali, Paolo organization: Chan Zuckerberg Initiative – sequence: 12 givenname: Miten orcidid: 0000-0002-4571-3982 surname: Jain fullname: Jain, Miten organization: UC Santa Cruz Genomics Institute – sequence: 13 givenname: Andrew orcidid: 0000-0002-4824-6689 surname: Carroll fullname: Carroll, Andrew email: awcarroll@google.com organization: Google Inc – sequence: 14 givenname: Benedict orcidid: 0000-0001-8863-3539 surname: Paten fullname: Paten, Benedict email: bpaten@ucsc.edu organization: UC Santa Cruz Genomics Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34725481$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_gD3BAkbhwcfFHnI8LUlUWilTECgFXa9aZZF28drCTrvbf4-1uW1qhygdbnud9xzOe4-zAeYdZ9prRU0ZF_T4WTDacUM4IZbxpyPpZdsRkUZOKUXlwe6YNO8yOY7yiVIiCyxfZoSgqnmLsKPt9AYP142ZAAmsImF9DMODGXIO1xvX52ozLfD6bz2ffyVcIvXHkI-Lwa4-hg4XFmC9Nv8xB6ymA3uTG5Q6cH3wytN71JCC08WX2vAMb8dV-P8l-fpr9OL8gl98-fzk_uyRaFmwkXVVWrEFE2S5a3TGpF62EuuO0FhIlA15WC9EVRaULqptOyFYw3hW85U3NeS1Osg8732FarLDV6MYAVg3BrCBslAejHkacWareX6tapsYxmQze7Q2C_zNhHNXKRI3WgkM_RcVT2wVjrBQJffsIvfJTcKm8G6oqCyHpPdWDRWVc51NevTVVZ2XNeF2mhyfq9D9UWi2ujE5_35l0_0Dw5t9C7yq8_d4E8B2gg48xYHeHMKq2M6R2M6TSDKmbGVLrJKofibQZYTR-2yxjn5aKnTSmPK7HcN-NJ1R_Aetb2y8 |
CitedBy_id | crossref_primary_10_1038_s41467_022_30680_2 crossref_primary_10_1016_j_cub_2023_12_042 crossref_primary_10_1186_s12864_023_09417_y crossref_primary_10_1016_j_jid_2024_01_020 crossref_primary_10_1186_s13073_024_01391_8 crossref_primary_10_1186_s12859_023_05596_3 crossref_primary_10_1080_14737159_2023_2241365 crossref_primary_10_1038_s41467_024_50079_5 crossref_primary_10_1093_nar_gkad1010 crossref_primary_10_1007_s11427_024_2742_y crossref_primary_10_3389_fgene_2024_1493295 crossref_primary_10_1186_s12859_023_05193_4 crossref_primary_10_1016_j_gpb_2023_08_001 crossref_primary_10_1093_bib_bbae473 crossref_primary_10_1016_j_omtm_2024_101231 crossref_primary_10_1093_bioinformatics_btac824 crossref_primary_10_1016_j_jmoldx_2024_08_002 crossref_primary_10_1093_bioinformatics_btac827 crossref_primary_10_1093_nargab_lqac033 crossref_primary_10_3390_genes13091583 crossref_primary_10_1093_gbe_evac106 crossref_primary_10_1186_s13059_023_03061_1 crossref_primary_10_1371_journal_pbio_3002697 crossref_primary_10_1093_g3journal_jkaf044 crossref_primary_10_1038_s41591_025_03562_5 crossref_primary_10_1136_jnnp_2024_333541 crossref_primary_10_1038_s41586_024_07788_0 crossref_primary_10_3390_v16121868 crossref_primary_10_1126_science_abj6987 crossref_primary_10_1038_s42003_024_06981_1 crossref_primary_10_1016_j_ymthe_2024_11_025 crossref_primary_10_1038_s41598_022_10048_8 crossref_primary_10_1002_humu_24465 crossref_primary_10_1038_s41439_024_00276_x crossref_primary_10_1038_s41467_022_28852_1 crossref_primary_10_3390_genes15121551 crossref_primary_10_1038_s41592_022_01515_1 crossref_primary_10_1093_nargab_lqad033 crossref_primary_10_3389_fgene_2022_887644 crossref_primary_10_1007_s12185_025_03929_x crossref_primary_10_1038_s41588_024_01808_5 crossref_primary_10_1186_s12859_023_05434_6 crossref_primary_10_1016_j_fsigen_2024_103156 crossref_primary_10_1371_journal_pcbi_1012732 crossref_primary_10_1016_j_ejmg_2022_104690 crossref_primary_10_1038_s41592_024_02424_1 crossref_primary_10_1007_s00239_023_10102_7 crossref_primary_10_1126_science_abl3533 crossref_primary_10_1186_s12864_023_09343_z crossref_primary_10_1016_j_yamp_2023_08_004 crossref_primary_10_1038_s41467_024_47349_7 crossref_primary_10_1093_bioadv_vbac095 crossref_primary_10_3390_life12111939 crossref_primary_10_1038_s41408_024_01108_5 crossref_primary_10_1038_s41559_023_02243_1 crossref_primary_10_1186_s13148_025_01832_0 crossref_primary_10_3389_fgene_2024_1439153 crossref_primary_10_1182_bloodadvances_2022007133 crossref_primary_10_1038_s41587_022_01580_z crossref_primary_10_1002_mds_30077 crossref_primary_10_1038_s41587_021_01158_1 crossref_primary_10_1093_gbe_evad148 crossref_primary_10_1016_j_fsigen_2024_103048 crossref_primary_10_1038_s41467_024_53087_7 crossref_primary_10_1128_spectrum_02082_24 crossref_primary_10_3389_fgene_2023_1213457 crossref_primary_10_1002_ana_27155 crossref_primary_10_1093_gbe_evad020 crossref_primary_10_1038_s41587_022_01435_7 crossref_primary_10_1038_s41592_022_01440_3 crossref_primary_10_1038_s41592_024_02262_1 crossref_primary_10_1093_bib_bbac301 crossref_primary_10_1038_s41467_022_33530_3 crossref_primary_10_7717_peerj_17731 crossref_primary_10_1038_s41467_023_39784_9 crossref_primary_10_1093_infdis_jiad523 crossref_primary_10_1038_s41525_023_00366_9 crossref_primary_10_1038_s41598_023_35791_4 crossref_primary_10_1038_s41467_024_44804_3 crossref_primary_10_1186_s13059_024_03394_5 crossref_primary_10_1093_nar_gkac510 crossref_primary_10_1186_s13059_024_03297_5 crossref_primary_10_1016_j_jgar_2022_08_006 crossref_primary_10_1016_j_xgen_2022_100233 crossref_primary_10_3389_fgene_2022_1008792 crossref_primary_10_1093_g3journal_jkad077 crossref_primary_10_3390_ijms232113244 crossref_primary_10_1056_NEJMra2204787 crossref_primary_10_1101_gr_278070_123 crossref_primary_10_1016_j_drudis_2024_103990 crossref_primary_10_7717_peerj_18132 crossref_primary_10_1186_s13073_022_01026_w crossref_primary_10_1161_CIRCGEN_121_003591 crossref_primary_10_1080_13816810_2022_2141797 crossref_primary_10_1101_gr_277031_122 crossref_primary_10_1136_jmg_2023_109341 crossref_primary_10_1186_s12711_023_00783_5 crossref_primary_10_3390_jof9030301 crossref_primary_10_1038_s41467_022_35650_2 crossref_primary_10_1038_s41592_024_02168_y crossref_primary_10_1172_jci_insight_183902 crossref_primary_10_1038_s41586_023_06425_6 crossref_primary_10_1038_s41576_023_00590_0 crossref_primary_10_1038_s41592_023_02141_1 crossref_primary_10_1038_s10038_024_01275_0 crossref_primary_10_1056_NEJMc2112090 crossref_primary_10_1186_s13059_024_03301_y crossref_primary_10_1093_bioinformatics_btad722 crossref_primary_10_1016_j_canlet_2024_217121 crossref_primary_10_1098_rstb_2021_0195 crossref_primary_10_1002_2211_5463_13868 crossref_primary_10_1093_bioadv_vbac054 crossref_primary_10_1038_s43588_022_00387_x crossref_primary_10_1093_brain_awac377 crossref_primary_10_1038_s41525_024_00394_z crossref_primary_10_1038_s41586_023_06457_y crossref_primary_10_1093_bioadv_vbad149 crossref_primary_10_1159_000530652 crossref_primary_10_3390_diagnostics13030373 crossref_primary_10_1093_bfgp_elae003 crossref_primary_10_1016_j_ajhg_2024_10_006 crossref_primary_10_1038_s41422_023_00849_5 crossref_primary_10_1093_bib_bbad087 crossref_primary_10_1038_s41467_024_47562_4 crossref_primary_10_1093_nsr_nwae335 crossref_primary_10_1038_s41586_022_05249_0 crossref_primary_10_1101_gr_279273_124 crossref_primary_10_1038_s41592_023_01993_x crossref_primary_10_1038_s41592_023_01932_w crossref_primary_10_1172_jci_insight_188216 crossref_primary_10_1093_gigascience_giaf018 crossref_primary_10_1186_s13073_023_01194_3 crossref_primary_10_1007_s00438_024_02158_x crossref_primary_10_1038_s41587_022_01221_5 crossref_primary_10_1038_s41588_024_01719_5 |
Cites_doi | 10.1126/science.1162986 10.1038/s41587-019-0072-8 10.1038/sdata.2016.25 10.1089/cmb.2014.0157 10.1038/nrg2950 10.1038/s41586-020-2547-7 10.1186/s13059-019-1709-0 10.1038/nbt.4109 10.1101/gr.213462.116 10.1038/s41592-018-0001-7 10.1101/gr.263566.120 10.1038/s41467-020-18564-9 10.3389/fgene.2014.00381 10.1038/nmeth.3290 10.1038/nrg1322 10.1186/s13059-018-1462-9 10.1038/s41587-019-0074-6 10.1038/nbt.4277 10.1016/j.ymeth.2012.05.001 10.1007/s00401-017-1743-5 10.1038/nature11632 10.1038/s41592-018-0054-7 10.1101/gr.214874.116 10.1093/nar/gky955 10.1038/nrg3054 10.1038/nbt.4235 10.1038/s41587-019-0217-9 10.1186/s13073-014-0073-7 10.1093/bioinformatics/btp352 10.1093/bioinformatics/bty191 10.1016/0304-4076(88)90048-6 10.1038/nbt.4060 10.1038/nmeth.4035 10.1038/s41587-019-0054-x 10.1101/gr.135350.111 10.1101/gr.233460.117 10.1038/s41587-020-0719-5 10.1101/gr.214007.116 10.1089/cmb.2014.0029 10.1101/gr.107524.110 10.1038/s42256-020-0167-4 10.1038/s41592-019-0669-3 10.1038/s41467-019-12493-y 10.3389/fimmu.2020.02136 10.1016/j.semcdb.2013.04.005 10.1101/2020.07.24.212712 10.1038/s41587-020-0503-6 10.1101/2020.11.13.380741 10.1038/s41587-020-0538-8 10.1038/s41586-021-03420-7 10.1101/2020.12.11.422022 10.5281/zenodo.5275510 10.1038/s41592-020-01056-5 10.1101/2020.11.01.363887 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 5PM |
DOI | 10.1038/s41592-021-01299-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 1332 |
ExternalDocumentID | PMC8571015 A681286822 34725481 10_1038_s41592_021_01299_w |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI) grantid: U41HG010972; R01HG010485; U01HG010961; OT2OD026682 funderid: https://doi.org/10.13039/100000051 – fundername: NHGRI NIH HHS grantid: U01 HG010961 – fundername: NIH HHS grantid: OT2 OD026682 – fundername: NHGRI NIH HHS grantid: U24 HG010262 – fundername: NHGRI NIH HHS grantid: R01 HG010485 – fundername: NHGRI NIH HHS grantid: U41 HG010972 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PMFND 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c541t-f76719eee5dbdcf15cbd5a8f20835e51a267b3f447c40c9f35d312f42d2982283 |
IEDL.DBID | 7X7 |
ISSN | 1548-7091 1548-7105 |
IngestDate | Thu Aug 21 18:33:49 EDT 2025 Fri Jul 11 13:03:58 EDT 2025 Sat Aug 23 12:40:25 EDT 2025 Tue Jun 17 21:54:49 EDT 2025 Tue Jun 10 20:38:07 EDT 2025 Sun Apr 06 01:21:14 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Tue Jul 01 00:44:36 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-f76719eee5dbdcf15cbd5a8f20835e51a267b3f447c40c9f35d312f42d2982283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. B.P. and A.C. designed and executed the study. K.S. developed PEPPER. T.P. developed Margin. P.C. designed candidate import functionality in DeepVariant. K.S., T.P. P.C. contributed equally to the methods development and core analysis presented. M.N. designed alt-event alignment in DeepVariant, A.K. contributed to haplotype sorting and improvements on DeepVariant runtime, S.G. contributed to candidate import module of DeepVariant, G.B. designed and executed the post-processing model to improve multiallelic variant accuracy. M.K. designed and evaluated assembly polishing. J.M.E. designed local phasing metric and contributed to phasing evaluation. K.H.M. provided experimental design guidance, P.C. generated assemblies and provided guidance on assembly polishing. M.J. performed nanopore sequencing, quality control and helped to design and execute analysis. All authors approve of the final manuscript. Author Contributions |
ORCID | 0000-0002-4824-6689 0000-0003-3021-6446 0000-0002-4571-3982 0000-0001-8863-3539 0000-0001-5252-3434 0000-0002-3670-4507 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8571015 |
PMID | 34725481 |
PQID | 2592764350 |
PQPubID | 28015 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8571015 proquest_miscellaneous_2592311163 proquest_journals_2592764350 gale_infotracmisc_A681286822 gale_infotracacademiconefile_A681286822 pubmed_primary_34725481 crossref_primary_10_1038_s41592_021_01299_w crossref_citationtrail_10_1038_s41592_021_01299_w springer_journals_10_1038_s41592_021_01299_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211100 2021-11-01 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Li (CR51) 2018; 15 Harrow (CR42) 2012; 22 Jain (CR30) 2018; 36 Jain (CR29) 2018; 36 Zook (CR43) 2019; 37 Jain (CR8) 2015; 12 Chin (CR39) 2016; 13 Miga (CR11) 2020; 585 Falconer, Lansdorp (CR6) 2013; 24 Wenger (CR21) 2019; 37 Belton (CR5) 2012; 58 Luo (CR19) 2020; 2 Li (CR53) 2009; 25 CR4 Krusche (CR54) 2019; 37 CR47 CR44 Poplin (CR36) 2018; 36 Edge, Bafna, Bansal (CR37) 2017; 27 McKenna (CR2) 2010; 20 Eid (CR9) 2009; 323 Glusman, Cox, Roach (CR50) 2014; 6 Altshuler (CR1) 2012; 491 Koren (CR40) 2018; 36 Tewhey, Bansal, Torkamani, Topol, Schork (CR48) 2011; 12 Euskirchen (CR33) 2017; 134 Rang, Kloosterman, de Ridder (CR34) 2018; 19 Chin (CR35) 2020; 11 CR18 Fiddes (CR31) 2018; 28 Frankish (CR45) 2019; 47 CR14 CR13 CR57 CR12 Newey (CR56) 1988; 38 CR10 Li, Freudenberg (CR3) 2014; 5 Weisenfeld, Kumar, Shah, Church, Jaffe (CR7) 2017; 27 Zook (CR26) 2016; 3 Eichler, Clark, She (CR32) 2004; 5 Cleary (CR55) 2014; 21 Rodriguez (CR38) 2020; 11 Ruan, Li (CR17) 2020; 17 Heller, Vingron (CR46) 2020; 36 Sedlazeck (CR24) 2018; 15 Ebler, Haukness, Pesout, Marschall, Paten (CR22) 2019; 20 Li (CR52) 2018; 34 CR28 CR27 Edge, Bansal (CR20) 2019; 10 Patterson (CR25) 2015; 22 Kolmogorov, Yuan, Lin, Pevzner (CR16) 2019; 37 Huddleston (CR23) 2017; 27 Porubsky (CR41) 2021; 39 Browning, Browning (CR49) 2011; 12 Nurk (CR15) 2020; 30 D Porubsky (1299_CR41) 2021; 39 JG Cleary (1299_CR55) 2014; 21 1299_CR28 1299_CR27 J Harrow (1299_CR42) 2012; 22 C-S Chin (1299_CR35) 2020; 11 R Tewhey (1299_CR48) 2011; 12 M Jain (1299_CR29) 2018; 36 IT Fiddes (1299_CR31) 2018; 28 AM Wenger (1299_CR21) 2019; 37 R Luo (1299_CR19) 2020; 2 H Li (1299_CR52) 2018; 34 NI Weisenfeld (1299_CR7) 2017; 27 P Krusche (1299_CR54) 2019; 37 1299_CR18 M Jain (1299_CR8) 2015; 12 JM Zook (1299_CR43) 2019; 37 1299_CR14 M Jain (1299_CR30) 2018; 36 1299_CR10 1299_CR13 1299_CR57 1299_CR12 H Li (1299_CR51) 2018; 15 JM Zook (1299_CR26) 2016; 3 OL Rodriguez (1299_CR38) 2020; 11 JM Belton (1299_CR5) 2012; 58 S Koren (1299_CR40) 2018; 36 1299_CR4 J Huddleston (1299_CR23) 2017; 27 1299_CR47 FJ Rang (1299_CR34) 2018; 19 DM Altshuler (1299_CR1) 2012; 491 P Edge (1299_CR20) 2019; 10 C-S Chin (1299_CR39) 2016; 13 P Euskirchen (1299_CR33) 2017; 134 P Edge (1299_CR37) 2017; 27 J Ruan (1299_CR17) 2020; 17 EE Eichler (1299_CR32) 2004; 5 1299_CR44 R Poplin (1299_CR36) 2018; 36 D Heller (1299_CR46) 2020; 36 H Li (1299_CR53) 2009; 25 W Li (1299_CR3) 2014; 5 A Frankish (1299_CR45) 2019; 47 J Ebler (1299_CR22) 2019; 20 A McKenna (1299_CR2) 2010; 20 E Falconer (1299_CR6) 2013; 24 S Nurk (1299_CR15) 2020; 30 SR Browning (1299_CR49) 2011; 12 FJ Sedlazeck (1299_CR24) 2018; 15 KH Miga (1299_CR11) 2020; 585 M Kolmogorov (1299_CR16) 2019; 37 MD Patterson (1299_CR25) 2015; 22 WK Newey (1299_CR56) 1988; 38 G Glusman (1299_CR50) 2014; 6 J Eid (1299_CR9) 2009; 323 |
References_xml | – volume: 323 start-page: 133 year: 2009 end-page: 138 ident: CR9 article-title: Real-time DNA sequencing from single polymerase molecules publication-title: Science doi: 10.1126/science.1162986 – volume: 37 start-page: 540 year: 2019 end-page: 546 ident: CR16 article-title: Assembly of long, error-prone reads using repeat graphs publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – volume: 3 start-page: 160025 year: 2016 ident: CR26 article-title: Extensive sequencing of seven human genomes to characterize benchmark reference materials publication-title: Sci. Data doi: 10.1038/sdata.2016.25 – ident: CR4 – ident: CR12 – volume: 22 start-page: 498 year: 2015 end-page: 509 ident: CR25 article-title: WhatsHap: weighted haplotype assembly for future-generation sequencing reads publication-title: J. Comput. Biol. doi: 10.1089/cmb.2014.0157 – volume: 12 start-page: 215 year: 2011 end-page: 223 ident: CR48 article-title: The importance of phase information for human genomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2950 – volume: 585 start-page: 79 year: 2020 end-page: 84 ident: CR11 article-title: Telomere-to-telomere assembly of a complete human X chromosome publication-title: Nature doi: 10.1038/s41586-020-2547-7 – volume: 20 year: 2019 ident: CR22 article-title: Haplotype-aware diplotyping from noisy long reads publication-title: Genome Biol. doi: 10.1186/s13059-019-1709-0 – volume: 36 start-page: 321 year: 2018 ident: CR30 article-title: Linear assembly of a human centromere on the Y chromosome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4109 – volume: 27 start-page: 801 year: 2017 end-page: 812 ident: CR37 article-title: HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies publication-title: Genome Res. doi: 10.1101/gr.213462.116 – volume: 15 start-page: 461 year: 2018 end-page: 468 ident: CR24 article-title: Accurate detection of complex structural variations using single-molecule sequencing publication-title: Nat. Methods doi: 10.1038/s41592-018-0001-7 – volume: 30 start-page: 1291 year: 2020 end-page: 1305 ident: CR15 article-title: HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads publication-title: Genome Res. doi: 10.1101/gr.263566.120 – volume: 11 start-page: 1 year: 2020 end-page: 9 ident: CR35 article-title: A diploid assembly-based benchmark for variants in the major histocompatibility complex publication-title: Nat. Commun. doi: 10.1038/s41467-020-18564-9 – volume: 5 start-page: 381 year: 2014 ident: CR3 article-title: Mappability and read length publication-title: Front. Genet. doi: 10.3389/fgene.2014.00381 – volume: 12 start-page: 351 year: 2015 ident: CR8 article-title: Improved data analysis for the MinION nanopore sequencer publication-title: Nat. Methods doi: 10.1038/nmeth.3290 – ident: CR57 – volume: 5 start-page: 345 year: 2004 ident: CR32 article-title: An assessment of the sequence gaps: unfinished business in a finished human genome publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1322 – volume: 36 start-page: 22 year: 2020 end-page: 23 ident: CR46 article-title: SVIM-asm: Structural variant detection from haploid and diploid genome assemblies. publication-title: Bioinformatics – volume: 19 year: 2018 ident: CR34 article-title: From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy publication-title: Genome Biol. doi: 10.1186/s13059-018-1462-9 – volume: 37 start-page: 561 year: 2019 ident: CR43 article-title: An open resource for accurately benchmarking small variant and reference calls publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0074-6 – volume: 36 start-page: 1174 year: 2018 ident: CR40 article-title: De novo assembly of haplotype-resolved genomes with trio binning publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4277 – volume: 58 start-page: 268 year: 2012 end-page: 276 ident: CR5 article-title: Hi-C: a comprehensive technique to capture the conformation of genomes publication-title: Methods doi: 10.1016/j.ymeth.2012.05.001 – volume: 134 start-page: 691 year: 2017 end-page: 703 ident: CR33 article-title: Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1743-5 – volume: 491 start-page: 56 year: 2012 end-page: 65 ident: CR1 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – ident: CR18 – volume: 15 start-page: 595 year: 2018 end-page: 597 ident: CR51 article-title: A synthetic-diploid benchmark for accurate variant-calling evaluation publication-title: Nat. Methods doi: 10.1038/s41592-018-0054-7 – ident: CR47 – volume: 27 start-page: 757 year: 2017 end-page: 767 ident: CR7 article-title: Direct determination of diploid genome sequences publication-title: Genome Res. doi: 10.1101/gr.214874.116 – ident: CR14 – volume: 47 start-page: D766 year: 2019 end-page: D773 ident: CR45 article-title: GENCODE reference annotation for the human and mouse genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky955 – volume: 12 start-page: 703 year: 2011 end-page: 714 ident: CR49 article-title: Haplotype phasing: existing methods and new developments publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3054 – volume: 36 start-page: 983 year: 2018 ident: CR36 article-title: A universal SNP and small-indel variant caller using deep neural networks publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4235 – volume: 37 start-page: 1155 year: 2019 end-page: 1162 ident: CR21 article-title: Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0217-9 – ident: CR10 – volume: 6 start-page: 1 year: 2014 end-page: 16 ident: CR50 article-title: Whole-genome haplotyping approaches and genomic medicine publication-title: Genome Med. doi: 10.1186/s13073-014-0073-7 – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: CR53 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 34 start-page: 3094 year: 2018 end-page: 3100 ident: CR52 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 38 start-page: 301 year: 1988 end-page: 339 ident: CR56 article-title: Adaptive estimation of regression models via moment restrictions publication-title: J. Econom. doi: 10.1016/0304-4076(88)90048-6 – volume: 36 start-page: 338 year: 2018 ident: CR29 article-title: Nanopore sequencing and assembly of a human genome with ultra-long reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4060 – ident: CR27 – volume: 13 start-page: 1050 year: 2016 ident: CR39 article-title: Phased diploid genome assembly with single-molecule real-time sequencing publication-title: Nat. Methods doi: 10.1038/nmeth.4035 – volume: 37 start-page: 555 year: 2019 end-page: 560 ident: CR54 article-title: Best practices for benchmarking germline small-variant calls in human genomes publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0054-x – volume: 22 start-page: 1760 year: 2012 end-page: 1774 ident: CR42 article-title: GENCODE: The reference human genome annotation for The ENCODE Project publication-title: Genome Res. doi: 10.1101/gr.135350.111 – ident: CR44 – volume: 28 start-page: 1029 year: 2018 end-page: 1038 ident: CR31 article-title: Comparative Annotation Toolkit (CAT)—simultaneous clade and personal genome annotation publication-title: Genome Res. doi: 10.1101/gr.233460.117 – volume: 39 start-page: 302 year: 2021 end-page: 308 ident: CR41 article-title: Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0719-5 – volume: 27 start-page: 677 year: 2017 end-page: 685 ident: CR23 article-title: Discovery and genotyping of structural variation from long-read haploid genome sequence data publication-title: Genome Res. doi: 10.1101/gr.214007.116 – volume: 21 start-page: 405 year: 2014 end-page: 419 ident: CR55 article-title: Joint variant and de novo mutation identification on pedigrees from high-throughput sequencing data publication-title: J. Comput. Biol. doi: 10.1089/cmb.2014.0029 – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: CR2 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 2 start-page: 220 year: 2020 end-page: 227 ident: CR19 article-title: Exploring the limit of using a deep neural network on pileup data for germline variant calling publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0167-4 – ident: CR13 – volume: 17 start-page: 155 year: 2020 end-page: 158 ident: CR17 article-title: Fast and accurate long-read assembly with wtdbg2 publication-title: Nat. Methods doi: 10.1038/s41592-019-0669-3 – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: CR20 article-title: Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing publication-title: Nat. Commun. doi: 10.1038/s41467-019-12493-y – ident: CR28 – volume: 11 start-page: 2136 year: 2020 ident: CR38 article-title: A novel framework for characterizing genomic haplotype diversity in the human immunoglobulin heavy chain locus publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.02136 – volume: 24 start-page: 643 year: 2013 end-page: 652 ident: CR6 article-title: Strand-seq: a unifying tool for studies of chromosome segregation publication-title: Semin. Cell Developmental Biol. doi: 10.1016/j.semcdb.2013.04.005 – volume: 17 start-page: 155 year: 2020 ident: 1299_CR17 publication-title: Nat. Methods doi: 10.1038/s41592-019-0669-3 – volume: 12 start-page: 703 year: 2011 ident: 1299_CR49 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3054 – volume: 30 start-page: 1291 year: 2020 ident: 1299_CR15 publication-title: Genome Res. doi: 10.1101/gr.263566.120 – volume: 12 start-page: 351 year: 2015 ident: 1299_CR8 publication-title: Nat. Methods doi: 10.1038/nmeth.3290 – ident: 1299_CR27 doi: 10.1101/2020.07.24.212712 – volume: 585 start-page: 79 year: 2020 ident: 1299_CR11 publication-title: Nature doi: 10.1038/s41586-020-2547-7 – volume: 28 start-page: 1029 year: 2018 ident: 1299_CR31 publication-title: Genome Res. doi: 10.1101/gr.233460.117 – volume: 11 start-page: 1 year: 2020 ident: 1299_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18564-9 – volume: 27 start-page: 801 year: 2017 ident: 1299_CR37 publication-title: Genome Res. doi: 10.1101/gr.213462.116 – ident: 1299_CR13 doi: 10.1038/s41587-020-0503-6 – volume: 25 start-page: 2078 year: 2009 ident: 1299_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 13 start-page: 1050 year: 2016 ident: 1299_CR39 publication-title: Nat. Methods doi: 10.1038/nmeth.4035 – volume: 36 start-page: 321 year: 2018 ident: 1299_CR30 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4109 – volume: 27 start-page: 757 year: 2017 ident: 1299_CR7 publication-title: Genome Res. doi: 10.1101/gr.214874.116 – volume: 21 start-page: 405 year: 2014 ident: 1299_CR55 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2014.0029 – volume: 27 start-page: 677 year: 2017 ident: 1299_CR23 publication-title: Genome Res. doi: 10.1101/gr.214007.116 – ident: 1299_CR28 doi: 10.1101/2020.11.13.380741 – ident: 1299_CR47 doi: 10.1038/s41587-020-0538-8 – volume: 36 start-page: 22 year: 2020 ident: 1299_CR46 publication-title: Bioinformatics – ident: 1299_CR12 doi: 10.1038/s41586-021-03420-7 – ident: 1299_CR44 doi: 10.1101/2020.12.11.422022 – volume: 12 start-page: 215 year: 2011 ident: 1299_CR48 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2950 – volume: 5 start-page: 381 year: 2014 ident: 1299_CR3 publication-title: Front. Genet. doi: 10.3389/fgene.2014.00381 – volume: 37 start-page: 561 year: 2019 ident: 1299_CR43 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0074-6 – volume: 15 start-page: 595 year: 2018 ident: 1299_CR51 publication-title: Nat. Methods doi: 10.1038/s41592-018-0054-7 – volume: 323 start-page: 133 year: 2009 ident: 1299_CR9 publication-title: Science doi: 10.1126/science.1162986 – volume: 39 start-page: 302 year: 2021 ident: 1299_CR41 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0719-5 – volume: 20 year: 2019 ident: 1299_CR22 publication-title: Genome Biol. doi: 10.1186/s13059-019-1709-0 – volume: 5 start-page: 345 year: 2004 ident: 1299_CR32 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1322 – volume: 6 start-page: 1 year: 2014 ident: 1299_CR50 publication-title: Genome Med. doi: 10.1186/s13073-014-0073-7 – volume: 37 start-page: 1155 year: 2019 ident: 1299_CR21 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0217-9 – ident: 1299_CR4 – volume: 47 start-page: D766 year: 2019 ident: 1299_CR45 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky955 – volume: 20 start-page: 1297 year: 2010 ident: 1299_CR2 publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 37 start-page: 555 year: 2019 ident: 1299_CR54 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0054-x – volume: 19 year: 2018 ident: 1299_CR34 publication-title: Genome Biol. doi: 10.1186/s13059-018-1462-9 – volume: 3 start-page: 160025 year: 2016 ident: 1299_CR26 publication-title: Sci. Data doi: 10.1038/sdata.2016.25 – volume: 36 start-page: 1174 year: 2018 ident: 1299_CR40 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4277 – volume: 24 start-page: 643 year: 2013 ident: 1299_CR6 publication-title: Semin. Cell Developmental Biol. doi: 10.1016/j.semcdb.2013.04.005 – ident: 1299_CR57 doi: 10.5281/zenodo.5275510 – volume: 11 start-page: 2136 year: 2020 ident: 1299_CR38 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.02136 – volume: 22 start-page: 1760 year: 2012 ident: 1299_CR42 publication-title: Genome Res. doi: 10.1101/gr.135350.111 – volume: 134 start-page: 691 year: 2017 ident: 1299_CR33 publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1743-5 – volume: 10 start-page: 1 year: 2019 ident: 1299_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12493-y – volume: 34 start-page: 3094 year: 2018 ident: 1299_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 22 start-page: 498 year: 2015 ident: 1299_CR25 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2014.0157 – volume: 37 start-page: 540 year: 2019 ident: 1299_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – volume: 36 start-page: 983 year: 2018 ident: 1299_CR36 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4235 – ident: 1299_CR18 – ident: 1299_CR14 doi: 10.1038/s41592-020-01056-5 – ident: 1299_CR10 doi: 10.1101/2020.11.01.363887 – volume: 491 start-page: 56 year: 2012 ident: 1299_CR1 publication-title: Nature doi: 10.1038/nature11632 – volume: 58 start-page: 268 year: 2012 ident: 1299_CR5 publication-title: Methods doi: 10.1016/j.ymeth.2012.05.001 – volume: 36 start-page: 338 year: 2018 ident: 1299_CR29 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4060 – volume: 38 start-page: 301 year: 1988 ident: 1299_CR56 publication-title: J. Econom. doi: 10.1016/0304-4076(88)90048-6 – volume: 2 start-page: 220 year: 2020 ident: 1299_CR19 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0167-4 – volume: 15 start-page: 461 year: 2018 ident: 1299_CR24 publication-title: Nat. Methods doi: 10.1038/s41592-018-0001-7 |
SSID | ssj0033425 |
Score | 2.6622128 |
Snippet | Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1322 |
SubjectTerms | 631/114/1305 631/114/2785 631/1647/794 631/208/726/649 631/61/212 Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Diploids DNA sequencing Genes Genetic research Genetic variation Genome, Human Genomes Genomics Genotyping Haplotypes High-Throughput Nucleotide Sequencing - methods Humans Identification methods Life Sciences Methods Molecular Sequence Annotation Nanopores Nanotechnology Nucleotide sequencing Nucleotides Pipelines Polymorphism, Single Nucleotide Proteomics Sequence Analysis, DNA - methods Software Vegetables |
Title | Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads |
URI | https://link.springer.com/article/10.1038/s41592-021-01299-w https://www.ncbi.nlm.nih.gov/pubmed/34725481 https://www.proquest.com/docview/2592764350 https://www.proquest.com/docview/2592311163 https://pubmed.ncbi.nlm.nih.gov/PMC8571015 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8yxmQkJB7AWhPbsfuEWmipkKiqiaG-RY7tjIoq6ZqWav89d0makUrsJXnwJbJ9Z9-dffc7Qt71Mpk58KWZ4NoxYX3IjE01c30juIjTWFe1Ab9P48ml-DaX8-bArWzCKvd7YrVRu8LiGfk5mOmRAvUpe59W1wyrRuHtalNC4z45RugyDOlS89bh4lxURVfRKmcKFGOTNNPj-rwExYVxlxE607Als11HMR1uz__op8PYyYML1EovjR-TR41BSQe1BDwh93z-lDyoS0zePCO_J2a1LPCglZmdWXv6B5xjmE0KvMFMdIoHsXQ2ms1GFwyr3i5y9sX71c-GzFe5VSVFWGNqrN2ujb2hi5zmJi_Advd0WeRXDExPVz4nl-PRj88T1hRYYFaKcMMyFauw772XLnU2C6VNnTQ6i9Au8zI0UaxSngmhrOjZfsal42GUichFCPun-QtylBe5f0Uo1zqzEvHPFKKI-dSpOHXcg3XnrXA8IOF-dhPboI9jEYxlUt2Cc53UHEmAI0nFkWQXkA_tN6sae-NO6vfItAQXJvzZmia_APqHEFfJAJHWdAz9DshphxIWlO0279meNAu6TG7FLyBv22b8EoPUcl9saxoOuiOG0b6spaTtNxcKXHEdBkR15KclQJjvbku--FXBfWsJVmAoA_JxL2m33fr_dJzcPYrX5GGEwl9lVZ6So81669-AebVJz6o1BE89_npGjgfj4XAK7-FoOrv4C0IyJEs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ3AACOBeABrTWwn7gNCE2vp2EUV2tDejGM7UFElpReq_il-I-fk0pFK7G3PPrEcn7vt8x1CXnUymTnIpZngyjFhfciMTRVzXSO4iNNYlb0Bj0_iwZn4fC7Pt8ifphYGn1U2NrE01K6weEa-C2F6lID7lJ0Pk18Mu0bh7WrTQqMSi0O_WkLKNnt_sA_8fR1F_d7pxwGruwowK0U4Z1kSJ2HXey9d6mwWSps6aVQWYTDiZWiiOEl5JkRiRcd2My4dD6NMRC5CrDvFYd5r5LrgvIsapfqfGsvPuSibvGIWwBJwxHWRToer3Rk4SnznGWHyDi6ALVuOcNMd_OMPN99qblzYln6wf4fcrgNYuldJ3F2y5fN75EbV0nJ1n_wcmMm4wINdZpZm6ulvSMaBexRkASvfKR780mFvOOx9Ydhld5Szfe8nX2syX9ZyzSjCKFNj7WJq7IqOcpqbvIBcwdNxkX9nEOq62QNydiVb_5Bs50XuHxPKlcqsRLy1BFHLfOqSOHXcQzTprXA8IGGzu9rWaOfYdGOsy1t3rnTFEQ0c0SVH9DIgb9ffTCqsj0up3yDTNBoCmNmaup4B1oeQWnoPkd1UDOsOyE6LEhTYtocbtuvagMz0hbgH5OV6GL_ER3G5LxYVDQdfFcPfPqqkZL1uLhJI_VUYkKQlP2sChBVvj-SjHyW8uJIQdYYyIO8aSbtY1v-348nlf_GC3BycHh_po4OTw6fkVoSKUFZ07pDt-XThn0FoN0-fl_pEyberVuC_sc5dBw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYgL4s1CASOBOICVrB9r54BQRRKlFKoIUZTbsmt724hoN-RBlL_Gr2NmHymJRG89e9byemY8M_bMN4S8amcqcxBLMymMY9L6kCU2Ncx1EilklEam7A345SQanMpPIzXaI3-aWhhMq2zOxPKgdoXFO_IWuOlcg_lU7VZWp0UMu_0P018MO0jhS2vTTqMSkWO_XkH4Nn9_1AVev-a83_v2ccDqDgPMKhkuWKYjHXa898qlzmahsqlTick4OiZehQmPdCoyKbWVbdvJhHIi5JnkjiPunREw7zVyXQsVoo7p0SbYE0KWDV8xImAajHJdsNMWpjUHo4k5nxwDeTAHbLVlFHdNwz-2cTdvc-fxtrSJ_Tvkdu3M0sNK-u6SPZ_fIzeq9pbr--TnIJlOCrzkZckqmXn6GwJz4CQFucAqeIqXwHTYGw57Xxl23B3nrOv99HtN5su6rjlFSGWaWLucJXZNxznNk7yAuMHTSZGfMXB73fwBOb2SrX9I9vMi948JFcZkViH2mkYEM586HaVOePAsvZVOBCRsdje2NfI5NuCYxOULvDBxxZEYOBKXHIlXAXm7-WZa4X5cSv0GmRbjoQAz26SubYD1IbxWfIgobyaCdQfkYIsSlNluDzdsj-vDZB5fiH5AXm6G8UtMkMt9saxoBNitCP72USUlm3ULqTmIYRgQvSU_GwKEGN8eycfnJdS4UeCBhiog7xpJu1jW_7fjyeV_8YLcBNWNPx-dHD8ltzjqQVnceUD2F7OlfwZe3iJ9XqoTJT-uWn__AgeTYTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haplotype-aware+variant+calling+with+PEPPER-Margin-DeepVariant+enables+high+accuracy+in+nanopore+long-reads&rft.jtitle=Nature+methods&rft.au=Shafin%2C+Kishwar&rft.au=Pesout%2C+Trevor&rft.au=Chang%2C+Pi-Chuan&rft.au=Nattestad%2C+Maria&rft.date=2021-11-01&rft.eissn=1548-7105&rft.volume=18&rft.issue=11&rft.spage=1322&rft_id=info:doi/10.1038%2Fs41592-021-01299-w&rft_id=info%3Apmid%2F34725481&rft.externalDocID=34725481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |