Tannic acid modified keratin/sodium alginate/carboxymethyl chitosan biocomposite hydrogels with good mechanical properties and swelling behavior
Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tanni...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 12864 - 16 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m
3
, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of
S. aureus
and
E. coli
, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering. |
---|---|
AbstractList | Abstract Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering. Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m 3 , and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli , as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering. Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering.Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering. Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m , and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering. Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering. |
ArticleNumber | 12864 |
Author | Ouyang, Fenfen Zhu, Liqing Fu, Xue Wen, Min Wang, Yimei Li, Ting Zha, Guodong Yang, Xue |
Author_xml | – sequence: 1 givenname: Liqing surname: Zhu fullname: Zhu, Liqing organization: College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology – sequence: 2 givenname: Fenfen surname: Ouyang fullname: Ouyang, Fenfen organization: College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology – sequence: 3 givenname: Xue surname: Fu fullname: Fu, Xue organization: College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology – sequence: 4 givenname: Yimei surname: Wang fullname: Wang, Yimei organization: College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology – sequence: 5 givenname: Ting surname: Li fullname: Li, Ting organization: College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology – sequence: 6 givenname: Min surname: Wen fullname: Wen, Min organization: College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology – sequence: 7 givenname: Guodong surname: Zha fullname: Zha, Guodong organization: HEMOS (Chongqing) Bioscience Co., Ltd – sequence: 8 givenname: Xue surname: Yang fullname: Yang, Xue email: yangxue198902@163.com organization: Department of Pharmacy, Army Medical Center of PLA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38834664$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLaU_wAJZYsMmjF9xnBVCFY9KldiUtXVjO4mHxA52pu38BZ-MZ6aFtot6Y-v6nONzr8_r4sgHb4viLcEfCWZylTipGlliykvBiBSleFGcUMyrkjJKjx6cj4uzlNY4r4o2nDSvimMmJeNC8JPizxV47zQC7QyagnGdswb9shEW51cpFzYTgrF3Hha70hDbcLud7DJsR6QHt4QEHrUu6DDNIbnFomFrYujtmNCNWwbUh5CFrR4gPwMjmmOYbVycTQi8QenGjqPzPWrtANcuxDfFyw7GZM_u9tPi59cvV-ffy8sf3y7OP1-WuuJkKTtGWm4aLJmpOdW6xZjIRre2A1kZXRuDG805rSusqayAC44NxsK0jIout39aXBx0TYC1mqObIG5VAKf2hRB7BdmmHq0C3XHAHcVCGl4L3lpom0rgihFha42z1qeD1rxpJ2u09UuE8ZHo4xvvBtWHa0UIqTAXNCt8uFOI4ffGpkVNLuk8GvA2bJJiWPCGktxAhr5_Al2HTfR5VnsUa2RVk4x699DSPy_3P58B8gDQMaQUbae0W_Knh51DNyqC1S5n6pAzlXOm9jlTOwf0CfVe_VkSO5BSBvvexv-2n2H9BTVE6GU |
CitedBy_id | crossref_primary_10_1016_j_cis_2025_103428 crossref_primary_10_1002_admi_202400851 crossref_primary_10_3390_pharmaceutics17030294 crossref_primary_10_1088_2053_1591_ad9813 crossref_primary_10_1021_acsabm_4c01044 |
Cites_doi | 10.1007/s11837-020-04243-z 10.1016/j.carbpol.2018.06.058 10.1016/j.tibtech.2018.07.007 10.1016/j.jaad.2007.08.048 10.1021/acs.nanolett.2c02530 10.1016/j.bioactmat.2020.04.007 10.1016/j.matlet.2014.03.178 10.1016/j.carbpol.2016.08.095 10.1021/acsapm.0c00264 10.1007/s10924-019-01439-6 10.1016/j.reactfunctpolym.2022.105203 10.1016/j.msec.2020.110863 10.1016/j.eurpolymj.2021.110268 10.1016/j.carbpol.2020.116364 10.1016/j.pmatsci.2015.06.001 10.3390/ma14164696 10.1016/j.actbio.2018.10.025 10.1016/j.jphotobiol.2015.03.028 10.1016/j.matdes.2017.04.045 10.1080/00914037.2022.2099392 10.3390/app11051995 10.3389/fchem.2019.00749 10.1016/j.jcis.2016.02.027 10.1007/s11356-020-10165-9 10.1039/C5TB02215K 10.1016/j.eurpolymj.2021.110411 10.1016/j.foodhyd.2010.04.003 10.1016/j.ijbiomac.2021.02.086 10.1007/s10098-018-1498-2 10.1039/C8RA01059E 10.1021/acsami.2c15411 10.1177/0885328217717076 10.1016/j.carbpol.2017.12.033 10.2174/1567201815666180409102459 10.1016/j.ijbiomac.2023.124185 10.1016/j.porgcoat.2022.106964 10.1016/j.msec.2015.09.093 10.1016/j.msec.2016.04.067 10.1039/D1TB00021G 10.1016/j.carbpol.2017.12.051 10.1016/S0065-3233(08)60390-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-63186-6 |
DatabaseName | SpringerOpen CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_acf4a0f2068d4764beab95605316e7c0 PMC11150462 38834664 10_1038_s41598_024_63186_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Chongqing Clinical Pharmacy Key Specialties Construction Project – fundername: Project and HEMOS (Chongqing) Bioscience Co., Ltd. |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-f31b4d9083d742ccb00189cbefa85dc7dd09c442750c285a4640d006db326f883 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:12 EDT 2025 Thu Aug 21 18:32:48 EDT 2025 Thu Jul 10 18:00:31 EDT 2025 Wed Aug 13 09:12:19 EDT 2025 Mon Jul 21 05:59:20 EDT 2025 Tue Jul 01 01:01:48 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Fri Feb 21 02:39:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Tannic acid Keratin Wound healing Hydrogels |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-f31b4d9083d742ccb00189cbefa85dc7dd09c442750c285a4640d006db326f883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-63186-6 |
PMID | 38834664 |
PQID | 3064398571 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_acf4a0f2068d4764beab95605316e7c0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11150462 proquest_miscellaneous_3064921006 proquest_journals_3064398571 pubmed_primary_38834664 crossref_citationtrail_10_1038_s41598_024_63186_6 crossref_primary_10_1038_s41598_024_63186_6 springer_journals_10_1038_s41598_024_63186_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-04 |
PublicationDateYYYYMMDD | 2024-06-04 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hu (CR38) 2018; 184 Sharma (CR15) 2018; 20 Feroz, Muhammad, Ratnayake, Dias (CR10) 2020; 5 Kakkar (CR39) 2016; 66 Chen (CR31) 2022; 172 Lv (CR29) 2018; 198 CR13 Akanda (CR23) 2017; 32 Wang, Ying, Li, Zhang (CR24) 2014; 126 Wang, Cavaco-Paulo, Xu, Martins (CR16) 2019; 7 Zhu, Qian, Yu, Li, Song (CR17) 2020; 27 Wang, Zhang, Yuan, Shen (CR12) 2016; 59 Patel, AbouGhaly, Schryer-Praga, Chadwick (CR26) 2017; 155 Graca, Miguel, Cabral, Correia (CR4) 2020; 241 Das, Sethy, Kundu, Tripathy (CR41) 2023; 239 Wang, Yang, McKittrick, Meyers (CR11) 2016; 76 Navarro, Swayambunathan, Lerman, Santoro, Fisher (CR21) 2019; 83 Wu, Li, Qu, Wang, Bin (CR36) 2020; 2 Siripatrawan, Harte (CR42) 2010; 24 Hu, Lu, Mata, Nishinari, Fang (CR34) 2021; 177 Zhang, Dai, Yuan, Wang (CR5) 2023; 72 Fonder (CR6) 2008; 58 Bu (CR28) 2018; 8 Bao (CR2) 2018; 184 CR8 Wang, Nakamoto, Dulińska-Molak, Kawazoe, Chen (CR20) 2016; 4 Gaidau (CR18) 2021; 14 Zhang, Liu, Zhao, Wang (CR35) 2022; 170 Chen (CR9) 2022; 22 Saha, Zubair, Khosa, Song, Ullah (CR22) 2019; 27 Radu (CR14) 2021; 11 Yu (CR27) 2021; 150 Keshvardoostchokami (CR37) 2020; 72 Sionkowska, Kaczmarek, Gnatowska, Kowalonek (CR33) 2015; 148 Kang (CR7) 2022; 3 Luo, Zhang, Zhitomirsky (CR32) 2016; 469 Ubaid, Murtaza (CR30) 2018; 15 Han (CR40) 2022; 14 Derakhshandeh, Kashaf, Aghabaglou, Ghanavati, Tamayol (CR1) 2018; 36 Aluigi, Varesano, Vineis, Del Rio (CR19) 2017; 127 Zhang (CR3) 2021; 146 Ambrogi (CR25) 2020; 112 Zhang (CR43) 2021; 9 W Zhu (63186_CR17) 2020; 27 J Wang (63186_CR24) 2014; 126 J Navarro (63186_CR21) 2019; 83 X Yu (63186_CR27) 2021; 150 63186_CR13 MR Akanda (63186_CR23) 2017; 32 A-N Zhang (63186_CR35) 2022; 170 P Kakkar (63186_CR39) 2016; 66 X Lv (63186_CR29) 2018; 198 L Wang (63186_CR16) 2019; 7 C Gaidau (63186_CR18) 2021; 14 A Sionkowska (63186_CR33) 2015; 148 CD Radu (63186_CR14) 2021; 11 X Zhang (63186_CR3) 2021; 146 S Sharma (63186_CR15) 2018; 20 C Hu (63186_CR34) 2021; 177 S Saha (63186_CR22) 2019; 27 MFP Graca (63186_CR4) 2020; 241 U Siripatrawan (63186_CR42) 2010; 24 V Ambrogi (63186_CR25) 2020; 112 Y Kang (63186_CR7) 2022; 3 M Das (63186_CR41) 2023; 239 F Zhang (63186_CR43) 2021; 9 S Feroz (63186_CR10) 2020; 5 H Derakhshandeh (63186_CR1) 2018; 36 MA Patel (63186_CR26) 2017; 155 63186_CR8 M Keshvardoostchokami (63186_CR37) 2020; 72 Y Bao (63186_CR2) 2018; 184 Y Zhang (63186_CR5) 2023; 72 W Chen (63186_CR31) 2022; 172 A Aluigi (63186_CR19) 2017; 127 X Wang (63186_CR20) 2016; 4 Y Wang (63186_CR12) 2016; 59 Y Bu (63186_CR28) 2018; 8 X Han (63186_CR40) 2022; 14 B Wang (63186_CR11) 2016; 76 MA Fonder (63186_CR6) 2008; 58 D Luo (63186_CR32) 2016; 469 L Chen (63186_CR9) 2022; 22 M Ubaid (63186_CR30) 2018; 15 L Wu (63186_CR36) 2020; 2 S Hu (63186_CR38) 2018; 184 |
References_xml | – volume: 72 start-page: 4477 year: 2020 end-page: 4485 ident: CR37 article-title: Fabrication and antibacterial properties of silver/graphite oxide/chitosan and silver/reduced graphene oxide/chitosan nanocomposites publication-title: JOM doi: 10.1007/s11837-020-04243-z – volume: 198 start-page: 86 year: 2018 end-page: 93 ident: CR29 article-title: Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/Alginate polyelectrolyte complexes and its application as pH-sensitive delivery system publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.06.058 – volume: 36 start-page: 1259 year: 2018 end-page: 1274 ident: CR1 article-title: Smart bandages: The future of wound care publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.07.007 – volume: 58 start-page: 185 year: 2008 end-page: 206 ident: CR6 article-title: Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2007.08.048 – volume: 22 start-page: 8835 year: 2022 end-page: 8844 ident: CR9 article-title: Bioinspired robust keratin hydrogels for biomedical applications publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c02530 – volume: 5 start-page: 496 year: 2020 end-page: 509 ident: CR10 article-title: Keratin-Based materials for biomedical applications publication-title: Bioactive Mater. doi: 10.1016/j.bioactmat.2020.04.007 – volume: 126 start-page: 263 year: 2014 end-page: 266 ident: CR24 article-title: Preparation, characterization and swelling behaviors of polyurethane-grafted calcium alginate hydrogels publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.03.178 – volume: 155 start-page: 362 year: 2017 end-page: 371 ident: CR26 article-title: The effect of ionotropic gelation residence time on alginate cross-linking and properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.08.095 – volume: 2 start-page: 3094 year: 2020 end-page: 3106 ident: CR36 article-title: Mussel-inspired self-adhesive, antidrying, and antifreezing poly(acrylic acid)/bentonite/polydopamine hybrid glycerol-hydrogel and the sensing application publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.0c00264 – volume: 27 start-page: 1389 year: 2019 end-page: 1403 ident: CR22 article-title: Keratin and chitosan biosorbents for wastewater treatment: A review publication-title: J. Polym. Environ. doi: 10.1007/s10924-019-01439-6 – volume: 172 year: 2022 ident: CR31 article-title: Vapor-phase glutaraldehyde crosslinked waste protein-based nanofiber nonwovens as an environmentally friendly wound dressing publication-title: Reactive Funct. Polym. doi: 10.1016/j.reactfunctpolym.2022.105203 – volume: 3 year: 2022 ident: CR7 article-title: The marriage of Xenes and hydrogels: Fundamentals, applications, and outlook publication-title: Innovation – volume: 112 year: 2020 ident: CR25 article-title: Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.110863 – ident: CR8 – volume: 146 year: 2021 ident: CR3 article-title: The fabrication of antibacterial hydrogels for wound healing publication-title: Eur. Polym J. doi: 10.1016/j.eurpolymj.2021.110268 – volume: 241 year: 2020 ident: CR4 article-title: Hyaluronic acid—Based wound dressings: A review publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116364 – volume: 76 start-page: 229 year: 2016 end-page: 318 ident: CR11 article-title: Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.06.001 – volume: 14 start-page: 4696 year: 2021 ident: CR18 article-title: Wool keratin hydrolysates for bioactive additives preparation publication-title: Materials doi: 10.3390/ma14164696 – volume: 83 start-page: 177 year: 2019 end-page: 188 ident: CR21 article-title: Development of keratin-based membranes for potential use in skin repair publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.10.025 – volume: 148 start-page: 333 year: 2015 end-page: 339 ident: CR33 article-title: The influence of UV-irradiation on chitosan modified by the tannic acid addition publication-title: J. Photochem. Photobiol. B: Biol. doi: 10.1016/j.jphotobiol.2015.03.028 – volume: 127 start-page: 144 year: 2017 end-page: 153 ident: CR19 article-title: Electrospinning of immiscible systems: The wool keratin/polyamide-6 case study publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.04.045 – volume: 72 start-page: 1397 year: 2023 end-page: 1405 ident: CR5 article-title: A bacteriostatic and hemostatic medical dressing based on PEG modified keratin/carboxymethyl chitosan publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2022.2099392 – volume: 11 start-page: 1995 year: 2021 ident: CR14 article-title: Evaluation of keratin/bacterial cellulose based scaffolds as potential burned wound dressing publication-title: Appl. Sci. doi: 10.3390/app11051995 – volume: 7 start-page: 749 year: 2019 ident: CR16 article-title: Polymeric hydrogel coating for modulating the shape of keratin fiber publication-title: Front. Chem. doi: 10.3389/fchem.2019.00749 – volume: 469 start-page: 177 year: 2016 end-page: 183 ident: CR32 article-title: Electrophoretic deposition of tannic acid–polypyrrolidone films and composites publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.02.027 – volume: 27 start-page: 41577 year: 2020 end-page: 41584 ident: CR17 article-title: Fabrication of mechanical robust keratin adsorbent by induced molecular network transition and its dye adsorption performance publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-10165-9 – volume: 4 start-page: 37 year: 2016 end-page: 45 ident: CR20 article-title: Regulating the stemness of mesenchymal stem cells by tuning micropattern features publication-title: J. Mater. Chem. B doi: 10.1039/C5TB02215K – volume: 150 start-page: 110411 year: 2021 ident: CR27 article-title: Conjugation of CMCS to silk fibroin for tuning mechanical and swelling behaviors of fibroin hydrogels publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2021.110411 – volume: 24 start-page: 770 year: 2010 end-page: 775 ident: CR42 article-title: Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2010.04.003 – volume: 177 start-page: 578 year: 2021 end-page: 588 ident: CR34 article-title: Ions-induced gelation of alginate: Mechanisms and applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.02.086 – volume: 20 start-page: 2157 year: 2018 end-page: 2167 ident: CR15 article-title: An efficient conversion of waste feather keratin into ecofriendly bioplastic film publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-018-1498-2 – volume: 8 start-page: 10806 year: 2018 end-page: 10817 ident: CR28 article-title: A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration publication-title: RSC Adv. doi: 10.1039/C8RA01059E – volume: 14 start-page: 50199 year: 2022 end-page: 50214 ident: CR40 article-title: Supramolecular hydrogel dressing: Effect of lignin on the self-healing, antibacterial, antioxidant, and biological activity improvement publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c15411 – ident: CR13 – volume: 32 start-page: 230 year: 2017 end-page: 241 ident: CR23 article-title: Hair growth promoting activity of discarded biocomposite keratin extract publication-title: J. Biomater. Appl. doi: 10.1177/0885328217717076 – volume: 184 start-page: 154 year: 2018 end-page: 163 ident: CR38 article-title: Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.12.033 – volume: 15 start-page: 1146 year: 2018 end-page: 1158 ident: CR30 article-title: In vitro evaluation of genipin-crosslinked na-alginate/chitosan hydrogel films for delivery of metformin: Effect of chitosan molecular weight publication-title: CDD doi: 10.2174/1567201815666180409102459 – volume: 239 year: 2023 ident: CR41 article-title: Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.124185 – volume: 170 year: 2022 ident: CR35 article-title: Eco-friendly and durable flame-retardant coating for cotton fabrics based on dynamic coordination of Ca -tannin acid publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2022.106964 – volume: 59 start-page: 30 year: 2016 end-page: 34 ident: CR12 article-title: Differences in cytocompatibility between collagen, gelatin and keratin publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.09.093 – volume: 66 start-page: 178 year: 2016 end-page: 184 ident: CR39 article-title: Fabrication of keratin-silica hydrogel for biomedical applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.04.067 – volume: 9 start-page: 2697 year: 2021 end-page: 2708 ident: CR43 article-title: A conformally adapted all-in-one hydrogel coating: Towards robust hemocompatibility and bactericidal activity publication-title: J. Mater. Chem. B doi: 10.1039/D1TB00021G – volume: 184 start-page: 66 year: 2018 end-page: 73 ident: CR2 article-title: Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.12.051 – volume: 59 start-page: 30 year: 2016 ident: 63186_CR12 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.09.093 – volume: 11 start-page: 1995 year: 2021 ident: 63186_CR14 publication-title: Appl. Sci. doi: 10.3390/app11051995 – volume: 27 start-page: 41577 year: 2020 ident: 63186_CR17 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-10165-9 – volume: 14 start-page: 4696 year: 2021 ident: 63186_CR18 publication-title: Materials doi: 10.3390/ma14164696 – ident: 63186_CR8 doi: 10.1016/S0065-3233(08)60390-3 – volume: 469 start-page: 177 year: 2016 ident: 63186_CR32 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.02.027 – volume: 241 year: 2020 ident: 63186_CR4 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116364 – volume: 72 start-page: 1397 year: 2023 ident: 63186_CR5 publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2022.2099392 – volume: 76 start-page: 229 year: 2016 ident: 63186_CR11 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.06.001 – volume: 198 start-page: 86 year: 2018 ident: 63186_CR29 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.06.058 – volume: 66 start-page: 178 year: 2016 ident: 63186_CR39 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.04.067 – volume: 9 start-page: 2697 year: 2021 ident: 63186_CR43 publication-title: J. Mater. Chem. B doi: 10.1039/D1TB00021G – volume: 7 start-page: 749 year: 2019 ident: 63186_CR16 publication-title: Front. Chem. doi: 10.3389/fchem.2019.00749 – volume: 15 start-page: 1146 year: 2018 ident: 63186_CR30 publication-title: CDD doi: 10.2174/1567201815666180409102459 – volume: 239 year: 2023 ident: 63186_CR41 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.124185 – volume: 177 start-page: 578 year: 2021 ident: 63186_CR34 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.02.086 – volume: 127 start-page: 144 year: 2017 ident: 63186_CR19 publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.04.045 – volume: 148 start-page: 333 year: 2015 ident: 63186_CR33 publication-title: J. Photochem. Photobiol. B: Biol. doi: 10.1016/j.jphotobiol.2015.03.028 – volume: 72 start-page: 4477 year: 2020 ident: 63186_CR37 publication-title: JOM doi: 10.1007/s11837-020-04243-z – volume: 184 start-page: 66 year: 2018 ident: 63186_CR2 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.12.051 – volume: 32 start-page: 230 year: 2017 ident: 63186_CR23 publication-title: J. Biomater. Appl. doi: 10.1177/0885328217717076 – volume: 4 start-page: 37 year: 2016 ident: 63186_CR20 publication-title: J. Mater. Chem. B doi: 10.1039/C5TB02215K – volume: 22 start-page: 8835 year: 2022 ident: 63186_CR9 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c02530 – volume: 126 start-page: 263 year: 2014 ident: 63186_CR24 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.03.178 – volume: 170 year: 2022 ident: 63186_CR35 publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2022.106964 – volume: 24 start-page: 770 year: 2010 ident: 63186_CR42 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2010.04.003 – volume: 172 year: 2022 ident: 63186_CR31 publication-title: Reactive Funct. Polym. doi: 10.1016/j.reactfunctpolym.2022.105203 – volume: 20 start-page: 2157 year: 2018 ident: 63186_CR15 publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-018-1498-2 – volume: 5 start-page: 496 year: 2020 ident: 63186_CR10 publication-title: Bioactive Mater. doi: 10.1016/j.bioactmat.2020.04.007 – volume: 2 start-page: 3094 year: 2020 ident: 63186_CR36 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.0c00264 – volume: 3 year: 2022 ident: 63186_CR7 publication-title: Innovation – volume: 8 start-page: 10806 year: 2018 ident: 63186_CR28 publication-title: RSC Adv. doi: 10.1039/C8RA01059E – volume: 184 start-page: 154 year: 2018 ident: 63186_CR38 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.12.033 – volume: 36 start-page: 1259 year: 2018 ident: 63186_CR1 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.07.007 – volume: 83 start-page: 177 year: 2019 ident: 63186_CR21 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.10.025 – volume: 112 year: 2020 ident: 63186_CR25 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.110863 – volume: 150 start-page: 110411 year: 2021 ident: 63186_CR27 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2021.110411 – volume: 155 start-page: 362 year: 2017 ident: 63186_CR26 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.08.095 – volume: 58 start-page: 185 year: 2008 ident: 63186_CR6 publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2007.08.048 – volume: 27 start-page: 1389 year: 2019 ident: 63186_CR22 publication-title: J. Polym. Environ. doi: 10.1007/s10924-019-01439-6 – volume: 14 start-page: 50199 year: 2022 ident: 63186_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c15411 – ident: 63186_CR13 – volume: 146 year: 2021 ident: 63186_CR3 publication-title: Eur. Polym J. doi: 10.1016/j.eurpolymj.2021.110268 |
SSID | ssj0000529419 |
Score | 2.497163 |
Snippet | Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as... Abstract Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12864 |
SubjectTerms | 639/166/985 639/301/54/990 Alginates - chemistry Alginic acid Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antioxidants - chemistry Antioxidants - pharmacology Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Cell Survival - drug effects Cell viability Chitosan Chitosan - analogs & derivatives Chitosan - chemistry E coli Elastic Modulus Escherichia coli - drug effects Fourier transforms Freezing Humanities and Social Sciences Humans Hydrogels Hydrogels - chemistry Hydrogen bonding Infrared spectroscopy Keratin Keratins - chemistry Mechanical properties Medical dressings multidisciplinary Polymers Scanning electron microscopy Science Science (multidisciplinary) Sodium Sodium alginate Spectroscopy, Fourier Transform Infrared Staphylococcus aureus - drug effects Tannic acid Tannins - chemistry Wound healing Wound Healing - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiPIZKMhI3CBaJ5k49hEQVcWBUyv1Zjm2067YJtVmV2L_BT-5M3Z26fJ54bKHxFmNPM-aN_b4DWNvXNc2AZqQuxpcDhp_rKpEbkUoEWAlZhCxQPaLPDmDz-f1-a1WX1QTluSB08TNrOvAiq4UUnloJLTBtsTpETsyNC5m6xjzbiVTSdW71FDo6ZaMqNRsxEhFt8lKyCXiWOZyLxJFwf7fscxfiyV_OjGNgej4Abs_MUj-Pll-yO6E_iG7m3pKbh6x76fUhchx6-aeXw1-3iHJ5F9JOxlz4BEfrK-4XVA7hlWYObtsh28b6iO9WXA6UxhG2_N2PlCtORV0BX658cvhAmMop01bfjEM-MeBbgyTg_k1becvSZeV297zkXYD0XC-FQB4zM6OP51-PMmntgvkr2KVd1XRgtfIzTzmzc4Rr1LataGzqvau8V5oB0DC8K5UtQUJwuPi9S1SwU6p6gk76Ic-PGO8cYCUUaugOqQRFrS3GP2UBNsJi5ljxoqtC4ybNMmpNcbCxLPxSpnkNoNuM9FtBr95u_vmOily_HX0B_LsbiSpaccHiDEzYcz8C2MZO9riwkxLfDRVJHOqboqMvd69xsVJJy62D8M6jdGYVAu042mC0c6SCmeKtP0zpvYAtmfq_pt-fhkFwAui8SDLjL3bYvGHXX-ei-f_Yy5esHslLSLaiIIjdrBarsNL5GWr9lVcgjdTQzWM priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxZu0BRmJG0TrJI7jnBAgqooDp1bam-XYznbFNl6SXan7L_qTO-M8quXRyx4SZzXJzHie_oaQD6auCscLF5ucm5iX8KNlxmLNXAoClkIEERpkf4qzC_5jns-HhFs3tFWOe2LYqK03mCOfZcF2yrxIPq9_xzg1CqurwwiNh-QRQpehVBfzYsqxYBWLJ-VwVoZlctaBvcIzZSmPBUiziMWePQqw_f_yNf9umfyjbhrM0elTcjj4kfRLz_hn5IFrnpPH_WTJ3Qtyc46ziAzVZmnplbfLGlxN-gsRlCES7uDC9orqFQ5l2LiZ0W3lr3c4TXq3olhZ8J1uaLX02HGObV2OXu5s6xdgSSmmbunCe_hjh-eGkc10jUn9FtFZqW4s7TAnCITTEQbgJbk4_X7-7Swehi8g15JNXGdJxW0JHpqF6NkY9K5kaSpXa5lbU1jLSsM5wsObVOaaC84sqLCtwCGspcxekYPGN-4NoYXh4DiW0skanAnNS6vBBkrBdc00xI8RSUYWKDMgk-OAjJUKFfJMqp5tCtimAtsUPPNxembd43Lcu_orcnZaiZja4YJvF2pQUaVNzTWrUyak5YXgldMVRo-wSwlXGBaRk1Eu1KDonboTy4i8n26DimLdRTfOb_s1JYTWDOh43YvRREkGXwoR_iMi9wRsj9T9O83yMsCAJ-jMc5FG5NMoi3d0_f9bHN3_GsfkSYrqgYkmfkIONu3WvQW_a1O9C8p1C_WaLRA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpQqGX0necpEWF3loT2ZZl-bgJDWEPvTSB3IQsyZulGyvYu9D9F_3JnZEfZdu00IsPtmQGz4znG2n0DSEfTF0VjhcuNjk3MS_homXGYs1cCgaWQgYRCmS_iMtrPr_Jb_ZIOp6FCUX7gdIy_KbH6rDTDgINHgZLeSzADEUsHpEDpGoH2z6YzeZf59PKCu5d8aQcTsiwTD4weScKBbL-hxDmn4WSv-2WhiB08Yw8HdAjnfXyPid7rnlBHvf9JLcvyY8r7EBkqDZLS--8XdYAMOk35E2G_LeDG5s7qlfYimHtTo1uK_99iz2ktyuK-wm-0w2tlh7rzLGYy9HbrW39AuInxQVbuvAeXuzwtDAql97jUn6LnKxUN5Z2uBIIgtPx8P8rcn3x-er8Mh5aLqCuknVcZ0nFbQm4zELObAxiKlmaytVa5tYU1rLScI6k8CaVueaCMwuOayuAgbWU2Wuy3_jGHRJaGA5wsZRO1gAhNC-thsgnBdc105A1RiQZVaDMwEeObTFWKuyLZ1L1alOgNhXUpmDOx2nOfc_G8c_RZ6jZaSQyaYcbvl2owbKUNjXXrE6ZkJYXgldOV5gzwr9JuMKwiJyMdqEG9-5UFoCczIskIu-nx-CYuNuiG-c3_ZgSEmoGcrzpzWiSJIMvhbz-EZE7BrYj6u6TZnkbyL8ThPBcpBH5NNriL7n-_i2O_m_4MXmSorvgchM_IfvrduPeAvpaV-8Gd_sJKdUsQQ priority: 102 providerName: Springer Nature |
Title | Tannic acid modified keratin/sodium alginate/carboxymethyl chitosan biocomposite hydrogels with good mechanical properties and swelling behavior |
URI | https://link.springer.com/article/10.1038/s41598-024-63186-6 https://www.ncbi.nlm.nih.gov/pubmed/38834664 https://www.proquest.com/docview/3064398571 https://www.proquest.com/docview/3064921006 https://pubmed.ncbi.nlm.nih.gov/PMC11150462 https://doaj.org/article/acf4a0f2068d4764beab95605316e7c0 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2ISQuiPcWlspI3CBsHo7jHBDqVrtaVWKFYCv1Fjm2063oxkvSSpt_wU9mxkmKCoUTl0Zy7Grkmcl848c3hLxRRZ4YlhhPxUx5LIUfKSLfk74JwcBCyCDcAdlLfjFlk1k82yN9uaNuAuudqR3Wk5pWy_d335uP4PAf2ivj4qSGIIQXxULmcTBR7vF9cgiRKcGKBp86uN9yfYcpC9Lu7szuoVvxydH478Kefx6h_G0f1YWn84fkQYcr6ag1hEdkz5SPyb220mTzhPy4wtpEikq10PTG6kUB0JN-Q0ZlyIxraFjfULnEIg0rc6Jkldu7BqtLN0uKOw22liXNFxZPoOMxL0OvG13ZOURWiku5dG4t_LHBe8SodnqLi_wVsrVSWWpa4xohCE57WoCnZHp-djW-8LpiDKjFYOUVUZAznQJi05BNK4VoS6QqN4UUsVaJ1n6qGEO6eBWKWDLOfA0urXMAiIUQ0TNyUNrSHBGaKAZAMhVGFAAuJEu1hJgoOJOFLyGfHJCgV0GmOqZyLJixzNyOeSSyVm0ZqC1zastgzNvNmNuWp-OfvU9Rs5ueyLHtGmw1zzqXzaQqmPSL0OdCs4Sz3Mgcs0n4anGTKH9Ajnu7yHq7zSIH8UScBAPyevMaXBb3YWRp7Lrtk0Kq7YMcz1sz2kgSwUwh4_-AiC0D2xJ1-025uHa04AGCe8bDAXnX2-Ivuf4-Fy_-x1y8JPdDdCJcnmLH5GBVrc0rQGurfEj2k1kyJIej0eTrBJ6nZ5efv0DrmI-HbgVk6Jz0JykOQyI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgSXimdJKbBIcAIra3ttrw8I8apSWnpKpdyW9e46jUi9IU4E-Rf8En4jM2s7VXj01ksO9tqaeN4zu_MR8lyXRWZ5ZgOdcB3wHH6UiFmgmI1AwCLIIPwG2ZN0cMo_jZLRFvnVnYXBbZWdTfSG2jiNNfJ-7H2nSLLwzexbgKhR2F3tIDQasTiyq--QstWvDz8Af19E0cHH4ftB0KIKIDnhIijjsOAmh9DDQFqoPUK9yHVhSyUSozNjWK45x7nnOhKJ4ilnBmTTFBDplELE8N5r5Do4XobJXjbK1jUd7JrxMG_P5rBY9Gvwj3iGLeJBCtqTBumG__MwAf-Kbf_eovlHn9a7v4PbZKeNW-nbRtDukC1b3SU3GiTL1T3yc4jYR5oqPTH03JlJCaEt_YoTmyHzruHC8pyqKYJALGxfq3nhfqwQvXo1pdjJcLWqaDFxuMMdt5FZerYyczcGz02xVEzHzsGLLZ5TRrGiM2wizHEaLFWVoTXWIIFw2o0duE9Or4QtD8h25Sr7kNBMcwhUc2FFCcGL4rlR4HNFylXJFOSrPRJ2LJC6nYSOgBxT6TvysZAN2ySwTXq2SXjm5fqZWTMH5NLV75Cz65U4w9tfcPOxbE2CVLrkipURS4XhWcoLqwrMVsEqpjbTrEf2O7mQrWGp5YUa9Miz9W0wCdjnUZV1y2ZNDqk8Azp2GzFaUxLDl0JEgR4RGwK2QermnWpy5seOh5g88DTqkVedLF7Q9f9vsXf533hKbg6Gn4_l8eHJ0SNyK0JVwSIX3yfbi_nSPoaYb1E88YpGyZer1uzfhclpNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDcpBRYJTmDFj429PiBEaaOWoqhCrdTbst5dpxGpN40TQf4Fv4dfx4wfqcKjt15ysNfWxPPemZ0P4JXOs8TyxHq6z7XHU_xRIvI95dsQBSzEDKJqkB3G-yf802n_dAN-tWdhqK2ytYmVoTZO0x55L6p8p-gnQS9v2iKOdgfvpxceIUhRpbWF06hF5NAuv2P6Vr472EVevw7Dwd7xx32vQRgg0oK5l0dBxk2KYYjBFFFXaPUi1ZnNlegbnRjjp5pzmoGuQ9FXPOa-QTk1GUY9uRARvvcGbCaUFXVgc2dvePRltcNDNTQepM1JHT8SvRK9JZ1oC7kXoy7FXrzmDSvQgH9Fun83bP5Rta2c4eAu3GmiWPahFrt7sGGL-3CzxrVcPoCfx4SEpJnSY8POnRnnGOiybzS_GfPwEi8szpmaECTE3Pa0mmXux5KwrJcTRnUNV6qCZWNH_e7UVGbZ2dLM3Aj9OKONYzZyDl9s6dQyCRmbUklhRrNhmSoMK2lHEgln7RCCh3ByLYx5BJ3CFfYJsERzDFtTYUWOoYziqVHogUXMVe4rzF67ELQskLqZi07wHBNZ1ecjIWu2SWSbrNgm8Zk3q2em9VSQK1fvEGdXK2mid3XBzUayMRBS6ZwrPw_9WBiexDyzKqPcFW1kbBPtd2G7lQvZmJlSXipFF16ubqOBoKqPKqxb1GtSTOx9pONxLUYrSiL8UoQv0AWxJmBrpK7fKcZn1RDygFIJHoddeNvK4iVd__8WW1f_jRdwC7Vafj4YHj6F2yFpCu148W3ozGcL-wwDwHn2vNE0Bl-vW7l_A4nPbtI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tannic+acid+modified+keratin%2Fsodium+alginate%2Fcarboxymethyl+chitosan+biocomposite+hydrogels+with+good+mechanical+properties+and+swelling+behavior&rft.jtitle=Scientific+reports&rft.au=Liqing+Zhu&rft.au=Fenfen+Ouyang&rft.au=Xue+Fu&rft.au=Yimei+Wang&rft.date=2024-06-04&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41598-024-63186-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_acf4a0f2068d4764beab95605316e7c0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |