Matching patients to clinical trials with large language models
Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 9074 - 14 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.11.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.
Patient recruitment is challenging for clinical trials. Here, the authors introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. |
---|---|
AbstractList | Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT. Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT. Patient recruitment is challenging for clinical trials. Here, the authors introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. Abstract Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT. Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.Patient recruitment is challenging for clinical trials. Here, the authors introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT. |
ArticleNumber | 9074 |
Author | Floudas, Charalampos S. Gong, Changlin Yang, Yifan Jin, Qiao Chen, Fangyuan Sun, Jimeng Lu, Zhiyong Wang, Zifeng Xue, Elisabetta Bracken-Clarke, Dara |
Author_xml | – sequence: 1 givenname: Qiao orcidid: 0000-0002-1268-7239 surname: Jin fullname: Jin, Qiao organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH) – sequence: 2 givenname: Zifeng surname: Wang fullname: Wang, Zifeng organization: Department of Computer Science, University of Illinois Urbana-Champaign – sequence: 3 givenname: Charalampos S. orcidid: 0000-0002-0020-237X surname: Floudas fullname: Floudas, Charalampos S. organization: Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health – sequence: 4 givenname: Fangyuan orcidid: 0000-0002-9891-4753 surname: Chen fullname: Chen, Fangyuan organization: School of Medicine, University of Pittsburgh – sequence: 5 givenname: Changlin orcidid: 0000-0001-9932-0538 surname: Gong fullname: Gong, Changlin organization: Jacob Medical Center, Albert Einstein College of Medicine – sequence: 6 givenname: Dara surname: Bracken-Clarke fullname: Bracken-Clarke, Dara organization: Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health – sequence: 7 givenname: Elisabetta surname: Xue fullname: Xue, Elisabetta organization: Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health – sequence: 8 givenname: Yifan orcidid: 0000-0003-4414-9176 surname: Yang fullname: Yang, Yifan organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), School of Computer Science, University of Maryland College Park – sequence: 9 givenname: Jimeng orcidid: 0000-0003-1512-6426 surname: Sun fullname: Sun, Jimeng organization: Department of Computer Science, University of Illinois Urbana-Champaign – sequence: 10 givenname: Zhiyong orcidid: 0000-0001-9998-916X surname: Lu fullname: Lu, Zhiyong email: zhiyong.lu@nih.gov organization: National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39557832$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UktvFSEYJabG1to_4MJM4sbNKB-PAVaNaXw0qXGja8IwzFxuuMMVmBr766WdWtsuygK-wDmH73FeooM5zg6h14DfA6byQ2bAOtFiwlpOsYT26hk6IphBC4LQg3vxITrJeYvrogokYy_QIVWcC0nJETr9Zord-Hlq9qZ4N5fclNjY4GdvTWhK8ibk5rcvmyaYNLm6z9NiarCLgwv5FXo-VoQ7uT2P0c_Pn36cfW0vvn85P_t40VrOoLQjHwg2klNixWjIoAanJBHdQDoGvSJWWYuJc5JRYwTBlDlsmeqh411HwNFjdL7qDtFs9T75nUl_dDRe31zENGmTirfBaeB4ND1WAxs4Y0QYJ3vBBQEqqqiyVet01dov_c4NtladTHgg-vBl9hs9xUsNwAUDSavCu1uFFH8tLhe989m6UJvj4pI1BYoJlhR4hb59BN3GJc21VxVFlOwUKKioN_dTusvl36AqgKwAm2LOyY13EMD62hB6NYSuhtA3htBXlSQfkawvdczxuiwfnqbSlZrrP_Pk0v-0n2D9BZ7EyQY |
CitedBy_id | crossref_primary_10_1016_j_medp_2024_100030 crossref_primary_10_1186_s40364_025_00758_2 crossref_primary_10_1177_17562848251321915 crossref_primary_10_3390_ph18010047 crossref_primary_10_3390_ijerph21121642 crossref_primary_10_1177_0976500X251321885 crossref_primary_10_1016_j_imu_2025_101615 crossref_primary_10_1038_s41698_025_00806_y crossref_primary_10_1038_s43018_025_00917_2 crossref_primary_10_1080_15265161_2025_2458425 crossref_primary_10_1038_s41746_025_01542_0 crossref_primary_10_1097_MOU_0000000000001281 crossref_primary_10_1038_s41467_024_53081_z crossref_primary_10_1089_aipo_2024_0056 |
Cites_doi | 10.4103/2229-3485.184820 10.1093/jamia/ocad218 10.1093/bioinformatics/btz682 10.1093/bioinformatics/btad651 10.1038/d41586-024-00753-x 10.1038/s41586-023-06291-2 10.1561/1500000019 10.1038/d41586-019-02871-3 10.1093/jamia/ocz163 10.1093/jamia/ocz139 10.1093/jamia/ocy178 10.1093/bib/bbad493 10.1145/3490238 10.3115/1599081.1599147 10.6028/NIST.SP.500-338.trials-overview 10.2139/ssrn.4492872 10.1016/j.patter.2024.100943 10.1609/aaai.v32i1.12022 10.1093/jamia/ocae073 10.18653/v1/D18-1187 10.1038/s41467-024-53081-z 10.1093/bioinformatics/btae075 10.1145/3394486.3403123 10.1145/3477495.3531853 10.6028/NIST.SP.500-298.medical-overview 10.18653/v1/2022.acl-long.511 10.18653/v1/2020.emnlp-main.114 10.6028/NIST.SP.500-335.trials-ALIBABA 10.1145/2911451.2914672 10.18653/v1/2021.naacl-main.334 10.1007/978-3-031-20627-6_1 10.18653/v1/N18-1101 10.6028/NIST.SP.500-319.clinical-overview 10.1145/1571941.1572114 10.18653/v1/D15-1075 10.1093/jnci/djv324 10.18653/v1/S17-2001 10.1145/3366423.3380181 10.18653/v1/2023.emnlp-main.766 10.1200/JCO.2018.36.15_suppl.6550 10.18653/v1/2022.acl-long.551 |
ContentType | Journal Article |
Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024 |
Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 – notice: 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-53081-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: (Open Access) Springer Nature eJournals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_150fab09d4d54427ae8b7572137e0c9c PMC11574183 39557832 10_1038_s41467_024_53081_z |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) funderid: https://doi.org/10.13039/100000002 – fundername: NIH Intramural Research Program, National Library of Medicine. |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-f5d20a8532c7fa2d9de98276d2641b92c9cc02ee843aa72034e0c49b1656621e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:18 EDT 2025 Thu Aug 21 18:31:55 EDT 2025 Fri Jul 11 06:21:29 EDT 2025 Wed Aug 13 08:19:05 EDT 2025 Thu May 22 05:05:14 EDT 2025 Tue Jul 01 02:37:46 EDT 2025 Thu Apr 24 22:50:29 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-f5d20a8532c7fa2d9de98276d2641b92c9cc02ee843aa72034e0c49b1656621e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1268-7239 0000-0001-9998-916X 0000-0002-9891-4753 0000-0001-9932-0538 0000-0003-1512-6426 0000-0002-0020-237X 0000-0003-4414-9176 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-53081-z |
PMID | 39557832 |
PQID | 3129869191 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_150fab09d4d54427ae8b7572137e0c9c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11574183 proquest_miscellaneous_3130208315 proquest_journals_3129869191 pubmed_primary_39557832 crossref_primary_10_1038_s41467_024_53081_z crossref_citationtrail_10_1038_s41467_024_53081_z springer_journals_10_1038_s41467_024_53081_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-18 |
PublicationDateYYYYMMDD | 2024-11-18 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | CR39 Tian (CR20) 2024; 25 CR38 CR37 CR36 CR35 Jin (CR41) 2023; 39 CR34 CR33 CR32 CR31 Hutson (CR5) 2024; 627 Datta (CR30) 2024; 31 CR2 CR3 Jin (CR21) 2022; 55 CR8 CR9 CR49 CR48 CR46 CR45 CR44 CR43 CR42 Gu (CR54) 2021; 3 Woo (CR4) 2019; 573 CR19 CR18 Kadam, Borde, Madas, Salvi, Limaye (CR1) 2016; 7 CR17 CR16 CR15 Robertson, Zaragoza (CR40) 2009; 3 CR13 CR12 CR11 CR55 CR10 Lee (CR47) 2020; 36 CR53 CR52 CR51 CR50 Stubbs, Filannino, Soysal, Henry, Uzuner (CR6) 2019; 26 CR29 CR28 CR27 CR26 Segura-Bedmar, Raez (CR14) 2019; 26 CR25 CR24 CR23 Yuan (CR7) 2019; 26 Singhal (CR22) 2023; 620 Q Jin (53081_CR21) 2022; 55 53081_CR26 53081_CR25 53081_CR24 53081_CR23 53081_CR29 53081_CR28 53081_CR27 53081_CR2 53081_CR3 C Yuan (53081_CR7) 2019; 26 53081_CR8 53081_CR9 S Datta (53081_CR30) 2024; 31 I Segura-Bedmar (53081_CR14) 2019; 26 RA Kadam (53081_CR1) 2016; 7 S Robertson (53081_CR40) 2009; 3 53081_CR11 53081_CR55 53081_CR10 53081_CR53 53081_CR52 53081_CR15 53081_CR13 53081_CR12 53081_CR19 Y Gu (53081_CR54) 2021; 3 53081_CR18 53081_CR17 53081_CR16 K Singhal (53081_CR22) 2023; 620 53081_CR44 53081_CR43 53081_CR42 53081_CR48 S Tian (53081_CR20) 2024; 25 53081_CR46 53081_CR45 53081_CR49 M Woo (53081_CR4) 2019; 573 53081_CR51 53081_CR50 53081_CR33 53081_CR32 53081_CR31 A Stubbs (53081_CR6) 2019; 26 53081_CR37 53081_CR36 53081_CR35 53081_CR34 53081_CR39 53081_CR38 J Lee (53081_CR47) 2020; 36 Q Jin (53081_CR41) 2023; 39 M Hutson (53081_CR5) 2024; 627 37576126 - ArXiv. 2024 Nov 18:arXiv:2307.15051v5. |
References_xml | – ident: CR45 – ident: CR49 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 7 start-page: 137 year: 2016 end-page: 143 ident: CR1 article-title: Challenges in recruitment and retention of clinical trial subjects publication-title: Perspect. Clin. Res doi: 10.4103/2229-3485.184820 – volume: 31 start-page: 375 year: 2024 end-page: 385 ident: CR30 article-title: AutoCriteria: a generalizable clinical trial eligibility criteria extraction system powered by large language models publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocad218 – volume: 36 start-page: 1234 year: 2020 end-page: 1240 ident: CR47 article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – ident: CR35 – ident: CR29 – ident: CR8 – ident: CR25 – ident: CR42 – volume: 39 year: 2023 ident: CR41 article-title: MedCPT: Contrastive Pre-trained Transformers with large-scale PubMed search logs for zero-shot biomedical information retrieval publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad651 – volume: 627 start-page: S2 year: 2024 end-page: S5 ident: CR5 article-title: How AI is being used to accelerate clinical trials publication-title: Nature doi: 10.1038/d41586-024-00753-x – ident: CR46 – ident: CR19 – ident: CR15 – volume: 3 start-page: 1 year: 2021 end-page: 23 ident: CR54 article-title: Domain-specific language model pretraining for biomedical natural language processing publication-title: ACM Trans. Comput. Healthc. (HEALTH) – ident: CR50 – ident: CR11 – ident: CR9 – ident: CR32 – volume: 620 start-page: 172 year: 2023 end-page: 180 ident: CR22 article-title: Large language models encode clinical knowledge publication-title: Nature doi: 10.1038/s41586-023-06291-2 – ident: CR36 – volume: 3 start-page: 333 year: 2009 end-page: 389 ident: CR40 article-title: The probabilistic relevance framework: BM25 and beyond publication-title: Found. Trends® Inf. Retr. doi: 10.1561/1500000019 – ident: CR26 – volume: 573 start-page: S100 year: 2019 end-page: S102 ident: CR4 article-title: An AI boost for clinical trials publication-title: Nature doi: 10.1038/d41586-019-02871-3 – volume: 26 start-page: 1163 year: 2019 end-page: 1171 ident: CR6 article-title: Cohort selection for clinical trials: n2c2 2018 shared task track 1 publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocz163 – ident: CR18 – ident: CR43 – ident: CR2 – ident: CR37 – ident: CR53 – volume: 26 start-page: 1181 year: 2019 end-page: 1188 ident: CR14 article-title: Cohort selection for clinical trials using deep learning models publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocz139 – ident: CR10 – ident: CR33 – volume: 26 start-page: 294 year: 2019 end-page: 305 ident: CR7 article-title: Criteria2Query: a natural language interface to clinical databases for cohort definition publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocy178 – volume: 25 year: 2024 ident: CR20 article-title: Opportunities and challenges for ChatGPT and large language models in biomedicine and health publication-title: Brief. Bioinforma. doi: 10.1093/bib/bbad493 – ident: CR27 – ident: CR23 – volume: 55 start-page: 1 year: 2022 end-page: 36 ident: CR21 article-title: Biomedical question answering: A survey of approaches and challenges publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3490238 – ident: CR44 – ident: CR48 – ident: CR3 – ident: CR38 – ident: CR52 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR34 – ident: CR55 – ident: CR28 – ident: CR24 – ident: 53081_CR35 doi: 10.3115/1599081.1599147 – ident: 53081_CR13 doi: 10.6028/NIST.SP.500-338.trials-overview – ident: 53081_CR29 doi: 10.2139/ssrn.4492872 – volume: 573 start-page: S100 year: 2019 ident: 53081_CR4 publication-title: Nature doi: 10.1038/d41586-019-02871-3 – ident: 53081_CR46 – volume: 25 year: 2024 ident: 53081_CR20 publication-title: Brief. Bioinforma. doi: 10.1093/bib/bbad493 – ident: 53081_CR23 doi: 10.1016/j.patter.2024.100943 – volume: 26 start-page: 294 year: 2019 ident: 53081_CR7 publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocy178 – ident: 53081_CR52 doi: 10.1609/aaai.v32i1.12022 – ident: 53081_CR33 doi: 10.1093/jamia/ocae073 – ident: 53081_CR18 – ident: 53081_CR37 doi: 10.18653/v1/D18-1187 – ident: 53081_CR45 doi: 10.1038/s41467-024-53081-z – ident: 53081_CR26 doi: 10.1093/bioinformatics/btae075 – ident: 53081_CR16 doi: 10.1145/3394486.3403123 – ident: 53081_CR11 doi: 10.1145/3477495.3531853 – ident: 53081_CR8 doi: 10.6028/NIST.SP.500-298.medical-overview – ident: 53081_CR51 doi: 10.18653/v1/2022.acl-long.511 – volume: 620 start-page: 172 year: 2023 ident: 53081_CR22 publication-title: Nature doi: 10.1038/s41586-023-06291-2 – ident: 53081_CR28 doi: 10.18653/v1/2020.emnlp-main.114 – ident: 53081_CR43 – ident: 53081_CR12 doi: 10.6028/NIST.SP.500-335.trials-ALIBABA – ident: 53081_CR10 doi: 10.1145/2911451.2914672 – ident: 53081_CR55 doi: 10.18653/v1/2021.naacl-main.334 – ident: 53081_CR48 doi: 10.1007/978-3-031-20627-6_1 – ident: 53081_CR32 – ident: 53081_CR49 doi: 10.18653/v1/N18-1101 – ident: 53081_CR9 doi: 10.6028/NIST.SP.500-338.trials-overview – ident: 53081_CR19 – volume: 26 start-page: 1163 year: 2019 ident: 53081_CR6 publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocz163 – ident: 53081_CR39 doi: 10.6028/NIST.SP.500-319.clinical-overview – ident: 53081_CR42 doi: 10.1145/1571941.1572114 – volume: 36 start-page: 1234 year: 2020 ident: 53081_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – ident: 53081_CR25 – volume: 627 start-page: S2 year: 2024 ident: 53081_CR5 publication-title: Nature doi: 10.1038/d41586-024-00753-x – ident: 53081_CR38 doi: 10.6028/NIST.SP.500-319.clinical-overview – ident: 53081_CR44 – volume: 3 start-page: 1 year: 2021 ident: 53081_CR54 publication-title: ACM Trans. Comput. Healthc. (HEALTH) – ident: 53081_CR50 doi: 10.18653/v1/D15-1075 – ident: 53081_CR2 doi: 10.1093/jnci/djv324 – volume: 39 year: 2023 ident: 53081_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad651 – ident: 53081_CR31 – ident: 53081_CR53 doi: 10.18653/v1/S17-2001 – volume: 7 start-page: 137 year: 2016 ident: 53081_CR1 publication-title: Perspect. Clin. Res doi: 10.4103/2229-3485.184820 – volume: 26 start-page: 1181 year: 2019 ident: 53081_CR14 publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocz139 – ident: 53081_CR15 doi: 10.1145/3366423.3380181 – ident: 53081_CR27 doi: 10.18653/v1/2023.emnlp-main.766 – ident: 53081_CR24 – ident: 53081_CR3 doi: 10.1200/JCO.2018.36.15_suppl.6550 – ident: 53081_CR36 doi: 10.18653/v1/2022.acl-long.551 – volume: 31 start-page: 375 year: 2024 ident: 53081_CR30 publication-title: J. Am. Med Inf. Assoc. doi: 10.1093/jamia/ocad218 – volume: 55 start-page: 1 year: 2022 ident: 53081_CR21 publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3490238 – volume: 3 start-page: 333 year: 2009 ident: 53081_CR40 publication-title: Found. Trends® Inf. Retr. doi: 10.1561/1500000019 – ident: 53081_CR34 – ident: 53081_CR17 – reference: 37576126 - ArXiv. 2024 Nov 18:arXiv:2307.15051v5. |
SSID | ssj0000391844 |
Score | 2.619458 |
Snippet | Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large... Abstract Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9074 |
SubjectTerms | 631/114/1305 692/308/2779 692/700 Algorithms Annotations Clinical trials Clinical Trials as Topic Criteria Humanities and Social Sciences Humans Language Large language models Matching multidisciplinary Patient Selection Ranking Recruitment Retrieval Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LaxYxEB-kUPAi1ufaWiJ406Wbx26Sk9hiKUI9WegtJNkEhbKfuF8P9q93Jrv72c_nxesmC8Mvk3kkk98AvGy6xHkIVKpjQq1U0LU3mddeZ9Qek3JM9N75_EN3dqHeX7aXt1p9UU3YRA88AXeEAUv2obG96lulhPbJBN1i3iJ1aqKNZH3R591KpooNlhZTFzW_kkE5jkZVbAK6pLqV6Afrmy1PVAj7fxdl_los-dONaXFEp_fh3hxBsreT5HtwJw0PYHfqKfntIbw5R-NKx0pspkwd2XrFlgeQrHTpGBkdv7IrqgJny4klK01xxkdwcfru48lZPXdJqGOr-LrObS8aj15XRJ296G2frBG66zHU4cEKxCg2IiWjpPd06aoQN2UD0e50gif5GHaG1ZCeAtOaR6PRh0vrVbIh-Myzwhig6UXMNlTAF8RcnCnEqZPFlStX2dK4CWWHKLuCsrup4NXmny8TgcZfZx_TQmxmEvl1-YAq4WaVcP9SiQoOlmV0844cncTAxnQW09MKXmyGcS_RBYkf0uqa5kjqWSp5W8GTadU3kkjbonGTogKzpQ9bom6PDJ8_Fb5u4jNCFGUFrxfV-SHXn7F49j-w2Ie7gnSeChfNAeysv16n5xhGrcNh2THfARuYFuA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Lb9YwDI9gCIkLYjy7BwoSN6jWPNokp4lNTBPSODHpu0VJmgLS1G7rtwP767HTtNPHY9cmlRLbsR3b-ZmQ91UTGfMeS3W0L6X0qnS6Y6VTHUiPjl2I-N757Gtzei6_rOpVDriNuaxy1olJUbdDwBj5gQDDpBsD14vDy6sSu0ZhdjW30HhIHiF0GZZ0qZVaYiyIfq6lzG9lYDUHo0yaAQxTWQuwhuXthj1KsP3_8jX_Lpn8I2-azNHJM_I0-5H008T4bfIg9s_J46mz5K8X5PAMVCwGl2gGTh3peqDzM0iaenWMFIOw9AJrwekct6SpNc74kpyffP52fFrmXgllqCVbl13d8sqB7eVBdY63po1Gc9W04PAwb3gwIVQ8Ri2Fc5h6lbEK0ngE32k4i-IV2eqHPr4hVCkWtAJLLoyT0XjvOtZJ8ASqlofO-IKwmWI2ZCBx7GdxYVNCW2g7UdkClW2isr0tyIfln8sJRuPe2UfIiGUmQmCnD8P1d5tPlAVPtnO-Mq1saym5clF7VcOFVijYmgkF2ZvZaPO5HO2dFBXk3TIMJwrTJK6Pww3OEdi5VLC6IK8nri8rEaYGFSd4QfSGPGwsdXOk__kjoXYjqhFQURTk4yw6d-v6Py127t_GLnnCUZqxMFHvka319U3cBzdp7d-ms_AbfN8OwQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfAitn6tthLBmy5uPnaTnEQfllKoJwu9hSSbVaHsK93Xg_3rncl-yNMqeN1MYHYyyUxmJr8BeF01ifMQqFTHhFKpoEtvOl563aH2mNTFRO-dTz83x2fq5Lw-3wExv4XJRfsZ0jIf03N12LtB5S2NFqWsJZqx8uYO3CXodtLqVbNa4iqEeG6Umt7HIAe3TN2yQRmq_zb_8s8yyd9ypdkEHT2EB5PvyD6M3O7BTur34d7YTfLHI3h_iscqBZTYBJY6sM2azU8fWe7PMTAKvLILqv9mc6yS5XY4w2M4O_r0ZXVcTv0Rylgrvim7uhWVR3srou68aG2brBG6adHJ4cGKaGOsREpGSe8p3apSFZUNBLjTCJ7kE9jt1316BkxrHo1G6y2tV8mG4DveKbT-VStiZ0MBfJaYixN4OPWwuHA5iS2NG6XsUMouS9ndFPBmmXM5Qmf8k_ojLcRCSbDX-cP66qub1MCh99r5UNlWtbVSQvtkgq7xEis1_pqNBRzMy-imvTg4iS6NaSxeTAt4tQzjLqLUiO_T-ppoJHUrlbwu4Om46gsn0tZ4rElRgNnShy1Wt0f6798yUjchGaEUZQFvZ9X5xdffZfH8_8hfwH1B2k3FieYAdjdX1-kQXaVNeJn3xk-VbQ0B priority: 102 providerName: Springer Nature |
Title | Matching patients to clinical trials with large language models |
URI | https://link.springer.com/article/10.1038/s41467-024-53081-z https://www.ncbi.nlm.nih.gov/pubmed/39557832 https://www.proquest.com/docview/3129869191 https://www.proquest.com/docview/3130208315 https://pubmed.ncbi.nlm.nih.gov/PMC11574183 https://doaj.org/article/150fab09d4d54427ae8b7572137e0c9c |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8LQPgfaC-CYwKiPxBoHEdmL7AU1dtTJV6oSASn2LbMcZSFUKTSex_XrOTlJUKDzwkkj-UJzzne98nwAvk9ylqTHeVUeamHMjYi2rNNaiQuyRrrLOxztPL_LzGZ_Ms_ke9OWOOgA2O692vp7UbLV48-P79QkS_Ls2ZFy-bXggd-Q2ccaQxcU3-3CInEl4Qp124n44mZnCCw3vYmd2Tz2C20xliMeMbrGqkNF_lxj6pzflbybVwKnGd-FOJ2KSYYsT92DP1ffhVlt08voBnEzx9PV6J9LlVG3Iekn6CEkSyng0xOtnycK7iZNepUlC1ZzmIczGZ59H53FXRiG2GU_XcZWVNNHIlqkVlaalKp2SVOQlykKpUdQqaxPqnORMa2-V5S6xXBmflyenqWOP4KBe1u4JECFSKwUyeaY0d8oYXaUVRyEhKamtlIkg7SFW2C7HuC91sSiCrZvJogV4gQAvAsCLmwhebeZ8azNs_HP0qd-IzUifHTs0LFeXRUdsBQq5lTaJKnmZcU6FdtKIDO-6TOCvKRvBcb-NRY9xBUPJR-YK768RvNh0I7F5C4qu3fLKj2G-qClLswget7u-WUmPNRHILXzYWup2T_31S0jo7RMeIRRZBK971Pm1rr_D4un_f-kZHFGP9N6fUR7DwXp15Z6jdLU2A9gXc4FPOX4_gMPhcPJpgu_Ts4sPH7F1lI8GQW8xCKT1EyqlJnA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1sZ21fUAVr2pLuz21Um_GdhxAqnZLsxVqfxS_kRkn2Wp59NZr4kT2eF6eGc8H8LIYxbL0nkp1tM-l9Cp3uilzpxrkHh2bEOm-82RvND6Qnw-rwxX4NdyFobLKQScmRV3PAsXINwQaJj0yeLzYPP6RE2oUZVcHCI2OLXbi2U88srVvtz_i_r7ifOvT_odx3qMK5KGS5TxvqpoXDq0UD6pxvDZ1NJqrUY2uQekNDyaEgseopXCOkpQyFkEaT21qRryMAv97Da6j4S1IotShWsR0qNu6lrK_m4Or32hl0kRoCPNKoPXNz5fsX4IJ-Jdv-3eJ5h952mT-tu7A7d5vZe86RrsLK3F6D250SJZn92Fzgiqdglmsb9TasvmMDdcuWcIGaRkFfdkR1Z6zIU7KEhRP-wAOroSKD2F1OpvGR8CUKoNW6DkI42Q03rumbCR6HkXNQ2N8BuVAMRv6xuWEn3FkUwJdaNtR2SKVbaKyPc_g9eKb465tx6Wj39NGLEZSy-30YHby1fYSbNFzbpwvTC3rSkquXNReVXiAFgqXZkIG68M22l4PtPaCazN4sXiNEkxpGTeNs1MaIwgpVZRVBmvdri9mIkyFKlXwDPQSPyxNdfnN9Pu31CWcuighFUUGbwbWuZjX_2nx-PJlPIeb4_3Jrt3d3tt5Arc4cTYVRep1WJ2fnMan6KLN_bMkFwy-XLUg_gZ_O0qU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJThBt_MjaPqAKKKuW0ooDlXoztuMAUrVbmq1Q-9P4dczksdXy6K3X2Imc8bw8M54P4HkxTpyHQKU6JuRKBZ17U_Pc6xq5x6Q6JrrvvLs33tpXHw7KgxX4NdyFobLKQSe2irqaRYqRjyQaJjO2eLwY1X1ZxKfNycbRj5wQpCjTOsBpdCyyk05_4vGteb29iXv9QojJ-8_vtvIeYSCPpeLzvC4rUXi0WCLq2ovKVskaoccVugk8WBFtjIVIySjpPSUsVSqisoFa1owFTxK_ewWuallykjF9oBfxHeq8bpTq7-kgJUaNarUSGsW8lGiJ87MlW9hCBvzLz_27XPOPnG1rCie34Gbvw7I3HdPdhpU0vQPXOlTL07uwsYvqnQJbrG_a2rD5jA1XMFmLE9IwCgCzQ6pDZ0PMlLWwPM092L8UKt6H1elsmh4A05pHo9GLkNarZEPwNa8VeiFFJWJtQwZ8oJiLfRNzwtI4dG0yXRrXUdkhlV1LZXeWwcvFO0ddC48LZ7-ljVjMpPbb7YPZ8VfXS7NDL7r2obCVqkqlhPbJBF3iYVpq_DUbM1gfttH1OqFx5xycwbPFMEozpWj8NM1OaI4k1FTJywzWul1frETaEtWrFBmYJX5YWuryyPT7t7ZjOHVUQirKDF4NrHO-rv_T4uHFv_EUrqMIuo_bezuP4IYgxqb6SLMOq_Pjk_QYvbV5eNKKBYMvly2HvwEQE07K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matching+patients+to+clinical+trials+with+large+language+models&rft.jtitle=Nature+communications&rft.au=Jin%2C+Qiao&rft.au=Wang%2C+Zifeng&rft.au=Floudas%2C+Charalampos+S.&rft.au=Chen%2C+Fangyuan&rft.date=2024-11-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-53081-z&rft_id=info%3Apmid%2F39557832&rft.externalDocID=PMC11574183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |