A comparative analysis of linear regression, neural networks and random forest regression for predicting air ozone employing soft sensor models
The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the i...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 22420 - 23 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM
10
, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM
10
and PM
2.5
variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NN
R[Y]C
outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R
2
of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NN
R[Y]C
is reliable and suitable for various technological applications. |
---|---|
AbstractList | Abstract The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications. The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM 10 , in the latter sets does not improve overall performance, potentially due to multicollinearity between PM 10 and PM 2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NN R[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R 2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NN R[Y]C is reliable and suitable for various technological applications. The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM , in the latter sets does not improve overall performance, potentially due to multicollinearity between PM and PM variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NN outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NN is reliable and suitable for various technological applications. The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications.The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications. The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications. |
ArticleNumber | 22420 |
Author | Zhou, Zheng Zhang, Yufan Qiu, Cheng |
Author_xml | – sequence: 1 givenname: Zheng surname: Zhou fullname: Zhou, Zheng organization: Department of Material and Environmental Engineering, Chengdu Technological University – sequence: 2 givenname: Cheng surname: Qiu fullname: Qiu, Cheng email: innovationcdtu@126.com organization: Department of Material and Environmental Engineering, Chengdu Technological University – sequence: 3 givenname: Yufan surname: Zhang fullname: Zhang, Yufan organization: Department of Material and Environmental Engineering, Chengdu Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38104205$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9uEzEQxi1UREvoC3BAlrhwYMH22hvvCVUVfypV4gJna2KPg8OuHexNq_ISvDJOUkraQ31Yr8a_-Tzj-Z6To5giEvKSs3ectfp9kVz1umGibWSv-75hT8iJYFI1ohXi6OD_mJyWsmJ1KdFL3j8jx63mTAqmTsifM2rTuIYMU7hCChGGmxIKTZ4OISJkmnGZsZSQ4lsacZNhqNt0nfLPUnFHc_2kkfpUqemA3kboOqMLdgpxSSFkmn7XJiiO6yHdbGMl-YkWjKWiY3I4lBfkqYeh4OntPiPfP338dv6lufz6-eL87LKxSvKp8W2PTHive22Z0J1GvwDpmUYLtnMKpWXYtVIrK8GK2rd3c6at7fQcrJXtjFzsdV2ClVnnMEK-MQmC2QVSXhrIU7ADGgA-51I457yU4BTwbt75WoEWCruFrVof9lrrzWJEZzFO9ZXuid4_ieGHWaYrw9lcqDq9qvDmViGnX5v6jmYMxeIwQMS0KUb0rG1FJ-rkZ-T1A3SVNrmObUcJ1TPFeaVeHZZ0V8u_wVdA7AGbUykZ_R3CmdkazOwNZqrBzM5gZnu3fpBkw1SNk7ZtheHx1HafWuo9cYn5f9mPZP0FwWzo0Q |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179023 crossref_primary_10_1016_j_fbio_2024_105734 crossref_primary_10_1007_s12665_024_11911_9 crossref_primary_10_1038_s41598_024_71161_4 crossref_primary_10_1038_s41598_025_91329_w crossref_primary_10_1016_j_renene_2024_120772 crossref_primary_10_1109_JSTARS_2024_3481460 crossref_primary_10_1016_j_uncres_2025_100145 crossref_primary_10_1080_00084433_2024_2430067 crossref_primary_10_1080_09593330_2024_2415722 crossref_primary_10_1117_1_JRS_18_042609 crossref_primary_10_1016_j_talanta_2025_127640 crossref_primary_10_3389_fpls_2025_1533855 crossref_primary_10_1016_j_rsase_2025_101491 crossref_primary_10_1016_j_buildenv_2024_111991 crossref_primary_10_1016_j_kscej_2025_100209 crossref_primary_10_1016_j_envres_2024_120683 crossref_primary_10_3390_su17020603 crossref_primary_10_1038_s42256_024_00928_1 crossref_primary_10_1186_s40068_024_00378_z crossref_primary_10_3390_atmos16030255 crossref_primary_10_1007_s10708_025_11316_6 crossref_primary_10_3390_s24113650 crossref_primary_10_1016_j_ajem_2025_02_038 |
Cites_doi | 10.1016/j.atmosenv.2016.08.077 10.1007/s11783-023-1621-4 10.1016/j.atmosenv.2021.118751 10.1016/j.envpol.2019.05.101 10.1016/j.envpol.2017.10.029 10.1088/1757-899X/551/1/012006 10.1016/j.chemosphere.2022.134250 10.1016/j.atmosenv.2018.03.027 10.1016/j.undsp.2020.02.004 10.3390/atmos13020253 10.3390/atmos12121675 10.1002/cjg2.30033 10.1016/j.atmosenv.2017.10.052 10.3390/atmos11111226 10.3390/ijerph19073988 10.1016/j.neucom.2020.07.138 10.3390/su14074098 10.1016/j.asoc.2019.105880 10.3390/s21237900 10.1016/j.apr.2023.101720 10.1007/s13762-022-04185-w 10.5322/JESI.2019.28.3.341 10.1016/j.proeng.2017.10.253 10.1038/s41598-023-36333-8 10.1016/j.envsoft.2005.12.002 10.1007/s11227-020-03537-y 10.18280/ria.360108 10.1007/s11356-015-4642-0 10.5194/acp-15-9651-2015 10.1007/978-1-4614-7138-7 10.1016/j.atmosenv.2019.116945 10.1016/j.flowmeasinst.2021.102105 10.3390/atmos13040632 10.1016/j.renene.2021.12.018 10.1155/2021/9985747 10.3390/atmos11030239 10.1021/acs.jpca.5b07292 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-49899-0 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_aa17142dddf44ad5a1676ff39825e6bc PMC10725498 38104205 10_1038_s41598_023_49899_0 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-f39e02ff898c02868efba4f08ecac6d5e4c0e63485c4ac2294fd708cc687acc43 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:47 EDT 2025 Thu Aug 21 18:37:53 EDT 2025 Thu Jul 10 23:09:55 EDT 2025 Wed Aug 13 05:12:31 EDT 2025 Mon Jul 21 06:06:37 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Tue Jul 01 00:50:49 EDT 2025 Fri Feb 21 02:39:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-f39e02ff898c02868efba4f08ecac6d5e4c0e63485c4ac2294fd708cc687acc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-49899-0 |
PMID | 38104205 |
PQID | 2902590511 |
PQPubID | 2041939 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aa17142dddf44ad5a1676ff39825e6bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_10725498 proquest_miscellaneous_2903326210 proquest_journals_2902590511 pubmed_primary_38104205 crossref_primary_10_1038_s41598_023_49899_0 crossref_citationtrail_10_1038_s41598_023_49899_0 springer_journals_10_1038_s41598_023_49899_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-16 |
PublicationDateYYYYMMDD | 2023-12-16 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Feng, Kobayashi, Li, Xu, Tang, Guo, Paoletti, Calatayud (CR2) 2019; 217 Cheng, Chunhong, Qianglin (CR23) 2023; 13 Min, Keun, Yeon, Hee, Hee (CR36) 2019; 28 Chen, Zhang, Li, Wang (CR20) 2022; 299 Michał, Marek (CR37) 2021; 452 Cheng, Pour-Biazar, White, McNider (CR10) 2022; 268 Zhao, Fan, Guo, Gao, Sun, Chen (CR13) 2016; 144 Senthivel, Chidambaranathan (CR24) 2022; 36 Yu, Lin, Zou, Dan, Cheng (CR34) 2021; 12 Pendlebury, Gravel, Moran, Lupu (CR11) 2018; 174 Wang, Wang, Lu, Peng, Zhao (CR16) 2022; 19 Xing-Zhi, Zhong, Jing (CR28) 2017; 60 Chandra, Vinoth, Reddy, Uma, Umapathy (CR6) 2022; 83 Sousa, Martins, Alvim-Ferraz, Pereira (CR30) 2005; 22 Gao, Yin, Ning (CR32) 2018; 184 Zhang, Li, Ni, Gao, Zhang, Xue, Ning, Wei, Fang, Nie, Jiao (CR9) 2023; 17 Upadhaya, Du, Kommalapati (CR35) 2020; 11 CR3 Thompson, Shepson, Liao, Huey, Apel, Cantrell, Flocke, Orlando, Fried, Hall, Hornbrook, Knapp, Mauldin, Montzka, Sive, Ullmann, Weibring, Weinheimer (CR5) 2015; 15 CR7 James, Witten, Hastie, Tibshirani (CR12) 2013 Fox, James, Edelle, Ronan, Eoghan (CR22) 2022; 14 Hogue (CR1) 2019; 97 Mubin, Ezzah, Hafiz, Zia, Mohamad (CR29) 2019; 551 Van, Van Thanh, Tran, Tran (CR25) 2022; 20 Xiaomin, Jing, Wenhao, Lihua, Yunfei, Tian (CR19) 2022; 13 CR21 Jiang, Qiao, Zhu, Wang (CR14) 2021; 77 Dechao, Shuai, Liefa (CR38) 2019; 85 Pochanart (CR4) 2015; 22 Natalia, Nikolay, Yuriy, Georgii (CR8) 2021; 21 Dong, Zhongrui, Qiang, Mo, Muhammad, Shoaib, Tianxiao, Liangliang, Muhammad (CR39) 2019; 250 Li, Lu, Deng, Zhan (CR17) 2023; 14 Lau, Siti, Luqman, Nik, Adeyi, Mohsen (CR40) 2020; 252 Wang, Cheng (CR26) 2020; 6 Zhu, Liu, Song (CR33) 2022; 13 Tang, Li, Guo, Zhu, Qu (CR27) 2022; 184 Shen, Chen, Zhang, Zou, Gao (CR31) 2017; 205 Zhan, Luo, Deng, Grieneisen, Zhang, Di (CR18) 2018; 233 Feng, Zheng, Zhang, Huang, Gao, Ma (CR15) 2019; 252 T Li (49899_CR17) 2023; 14 P Upadhaya (49899_CR35) 2020; 11 S Tang (49899_CR27) 2022; 184 W Zhao (49899_CR13) 2016; 144 H Chen (49899_CR20) 2022; 299 ZN Mubin (49899_CR29) 2019; 551 L Dong (49899_CR39) 2019; 250 S Fox (49899_CR22) 2022; 14 KL Lau (49899_CR40) 2020; 252 M Gao (49899_CR32) 2018; 184 C Michał (49899_CR37) 2021; 452 DG Chandra (49899_CR6) 2022; 83 Q Cheng (49899_CR23) 2023; 13 Z Feng (49899_CR2) 2019; 217 D Wang (49899_CR16) 2022; 19 Y Zhang (49899_CR9) 2023; 17 K Natalia (49899_CR8) 2021; 21 KS Min (49899_CR36) 2019; 28 P Cheng (49899_CR10) 2022; 268 C Dechao (49899_CR38) 2019; 85 J Shen (49899_CR31) 2017; 205 L Zhu (49899_CR33) 2022; 13 H Xiaomin (49899_CR19) 2022; 13 49899_CR3 G James (49899_CR12) 2013 R Feng (49899_CR15) 2019; 252 S Senthivel (49899_CR24) 2022; 36 49899_CR7 Z-F Wang (49899_CR26) 2020; 6 SIV Sousa (49899_CR30) 2005; 22 Y Zhan (49899_CR18) 2018; 233 C Hogue (49899_CR1) 2019; 97 49899_CR21 Y Jiang (49899_CR14) 2021; 77 R Yu (49899_CR34) 2021; 12 D Pendlebury (49899_CR11) 2018; 174 NH Van (49899_CR25) 2022; 20 SUN Xing-Zhi (49899_CR28) 2017; 60 P Pochanart (49899_CR4) 2015; 22 CR Thompson (49899_CR5) 2015; 15 |
References_xml | – volume: 144 start-page: 182 year: 2016 end-page: 193 ident: CR13 article-title: Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000–2015 using quantile and multiple line regression models publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.08.077 – volume: 17 start-page: 21 issue: 2 year: 2023 ident: CR9 article-title: Prediction and cause investigation of ozone based on a double-stage attention mechanism recurrent neural network publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-023-1621-4 – volume: 268 year: 2022 ident: CR10 article-title: Improvement of summertime surface ozone prediction by assimilating Geostationary Operational Environmental Satellite cloud observations publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2021.118751 – volume: 252 start-page: 366 year: 2019 end-page: 378 ident: CR15 article-title: Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison: A case study in Hangzhou, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.05.101 – volume: 233 start-page: 464 year: 2018 end-page: 473 ident: CR18 article-title: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.029 – volume: 551 start-page: 012006 issue: 1 year: 2019 ident: CR29 article-title: Prediction of future ozone concentration for next three days using linear regression and nonlinear regression models publication-title: IOP Conf. Series Mater. Sci. Eng. doi: 10.1088/1757-899X/551/1/012006 – volume: 97 start-page: 17 issue: 48 year: 2019 ident: CR1 article-title: US EPA science advisers split on whether to tighten ozone pollution limit publication-title: Chem. Eng. News – volume: 299 start-page: 134250 year: 2022 end-page: 134250 ident: CR20 article-title: Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134250 – volume: 184 start-page: 129 year: 2018 end-page: 139 ident: CR32 article-title: Artificial neural network model for ozone concentration estimation and Monte Carlo analysis publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.03.027 – volume: 6 start-page: 267 issue: 3 year: 2020 end-page: 280 ident: CR26 article-title: Predicting jet-grout column diameter to mitigate the environmental impact using an artificial intelligence algorithm publication-title: Underground Space doi: 10.1016/j.undsp.2020.02.004 – volume: 13 start-page: 253 issue: 2 year: 2022 end-page: 253 ident: CR33 article-title: Spatiotemporal variations and influential factors of tropospheric ozone concentration over china based on OMI data publication-title: Atmosphere doi: 10.3390/atmos13020253 – volume: 12 start-page: 1675 issue: 12 year: 2021 end-page: 1675 ident: CR34 article-title: Review on atmospheric ozone pollution in China: Formation, spatiotemporal distribution, precursors and affecting factors publication-title: Atmosphere doi: 10.3390/atmos12121675 – volume: 60 start-page: 131 issue: 2 year: 2017 end-page: 140 ident: CR28 article-title: Linear regression analysis of the influence of Western North Pacific tropical cyclones on their large-scale environment publication-title: Chin. J. Geophys. doi: 10.1002/cjg2.30033 – volume: 174 start-page: 148 year: 2018 end-page: 170 ident: CR11 article-title: Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.10.052 – volume: 11 start-page: 1226 issue: 11 year: 2020 end-page: 1226 ident: CR35 article-title: Meteorological detrending of ozone at three sites in the Dallas-Fort worth area: Application of KZ filter method publication-title: Atmosphere. doi: 10.3390/atmos11111226 – volume: 19 start-page: 3988 year: 2022 ident: CR16 article-title: Regional prediction of ozone and fine particulate matter using diffusion convolutional recurrent neural network publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph19073988 – volume: 452 start-page: 705 year: 2021 end-page: 715 ident: CR37 article-title: Intrusion detection approach based on optimised artificial neural network publication-title: Neurocomputing. doi: 10.1016/j.neucom.2020.07.138 – volume: 14 start-page: 4098 year: 2022 ident: CR22 article-title: Application of neural networks and regression modelling to enable environmental regulatory compliance and energy optimisation in a sequencing batch reactor publication-title: Sustainability doi: 10.3390/su14074098 – volume: 85 start-page: 105880 year: 2019 ident: CR38 article-title: A recurrent neural network applied to optimal motion control of mobile robots with physical constraints publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.105880 – volume: 21 start-page: 7900 issue: 23 year: 2021 ident: CR8 article-title: A soft sensor for measuring the wear of an induction motor bearing by the Park’s vector components of current and voltage publication-title: Sensors doi: 10.3390/s21237900 – volume: 250 start-page: 119468 year: 2019 ident: CR39 article-title: Random forest regression evaluation model of regional flood disaster resilience based on the whale optimization algorithm publication-title: J. Cleaner Product. – volume: 14 start-page: 101720 year: 2023 ident: CR17 article-title: Spatiotemporal variations in meteorological influences on ambient ozone in China: A machine learning approach publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2023.101720 – ident: CR21 – volume: 20 start-page: 2983 issue: 3 year: 2022 end-page: 2994 ident: CR25 article-title: A new model of air quality prediction using lightweight machine learning publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-022-04185-w – volume: 28 start-page: 341 issue: 3 year: 2019 end-page: 356 ident: CR36 article-title: Impacts of local meteorology caused by tidal change in the west sea on ozone distributions in the Seoul Metropolitan Area publication-title: J. Environ. Sci. Int. doi: 10.5322/JESI.2019.28.3.341 – volume: 205 start-page: 1835 year: 2017 end-page: 1842 ident: CR31 article-title: Outdoor and indoor ozone concentration estimation based on artificial neural network and single zone mass balance model publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.10.253 – ident: CR3 – volume: 13 start-page: 9149 year: 2023 ident: CR23 article-title: Development and application of random forest regression soft sensor model for treating domestic wastewater in a sequencing batch reactor publication-title: Sci. Rep. doi: 10.1038/s41598-023-36333-8 – volume: 22 start-page: 97 issue: 1 year: 2005 end-page: 103 ident: CR30 article-title: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2005.12.002 – volume: 77 start-page: 1 issue: 7 year: 2021 end-page: 16 ident: CR14 article-title: Data fusion of atmospheric ozone remote sensing Lidar according to deep learning publication-title: J. Supercomput. doi: 10.1007/s11227-020-03537-y – volume: 36 start-page: 73 issue: 1 year: 2022 end-page: 78 ident: CR24 article-title: Machine learning approaches used for air quality forecast: A review publication-title: RIA doi: 10.18280/ria.360108 – volume: 22 start-page: 14087 issue: 18 year: 2015 end-page: 14094 ident: CR4 article-title: Residence time analysis of photochemical buildup of ozone in central eastern China from surface observation at Mt. Tai, Mt. Hua, and Mt. Huang in 2004 publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-015-4642-0 – volume: 15 start-page: 9651 issue: 16 year: 2015 end-page: 9679 ident: CR5 article-title: Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-9651-2015 – year: 2013 ident: CR12 publication-title: An Introduction to Statistical Learning doi: 10.1007/978-1-4614-7138-7 – volume: 217 year: 2019 ident: CR2 article-title: Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.116945 – volume: 83 year: 2022 ident: CR6 article-title: Recurrent neural network based soft sensor for flow estimation in liquid rocket engine injector calibration publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2021.102105 – ident: CR7 – volume: 13 start-page: 632 issue: 4 year: 2022 end-page: 632 ident: CR19 article-title: Estimation of the near-surface ozone concentration with full spatiotemporal coverage across the Beijing–Tianjin–Hebei region based on extreme gradient boosting combined with a WRF-Chem Model publication-title: Atmosphere doi: 10.3390/atmos13040632 – volume: 184 start-page: 933 year: 2022 end-page: 947 ident: CR27 article-title: Correction of various environmental influences on Doppler wind Lidar based on multiple linear regression model publication-title: Renew. Energy doi: 10.1016/j.renene.2021.12.018 – volume: 252 start-page: 830 year: 2020 ident: CR40 article-title: Application of feed-forward and recurrent neural network in modelling the adsorption of boron by amidoxime-modified poly(acrylonitrile-co-acrylic acid) publication-title: Environ. Eng. Res. – ident: 49899_CR7 doi: 10.1155/2021/9985747 – volume: 19 start-page: 3988 year: 2022 ident: 49899_CR16 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph19073988 – ident: 49899_CR21 doi: 10.3390/atmos11030239 – volume: 22 start-page: 97 issue: 1 year: 2005 ident: 49899_CR30 publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2005.12.002 – volume: 268 year: 2022 ident: 49899_CR10 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2021.118751 – volume: 12 start-page: 1675 issue: 12 year: 2021 ident: 49899_CR34 publication-title: Atmosphere doi: 10.3390/atmos12121675 – volume: 184 start-page: 129 year: 2018 ident: 49899_CR32 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.03.027 – volume: 551 start-page: 012006 issue: 1 year: 2019 ident: 49899_CR29 publication-title: IOP Conf. Series Mater. Sci. Eng. doi: 10.1088/1757-899X/551/1/012006 – volume: 21 start-page: 7900 issue: 23 year: 2021 ident: 49899_CR8 publication-title: Sensors doi: 10.3390/s21237900 – volume: 85 start-page: 105880 year: 2019 ident: 49899_CR38 publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.105880 – volume: 83 year: 2022 ident: 49899_CR6 publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2021.102105 – volume: 13 start-page: 632 issue: 4 year: 2022 ident: 49899_CR19 publication-title: Atmosphere doi: 10.3390/atmos13040632 – volume: 14 start-page: 4098 year: 2022 ident: 49899_CR22 publication-title: Sustainability doi: 10.3390/su14074098 – ident: 49899_CR3 doi: 10.1021/acs.jpca.5b07292 – volume: 174 start-page: 148 year: 2018 ident: 49899_CR11 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.10.052 – volume: 233 start-page: 464 year: 2018 ident: 49899_CR18 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.029 – volume: 144 start-page: 182 year: 2016 ident: 49899_CR13 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.08.077 – volume: 205 start-page: 1835 year: 2017 ident: 49899_CR31 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.10.253 – volume: 77 start-page: 1 issue: 7 year: 2021 ident: 49899_CR14 publication-title: J. Supercomput. doi: 10.1007/s11227-020-03537-y – volume: 11 start-page: 1226 issue: 11 year: 2020 ident: 49899_CR35 publication-title: Atmosphere. doi: 10.3390/atmos11111226 – volume: 452 start-page: 705 year: 2021 ident: 49899_CR37 publication-title: Neurocomputing. doi: 10.1016/j.neucom.2020.07.138 – volume: 17 start-page: 21 issue: 2 year: 2023 ident: 49899_CR9 publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-023-1621-4 – volume: 28 start-page: 341 issue: 3 year: 2019 ident: 49899_CR36 publication-title: J. Environ. Sci. Int. doi: 10.5322/JESI.2019.28.3.341 – volume: 22 start-page: 14087 issue: 18 year: 2015 ident: 49899_CR4 publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-015-4642-0 – volume: 252 start-page: 830 year: 2020 ident: 49899_CR40 publication-title: Environ. Eng. Res. – volume-title: An Introduction to Statistical Learning year: 2013 ident: 49899_CR12 doi: 10.1007/978-1-4614-7138-7 – volume: 36 start-page: 73 issue: 1 year: 2022 ident: 49899_CR24 publication-title: RIA doi: 10.18280/ria.360108 – volume: 250 start-page: 119468 year: 2019 ident: 49899_CR39 publication-title: J. Cleaner Product. – volume: 20 start-page: 2983 issue: 3 year: 2022 ident: 49899_CR25 publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-022-04185-w – volume: 252 start-page: 366 year: 2019 ident: 49899_CR15 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.05.101 – volume: 13 start-page: 253 issue: 2 year: 2022 ident: 49899_CR33 publication-title: Atmosphere doi: 10.3390/atmos13020253 – volume: 14 start-page: 101720 year: 2023 ident: 49899_CR17 publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2023.101720 – volume: 217 year: 2019 ident: 49899_CR2 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.116945 – volume: 299 start-page: 134250 year: 2022 ident: 49899_CR20 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134250 – volume: 184 start-page: 933 year: 2022 ident: 49899_CR27 publication-title: Renew. Energy doi: 10.1016/j.renene.2021.12.018 – volume: 97 start-page: 17 issue: 48 year: 2019 ident: 49899_CR1 publication-title: Chem. Eng. News – volume: 60 start-page: 131 issue: 2 year: 2017 ident: 49899_CR28 publication-title: Chin. J. Geophys. doi: 10.1002/cjg2.30033 – volume: 13 start-page: 9149 year: 2023 ident: 49899_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-023-36333-8 – volume: 6 start-page: 267 issue: 3 year: 2020 ident: 49899_CR26 publication-title: Underground Space doi: 10.1016/j.undsp.2020.02.004 – volume: 15 start-page: 9651 issue: 16 year: 2015 ident: 49899_CR5 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-9651-2015 |
SSID | ssj0000529419 |
Score | 2.564637 |
Snippet | The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three... Abstract The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22420 |
SubjectTerms | 639/705/1046 639/705/531 704/172/169 Accuracy Comparative analysis Humanities and Social Sciences multidisciplinary Neural networks Ozone Particulate matter Predictions Regression analysis Science Science (multidisciplinary) Sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QJCQuiG86BgoSN1atSdy89DgQ04QEJybtFqX5gEnQN7VvB_gn-Jexk7639_i8cE3d1rKd2q6dnxl7oY12Toi-hj5BDcpA7VIr6tDKDv2t8iLQ_4537_XpGbw9b8-3Rn1RT1iBBy6CO8InLQTIEEICcKF1Qi90SqrD1Cbq3tPXF33eVjJVUL1lB6KbT8k0yhxN6KnoNJlUNXSGjt7veKIM2P-7KPPXZsmfKqbZEZ3cYbfnCJIfF87vshtxuMdulpmSX--z78fcXyN6czeDjvBl4hRRupGP8WNpfh0OOcFZ4sOG0gw-IXng6L3C8gvHaBY53KKmFX45UmWHeqW5uxj58ttyiDzmscG0NuFXnU-YGiNpHrIzPWBnJ28-vD6t56kLtW9BrGoUbWxkSqYzHoMPbWLqHaTGRO-8Dm0E30StwLQenJco5xQWjfFem4XzHtRDtjfgux8zLpPSMfa96wNAANljdAXJG-MxqBDJV0ysNWD9DElOkzE-21waV8YWrVnUms1as03FXm7uuSyAHH-lfkWK3VASmHZeQBOzs4nZf5lYxQ7WZmHnHT5ZSfVZAjcTFXu-uYx7kwoubojLq0yjMDzGrLpij4oVbTghZDWQTVsxs2NfO6zuXhkuPmX8b8zYKa03FTtcm-I1X3-Wxf7_kMUTdkvSHhKyFvqA7a3Gq_gUw7JV_yzvwB-WpTel priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxo1FjZ-I4J1QQVYUEJyrtLXL8KJUgWZLtof0T_GVmHO8uy6NXZzbxemY8M57xN4y9VloZI0SXQxcgh1JDbkIlclfJBu1taYWj845Pn9XJKXxcVIt04Dalssr1nhg3ajdYOiM_lJQPIzAp8Xb5I6euUZRdTS00brJbBF1GJV31ot6csVAWC0ST7soUpT6c0F7RnTJZ5tBouoC_Y48ibP-_fM2_Syb_yJtGc3R8j91NfiQ_mhl_n93w_QN2e-4sefmQ_TzidovrzU2CHuFD4ORXmpGP_mwuge0POIFa4sv6uSR8QnLH0Ya54TtHnxZn-Bs1jfDlSPkdqpjm5nzkw9XQe-5j82Aam3Bv5xMGyEgaW-1Mj9jp8Ycv70_y1HshtxWIVR7KxhcyBN1oiy6I0j50BkKhvTVWucqDLbwqQVcWjJW4zsHVhbZW6dpYC-Vjttfjt58yLkOpvO860zkAB7JDHwuC1dqiayGCzZhYc6C1CZic-mN8a2OCvNTtzLUWudZGrrVFxt5sfrOcYTmupX5HjN1QEqR2HBjGszZpaIsiWwuQzrkAYFxlhKpVwHXAGNqrDqe5vxaLNun51G6lMmOvNo9RQyntYno_XESaEp1kjK0z9mSWos1MCF8NZFFlTO_I185Ud5_0518jCjjG7RTc64wdrEVxO6__r8Wz6__Gc3ZHknYImQu1z_ZW44V_gW7XqnsZdesXVb8uQg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_GEBIXxDeFgYLEjVU0qZuXHscT04QEJybtFqX5GJOgndq3A_wT-5dnpx_jwUDimritFTuxXTs_M_ZGaWWtEE0OTYQcSg25jZXIfSVrtLelE57-d3z6rI6O4eNJdbLD5HwXJhXtJ0jLdEzP1WHvBjQ0dBlMljnUmm7O32K3CbqdtHqt1st_Fcpcgain-zFFqW94dMsGJaj-m_zLP8skf8uVJhN0eJ_dm3xHfjBy-4DthPYhuzN2k_zxiF0ecHeN5c3tBDfCu8jJl7Q978PpWPba7nMCssSXtWMZ-IDknqPd8t13jn4scvgLNY3w855yOlQlze1Zz7ufXRt4SA2DaWzA85wPGBQjaWqvMzxmx4cfvqyP8qnfQu4qEJs8lnUoZIy61g7dDqVDbCzEQgdnnfJVAFcEVYKuHFgncZ2jXxXaOaVX1jkon7DdFr_9jHEZSxVC09jGA3iQDfpVEJ3WDt0JEV3GxCwB4yYwcuqJ8c2kpHipzSg1g1IzSWqmyNjb5ZnzEYrjn9TvSbALJcFop4GuPzWTWhlU05UA6b2PANZXVqiVirgOGDcH1SCbe7NamGlvD0ZSZpZgzUTGXi_TuCsp1WLb0F0kmhIdY4ynM_Z01KKFE8JUA1lUGdNb-rXF6vZMe_Y1IX9jrE4Bvc7Y_qyK13z9fS2e_x_5C3ZX0m4RMhdqj-1u-ovwEl2vTfMq7bUrDRgsQA priority: 102 providerName: Springer Nature |
Title | A comparative analysis of linear regression, neural networks and random forest regression for predicting air ozone employing soft sensor models |
URI | https://link.springer.com/article/10.1038/s41598-023-49899-0 https://www.ncbi.nlm.nih.gov/pubmed/38104205 https://www.proquest.com/docview/2902590511 https://www.proquest.com/docview/2903326210 https://pubmed.ncbi.nlm.nih.gov/PMC10725498 https://doaj.org/article/aa17142dddf44ad5a1676ff39825e6bc |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISQuiDeBsjISNxqIHcdxDghtV62qlVohYKW9RY4fpVJJSrKVKH-Cv8zYyW5ZWDhwWsmZbEb2TOabjP0NwEshhVKUVjGvHI95KnmsXEZjk7EC422qqfHfO05OxfGMT-fZfAuW7Y6GCew2pna-n9SsvXj97ev1O3T4t_2RcfmmwyDkD4qxNOaF9Kfqt2EXI1PuHfVkgPs91zcrOC2GszObb12LT4HGfxP2_HML5W911BCeju7CnQFXknFvCPdgy9b34VbfafL6AfwYE33D803UQEVCGkc8zlQtae1ZvyW23iee5BL_rO63iHcobgjGNNN8IYhxUcNfpP0IuWx9vcfvoCbqvCXN96a2xIZmwn6sw3c96TBhRtHQeqd7CLOjw0-T43joxRDrjNNF7NLCJsw5WUiNkERI6yrFXSKtVlqYzHKdWJFymWmuNMN5diZPpNZC5kprnj6CnRqf_QQIc6mwtqpUZTg3nFWIubjTUmqEGtTpCOhyBUo9EJX7fhkXZSiYp7LsV63EVSvDqpVJBK9W91z2NB3_lD7wC7uS9BTbYaBpz8rBY0s04ZxyZoxxnCuTKSpy4XAeMKe2okI195ZmUS7NtmS-auspz2gEL1aX0WN9GUbVtrkKMimCZsy1I3jcW9FKE8-3xlmSRSDX7GtN1fUr9fnnwAqOebxP9mUE-0tTvNHr73Px9P-f9AxuM-85lMVU7MHOor2yzxGiLaoRbOfzfAS74_H04xR_Dw5P33_A0YmYjMJnj1HwzJ_NAEND |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbIbgg3gQKGAlONGrsTBzngFALrba0XSHUSr0Fx49SCZIl2QqVn-BP-EbGeeyyPHrr1Zkkk8zbM54h5LmQQinGihAKByHEEkLlEhaahGdob2PNjN_vOJiI8RG8O06OV8jP4SyML6scdGKrqE2l_R75Bvf5MN9Mir2efg391CifXR1GaHRssWfPv2HI1rzafYv0fcH5zvbhm3HYTxUIdQJsFro4sxF3TmZSo3EV0rpCgYuk1UoLk1jQkRUxyESD0pxn4EwaSa2FTJXWEONzr5BViDGUGZHVre3J-w_zXR2fNwOW9adzolhuNGgh_Sk2HoeQSX_kf8kCtoMC_uXd_l2k-UemtjWAOzfJjd5zpZsdq90iK7a8Ta52syzP75Afm1QvOolT1Tc7oZWj3pNVNa3tSVd0W65T30YTH1Z2RegNghuKVtNUXyh60Yjhb9B-hU5rn1HyNdpUnda0-l6Vltp2XLFfa9Ca0AZDcgRth_s0d8nRpdDlHhmV-O4HhHIXC2uLQhUGwAAv0KsDp6XU6MwwpwPCBgrkum-F7idyfM7blHws845qOVItb6mWRwF5Ob9n2jUCuRB6yxN2DumbeLcLVX2S9zohRyFJGXBjjANQJlFMpMLhf8Co3YoC0Vwb2CLvNUuTL-QgIM_ml1En-ESPKm111sLE6JZjNB-Q-x0XzTHxHd2AR0lA5BJ_LaG6fKU8_dT2HWdR6rcTZEDWB1Zc4PX_f_Hw4s94Sq6NDw_28_3dyd4jcp17SWE8ZGKNjGb1mX2MTt-seNJLGiUfL1u4fwGVCW3t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6IN4ECRoITjTZ2HMc5IFQoq5ZCxYFKvRnHj1IJkiXZCpWf4H_4Omby2GV59NarPUkmnqc94xlCnkgljWGsjEUZRCxSJWITMha7jBdgb1PLHJ53vNuXOwfizWF2uEZ-jndhMK1y1Imdona1xTPyCcd4GBaTYpMwpEW8356-mH2NsYMURlrHdho9i-z502-wfWuf724DrZ9yPn394dVOPHQYiG0m2DwOaeETHoIqlAVDK5UPpREhUd4aK13mhU28TIXKrDCW80IElyfKWqlyY61I4b0XyMU8zRjKWH6YL853MIImWDHc00lSNWnBVuJ9Np7GolB4-X_FFnYtA_7l5_6drvlHzLYzhdNr5Orgw9KtnumukzVf3SCX-q6WpzfJjy1qlzXFqRnKntA6UPRpTUMbf9Sn31abFAtqwsuqPh29BXBHwX66-gsFfxow_A0aR-iswdgSZmtTc9zQ-ntdeeq7xsU41oJdoS1szgG0a_PT3iIH50KV22S9gm_fJZSHVHpflqZ0QjjBS_DvRLBKWXBrWLARYSMFtB2KomNvjs-6C86nSvdU00A13VFNJxF5tnhm1pcEORP6JRJ2AYnlvLuBujnSg3bQIC45E9w5F4QwLjNM5jLAOsD-3csS0NwY2UIPOqbVS4mIyOPFNGgHDPmYytcnHUwKDjrs6yNyp-eiBSZY203wJIuIWuGvFVRXZ6rjT10FcpbkeLCgIrI5suISr_-vxb2zf-MRuQwird_u7u_dJ1c4CgrjMZMbZH3enPgH4P3Ny4edmFHy8bzl-hdLOHC9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+analysis+of+linear+regression%2C+neural+networks+and+random+forest+regression+for+predicting+air+ozone+employing+soft+sensor+models&rft.jtitle=Scientific+reports&rft.au=Zhou%2C+Zheng&rft.au=Qiu%2C+Cheng&rft.au=Zhang%2C+Yufan&rft.date=2023-12-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-49899-0&rft.externalDocID=PMC10725498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |