A comparative analysis of linear regression, neural networks and random forest regression for predicting air ozone employing soft sensor models

The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the i...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 22420 - 23
Main Authors Zhou, Zheng, Qiu, Cheng, Zhang, Yufan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM 10 , in the latter sets does not improve overall performance, potentially due to multicollinearity between PM 10 and PM 2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NN R[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R 2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NN R[Y]C is reliable and suitable for various technological applications.
AbstractList Abstract The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications.
The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM 10 , in the latter sets does not improve overall performance, potentially due to multicollinearity between PM 10 and PM 2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NN R[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R 2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NN R[Y]C is reliable and suitable for various technological applications.
The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM , in the latter sets does not improve overall performance, potentially due to multicollinearity between PM and PM variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NN outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NN is reliable and suitable for various technological applications.
The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications.The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications.
The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evaluate the impact of different variable sets on prediction performance. Our findings indicate that neural network models, particularly the RNN (recurrent neural networks), outperform the other modeling techniques in terms of prediction accuracy. The proposed methodology evaluates the impact of different variable sets on prediction performance, finding that variable set E demonstrates exceptional performance and achieves the highest average prediction accuracy among various software sensor models. In comparing variable set E and A, B, C, D, it is observed that the inclusion of an additional input feature, PM10, in the latter sets does not improve overall performance, potentially due to multicollinearity between PM10 and PM2.5 variables. The proposed methodology provides valuable insights into soft sensor modeling for air ozone prediction.Among the 72 sensors, sensor NNR[Y]C outperforms all other evaluated sensors, demonstrating exceptional predictive performance with an impressive R2 of 0.8902, low RMSE of 24.91, and remarkable MAE of 19.16. With a prediction accuracy of 81.44%, sensor NNR[Y]C is reliable and suitable for various technological applications.
ArticleNumber 22420
Author Zhou, Zheng
Zhang, Yufan
Qiu, Cheng
Author_xml – sequence: 1
  givenname: Zheng
  surname: Zhou
  fullname: Zhou, Zheng
  organization: Department of Material and Environmental Engineering, Chengdu Technological University
– sequence: 2
  givenname: Cheng
  surname: Qiu
  fullname: Qiu, Cheng
  email: innovationcdtu@126.com
  organization: Department of Material and Environmental Engineering, Chengdu Technological University
– sequence: 3
  givenname: Yufan
  surname: Zhang
  fullname: Zhang, Yufan
  organization: Department of Material and Environmental Engineering, Chengdu Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38104205$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9uEzEQxi1UREvoC3BAlrhwYMH22hvvCVUVfypV4gJna2KPg8OuHexNq_ISvDJOUkraQ31Yr8a_-Tzj-Z6To5giEvKSs3ectfp9kVz1umGibWSv-75hT8iJYFI1ohXi6OD_mJyWsmJ1KdFL3j8jx63mTAqmTsifM2rTuIYMU7hCChGGmxIKTZ4OISJkmnGZsZSQ4lsacZNhqNt0nfLPUnFHc_2kkfpUqemA3kboOqMLdgpxSSFkmn7XJiiO6yHdbGMl-YkWjKWiY3I4lBfkqYeh4OntPiPfP338dv6lufz6-eL87LKxSvKp8W2PTHive22Z0J1GvwDpmUYLtnMKpWXYtVIrK8GK2rd3c6at7fQcrJXtjFzsdV2ClVnnMEK-MQmC2QVSXhrIU7ADGgA-51I457yU4BTwbt75WoEWCruFrVof9lrrzWJEZzFO9ZXuid4_ieGHWaYrw9lcqDq9qvDmViGnX5v6jmYMxeIwQMS0KUb0rG1FJ-rkZ-T1A3SVNrmObUcJ1TPFeaVeHZZ0V8u_wVdA7AGbUykZ_R3CmdkazOwNZqrBzM5gZnu3fpBkw1SNk7ZtheHx1HafWuo9cYn5f9mPZP0FwWzo0Q
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179023
crossref_primary_10_1016_j_fbio_2024_105734
crossref_primary_10_1007_s12665_024_11911_9
crossref_primary_10_1038_s41598_024_71161_4
crossref_primary_10_1038_s41598_025_91329_w
crossref_primary_10_1016_j_renene_2024_120772
crossref_primary_10_1109_JSTARS_2024_3481460
crossref_primary_10_1016_j_uncres_2025_100145
crossref_primary_10_1080_00084433_2024_2430067
crossref_primary_10_1080_09593330_2024_2415722
crossref_primary_10_1117_1_JRS_18_042609
crossref_primary_10_1016_j_talanta_2025_127640
crossref_primary_10_3389_fpls_2025_1533855
crossref_primary_10_1016_j_rsase_2025_101491
crossref_primary_10_1016_j_buildenv_2024_111991
crossref_primary_10_1016_j_kscej_2025_100209
crossref_primary_10_1016_j_envres_2024_120683
crossref_primary_10_3390_su17020603
crossref_primary_10_1038_s42256_024_00928_1
crossref_primary_10_1186_s40068_024_00378_z
crossref_primary_10_3390_atmos16030255
crossref_primary_10_1007_s10708_025_11316_6
crossref_primary_10_3390_s24113650
crossref_primary_10_1016_j_ajem_2025_02_038
Cites_doi 10.1016/j.atmosenv.2016.08.077
10.1007/s11783-023-1621-4
10.1016/j.atmosenv.2021.118751
10.1016/j.envpol.2019.05.101
10.1016/j.envpol.2017.10.029
10.1088/1757-899X/551/1/012006
10.1016/j.chemosphere.2022.134250
10.1016/j.atmosenv.2018.03.027
10.1016/j.undsp.2020.02.004
10.3390/atmos13020253
10.3390/atmos12121675
10.1002/cjg2.30033
10.1016/j.atmosenv.2017.10.052
10.3390/atmos11111226
10.3390/ijerph19073988
10.1016/j.neucom.2020.07.138
10.3390/su14074098
10.1016/j.asoc.2019.105880
10.3390/s21237900
10.1016/j.apr.2023.101720
10.1007/s13762-022-04185-w
10.5322/JESI.2019.28.3.341
10.1016/j.proeng.2017.10.253
10.1038/s41598-023-36333-8
10.1016/j.envsoft.2005.12.002
10.1007/s11227-020-03537-y
10.18280/ria.360108
10.1007/s11356-015-4642-0
10.5194/acp-15-9651-2015
10.1007/978-1-4614-7138-7
10.1016/j.atmosenv.2019.116945
10.1016/j.flowmeasinst.2021.102105
10.3390/atmos13040632
10.1016/j.renene.2021.12.018
10.1155/2021/9985747
10.3390/atmos11030239
10.1021/acs.jpca.5b07292
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-49899-0
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_aa17142dddf44ad5a1676ff39825e6bc
PMC10725498
38104205
10_1038_s41598_023_49899_0
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-f39e02ff898c02868efba4f08ecac6d5e4c0e63485c4ac2294fd708cc687acc43
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:47 EDT 2025
Thu Aug 21 18:37:53 EDT 2025
Thu Jul 10 23:09:55 EDT 2025
Wed Aug 13 05:12:31 EDT 2025
Mon Jul 21 06:06:37 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Tue Jul 01 00:50:49 EDT 2025
Fri Feb 21 02:39:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-f39e02ff898c02868efba4f08ecac6d5e4c0e63485c4ac2294fd708cc687acc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-49899-0
PMID 38104205
PQID 2902590511
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_aa17142dddf44ad5a1676ff39825e6bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10725498
proquest_miscellaneous_2903326210
proquest_journals_2902590511
pubmed_primary_38104205
crossref_primary_10_1038_s41598_023_49899_0
crossref_citationtrail_10_1038_s41598_023_49899_0
springer_journals_10_1038_s41598_023_49899_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-16
PublicationDateYYYYMMDD 2023-12-16
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Feng, Kobayashi, Li, Xu, Tang, Guo, Paoletti, Calatayud (CR2) 2019; 217
Cheng, Chunhong, Qianglin (CR23) 2023; 13
Min, Keun, Yeon, Hee, Hee (CR36) 2019; 28
Chen, Zhang, Li, Wang (CR20) 2022; 299
Michał, Marek (CR37) 2021; 452
Cheng, Pour-Biazar, White, McNider (CR10) 2022; 268
Zhao, Fan, Guo, Gao, Sun, Chen (CR13) 2016; 144
Senthivel, Chidambaranathan (CR24) 2022; 36
Yu, Lin, Zou, Dan, Cheng (CR34) 2021; 12
Pendlebury, Gravel, Moran, Lupu (CR11) 2018; 174
Wang, Wang, Lu, Peng, Zhao (CR16) 2022; 19
Xing-Zhi, Zhong, Jing (CR28) 2017; 60
Chandra, Vinoth, Reddy, Uma, Umapathy (CR6) 2022; 83
Sousa, Martins, Alvim-Ferraz, Pereira (CR30) 2005; 22
Gao, Yin, Ning (CR32) 2018; 184
Zhang, Li, Ni, Gao, Zhang, Xue, Ning, Wei, Fang, Nie, Jiao (CR9) 2023; 17
Upadhaya, Du, Kommalapati (CR35) 2020; 11
CR3
Thompson, Shepson, Liao, Huey, Apel, Cantrell, Flocke, Orlando, Fried, Hall, Hornbrook, Knapp, Mauldin, Montzka, Sive, Ullmann, Weibring, Weinheimer (CR5) 2015; 15
CR7
James, Witten, Hastie, Tibshirani (CR12) 2013
Fox, James, Edelle, Ronan, Eoghan (CR22) 2022; 14
Hogue (CR1) 2019; 97
Mubin, Ezzah, Hafiz, Zia, Mohamad (CR29) 2019; 551
Van, Van Thanh, Tran, Tran (CR25) 2022; 20
Xiaomin, Jing, Wenhao, Lihua, Yunfei, Tian (CR19) 2022; 13
CR21
Jiang, Qiao, Zhu, Wang (CR14) 2021; 77
Dechao, Shuai, Liefa (CR38) 2019; 85
Pochanart (CR4) 2015; 22
Natalia, Nikolay, Yuriy, Georgii (CR8) 2021; 21
Dong, Zhongrui, Qiang, Mo, Muhammad, Shoaib, Tianxiao, Liangliang, Muhammad (CR39) 2019; 250
Li, Lu, Deng, Zhan (CR17) 2023; 14
Lau, Siti, Luqman, Nik, Adeyi, Mohsen (CR40) 2020; 252
Wang, Cheng (CR26) 2020; 6
Zhu, Liu, Song (CR33) 2022; 13
Tang, Li, Guo, Zhu, Qu (CR27) 2022; 184
Shen, Chen, Zhang, Zou, Gao (CR31) 2017; 205
Zhan, Luo, Deng, Grieneisen, Zhang, Di (CR18) 2018; 233
Feng, Zheng, Zhang, Huang, Gao, Ma (CR15) 2019; 252
T Li (49899_CR17) 2023; 14
P Upadhaya (49899_CR35) 2020; 11
S Tang (49899_CR27) 2022; 184
W Zhao (49899_CR13) 2016; 144
H Chen (49899_CR20) 2022; 299
ZN Mubin (49899_CR29) 2019; 551
L Dong (49899_CR39) 2019; 250
S Fox (49899_CR22) 2022; 14
KL Lau (49899_CR40) 2020; 252
M Gao (49899_CR32) 2018; 184
C Michał (49899_CR37) 2021; 452
DG Chandra (49899_CR6) 2022; 83
Q Cheng (49899_CR23) 2023; 13
Z Feng (49899_CR2) 2019; 217
D Wang (49899_CR16) 2022; 19
Y Zhang (49899_CR9) 2023; 17
K Natalia (49899_CR8) 2021; 21
KS Min (49899_CR36) 2019; 28
P Cheng (49899_CR10) 2022; 268
C Dechao (49899_CR38) 2019; 85
J Shen (49899_CR31) 2017; 205
L Zhu (49899_CR33) 2022; 13
H Xiaomin (49899_CR19) 2022; 13
49899_CR3
G James (49899_CR12) 2013
R Feng (49899_CR15) 2019; 252
S Senthivel (49899_CR24) 2022; 36
49899_CR7
Z-F Wang (49899_CR26) 2020; 6
SIV Sousa (49899_CR30) 2005; 22
Y Zhan (49899_CR18) 2018; 233
C Hogue (49899_CR1) 2019; 97
49899_CR21
Y Jiang (49899_CR14) 2021; 77
R Yu (49899_CR34) 2021; 12
D Pendlebury (49899_CR11) 2018; 174
NH Van (49899_CR25) 2022; 20
SUN Xing-Zhi (49899_CR28) 2017; 60
P Pochanart (49899_CR4) 2015; 22
CR Thompson (49899_CR5) 2015; 15
References_xml – volume: 144
  start-page: 182
  year: 2016
  end-page: 193
  ident: CR13
  article-title: Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000–2015 using quantile and multiple line regression models
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.08.077
– volume: 17
  start-page: 21
  issue: 2
  year: 2023
  ident: CR9
  article-title: Prediction and cause investigation of ozone based on a double-stage attention mechanism recurrent neural network
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-023-1621-4
– volume: 268
  year: 2022
  ident: CR10
  article-title: Improvement of summertime surface ozone prediction by assimilating Geostationary Operational Environmental Satellite cloud observations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2021.118751
– volume: 252
  start-page: 366
  year: 2019
  end-page: 378
  ident: CR15
  article-title: Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison: A case study in Hangzhou, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.05.101
– volume: 233
  start-page: 464
  year: 2018
  end-page: 473
  ident: CR18
  article-title: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.10.029
– volume: 551
  start-page: 012006
  issue: 1
  year: 2019
  ident: CR29
  article-title: Prediction of future ozone concentration for next three days using linear regression and nonlinear regression models
  publication-title: IOP Conf. Series Mater. Sci. Eng.
  doi: 10.1088/1757-899X/551/1/012006
– volume: 97
  start-page: 17
  issue: 48
  year: 2019
  ident: CR1
  article-title: US EPA science advisers split on whether to tighten ozone pollution limit
  publication-title: Chem. Eng. News
– volume: 299
  start-page: 134250
  year: 2022
  end-page: 134250
  ident: CR20
  article-title: Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134250
– volume: 184
  start-page: 129
  year: 2018
  end-page: 139
  ident: CR32
  article-title: Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.03.027
– volume: 6
  start-page: 267
  issue: 3
  year: 2020
  end-page: 280
  ident: CR26
  article-title: Predicting jet-grout column diameter to mitigate the environmental impact using an artificial intelligence algorithm
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2020.02.004
– volume: 13
  start-page: 253
  issue: 2
  year: 2022
  end-page: 253
  ident: CR33
  article-title: Spatiotemporal variations and influential factors of tropospheric ozone concentration over china based on OMI data
  publication-title: Atmosphere
  doi: 10.3390/atmos13020253
– volume: 12
  start-page: 1675
  issue: 12
  year: 2021
  end-page: 1675
  ident: CR34
  article-title: Review on atmospheric ozone pollution in China: Formation, spatiotemporal distribution, precursors and affecting factors
  publication-title: Atmosphere
  doi: 10.3390/atmos12121675
– volume: 60
  start-page: 131
  issue: 2
  year: 2017
  end-page: 140
  ident: CR28
  article-title: Linear regression analysis of the influence of Western North Pacific tropical cyclones on their large-scale environment
  publication-title: Chin. J. Geophys.
  doi: 10.1002/cjg2.30033
– volume: 174
  start-page: 148
  year: 2018
  end-page: 170
  ident: CR11
  article-title: Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.10.052
– volume: 11
  start-page: 1226
  issue: 11
  year: 2020
  end-page: 1226
  ident: CR35
  article-title: Meteorological detrending of ozone at three sites in the Dallas-Fort worth area: Application of KZ filter method
  publication-title: Atmosphere.
  doi: 10.3390/atmos11111226
– volume: 19
  start-page: 3988
  year: 2022
  ident: CR16
  article-title: Regional prediction of ozone and fine particulate matter using diffusion convolutional recurrent neural network
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph19073988
– volume: 452
  start-page: 705
  year: 2021
  end-page: 715
  ident: CR37
  article-title: Intrusion detection approach based on optimised artificial neural network
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2020.07.138
– volume: 14
  start-page: 4098
  year: 2022
  ident: CR22
  article-title: Application of neural networks and regression modelling to enable environmental regulatory compliance and energy optimisation in a sequencing batch reactor
  publication-title: Sustainability
  doi: 10.3390/su14074098
– volume: 85
  start-page: 105880
  year: 2019
  ident: CR38
  article-title: A recurrent neural network applied to optimal motion control of mobile robots with physical constraints
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.105880
– volume: 21
  start-page: 7900
  issue: 23
  year: 2021
  ident: CR8
  article-title: A soft sensor for measuring the wear of an induction motor bearing by the Park’s vector components of current and voltage
  publication-title: Sensors
  doi: 10.3390/s21237900
– volume: 250
  start-page: 119468
  year: 2019
  ident: CR39
  article-title: Random forest regression evaluation model of regional flood disaster resilience based on the whale optimization algorithm
  publication-title: J. Cleaner Product.
– volume: 14
  start-page: 101720
  year: 2023
  ident: CR17
  article-title: Spatiotemporal variations in meteorological influences on ambient ozone in China: A machine learning approach
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101720
– ident: CR21
– volume: 20
  start-page: 2983
  issue: 3
  year: 2022
  end-page: 2994
  ident: CR25
  article-title: A new model of air quality prediction using lightweight machine learning
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-022-04185-w
– volume: 28
  start-page: 341
  issue: 3
  year: 2019
  end-page: 356
  ident: CR36
  article-title: Impacts of local meteorology caused by tidal change in the west sea on ozone distributions in the Seoul Metropolitan Area
  publication-title: J. Environ. Sci. Int.
  doi: 10.5322/JESI.2019.28.3.341
– volume: 205
  start-page: 1835
  year: 2017
  end-page: 1842
  ident: CR31
  article-title: Outdoor and indoor ozone concentration estimation based on artificial neural network and single zone mass balance model
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.10.253
– ident: CR3
– volume: 13
  start-page: 9149
  year: 2023
  ident: CR23
  article-title: Development and application of random forest regression soft sensor model for treating domestic wastewater in a sequencing batch reactor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36333-8
– volume: 22
  start-page: 97
  issue: 1
  year: 2005
  end-page: 103
  ident: CR30
  article-title: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2005.12.002
– volume: 77
  start-page: 1
  issue: 7
  year: 2021
  end-page: 16
  ident: CR14
  article-title: Data fusion of atmospheric ozone remote sensing Lidar according to deep learning
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03537-y
– volume: 36
  start-page: 73
  issue: 1
  year: 2022
  end-page: 78
  ident: CR24
  article-title: Machine learning approaches used for air quality forecast: A review
  publication-title: RIA
  doi: 10.18280/ria.360108
– volume: 22
  start-page: 14087
  issue: 18
  year: 2015
  end-page: 14094
  ident: CR4
  article-title: Residence time analysis of photochemical buildup of ozone in central eastern China from surface observation at Mt. Tai, Mt. Hua, and Mt. Huang in 2004
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-015-4642-0
– volume: 15
  start-page: 9651
  issue: 16
  year: 2015
  end-page: 9679
  ident: CR5
  article-title: Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-9651-2015
– year: 2013
  ident: CR12
  publication-title: An Introduction to Statistical Learning
  doi: 10.1007/978-1-4614-7138-7
– volume: 217
  year: 2019
  ident: CR2
  article-title: Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.116945
– volume: 83
  year: 2022
  ident: CR6
  article-title: Recurrent neural network based soft sensor for flow estimation in liquid rocket engine injector calibration
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2021.102105
– ident: CR7
– volume: 13
  start-page: 632
  issue: 4
  year: 2022
  end-page: 632
  ident: CR19
  article-title: Estimation of the near-surface ozone concentration with full spatiotemporal coverage across the Beijing–Tianjin–Hebei region based on extreme gradient boosting combined with a WRF-Chem Model
  publication-title: Atmosphere
  doi: 10.3390/atmos13040632
– volume: 184
  start-page: 933
  year: 2022
  end-page: 947
  ident: CR27
  article-title: Correction of various environmental influences on Doppler wind Lidar based on multiple linear regression model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.12.018
– volume: 252
  start-page: 830
  year: 2020
  ident: CR40
  article-title: Application of feed-forward and recurrent neural network in modelling the adsorption of boron by amidoxime-modified poly(acrylonitrile-co-acrylic acid)
  publication-title: Environ. Eng. Res.
– ident: 49899_CR7
  doi: 10.1155/2021/9985747
– volume: 19
  start-page: 3988
  year: 2022
  ident: 49899_CR16
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph19073988
– ident: 49899_CR21
  doi: 10.3390/atmos11030239
– volume: 22
  start-page: 97
  issue: 1
  year: 2005
  ident: 49899_CR30
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2005.12.002
– volume: 268
  year: 2022
  ident: 49899_CR10
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2021.118751
– volume: 12
  start-page: 1675
  issue: 12
  year: 2021
  ident: 49899_CR34
  publication-title: Atmosphere
  doi: 10.3390/atmos12121675
– volume: 184
  start-page: 129
  year: 2018
  ident: 49899_CR32
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.03.027
– volume: 551
  start-page: 012006
  issue: 1
  year: 2019
  ident: 49899_CR29
  publication-title: IOP Conf. Series Mater. Sci. Eng.
  doi: 10.1088/1757-899X/551/1/012006
– volume: 21
  start-page: 7900
  issue: 23
  year: 2021
  ident: 49899_CR8
  publication-title: Sensors
  doi: 10.3390/s21237900
– volume: 85
  start-page: 105880
  year: 2019
  ident: 49899_CR38
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.105880
– volume: 83
  year: 2022
  ident: 49899_CR6
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2021.102105
– volume: 13
  start-page: 632
  issue: 4
  year: 2022
  ident: 49899_CR19
  publication-title: Atmosphere
  doi: 10.3390/atmos13040632
– volume: 14
  start-page: 4098
  year: 2022
  ident: 49899_CR22
  publication-title: Sustainability
  doi: 10.3390/su14074098
– ident: 49899_CR3
  doi: 10.1021/acs.jpca.5b07292
– volume: 174
  start-page: 148
  year: 2018
  ident: 49899_CR11
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.10.052
– volume: 233
  start-page: 464
  year: 2018
  ident: 49899_CR18
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.10.029
– volume: 144
  start-page: 182
  year: 2016
  ident: 49899_CR13
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.08.077
– volume: 205
  start-page: 1835
  year: 2017
  ident: 49899_CR31
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.10.253
– volume: 77
  start-page: 1
  issue: 7
  year: 2021
  ident: 49899_CR14
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03537-y
– volume: 11
  start-page: 1226
  issue: 11
  year: 2020
  ident: 49899_CR35
  publication-title: Atmosphere.
  doi: 10.3390/atmos11111226
– volume: 452
  start-page: 705
  year: 2021
  ident: 49899_CR37
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2020.07.138
– volume: 17
  start-page: 21
  issue: 2
  year: 2023
  ident: 49899_CR9
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-023-1621-4
– volume: 28
  start-page: 341
  issue: 3
  year: 2019
  ident: 49899_CR36
  publication-title: J. Environ. Sci. Int.
  doi: 10.5322/JESI.2019.28.3.341
– volume: 22
  start-page: 14087
  issue: 18
  year: 2015
  ident: 49899_CR4
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-015-4642-0
– volume: 252
  start-page: 830
  year: 2020
  ident: 49899_CR40
  publication-title: Environ. Eng. Res.
– volume-title: An Introduction to Statistical Learning
  year: 2013
  ident: 49899_CR12
  doi: 10.1007/978-1-4614-7138-7
– volume: 36
  start-page: 73
  issue: 1
  year: 2022
  ident: 49899_CR24
  publication-title: RIA
  doi: 10.18280/ria.360108
– volume: 250
  start-page: 119468
  year: 2019
  ident: 49899_CR39
  publication-title: J. Cleaner Product.
– volume: 20
  start-page: 2983
  issue: 3
  year: 2022
  ident: 49899_CR25
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-022-04185-w
– volume: 252
  start-page: 366
  year: 2019
  ident: 49899_CR15
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.05.101
– volume: 13
  start-page: 253
  issue: 2
  year: 2022
  ident: 49899_CR33
  publication-title: Atmosphere
  doi: 10.3390/atmos13020253
– volume: 14
  start-page: 101720
  year: 2023
  ident: 49899_CR17
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101720
– volume: 217
  year: 2019
  ident: 49899_CR2
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.116945
– volume: 299
  start-page: 134250
  year: 2022
  ident: 49899_CR20
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134250
– volume: 184
  start-page: 933
  year: 2022
  ident: 49899_CR27
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.12.018
– volume: 97
  start-page: 17
  issue: 48
  year: 2019
  ident: 49899_CR1
  publication-title: Chem. Eng. News
– volume: 60
  start-page: 131
  issue: 2
  year: 2017
  ident: 49899_CR28
  publication-title: Chin. J. Geophys.
  doi: 10.1002/cjg2.30033
– volume: 13
  start-page: 9149
  year: 2023
  ident: 49899_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36333-8
– volume: 6
  start-page: 267
  issue: 3
  year: 2020
  ident: 49899_CR26
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2020.02.004
– volume: 15
  start-page: 9651
  issue: 16
  year: 2015
  ident: 49899_CR5
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-9651-2015
SSID ssj0000529419
Score 2.564637
Snippet The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three...
Abstract The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22420
SubjectTerms 639/705/1046
639/705/531
704/172/169
Accuracy
Comparative analysis
Humanities and Social Sciences
multidisciplinary
Neural networks
Ozone
Particulate matter
Predictions
Regression analysis
Science
Science (multidisciplinary)
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QJCQuiG86BgoSN1atSdy89DgQ04QEJybtFqX5gEnQN7VvB_gn-Jexk7639_i8cE3d1rKd2q6dnxl7oY12Toi-hj5BDcpA7VIr6tDKDv2t8iLQ_4537_XpGbw9b8-3Rn1RT1iBBy6CO8InLQTIEEICcKF1Qi90SqrD1Cbq3tPXF33eVjJVUL1lB6KbT8k0yhxN6KnoNJlUNXSGjt7veKIM2P-7KPPXZsmfKqbZEZ3cYbfnCJIfF87vshtxuMdulpmSX--z78fcXyN6czeDjvBl4hRRupGP8WNpfh0OOcFZ4sOG0gw-IXng6L3C8gvHaBY53KKmFX45UmWHeqW5uxj58ttyiDzmscG0NuFXnU-YGiNpHrIzPWBnJ28-vD6t56kLtW9BrGoUbWxkSqYzHoMPbWLqHaTGRO-8Dm0E30StwLQenJco5xQWjfFem4XzHtRDtjfgux8zLpPSMfa96wNAANljdAXJG-MxqBDJV0ysNWD9DElOkzE-21waV8YWrVnUms1as03FXm7uuSyAHH-lfkWK3VASmHZeQBOzs4nZf5lYxQ7WZmHnHT5ZSfVZAjcTFXu-uYx7kwoubojLq0yjMDzGrLpij4oVbTghZDWQTVsxs2NfO6zuXhkuPmX8b8zYKa03FTtcm-I1X3-Wxf7_kMUTdkvSHhKyFvqA7a3Gq_gUw7JV_yzvwB-WpTel
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxo1FjZ-I4J1QQVYUEJyrtLXL8KJUgWZLtof0T_GVmHO8uy6NXZzbxemY8M57xN4y9VloZI0SXQxcgh1JDbkIlclfJBu1taYWj845Pn9XJKXxcVIt04Dalssr1nhg3ajdYOiM_lJQPIzAp8Xb5I6euUZRdTS00brJbBF1GJV31ot6csVAWC0ST7soUpT6c0F7RnTJZ5tBouoC_Y48ibP-_fM2_Syb_yJtGc3R8j91NfiQ_mhl_n93w_QN2e-4sefmQ_TzidovrzU2CHuFD4ORXmpGP_mwuge0POIFa4sv6uSR8QnLH0Ya54TtHnxZn-Bs1jfDlSPkdqpjm5nzkw9XQe-5j82Aam3Bv5xMGyEgaW-1Mj9jp8Ycv70_y1HshtxWIVR7KxhcyBN1oiy6I0j50BkKhvTVWucqDLbwqQVcWjJW4zsHVhbZW6dpYC-Vjttfjt58yLkOpvO860zkAB7JDHwuC1dqiayGCzZhYc6C1CZic-mN8a2OCvNTtzLUWudZGrrVFxt5sfrOcYTmupX5HjN1QEqR2HBjGszZpaIsiWwuQzrkAYFxlhKpVwHXAGNqrDqe5vxaLNun51G6lMmOvNo9RQyntYno_XESaEp1kjK0z9mSWos1MCF8NZFFlTO_I185Ud5_0518jCjjG7RTc64wdrEVxO6__r8Wz6__Gc3ZHknYImQu1z_ZW44V_gW7XqnsZdesXVb8uQg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_GEBIXxDeFgYLEjVU0qZuXHscT04QEJybtFqX5GJOgndq3A_wT-5dnpx_jwUDimritFTuxXTs_M_ZGaWWtEE0OTYQcSg25jZXIfSVrtLelE57-d3z6rI6O4eNJdbLD5HwXJhXtJ0jLdEzP1WHvBjQ0dBlMljnUmm7O32K3CbqdtHqt1st_Fcpcgain-zFFqW94dMsGJaj-m_zLP8skf8uVJhN0eJ_dm3xHfjBy-4DthPYhuzN2k_zxiF0ecHeN5c3tBDfCu8jJl7Q978PpWPba7nMCssSXtWMZ-IDknqPd8t13jn4scvgLNY3w855yOlQlze1Zz7ufXRt4SA2DaWzA85wPGBQjaWqvMzxmx4cfvqyP8qnfQu4qEJs8lnUoZIy61g7dDqVDbCzEQgdnnfJVAFcEVYKuHFgncZ2jXxXaOaVX1jkon7DdFr_9jHEZSxVC09jGA3iQDfpVEJ3WDt0JEV3GxCwB4yYwcuqJ8c2kpHipzSg1g1IzSWqmyNjb5ZnzEYrjn9TvSbALJcFop4GuPzWTWhlU05UA6b2PANZXVqiVirgOGDcH1SCbe7NamGlvD0ZSZpZgzUTGXi_TuCsp1WLb0F0kmhIdY4ynM_Z01KKFE8JUA1lUGdNb-rXF6vZMe_Y1IX9jrE4Bvc7Y_qyK13z9fS2e_x_5C3ZX0m4RMhdqj-1u-ovwEl2vTfMq7bUrDRgsQA
  priority: 102
  providerName: Springer Nature
Title A comparative analysis of linear regression, neural networks and random forest regression for predicting air ozone employing soft sensor models
URI https://link.springer.com/article/10.1038/s41598-023-49899-0
https://www.ncbi.nlm.nih.gov/pubmed/38104205
https://www.proquest.com/docview/2902590511
https://www.proquest.com/docview/2903326210
https://pubmed.ncbi.nlm.nih.gov/PMC10725498
https://doaj.org/article/aa17142dddf44ad5a1676ff39825e6bc
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISQuiDeBsjISNxqIHcdxDghtV62qlVohYKW9RY4fpVJJSrKVKH-Cv8zYyW5ZWDhwWsmZbEb2TOabjP0NwEshhVKUVjGvHI95KnmsXEZjk7EC422qqfHfO05OxfGMT-fZfAuW7Y6GCew2pna-n9SsvXj97ev1O3T4t_2RcfmmwyDkD4qxNOaF9Kfqt2EXI1PuHfVkgPs91zcrOC2GszObb12LT4HGfxP2_HML5W911BCeju7CnQFXknFvCPdgy9b34VbfafL6AfwYE33D803UQEVCGkc8zlQtae1ZvyW23iee5BL_rO63iHcobgjGNNN8IYhxUcNfpP0IuWx9vcfvoCbqvCXN96a2xIZmwn6sw3c96TBhRtHQeqd7CLOjw0-T43joxRDrjNNF7NLCJsw5WUiNkERI6yrFXSKtVlqYzHKdWJFymWmuNMN5diZPpNZC5kprnj6CnRqf_QQIc6mwtqpUZTg3nFWIubjTUmqEGtTpCOhyBUo9EJX7fhkXZSiYp7LsV63EVSvDqpVJBK9W91z2NB3_lD7wC7uS9BTbYaBpz8rBY0s04ZxyZoxxnCuTKSpy4XAeMKe2okI195ZmUS7NtmS-auspz2gEL1aX0WN9GUbVtrkKMimCZsy1I3jcW9FKE8-3xlmSRSDX7GtN1fUr9fnnwAqOebxP9mUE-0tTvNHr73Px9P-f9AxuM-85lMVU7MHOor2yzxGiLaoRbOfzfAS74_H04xR_Dw5P33_A0YmYjMJnj1HwzJ_NAEND
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbIbgg3gQKGAlONGrsTBzngFALrba0XSHUSr0Fx49SCZIl2QqVn-BP-EbGeeyyPHrr1Zkkk8zbM54h5LmQQinGihAKByHEEkLlEhaahGdob2PNjN_vOJiI8RG8O06OV8jP4SyML6scdGKrqE2l_R75Bvf5MN9Mir2efg391CifXR1GaHRssWfPv2HI1rzafYv0fcH5zvbhm3HYTxUIdQJsFro4sxF3TmZSo3EV0rpCgYuk1UoLk1jQkRUxyESD0pxn4EwaSa2FTJXWEONzr5BViDGUGZHVre3J-w_zXR2fNwOW9adzolhuNGgh_Sk2HoeQSX_kf8kCtoMC_uXd_l2k-UemtjWAOzfJjd5zpZsdq90iK7a8Ta52syzP75Afm1QvOolT1Tc7oZWj3pNVNa3tSVd0W65T30YTH1Z2RegNghuKVtNUXyh60Yjhb9B-hU5rn1HyNdpUnda0-l6Vltp2XLFfa9Ca0AZDcgRth_s0d8nRpdDlHhmV-O4HhHIXC2uLQhUGwAAv0KsDp6XU6MwwpwPCBgrkum-F7idyfM7blHws845qOVItb6mWRwF5Ob9n2jUCuRB6yxN2DumbeLcLVX2S9zohRyFJGXBjjANQJlFMpMLhf8Co3YoC0Vwb2CLvNUuTL-QgIM_ml1En-ESPKm111sLE6JZjNB-Q-x0XzTHxHd2AR0lA5BJ_LaG6fKU8_dT2HWdR6rcTZEDWB1Zc4PX_f_Hw4s94Sq6NDw_28_3dyd4jcp17SWE8ZGKNjGb1mX2MTt-seNJLGiUfL1u4fwGVCW3t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6IN4ECRoITjTZ2HMc5IFQoq5ZCxYFKvRnHj1IJkiXZCpWf4H_4Omby2GV59NarPUkmnqc94xlCnkgljWGsjEUZRCxSJWITMha7jBdgb1PLHJ53vNuXOwfizWF2uEZ-jndhMK1y1Imdona1xTPyCcd4GBaTYpMwpEW8356-mH2NsYMURlrHdho9i-z502-wfWuf724DrZ9yPn394dVOPHQYiG0m2DwOaeETHoIqlAVDK5UPpREhUd4aK13mhU28TIXKrDCW80IElyfKWqlyY61I4b0XyMU8zRjKWH6YL853MIImWDHc00lSNWnBVuJ9Np7GolB4-X_FFnYtA_7l5_6drvlHzLYzhdNr5Orgw9KtnumukzVf3SCX-q6WpzfJjy1qlzXFqRnKntA6UPRpTUMbf9Sn31abFAtqwsuqPh29BXBHwX66-gsFfxow_A0aR-iswdgSZmtTc9zQ-ntdeeq7xsU41oJdoS1szgG0a_PT3iIH50KV22S9gm_fJZSHVHpflqZ0QjjBS_DvRLBKWXBrWLARYSMFtB2KomNvjs-6C86nSvdU00A13VFNJxF5tnhm1pcEORP6JRJ2AYnlvLuBujnSg3bQIC45E9w5F4QwLjNM5jLAOsD-3csS0NwY2UIPOqbVS4mIyOPFNGgHDPmYytcnHUwKDjrs6yNyp-eiBSZY203wJIuIWuGvFVRXZ6rjT10FcpbkeLCgIrI5suISr_-vxb2zf-MRuQwird_u7u_dJ1c4CgrjMZMbZH3enPgH4P3Ny4edmFHy8bzl-hdLOHC9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+analysis+of+linear+regression%2C+neural+networks+and+random+forest+regression+for+predicting+air+ozone+employing+soft+sensor+models&rft.jtitle=Scientific+reports&rft.au=Zhou%2C+Zheng&rft.au=Qiu%2C+Cheng&rft.au=Zhang%2C+Yufan&rft.date=2023-12-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-49899-0&rft.externalDocID=PMC10725498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon