Matching patients to clinical trials with large language models

Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 9074 - 14
Main Authors Jin, Qiao, Wang, Zifeng, Floudas, Charalampos S., Chen, Fangyuan, Gong, Changlin, Bracken-Clarke, Dara, Xue, Elisabetta, Yang, Yifan, Sun, Jimeng, Lu, Zhiyong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT. Patient recruitment is challenging for clinical trials. Here, the authors introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models.
AbstractList Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.
Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT. Patient recruitment is challenging for clinical trials. Here, the authors introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models.
Abstract Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.
Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.Patient recruitment is challenging for clinical trials. Here, the authors introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models.
Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.
ArticleNumber 9074
Author Floudas, Charalampos S.
Gong, Changlin
Yang, Yifan
Jin, Qiao
Chen, Fangyuan
Sun, Jimeng
Lu, Zhiyong
Wang, Zifeng
Xue, Elisabetta
Bracken-Clarke, Dara
Author_xml – sequence: 1
  givenname: Qiao
  orcidid: 0000-0002-1268-7239
  surname: Jin
  fullname: Jin, Qiao
  organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH)
– sequence: 2
  givenname: Zifeng
  surname: Wang
  fullname: Wang, Zifeng
  organization: Department of Computer Science, University of Illinois Urbana-Champaign
– sequence: 3
  givenname: Charalampos S.
  orcidid: 0000-0002-0020-237X
  surname: Floudas
  fullname: Floudas, Charalampos S.
  organization: Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
– sequence: 4
  givenname: Fangyuan
  orcidid: 0000-0002-9891-4753
  surname: Chen
  fullname: Chen, Fangyuan
  organization: School of Medicine, University of Pittsburgh
– sequence: 5
  givenname: Changlin
  orcidid: 0000-0001-9932-0538
  surname: Gong
  fullname: Gong, Changlin
  organization: Jacob Medical Center, Albert Einstein College of Medicine
– sequence: 6
  givenname: Dara
  surname: Bracken-Clarke
  fullname: Bracken-Clarke, Dara
  organization: Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
– sequence: 7
  givenname: Elisabetta
  surname: Xue
  fullname: Xue, Elisabetta
  organization: Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
– sequence: 8
  givenname: Yifan
  orcidid: 0000-0003-4414-9176
  surname: Yang
  fullname: Yang, Yifan
  organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), School of Computer Science, University of Maryland College Park
– sequence: 9
  givenname: Jimeng
  orcidid: 0000-0003-1512-6426
  surname: Sun
  fullname: Sun, Jimeng
  organization: Department of Computer Science, University of Illinois Urbana-Champaign
– sequence: 10
  givenname: Zhiyong
  orcidid: 0000-0001-9998-916X
  surname: Lu
  fullname: Lu, Zhiyong
  email: zhiyong.lu@nih.gov
  organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39557832$$D View this record in MEDLINE/PubMed
BookMark eNp9UktvFSEYJabG1to_4MJM4sbNKB-PAVaNaXw0qXGja8IwzFxuuMMVmBr766WdWtsuygK-wDmH73FeooM5zg6h14DfA6byQ2bAOtFiwlpOsYT26hk6IphBC4LQg3vxITrJeYvrogokYy_QIVWcC0nJETr9Zord-Hlq9qZ4N5fclNjY4GdvTWhK8ibk5rcvmyaYNLm6z9NiarCLgwv5FXo-VoQ7uT2P0c_Pn36cfW0vvn85P_t40VrOoLQjHwg2klNixWjIoAanJBHdQDoGvSJWWYuJc5JRYwTBlDlsmeqh411HwNFjdL7qDtFs9T75nUl_dDRe31zENGmTirfBaeB4ND1WAxs4Y0QYJ3vBBQEqqqiyVet01dov_c4NtladTHgg-vBl9hs9xUsNwAUDSavCu1uFFH8tLhe989m6UJvj4pI1BYoJlhR4hb59BN3GJc21VxVFlOwUKKioN_dTusvl36AqgKwAm2LOyY13EMD62hB6NYSuhtA3htBXlSQfkawvdczxuiwfnqbSlZrrP_Pk0v-0n2D9BZ7EyQY
CitedBy_id crossref_primary_10_1016_j_medp_2024_100030
crossref_primary_10_1186_s40364_025_00758_2
crossref_primary_10_1177_17562848251321915
crossref_primary_10_3390_ph18010047
crossref_primary_10_3390_ijerph21121642
crossref_primary_10_1177_0976500X251321885
crossref_primary_10_1016_j_imu_2025_101615
crossref_primary_10_1038_s41698_025_00806_y
crossref_primary_10_1038_s43018_025_00917_2
crossref_primary_10_1080_15265161_2025_2458425
crossref_primary_10_1038_s41746_025_01542_0
crossref_primary_10_1097_MOU_0000000000001281
crossref_primary_10_1038_s41467_024_53081_z
crossref_primary_10_1089_aipo_2024_0056
Cites_doi 10.4103/2229-3485.184820
10.1093/jamia/ocad218
10.1093/bioinformatics/btz682
10.1093/bioinformatics/btad651
10.1038/d41586-024-00753-x
10.1038/s41586-023-06291-2
10.1561/1500000019
10.1038/d41586-019-02871-3
10.1093/jamia/ocz163
10.1093/jamia/ocz139
10.1093/jamia/ocy178
10.1093/bib/bbad493
10.1145/3490238
10.3115/1599081.1599147
10.6028/NIST.SP.500-338.trials-overview
10.2139/ssrn.4492872
10.1016/j.patter.2024.100943
10.1609/aaai.v32i1.12022
10.1093/jamia/ocae073
10.18653/v1/D18-1187
10.1038/s41467-024-53081-z
10.1093/bioinformatics/btae075
10.1145/3394486.3403123
10.1145/3477495.3531853
10.6028/NIST.SP.500-298.medical-overview
10.18653/v1/2022.acl-long.511
10.18653/v1/2020.emnlp-main.114
10.6028/NIST.SP.500-335.trials-ALIBABA
10.1145/2911451.2914672
10.18653/v1/2021.naacl-main.334
10.1007/978-3-031-20627-6_1
10.18653/v1/N18-1101
10.6028/NIST.SP.500-319.clinical-overview
10.1145/1571941.1572114
10.18653/v1/D15-1075
10.1093/jnci/djv324
10.18653/v1/S17-2001
10.1145/3366423.3380181
10.18653/v1/2023.emnlp-main.766
10.1200/JCO.2018.36.15_suppl.6550
10.18653/v1/2022.acl-long.551
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024
2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024
– notice: 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-53081-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: (Open Access) Springer Nature eJournals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_150fab09d4d54427ae8b7572137e0c9c
PMC11574183
39557832
10_1038_s41467_024_53081_z
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  funderid: https://doi.org/10.13039/100000002
– fundername: NIH Intramural Research Program, National Library of Medicine.
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-f5d20a8532c7fa2d9de98276d2641b92c9cc02ee843aa72034e0c49b1656621e3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:18 EDT 2025
Thu Aug 21 18:31:55 EDT 2025
Fri Jul 11 06:21:29 EDT 2025
Wed Aug 13 08:19:05 EDT 2025
Thu May 22 05:05:14 EDT 2025
Tue Jul 01 02:37:46 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Fri Feb 21 02:39:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-f5d20a8532c7fa2d9de98276d2641b92c9cc02ee843aa72034e0c49b1656621e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1268-7239
0000-0001-9998-916X
0000-0002-9891-4753
0000-0001-9932-0538
0000-0003-1512-6426
0000-0002-0020-237X
0000-0003-4414-9176
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-53081-z
PMID 39557832
PQID 3129869191
PQPubID 546298
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_150fab09d4d54427ae8b7572137e0c9c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11574183
proquest_miscellaneous_3130208315
proquest_journals_3129869191
pubmed_primary_39557832
crossref_primary_10_1038_s41467_024_53081_z
crossref_citationtrail_10_1038_s41467_024_53081_z
springer_journals_10_1038_s41467_024_53081_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-18
PublicationDateYYYYMMDD 2024-11-18
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References CR39
Tian (CR20) 2024; 25
CR38
CR37
CR36
CR35
Jin (CR41) 2023; 39
CR34
CR33
CR32
CR31
Hutson (CR5) 2024; 627
Datta (CR30) 2024; 31
CR2
CR3
Jin (CR21) 2022; 55
CR8
CR9
CR49
CR48
CR46
CR45
CR44
CR43
CR42
Gu (CR54) 2021; 3
Woo (CR4) 2019; 573
CR19
CR18
Kadam, Borde, Madas, Salvi, Limaye (CR1) 2016; 7
CR17
CR16
CR15
Robertson, Zaragoza (CR40) 2009; 3
CR13
CR12
CR11
CR55
CR10
Lee (CR47) 2020; 36
CR53
CR52
CR51
CR50
Stubbs, Filannino, Soysal, Henry, Uzuner (CR6) 2019; 26
CR29
CR28
CR27
CR26
Segura-Bedmar, Raez (CR14) 2019; 26
CR25
CR24
CR23
Yuan (CR7) 2019; 26
Singhal (CR22) 2023; 620
Q Jin (53081_CR21) 2022; 55
53081_CR26
53081_CR25
53081_CR24
53081_CR23
53081_CR29
53081_CR28
53081_CR27
53081_CR2
53081_CR3
C Yuan (53081_CR7) 2019; 26
53081_CR8
53081_CR9
S Datta (53081_CR30) 2024; 31
I Segura-Bedmar (53081_CR14) 2019; 26
RA Kadam (53081_CR1) 2016; 7
S Robertson (53081_CR40) 2009; 3
53081_CR11
53081_CR55
53081_CR10
53081_CR53
53081_CR52
53081_CR15
53081_CR13
53081_CR12
53081_CR19
Y Gu (53081_CR54) 2021; 3
53081_CR18
53081_CR17
53081_CR16
K Singhal (53081_CR22) 2023; 620
53081_CR44
53081_CR43
53081_CR42
53081_CR48
S Tian (53081_CR20) 2024; 25
53081_CR46
53081_CR45
53081_CR49
M Woo (53081_CR4) 2019; 573
53081_CR51
53081_CR50
53081_CR33
53081_CR32
53081_CR31
A Stubbs (53081_CR6) 2019; 26
53081_CR37
53081_CR36
53081_CR35
53081_CR34
53081_CR39
53081_CR38
J Lee (53081_CR47) 2020; 36
Q Jin (53081_CR41) 2023; 39
M Hutson (53081_CR5) 2024; 627
37576126 - ArXiv. 2024 Nov 18:arXiv:2307.15051v5.
References_xml – ident: CR45
– ident: CR49
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 7
  start-page: 137
  year: 2016
  end-page: 143
  ident: CR1
  article-title: Challenges in recruitment and retention of clinical trial subjects
  publication-title: Perspect. Clin. Res
  doi: 10.4103/2229-3485.184820
– volume: 31
  start-page: 375
  year: 2024
  end-page: 385
  ident: CR30
  article-title: AutoCriteria: a generalizable clinical trial eligibility criteria extraction system powered by large language models
  publication-title: J. Am. Med Inf. Assoc.
  doi: 10.1093/jamia/ocad218
– volume: 36
  start-page: 1234
  year: 2020
  end-page: 1240
  ident: CR47
  article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– ident: CR35
– ident: CR29
– ident: CR8
– ident: CR25
– ident: CR42
– volume: 39
  year: 2023
  ident: CR41
  article-title: MedCPT: Contrastive Pre-trained Transformers with large-scale PubMed search logs for zero-shot biomedical information retrieval
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad651
– volume: 627
  start-page: S2
  year: 2024
  end-page: S5
  ident: CR5
  article-title: How AI is being used to accelerate clinical trials
  publication-title: Nature
  doi: 10.1038/d41586-024-00753-x
– ident: CR46
– ident: CR19
– ident: CR15
– volume: 3
  start-page: 1
  year: 2021
  end-page: 23
  ident: CR54
  article-title: Domain-specific language model pretraining for biomedical natural language processing
  publication-title: ACM Trans. Comput. Healthc. (HEALTH)
– ident: CR50
– ident: CR11
– ident: CR9
– ident: CR32
– volume: 620
  start-page: 172
  year: 2023
  end-page: 180
  ident: CR22
  article-title: Large language models encode clinical knowledge
  publication-title: Nature
  doi: 10.1038/s41586-023-06291-2
– ident: CR36
– volume: 3
  start-page: 333
  year: 2009
  end-page: 389
  ident: CR40
  article-title: The probabilistic relevance framework: BM25 and beyond
  publication-title: Found. Trends® Inf. Retr.
  doi: 10.1561/1500000019
– ident: CR26
– volume: 573
  start-page: S100
  year: 2019
  end-page: S102
  ident: CR4
  article-title: An AI boost for clinical trials
  publication-title: Nature
  doi: 10.1038/d41586-019-02871-3
– volume: 26
  start-page: 1163
  year: 2019
  end-page: 1171
  ident: CR6
  article-title: Cohort selection for clinical trials: n2c2 2018 shared task track 1
  publication-title: J. Am. Med Inf. Assoc.
  doi: 10.1093/jamia/ocz163
– ident: CR18
– ident: CR43
– ident: CR2
– ident: CR37
– ident: CR53
– volume: 26
  start-page: 1181
  year: 2019
  end-page: 1188
  ident: CR14
  article-title: Cohort selection for clinical trials using deep learning models
  publication-title: J. Am. Med Inf. Assoc.
  doi: 10.1093/jamia/ocz139
– ident: CR10
– ident: CR33
– volume: 26
  start-page: 294
  year: 2019
  end-page: 305
  ident: CR7
  article-title: Criteria2Query: a natural language interface to clinical databases for cohort definition
  publication-title: J. Am. Med Inf. Assoc.
  doi: 10.1093/jamia/ocy178
– volume: 25
  year: 2024
  ident: CR20
  article-title: Opportunities and challenges for ChatGPT and large language models in biomedicine and health
  publication-title: Brief. Bioinforma.
  doi: 10.1093/bib/bbad493
– ident: CR27
– ident: CR23
– volume: 55
  start-page: 1
  year: 2022
  end-page: 36
  ident: CR21
  article-title: Biomedical question answering: A survey of approaches and challenges
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3490238
– ident: CR44
– ident: CR48
– ident: CR3
– ident: CR38
– ident: CR52
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR34
– ident: CR55
– ident: CR28
– ident: CR24
– ident: 53081_CR35
  doi: 10.3115/1599081.1599147
– ident: 53081_CR13
  doi: 10.6028/NIST.SP.500-338.trials-overview
– ident: 53081_CR29
  doi: 10.2139/ssrn.4492872
– volume: 573
  start-page: S100
  year: 2019
  ident: 53081_CR4
  publication-title: Nature
  doi: 10.1038/d41586-019-02871-3
– ident: 53081_CR46
– volume: 25
  year: 2024
  ident: 53081_CR20
  publication-title: Brief. Bioinforma.
  doi: 10.1093/bib/bbad493
– ident: 53081_CR23
  doi: 10.1016/j.patter.2024.100943
– volume: 26
  start-page: 294
  year: 2019
  ident: 53081_CR7
  publication-title: J. Am. Med Inf. Assoc.
  doi: 10.1093/jamia/ocy178
– ident: 53081_CR52
  doi: 10.1609/aaai.v32i1.12022
– ident: 53081_CR33
  doi: 10.1093/jamia/ocae073
– ident: 53081_CR18
– ident: 53081_CR37
  doi: 10.18653/v1/D18-1187
– ident: 53081_CR45
  doi: 10.1038/s41467-024-53081-z
– ident: 53081_CR26
  doi: 10.1093/bioinformatics/btae075
– ident: 53081_CR16
  doi: 10.1145/3394486.3403123
– ident: 53081_CR11
  doi: 10.1145/3477495.3531853
– ident: 53081_CR8
  doi: 10.6028/NIST.SP.500-298.medical-overview
– ident: 53081_CR51
  doi: 10.18653/v1/2022.acl-long.511
– volume: 620
  start-page: 172
  year: 2023
  ident: 53081_CR22
  publication-title: Nature
  doi: 10.1038/s41586-023-06291-2
– ident: 53081_CR28
  doi: 10.18653/v1/2020.emnlp-main.114
– ident: 53081_CR43
– ident: 53081_CR12
  doi: 10.6028/NIST.SP.500-335.trials-ALIBABA
– ident: 53081_CR10
  doi: 10.1145/2911451.2914672
– ident: 53081_CR55
  doi: 10.18653/v1/2021.naacl-main.334
– ident: 53081_CR48
  doi: 10.1007/978-3-031-20627-6_1
– ident: 53081_CR32
– ident: 53081_CR49
  doi: 10.18653/v1/N18-1101
– ident: 53081_CR9
  doi: 10.6028/NIST.SP.500-338.trials-overview
– ident: 53081_CR19
– volume: 26
  start-page: 1163
  year: 2019
  ident: 53081_CR6
  publication-title: J. Am. Med Inf. Assoc.
  doi: 10.1093/jamia/ocz163
– ident: 53081_CR39
  doi: 10.6028/NIST.SP.500-319.clinical-overview
– ident: 53081_CR42
  doi: 10.1145/1571941.1572114
– volume: 36
  start-page: 1234
  year: 2020
  ident: 53081_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– ident: 53081_CR25
– volume: 627
  start-page: S2
  year: 2024
  ident: 53081_CR5
  publication-title: Nature
  doi: 10.1038/d41586-024-00753-x
– ident: 53081_CR38
  doi: 10.6028/NIST.SP.500-319.clinical-overview
– ident: 53081_CR44
– volume: 3
  start-page: 1
  year: 2021
  ident: 53081_CR54
  publication-title: ACM Trans. Comput. Healthc. (HEALTH)
– ident: 53081_CR50
  doi: 10.18653/v1/D15-1075
– ident: 53081_CR2
  doi: 10.1093/jnci/djv324
– volume: 39
  year: 2023
  ident: 53081_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad651
– ident: 53081_CR31
– ident: 53081_CR53
  doi: 10.18653/v1/S17-2001
– volume: 7
  start-page: 137
  year: 2016
  ident: 53081_CR1
  publication-title: Perspect. Clin. Res
  doi: 10.4103/2229-3485.184820
– volume: 26
  start-page: 1181
  year: 2019
  ident: 53081_CR14
  publication-title: J. Am. Med Inf. Assoc.
  doi: 10.1093/jamia/ocz139
– ident: 53081_CR15
  doi: 10.1145/3366423.3380181
– ident: 53081_CR27
  doi: 10.18653/v1/2023.emnlp-main.766
– ident: 53081_CR24
– ident: 53081_CR3
  doi: 10.1200/JCO.2018.36.15_suppl.6550
– ident: 53081_CR36
  doi: 10.18653/v1/2022.acl-long.551
– volume: 31
  start-page: 375
  year: 2024
  ident: 53081_CR30
  publication-title: J. Am. Med Inf. Assoc.
  doi: 10.1093/jamia/ocad218
– volume: 55
  start-page: 1
  year: 2022
  ident: 53081_CR21
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3490238
– volume: 3
  start-page: 333
  year: 2009
  ident: 53081_CR40
  publication-title: Found. Trends® Inf. Retr.
  doi: 10.1561/1500000019
– ident: 53081_CR34
– ident: 53081_CR17
– reference: 37576126 - ArXiv. 2024 Nov 18:arXiv:2307.15051v5.
SSID ssj0000391844
Score 2.619458
Snippet Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large...
Abstract Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9074
SubjectTerms 631/114/1305
692/308/2779
692/700
Algorithms
Annotations
Clinical trials
Clinical Trials as Topic
Criteria
Humanities and Social Sciences
Humans
Language
Large language models
Matching
multidisciplinary
Patient Selection
Ranking
Recruitment
Retrieval
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LaxYxEB-kUPAi1ufaWiJ406Wbx26Sk9hiKUI9WegtJNkEhbKfuF8P9q93Jrv72c_nxesmC8Mvk3kkk98AvGy6xHkIVKpjQq1U0LU3mddeZ9Qek3JM9N75_EN3dqHeX7aXt1p9UU3YRA88AXeEAUv2obG96lulhPbJBN1i3iJ1aqKNZH3R591KpooNlhZTFzW_kkE5jkZVbAK6pLqV6Afrmy1PVAj7fxdl_los-dONaXFEp_fh3hxBsreT5HtwJw0PYHfqKfntIbw5R-NKx0pspkwd2XrFlgeQrHTpGBkdv7IrqgJny4klK01xxkdwcfru48lZPXdJqGOr-LrObS8aj15XRJ296G2frBG66zHU4cEKxCg2IiWjpPd06aoQN2UD0e50gif5GHaG1ZCeAtOaR6PRh0vrVbIh-Myzwhig6UXMNlTAF8RcnCnEqZPFlStX2dK4CWWHKLuCsrup4NXmny8TgcZfZx_TQmxmEvl1-YAq4WaVcP9SiQoOlmV0844cncTAxnQW09MKXmyGcS_RBYkf0uqa5kjqWSp5W8GTadU3kkjbonGTogKzpQ9bom6PDJ8_Fb5u4jNCFGUFrxfV-SHXn7F49j-w2Ie7gnSeChfNAeysv16n5xhGrcNh2THfARuYFuA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Lb9YwDI9gCIkLYjy7BwoSN6jWPNokp4lNTBPSODHpu0VJmgLS1G7rtwP767HTtNPHY9cmlRLbsR3b-ZmQ91UTGfMeS3W0L6X0qnS6Y6VTHUiPjl2I-N757Gtzei6_rOpVDriNuaxy1olJUbdDwBj5gQDDpBsD14vDy6sSu0ZhdjW30HhIHiF0GZZ0qZVaYiyIfq6lzG9lYDUHo0yaAQxTWQuwhuXthj1KsP3_8jX_Lpn8I2-azNHJM_I0-5H008T4bfIg9s_J46mz5K8X5PAMVCwGl2gGTh3peqDzM0iaenWMFIOw9AJrwekct6SpNc74kpyffP52fFrmXgllqCVbl13d8sqB7eVBdY63po1Gc9W04PAwb3gwIVQ8Ri2Fc5h6lbEK0ngE32k4i-IV2eqHPr4hVCkWtAJLLoyT0XjvOtZJ8ASqlofO-IKwmWI2ZCBx7GdxYVNCW2g7UdkClW2isr0tyIfln8sJRuPe2UfIiGUmQmCnD8P1d5tPlAVPtnO-Mq1saym5clF7VcOFVijYmgkF2ZvZaPO5HO2dFBXk3TIMJwrTJK6Pww3OEdi5VLC6IK8nri8rEaYGFSd4QfSGPGwsdXOk__kjoXYjqhFQURTk4yw6d-v6Py127t_GLnnCUZqxMFHvka319U3cBzdp7d-ms_AbfN8OwQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfAitn6tthLBmy5uPnaTnEQfllKoJwu9hSSbVaHsK93Xg_3rncl-yNMqeN1MYHYyyUxmJr8BeF01ifMQqFTHhFKpoEtvOl563aH2mNTFRO-dTz83x2fq5Lw-3wExv4XJRfsZ0jIf03N12LtB5S2NFqWsJZqx8uYO3CXodtLqVbNa4iqEeG6Umt7HIAe3TN2yQRmq_zb_8s8yyd9ypdkEHT2EB5PvyD6M3O7BTur34d7YTfLHI3h_iscqBZTYBJY6sM2azU8fWe7PMTAKvLILqv9mc6yS5XY4w2M4O_r0ZXVcTv0Rylgrvim7uhWVR3srou68aG2brBG6adHJ4cGKaGOsREpGSe8p3apSFZUNBLjTCJ7kE9jt1316BkxrHo1G6y2tV8mG4DveKbT-VStiZ0MBfJaYixN4OPWwuHA5iS2NG6XsUMouS9ndFPBmmXM5Qmf8k_ojLcRCSbDX-cP66qub1MCh99r5UNlWtbVSQvtkgq7xEis1_pqNBRzMy-imvTg4iS6NaSxeTAt4tQzjLqLUiO_T-ppoJHUrlbwu4Om46gsn0tZ4rElRgNnShy1Wt0f6798yUjchGaEUZQFvZ9X5xdffZfH8_8hfwH1B2k3FieYAdjdX1-kQXaVNeJn3xk-VbQ0B
  priority: 102
  providerName: Springer Nature
Title Matching patients to clinical trials with large language models
URI https://link.springer.com/article/10.1038/s41467-024-53081-z
https://www.ncbi.nlm.nih.gov/pubmed/39557832
https://www.proquest.com/docview/3129869191
https://www.proquest.com/docview/3130208315
https://pubmed.ncbi.nlm.nih.gov/PMC11574183
https://doaj.org/article/150fab09d4d54427ae8b7572137e0c9c
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8LQPgfaC-CYwKiPxBoHEdmL7AU1dtTJV6oSASn2LbMcZSFUKTSex_XrOTlJUKDzwkkj-UJzzne98nwAvk9ylqTHeVUeamHMjYi2rNNaiQuyRrrLOxztPL_LzGZ_Ms_ke9OWOOgA2O692vp7UbLV48-P79QkS_Ls2ZFy-bXggd-Q2ccaQxcU3-3CInEl4Qp124n44mZnCCw3vYmd2Tz2C20xliMeMbrGqkNF_lxj6pzflbybVwKnGd-FOJ2KSYYsT92DP1ffhVlt08voBnEzx9PV6J9LlVG3Iekn6CEkSyng0xOtnycK7iZNepUlC1ZzmIczGZ59H53FXRiG2GU_XcZWVNNHIlqkVlaalKp2SVOQlykKpUdQqaxPqnORMa2-V5S6xXBmflyenqWOP4KBe1u4JECFSKwUyeaY0d8oYXaUVRyEhKamtlIkg7SFW2C7HuC91sSiCrZvJogV4gQAvAsCLmwhebeZ8azNs_HP0qd-IzUifHTs0LFeXRUdsBQq5lTaJKnmZcU6FdtKIDO-6TOCvKRvBcb-NRY9xBUPJR-YK768RvNh0I7F5C4qu3fLKj2G-qClLswget7u-WUmPNRHILXzYWup2T_31S0jo7RMeIRRZBK971Pm1rr_D4un_f-kZHFGP9N6fUR7DwXp15Z6jdLU2A9gXc4FPOX4_gMPhcPJpgu_Ts4sPH7F1lI8GQW8xCKT1EyqlJnA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1sZ21fUAVr2pLuz21Um_GdhxAqnZLsxVqfxS_kRkn2Wp59NZr4kT2eF6eGc8H8LIYxbL0nkp1tM-l9Cp3uilzpxrkHh2bEOm-82RvND6Qnw-rwxX4NdyFobLKQScmRV3PAsXINwQaJj0yeLzYPP6RE2oUZVcHCI2OLXbi2U88srVvtz_i_r7ifOvT_odx3qMK5KGS5TxvqpoXDq0UD6pxvDZ1NJqrUY2uQekNDyaEgseopXCOkpQyFkEaT21qRryMAv97Da6j4S1IotShWsR0qNu6lrK_m4Or32hl0kRoCPNKoPXNz5fsX4IJ-Jdv-3eJ5h952mT-tu7A7d5vZe86RrsLK3F6D250SJZn92Fzgiqdglmsb9TasvmMDdcuWcIGaRkFfdkR1Z6zIU7KEhRP-wAOroSKD2F1OpvGR8CUKoNW6DkI42Q03rumbCR6HkXNQ2N8BuVAMRv6xuWEn3FkUwJdaNtR2SKVbaKyPc_g9eKb465tx6Wj39NGLEZSy-30YHby1fYSbNFzbpwvTC3rSkquXNReVXiAFgqXZkIG68M22l4PtPaCazN4sXiNEkxpGTeNs1MaIwgpVZRVBmvdri9mIkyFKlXwDPQSPyxNdfnN9Pu31CWcuighFUUGbwbWuZjX_2nx-PJlPIeb4_3Jrt3d3tt5Arc4cTYVRep1WJ2fnMan6KLN_bMkFwy-XLUg_gZ_O0qU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJThBt_MjaPqAKKKuW0ooDlXoztuMAUrVbmq1Q-9P4dczksdXy6K3X2Imc8bw8M54P4HkxTpyHQKU6JuRKBZ17U_Pc6xq5x6Q6JrrvvLs33tpXHw7KgxX4NdyFobLKQSe2irqaRYqRjyQaJjO2eLwY1X1ZxKfNycbRj5wQpCjTOsBpdCyyk05_4vGteb29iXv9QojJ-8_vtvIeYSCPpeLzvC4rUXi0WCLq2ovKVskaoccVugk8WBFtjIVIySjpPSUsVSqisoFa1owFTxK_ewWuallykjF9oBfxHeq8bpTq7-kgJUaNarUSGsW8lGiJ87MlW9hCBvzLz_27XPOPnG1rCie34Gbvw7I3HdPdhpU0vQPXOlTL07uwsYvqnQJbrG_a2rD5jA1XMFmLE9IwCgCzQ6pDZ0PMlLWwPM092L8UKt6H1elsmh4A05pHo9GLkNarZEPwNa8VeiFFJWJtQwZ8oJiLfRNzwtI4dG0yXRrXUdkhlV1LZXeWwcvFO0ddC48LZ7-ljVjMpPbb7YPZ8VfXS7NDL7r2obCVqkqlhPbJBF3iYVpq_DUbM1gfttH1OqFx5xycwbPFMEozpWj8NM1OaI4k1FTJywzWul1frETaEtWrFBmYJX5YWuryyPT7t7ZjOHVUQirKDF4NrHO-rv_T4uHFv_EUrqMIuo_bezuP4IYgxqb6SLMOq_Pjk_QYvbV5eNKKBYMvly2HvwEQE07K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matching+patients+to+clinical+trials+with+large+language+models&rft.jtitle=Nature+communications&rft.au=Jin%2C+Qiao&rft.au=Wang%2C+Zifeng&rft.au=Floudas%2C+Charalampos+S.&rft.au=Chen%2C+Fangyuan&rft.date=2024-11-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-53081-z&rft_id=info%3Apmid%2F39557832&rft.externalDocID=PMC11574183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon