TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 locali...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 2165 - 19
Main Authors Xu, Meng, Senanayaka, Dulmi, Zhao, Rongwei, Chigumira, Tafadzwa, Tripathi, Astha, Tones, Jason, Lackner, Rachel M., Wondisford, Anne R., Moneysmith, Laurel N., Hirschi, Alexander, Craig, Sara, Alishiri, Sahar, O’Sullivan, Roderick J., Chenoweth, David M., Reiter, Nicholas J., Zhang, Huaiying
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function. Here the authors show that the telomere repeat-containing RNA (TERRA) undergoes phase separation with the lysine-specific demethylase 1A (LSD1) to promote R-loop formation for homology-directed telomere DNA synthesis in the alternative lengthening of telomere (ALT) pathway.
AbstractList The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.
The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function. Here the authors show that the telomere repeat-containing RNA (TERRA) undergoes phase separation with the lysine-specific demethylase 1A (LSD1) to promote R-loop formation for homology-directed telomere DNA synthesis in the alternative lengthening of telomere (ALT) pathway.
The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.Here the authors show that the telomere repeat-containing RNA (TERRA) undergoes phase separation with the lysine-specific demethylase 1A (LSD1) to promote R-loop formation for homology-directed telomere DNA synthesis in the alternative lengthening of telomere (ALT) pathway.
The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.
Abstract The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.
ArticleNumber 2165
Author Moneysmith, Laurel N.
Wondisford, Anne R.
Zhang, Huaiying
Senanayaka, Dulmi
Hirschi, Alexander
Reiter, Nicholas J.
Chigumira, Tafadzwa
Tripathi, Astha
Chenoweth, David M.
O’Sullivan, Roderick J.
Tones, Jason
Alishiri, Sahar
Lackner, Rachel M.
Craig, Sara
Zhao, Rongwei
Xu, Meng
Author_xml – sequence: 1
  givenname: Meng
  surname: Xu
  fullname: Xu, Meng
  organization: Department of Biology, Carnegie Mellon University
– sequence: 2
  givenname: Dulmi
  surname: Senanayaka
  fullname: Senanayaka, Dulmi
  organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University
– sequence: 3
  givenname: Rongwei
  surname: Zhao
  fullname: Zhao, Rongwei
  organization: Department of Biology, Carnegie Mellon University
– sequence: 4
  givenname: Tafadzwa
  surname: Chigumira
  fullname: Chigumira, Tafadzwa
  organization: Department of Biology, Carnegie Mellon University
– sequence: 5
  givenname: Astha
  surname: Tripathi
  fullname: Tripathi, Astha
  organization: Department of Biology, Carnegie Mellon University
– sequence: 6
  givenname: Jason
  surname: Tones
  fullname: Tones, Jason
  organization: Department of Biology, Carnegie Mellon University
– sequence: 7
  givenname: Rachel M.
  surname: Lackner
  fullname: Lackner, Rachel M.
  organization: Department of Chemistry, University of Pennsylvania
– sequence: 8
  givenname: Anne R.
  surname: Wondisford
  fullname: Wondisford, Anne R.
  organization: Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh
– sequence: 9
  givenname: Laurel N.
  surname: Moneysmith
  fullname: Moneysmith, Laurel N.
  organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University
– sequence: 10
  givenname: Alexander
  surname: Hirschi
  fullname: Hirschi, Alexander
  organization: Cepheid Diagnostics
– sequence: 11
  givenname: Sara
  surname: Craig
  fullname: Craig, Sara
  organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University
– sequence: 12
  givenname: Sahar
  surname: Alishiri
  fullname: Alishiri, Sahar
  organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University
– sequence: 13
  givenname: Roderick J.
  orcidid: 0000-0002-0289-0911
  surname: O’Sullivan
  fullname: O’Sullivan, Roderick J.
  organization: Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh
– sequence: 14
  givenname: David M.
  surname: Chenoweth
  fullname: Chenoweth, David M.
  organization: Department of Chemistry, University of Pennsylvania
– sequence: 15
  givenname: Nicholas J.
  surname: Reiter
  fullname: Reiter, Nicholas J.
  organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University
– sequence: 16
  givenname: Huaiying
  orcidid: 0000-0002-1784-2664
  surname: Zhang
  fullname: Zhang, Huaiying
  email: huaiyinz@andrew.cmu.edu
  organization: Department of Biology, Carnegie Mellon University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38461301$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_aB_gAOyxIVLwJ-xc0Kr0kKllZCW5Ww5znibVWIHO1uJ_nq8m1LaHuqLx573nscz77Q48sFDUbwj-BPBTH1OnPBKlpjyklcC1-Xdq-KEYk5KIik7ehQfF-cpbXFerCaK8zfFMVO8IgyTk6JZX65Wi3L58ytB441JgBKMJpqpCx6NMQxhgoRWZR_CiFyIw5zJEZqgDwNEQIPp_ATeeAuo82ixXCO7P0Rkoe_T2-K1M32C8_v9rPh1dbm--F4uf3y7vlgsSys4mUqHaSuFawi1VeukqhUDQYVQhjbKYQWGksZJZ7AkrrbWAlGmItJJQZtaATsrrmfdNpitHmM3mPhHB9Ppw0WIG23i1NkedGubqqYto5RYLhuhiLKUtNiyxpKmarPWl1lr3DUDtBb8FE3_RPRpxnc3ehNuNcE1FZhXWeHjvUIMv3eQJj10ad8P4yHskqa14FJKylmGfngG3YZd9LlXBxRjglQio94_Lumhln-zzAA6A2wMKUVwDxCC9d4zevaMzp7RB8_ou0xSz0i2mw4zzt_q-pepbKam_I7fQPxf9gusv5YG1e8
CitedBy_id crossref_primary_10_1002_advs_202405325
crossref_primary_10_1016_j_ijbiomac_2024_134946
crossref_primary_10_12677_acm_2025_153869
crossref_primary_10_3390_ijms25169001
crossref_primary_10_1016_j_jbc_2024_107607
crossref_primary_10_1016_j_tips_2025_01_006
crossref_primary_10_1038_s42003_024_07199_x
crossref_primary_10_1002_2211_5463_70026
crossref_primary_10_1007_s00438_024_02206_6
crossref_primary_10_1016_j_canlet_2024_217359
crossref_primary_10_1016_j_jmb_2025_168951
Cites_doi 10.1016/j.cell.2017.06.006
10.1016/S0021-9258(17)49903-0
10.1042/BST20191226
10.1038/s41467-023-35811-x
10.1093/nar/gkac1027
10.1073/pnas.2208669119
10.1016/j.celrep.2014.01.022
10.1038/nature09516
10.1074/jbc.RA118.006620
10.1038/nchem.1805
10.1016/j.cell.2021.10.014
10.1038/ncomms12534
10.1261/rna.053918.115
10.1038/ncomms6220
10.7554/eLife.20533
10.1016/j.celrep.2018.12.102
10.1016/j.chembiol.2013.02.013
10.1016/j.molcel.2016.09.034
10.1021/ja8031532
10.1007/978-1-0716-2477-7_11
10.1016/j.molcel.2015.08.018
10.1016/j.celrep.2018.01.036
10.1016/j.cell.2020.03.046
10.1021/ja109767y
10.1093/nar/gkv051
10.1038/s41589-019-0263-0
10.1093/jb/mvab018
10.1038/s41594-022-00854-z
10.1021/acs.jmedchem.0c00978
10.1016/j.jmb.2020.04.015
10.1073/pnas.1103532108
10.1016/j.cell.2020.03.049
10.1038/s41586-021-03538-8
10.1073/pnas.1001177107
10.1038/s41467-017-02212-w
10.4161/rna.20330
10.1126/science.1192002
10.1038/s41586-020-2815-6
10.1038/ncb1685
10.1038/s41580-022-00566-8
10.1038/ncomms6379
10.1021/bi301606u
10.1016/j.tig.2020.12.006
10.1038/nsmb1004
10.1016/j.molcel.2022.09.025
10.1091/mbc.E19-10-0589
10.1158/0008-5472.CAN-22-2433
10.1126/science.aar7432
10.1126/science.aar3958
10.3389/fmolb.2021.730274
10.1261/rna.057265.116
10.1021/jacs.6b04506
10.1146/annurev-physchem-071819-113553
10.1038/s41467-021-26864-x
10.1016/j.molcel.2022.09.026
10.3389/fmolb.2021.785160
10.1016/j.cell.2019.12.031
10.1016/j.bbagen.2017.01.006
10.1038/s41467-021-23716-6
10.1016/j.molcel.2009.06.025
10.1186/s13059-016-0878-3
10.1016/j.molcel.2015.01.010
10.1038/s41586-019-1374-1
10.1038/s12276-020-00542-2
10.1016/j.tcb.2014.07.007
10.1093/nar/gkab180
10.1016/j.cell.2020.11.030
10.1016/j.cell.2020.11.050
10.1016/j.molcel.2015.09.017
10.1016/j.cell.2017.06.017
10.1038/s41467-018-03916-3
10.1042/ETLS20190164
10.1038/s41598-021-82406-x
10.1016/j.cell.2018.06.006
10.1016/j.molcel.2020.04.019
10.1074/jbc.M509549200
10.1038/nature09772
10.1093/nar/gks744
10.1126/science.1147182
10.1038/emboj.2008.44
10.1038/s41576-019-0135-1
10.1016/j.molcel.2019.06.043
10.1016/j.celrep.2023.112557
10.1038/nature06092
10.1016/j.cell.2014.08.030
10.1002/cbic.202200209
10.1021/ja100345z
10.1016/j.isci.2022.105737
10.1126/science.aar7366
10.1016/j.cell.2004.12.012
10.7150/ijbs.10528
10.1016/j.ceb.2008.03.004
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-46509-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 19
ExternalDocumentID oai_doaj_org_article_dcb692d3221c47b5818c21d0c3bc1b6d
PMC10925046
38461301
10_1038_s41467_024_46509_z
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: U01CA260851
  funderid: https://doi.org/10.13039/100000002
– fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: U01CA260851
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-f02d75fb12c6df78983e52558a2b8f08ea21bf7fa071f9ccce18a617f752b98e3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:09:47 EDT 2025
Thu Aug 21 18:35:07 EDT 2025
Mon Jul 21 10:33:17 EDT 2025
Wed Aug 13 08:19:26 EDT 2025
Mon Jul 21 06:03:35 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Tue Jul 01 02:11:01 EDT 2025
Fri Feb 21 02:40:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-f02d75fb12c6df78983e52558a2b8f08ea21bf7fa071f9ccce18a617f752b98e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0289-0911
0000-0002-1784-2664
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-46509-z
PMID 38461301
PQID 2954335165
PQPubID 546298
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_dcb692d3221c47b5818c21d0c3bc1b6d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10925046
proquest_miscellaneous_2954777243
proquest_journals_2954335165
pubmed_primary_38461301
crossref_primary_10_1038_s41467_024_46509_z
crossref_citationtrail_10_1038_s41467_024_46509_z
springer_journals_10_1038_s41467_024_46509_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-09
PublicationDateYYYYMMDD 2024-03-09
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DavidovichCCechTRThe recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2RNA201521200720221:CAS:528:DC%2BC28XntV2msLc%3D26574518464745510.1261/rna.053918.115
ThakurJHenikoffSArchitectural RNA in chromatin organizationBiochem. Soc. Trans.202048196719781:CAS:528:DC%2BB3cXisVyls7jF32897323760902610.1042/BST20191226
Barroso-GonzálezJRAD51AP1 is an essential mediator of alternative lengthening of telomeresMol. Cell2019761126.e73140085010.1016/j.molcel.2019.06.043
BeishlineKCTCF driven TERRA transcription facilitates completion of telomere DNA replicationNat. Commun.201781102017NatCo...8....1B1:CAS:528:DC%2BC1cXptFSgsL0%3D10.1038/s41467-017-02212-w
KharelPStress promotes RNA G-quadruplex folding in human cellsNat. Commun.2023141102023NatCo..14....1H10.1038/s41467-023-35811-x
FornerisFBindaCVanoniMABattaglioliEMatteviAHuman histone demethylase LSD1 reads the histone codeJ. Biol. Chem.200528041360413651:CAS:528:DC%2BD2MXhtlShsb3L1622372910.1074/jbc.M509549200
ProtterDSWIntrinsically disordered regions can contribute promiscuous interactions to RNP granule assemblyCell Rep.201822140114121:CAS:528:DC%2BC1cXis1Ontbw%3D29425497582473310.1016/j.celrep.2018.01.036
WangJA molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteinsCell2018174688699.e161:CAS:528:DC%2BC1cXht1Cju77K29961577606376010.1016/j.cell.2018.06.006
HendricksonDKelleyDRTenenDBernsteinBRinnJLWidespread RNA binding by chromatin-associated proteinsGenome Biol.20161711810.1186/s13059-016-0878-3
LinYProtterDSWRosenMKParkerRFormation and maturation of phase-separated liquid droplets by RNA-binding proteinsMol. Cell2015602082191:CAS:528:DC%2BC2MXhsFKqsbzM26412307460929910.1016/j.molcel.2015.08.018
AvogaroLLive-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cellsRNA Biol.201815787796296583986152429
XuYSuzukiYItoKKomiyamaMTelomeric repeat-containing RNA structure in living cellsProc. Natl Acad. Sci. USA201010714579145842010PNAS..10714579X1:CAS:528:DC%2BC3cXhtVOgsb7N20679250293046210.1073/pnas.1001177107
RiesRJm6A enhances the phase separation potential of mRNANature20195714244281:CAS:528:DC%2BC1MXhtl2qsLjI31292544666291510.1038/s41586-019-1374-1
DengZNorseenJWiedmerARiethmanHLiebermanPMTERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeresMol. Cell2009354034131:CAS:528:DC%2BD1MXhsVChsrvM19716786274997710.1016/j.molcel.2009.06.025
ZengDAbzhanovaABrownBPReiterNJDissecting monomer-dimer equilibrium of an RNase P protein provides insight into the synergistic flexibility of 5’ leader pre-tRNA recognitionFront. Mol. Biosci.2021811210.3389/fmolb.2021.730274
VohhodinaJBRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damageNat. Commun.20211211610.1038/s41467-021-23716-6
Glousker, G., Fernandes, R. V., Feretzaki, M. & Lingner, J. Detection of TERRA R-Loops at human telomeres. in R-Loops (eds. Aguilera, A. & Ruzov, A.) vol. 2528, 159–171 (Springer US, 2022).
XuMHeat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock responseCell Rep.2023421125571:CAS:528:DC%2BB3sXhtVKitbnI372240191059251510.1016/j.celrep.2023.112557
WanatJJTERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeastPLoS One201913123
CollieGWElectrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structuresJ. Am. Chem. Soc.2010132932893341:CAS:528:DC%2BC3cXnslCmtLs%3D2056510910.1021/ja100345z
AsamitsuSShiodaNPotential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separationJ. Biochem.20211695275331:CAS:528:DC%2BB3MXhvFCitbbM3359925610.1093/jb/mvab018
QuinodozSARNA promotes the formation of spatial compartments in the nucleusCell2021184577557901:CAS:528:DC%2BB3MXisVamsLzF34739832911587710.1016/j.cell.2021.10.014
ChoNWDilleyRLLampsonMAGreenbergRAInterchromosomal homology searches drive directional ALT telomere movement and synapsisCell20141591081211:CAS:528:DC%2BC2cXhs1Gmtb7M25259924417703910.1016/j.cell.2014.08.030
LacknerRMO’ConnellWZhangHChenowethDMA general strategy for the design and evaluation of heterobifunctional tools: applications to protein localization and phase separationChembiochem202223e2022002091:CAS:528:DC%2BB38XhsFGqsb3F3559923710.1002/cbic.202200209
FlynnRLTERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNANature20114715325362011Natur.471..532F1:CAS:528:DC%2BC3MXjtVGmsL0%3D21399625307863710.1038/nature09772
SilvaBAroraRAzzalinCMThe alternative lengthening of telomeres mechanism jeopardizes telomere integrity if not properly restrictedProc. Natl Acad. Sci. USA20221193510.1073/pnas.2208669119
OuyangJRNA transcripts stimulate homologous recombination by forming DR-loopsNature20215942832882021Natur.594..283O1:CAS:528:DC%2BB3MXhtVOksLjK33981036885534810.1038/s41586-021-03538-8
TsaiM-CLong noncoding RNA as modular scaffold of histone modification complexesScience20103296896932010Sci...329..689T1:CAS:528:DC%2BC3cXps1ehtb0%3D20616235296777710.1126/science.1192002
ZhangJMYadavTOuyangJLanLZouLAlternative lengthening of telomeres through two distinct break-induced replication pathwaysCell Rep.201926955968.e330673617636662810.1016/j.celrep.2018.12.102
ZhaoRChenowethDMZhangHChemical dimerization-induced protein condensates on telomeresJ. Vis. Exp.2021170e62173
MaicherAKastnerLLukeBTelomeres and disease: enter TERRARNA Biol.201298438491:CAS:528:DC%2BC3sXpsVOhsQ%3D%3D2261787710.4161/rna.20330
Roschdi, S. et al. An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol.29, 1113–1121 (2022).
MaharanaSRNA buffers the phase separation behavior of prion-like RNA binding proteinsScience20183609189212018Sci...360..918M1:CAS:528:DC%2BC1cXpvFGjtrg%3D29650702609185410.1126/science.aar7366
MonteroJJTERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatinNat. Commun.201892018NatCo...9.1548M29670078590646710.1038/s41467-018-03916-3
FrankLRippeKRepetitive RNAs as regulators of chromatin-associated subcompartment formation by phase separationJ. Mol. Biol.2020432427042861:CAS:528:DC%2BB3cXnvFersbk%3D3232068810.1016/j.jmb.2020.04.015
JiaPZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarizationNat. Commun.2021121171:CAS:528:DC%2BB3MXktVKmsrk%3D10.1038/s41467-021-26864-x
TauberDModulation of RNA condensation by the DEAD-box protein eIF4ACell2019180411426.e1610.1016/j.cell.2019.12.031
XuYKaminagaKKomiyamaMG-quadruplex formation by human telomeric repeats-containing RNA in Na+ solutionJ. Am. Chem. Soc.200813011179111841:CAS:528:DC%2BD1cXos12ru7c%3D1864281310.1021/ja8031532
Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).
TakahamaKRegulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUSChem. Biol.2013203413501:CAS:528:DC%2BC3sXksFOrsLk%3D2352179210.1016/j.chembiol.2013.02.013
HenningerJERNA-mediated feedback control of transcriptional condensatesCell20211842072251:CAS:528:DC%2BB3cXis1GntrzO3333301910.1016/j.cell.2020.11.030
PorroAFeuerhahnSLingnerJTERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeresCell Rep.201467657761:CAS:528:DC%2BC2cXisFeltrg%3D2452970810.1016/j.celrep.2014.01.022
HirschiAMartinWJLukaZLoukachevitchLVReiterNJG-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzymeRNA201622125012601:CAS:528:DC%2BC28XhvVelt7vP27277658493111710.1261/rna.057265.116
HeCHigh-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cellsMol. Cell2016644164301:CAS:528:DC%2BC28Xhslels7rP27768875522260610.1016/j.molcel.2016.09.034
PorroAFunctional characterization of the TERRA transcriptome at damaged telomeresNat. Commun.201452014NatCo...5.5379P1:CAS:528:DC%2BC2MXksVenu74%3D2535918910.1038/ncomms6379
HegazyYAFernandoCMTranEJThe balancing act of R-loop biology: The good, the bad, and the uglyJ. Biol. Chem.20202959059133184397010.1016/S0021-9258(17)49903-0
AroraRRNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cellsNat. Commun.201452014NatCo...5.5220A1:CAS:528:DC%2BC2cXhvF2mu7zJ2533084910.1038/ncomms6220
NowotnyMSpecific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBDEMBO J.200827117211811:CAS:528:DC%2BD1cXksVagtb4%3D18337749232325910.1038/emboj.2008.44
YangPG3BP1 is a tunable switch that triggers phase separation to assemble stress granulesCell20201813253451:CAS:528:DC%2BB3cXnsV2ntr4%3D32302571744838310.1016/j.cell.2020.03.046
PerilloBTramontanoAPezoneAMigliaccioALSD1: more than demethylation of histone lysine residuesExp. Mol. Med.202052193619471:CAS:528:DC%2BB3cXis1Sgs7zE33318631808076310.1038/s12276-020-00542-2
GueddoudaNMMendozaOGomezDBourdoncleAMergnyJLG-quadruplexes unfolding by RHAU helicaseBiochim. Biophys. Acta20171861138213881:CAS:528:DC%2BC2sXhtFOitbY%3D10.1016/j.bbagen.2017.01.006
VinyardMECRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AMLNat. Chem. Biol.2019155295391:CAS:528:DC%2BC1MXos12gsb4%3D30992567767902610.1038/s41589-019-0263-0
LangdonEMmRNA structure determines specificity of a polyQ-driven phase separationScience20183609229272018Sci...360..922L1:CAS:528:DC%2BC1cXpvFGjtrw%3D29650703619203010.1126/science.aar7432
KatsudaYA small molecule that represses translation of G-quadruplex-containing mRNAJ. Am. Chem. Soc.2016138903790401:CAS:528:DC%2BC28XhtFKms7%2FP2741067710.1021/jacs.6b04506
TatavosianRNuclear condensates of the polycomb protein chromobox 2 (CBX2) assemble through phase separationJ. Biol. Chem.2019294145114631:CAS:528:DC%2BC1MXit1Krsbo%3D3051476010.1074/jbc.RA118.006620
KhandeliaPYapKMakeyevEVStreamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cellsProc.
JJ Montero (46509_CR32) 2016; 7
A Porro (46509_CR13) 2014; 6
X Li (46509_CR85) 2019; 20
F Lan (46509_CR76) 2008; 20
46509_CR80
S Maharana (46509_CR87) 2018; 360
M Graf (46509_CR8) 2017; 170
T Yadav (46509_CR22) 2022; 82
NJ Reiter (46509_CR93) 2012; 40
JJ Wanat (46509_CR12) 2019; 13
J Wang (46509_CR51) 2018; 174
Y Shi (46509_CR30) 2004; 119
L Avogaro (46509_CR33) 2018; 15
B Tsang (46509_CR43) 2020; 183
K Takahama (46509_CR15) 2013; 20
L Frank (46509_CR86) 2020; 432
RM Lackner (46509_CR37) 2022; 23
L Chen (46509_CR11) 2022; 50
CM Azzalin (46509_CR6) 2007; 318
MJ Casey (46509_CR77) 2023; 26
M Xu (46509_CR96) 2023; 42
Y Mei (46509_CR63) 2021; 11
A Porro (46509_CR26) 2014; 5
H Zhang (46509_CR39) 2020; 31
SA Kim (46509_CR34) 2020; 78
F Forneris (46509_CR35) 2005; 280
H Martadinata (46509_CR57) 2013; 52
J Ouyang (46509_CR23) 2021; 594
Y Katsuda (46509_CR64) 2016; 138
R Tatavosian (46509_CR82) 2019; 294
H Zhang (46509_CR46) 2015; 60
SA Quinodoz (46509_CR91) 2021; 184
J Thakur (46509_CR3) 2020; 48
M Feretzaki (46509_CR9) 2020; 587
M Xu (46509_CR38) 2022; 8
J Barroso-González (46509_CR73) 2019; 76
GW Collie (46509_CR60) 2011; 133
DSW Protter (46509_CR49) 2018; 22
D Zeng (46509_CR94) 2021; 8
C Davidovich (46509_CR4) 2015; 21
Y Guo (46509_CR83) 2021; 37
K Wang (46509_CR69) 2021; 7
Y Xu (46509_CR59) 2008; 130
M-C Tsai (46509_CR5) 2010; 329
D Tauber (46509_CR55) 2019; 180
D Hendrickson (46509_CR84) 2016; 17
46509_CR17
AH Buck (46509_CR95) 2005; 12
R Arora (46509_CR21) 2014; 5
K Beishline (46509_CR19) 2017; 8
S Schoeftner (46509_CR75) 2008; 10
GL Dignon (46509_CR41) 2020; 71
EW Martin (46509_CR42) 2020; 4
T Kanouni (46509_CR29) 2020; 63
P Kharel (46509_CR62) 2023; 14
C He (46509_CR36) 2016; 64
JE Henninger (46509_CR45) 2021; 184
Y Xu (46509_CR56) 2010; 107
JJ Montero (46509_CR14) 2018; 9
B Perillo (46509_CR54) 2020; 52
S Pinter (46509_CR81) 2021; 49
YA Hegazy (46509_CR2) 2020; 295
P Jia (46509_CR44) 2021; 12
J Huang (46509_CR78) 2007; 449
P Khandelia (46509_CR92) 2011; 108
46509_CR66
M Nowotny (46509_CR70) 2008; 27
JD Amon (46509_CR71) 2016; 5
46509_CR1
JM Zhang (46509_CR20) 2019; 26
N Kaminski (46509_CR24) 2022; 82
Y Lin (46509_CR50) 2015; 60
A Maicher (46509_CR47) 2012; 9
RL Flynn (46509_CR18) 2011; 471
A Hirschi (46509_CR25) 2016; 22
BR Sabari (46509_CR48) 2018; 361
B Silva (46509_CR74) 2022; 119
NM Gueddouda (46509_CR68) 2017; 1861
ME Vinyard (46509_CR79) 2019; 15
J Guillén-Boixet (46509_CR52) 2020; 181
RJ Ries (46509_CR90) 2019; 571
HP Chu (46509_CR7) 2017; 170
46509_CR72
S Asamitsu (46509_CR89) 2021; 169
J Vohhodina (46509_CR16) 2021; 12
46509_CR31
GW Collie (46509_CR58) 2010; 132
Z Deng (46509_CR10) 2009; 35
MC Chen (46509_CR67) 2015; 43
NW Cho (46509_CR28) 2014; 159
EM Langdon (46509_CR88) 2018; 360
G Biffi (46509_CR65) 2014; 6
R Zhao (46509_CR40) 2021; 170
P Yang (46509_CR53) 2020; 181
RJ O’Sullivan (46509_CR27) 2014; 24
NJ Reiter (46509_CR61) 2010; 468
References_xml – reference: XuYKaminagaKKomiyamaMG-quadruplex formation by human telomeric repeats-containing RNA in Na+ solutionJ. Am. Chem. Soc.200813011179111841:CAS:528:DC%2BD1cXos12ru7c%3D1864281310.1021/ja8031532
– reference: LangdonEMmRNA structure determines specificity of a polyQ-driven phase separationScience20183609229272018Sci...360..922L1:CAS:528:DC%2BC1cXpvFGjtrw%3D29650703619203010.1126/science.aar7432
– reference: ZhangJMYadavTOuyangJLanLZouLAlternative lengthening of telomeres through two distinct break-induced replication pathwaysCell Rep.201926955968.e330673617636662810.1016/j.celrep.2018.12.102
– reference: FrankLRippeKRepetitive RNAs as regulators of chromatin-associated subcompartment formation by phase separationJ. Mol. Biol.2020432427042861:CAS:528:DC%2BB3cXnvFersbk%3D3232068810.1016/j.jmb.2020.04.015
– reference: KhandeliaPYapKMakeyevEVStreamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cellsProc. Natl Acad. Sci. USA201110812799128042011PNAS..10812799K1:CAS:528:DC%2BC3MXhtVenu7fN21768390315088010.1073/pnas.1103532108
– reference: AvogaroLLive-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cellsRNA Biol.201815787796296583986152429
– reference: ChenMCMuratPAbecassisKFerre-D’AmareARBalasubramanianSInsights into the mechanism of a G-quadruplex-unwinding DEAH-box helicaseNucleic Acids Res.201543222322311:CAS:528:DC%2BC2MXhsFaitLzN25653156434449910.1093/nar/gkv051
– reference: MonteroJJTERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatinNat. Commun.201892018NatCo...9.1548M29670078590646710.1038/s41467-018-03916-3
– reference: MartadinataHPhanATStructure of human telomeric RNA (TERRA): stacking of two G-quadruplex blocks in K(+) solutionBiochemistry201352217621831:CAS:528:DC%2BC3sXjt1Wmtro%3D2344544210.1021/bi301606u
– reference: LacknerRMO’ConnellWZhangHChenowethDMA general strategy for the design and evaluation of heterobifunctional tools: applications to protein localization and phase separationChembiochem202223e2022002091:CAS:528:DC%2BB38XhsFGqsb3F3559923710.1002/cbic.202200209
– reference: PorroAFunctional characterization of the TERRA transcriptome at damaged telomeresNat. Commun.201452014NatCo...5.5379P1:CAS:528:DC%2BC2MXksVenu74%3D2535918910.1038/ncomms6379
– reference: FornerisFBindaCVanoniMABattaglioliEMatteviAHuman histone demethylase LSD1 reads the histone codeJ. Biol. Chem.200528041360413651:CAS:528:DC%2BD2MXhtlShsb3L1622372910.1074/jbc.M509549200
– reference: KharelPStress promotes RNA G-quadruplex folding in human cellsNat. Commun.2023141102023NatCo..14....1H10.1038/s41467-023-35811-x
– reference: WangJA molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteinsCell2018174688699.e161:CAS:528:DC%2BC1cXht1Cju77K29961577606376010.1016/j.cell.2018.06.006
– reference: GrafMTelomere length determines TERRA and R-Loop regulation through the cell cycleCell201717072851:CAS:528:DC%2BC2sXhtFSqsLfI2866612610.1016/j.cell.2017.06.006
– reference: Laurent, B. et al. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol Cell.57, 957–970 (2015).
– reference: WanatJJTERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeastPLoS One201913123
– reference: PerilloBTramontanoAPezoneAMigliaccioALSD1: more than demethylation of histone lysine residuesExp. Mol. Med.202052193619471:CAS:528:DC%2BB3cXis1Sgs7zE33318631808076310.1038/s12276-020-00542-2
– reference: Guillén-BoixetJRNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensationCell202018134636132302572718119710.1016/j.cell.2020.03.049
– reference: KanouniTDiscovery of CC-90011: a potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1)J. Med. Chem.20206314522145291:CAS:528:DC%2BB3cXitVSqsr%2FF3303419410.1021/acs.jmedchem.0c00978
– reference: VinyardMECRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AMLNat. Chem. Biol.2019155295391:CAS:528:DC%2BC1MXos12gsb4%3D30992567767902610.1038/s41589-019-0263-0
– reference: VohhodinaJBRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damageNat. Commun.20211211610.1038/s41467-021-23716-6
– reference: Barroso-GonzálezJRAD51AP1 is an essential mediator of alternative lengthening of telomeresMol. Cell2019761126.e73140085010.1016/j.molcel.2019.06.043
– reference: BeishlineKCTCF driven TERRA transcription facilitates completion of telomere DNA replicationNat. Commun.201781102017NatCo...8....1B1:CAS:528:DC%2BC1cXptFSgsL0%3D10.1038/s41467-017-02212-w
– reference: RiesRJm6A enhances the phase separation potential of mRNANature20195714244281:CAS:528:DC%2BC1MXhtl2qsLjI31292544666291510.1038/s41586-019-1374-1
– reference: DengZNorseenJWiedmerARiethmanHLiebermanPMTERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeresMol. Cell2009354034131:CAS:528:DC%2BD1MXhsVChsrvM19716786274997710.1016/j.molcel.2009.06.025
– reference: O’SullivanRJAlmouzniGAssembly of telomeric chromatin to create ALTernative endingsTrends Cell Biol.2014246756852517255110.1016/j.tcb.2014.07.007
– reference: AmonJDKoshlandDRNase H enables efficient repair of R-loop induced DNA damageElife2016512010.7554/eLife.20533
– reference: OuyangJRNA transcripts stimulate homologous recombination by forming DR-loopsNature20215942832882021Natur.594..283O1:CAS:528:DC%2BB3MXhtVOksLjK33981036885534810.1038/s41586-021-03538-8
– reference: AroraRRNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cellsNat. Commun.201452014NatCo...5.5220A1:CAS:528:DC%2BC2cXhvF2mu7zJ2533084910.1038/ncomms6220
– reference: MartinEWHolehouseASIntrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereofEmerg. Top. Life Sci.202043073291:CAS:528:DC%2BB3cXis1OgsrfO3307883910.1042/ETLS20190164
– reference: CaseyMJThe scaffolding function of LSD1/KDM1A reinforces a negative feedback loop to repress stem cell gene expression during primitive hematopoiesisiScience2023261057372023iSci...26j5737C1:CAS:528:DC%2BB38XjtFyls7fF3659401610.1016/j.isci.2022.105737
– reference: MaharanaSRNA buffers the phase separation behavior of prion-like RNA binding proteinsScience20183609189212018Sci...360..918M1:CAS:528:DC%2BC1cXpvFGjtrg%3D29650702609185410.1126/science.aar7366
– reference: PorroAFeuerhahnSLingnerJTERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeresCell Rep.201467657761:CAS:528:DC%2BC2cXisFeltrg%3D2452970810.1016/j.celrep.2014.01.022
– reference: Li, M. et al. LSD1 inhibition disrupts super-enhancer driven oncogenic transcriptional programs in castration-resistant prostate cancer. Cancer Res. 83, 1684–1698 (2023).
– reference: SchoeftnerSBlascoMADevelopmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase IINat. Cell Biol.2008102282361:CAS:528:DC%2BD1cXhs1Kiur0%3D1815712010.1038/ncb1685
– reference: ChuHPTERRA RNA antagonizes ATRX and protects telomeresCell2017170861011:CAS:528:DC%2BC2sXhtFSqsLbF28666128555236710.1016/j.cell.2017.06.017
– reference: Wang, C., Zhao, L. & Lu, S. Role of TERRA in the regulation of telomere length. Int. J. Biol. Sci. https://doi.org/10.7150/ijbs.10528 (2015).
– reference: TauberDModulation of RNA condensation by the DEAD-box protein eIF4ACell2019180411426.e1610.1016/j.cell.2019.12.031
– reference: TatavosianRNuclear condensates of the polycomb protein chromobox 2 (CBX2) assemble through phase separationJ. Biol. Chem.2019294145114631:CAS:528:DC%2BC1MXit1Krsbo%3D3051476010.1074/jbc.RA118.006620
– reference: SabariBRCoactivator condensation at super-enhancers links phase separation and gene controlScience2018361eaar395829930091609219310.1126/science.aar3958
– reference: WangKGenomic profiling of native R loops with a DNA-RNA hybrid recognition sensorSci. Adv.202171181:CAS:528:DC%2BB3MXmt12jsrg%3D
– reference: HuangJp53 is regulated by the lysine demethylase LSD1Nature20074491051082007Natur.449..105H1:CAS:528:DC%2BD2sXpvFWrs7w%3D1780529910.1038/nature06092
– reference: Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).
– reference: HendricksonDKelleyDRTenenDBernsteinBRinnJLWidespread RNA binding by chromatin-associated proteinsGenome Biol.20161711810.1186/s13059-016-0878-3
– reference: ZengDAbzhanovaABrownBPReiterNJDissecting monomer-dimer equilibrium of an RNase P protein provides insight into the synergistic flexibility of 5’ leader pre-tRNA recognitionFront. Mol. Biosci.2021811210.3389/fmolb.2021.730274
– reference: DavidovichCCechTRThe recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2RNA201521200720221:CAS:528:DC%2BC28XntV2msLc%3D26574518464745510.1261/rna.053918.115
– reference: MonteroJJLópez De SilanesIGranãOBlascoMATelomeric RNAs are essential to maintain telomeresNat. Commun.2016711310.1038/ncomms12534
– reference: HeCHigh-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cellsMol. Cell2016644164301:CAS:528:DC%2BC28Xhslels7rP27768875522260610.1016/j.molcel.2016.09.034
– reference: AsamitsuSShiodaNPotential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separationJ. Biochem.20211695275331:CAS:528:DC%2BB3MXhvFCitbbM3359925610.1093/jb/mvab018
– reference: ZhangHNuclear body phase separation drives telomere clustering in ALT cancer cellsMol. Biol. Cell202031204820561:CAS:528:DC%2BB3cXhslWntbfJ32579423754307010.1091/mbc.E19-10-0589
– reference: ReiterNJStructure of a bacterial ribonuclease P holoenzyme in complex with tRNANature20104687847892010Natur.468..784R1:CAS:528:DC%2BC3cXhsVWmurvE21076397305890810.1038/nature09516
– reference: ShiYHistone demethylation mediated by the nuclear amine oxidase homolog LSD1Cell20041199419531:CAS:528:DC%2BD2MXltlSitg%3D%3D1562035310.1016/j.cell.2004.12.012
– reference: BiffiGDi AntonioMTannahillDBalasubramanianSVisualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cellsNat. Chem.2014675801:CAS:528:DC%2BC3sXhvVaitL3N2434595010.1038/nchem.1805
– reference: GueddoudaNMMendozaOGomezDBourdoncleAMergnyJLG-quadruplexes unfolding by RHAU helicaseBiochim. Biophys. Acta20171861138213881:CAS:528:DC%2BC2sXhtFOitbY%3D10.1016/j.bbagen.2017.01.006
– reference: FlynnRLTERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNANature20114715325362011Natur.471..532F1:CAS:528:DC%2BC3MXjtVGmsL0%3D21399625307863710.1038/nature09772
– reference: CollieGWElectrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structuresJ. Am. Chem. Soc.2010132932893341:CAS:528:DC%2BC3cXnslCmtLs%3D2056510910.1021/ja100345z
– reference: KaminskiNRAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRAMol. Cell20228240014017.e71:CAS:528:DC%2BB38Xis1Krur7J36265488971395210.1016/j.molcel.2022.09.025
– reference: YangPG3BP1 is a tunable switch that triggers phase separation to assemble stress granulesCell20201813253451:CAS:528:DC%2BB3cXnsV2ntr4%3D32302571744838310.1016/j.cell.2020.03.046
– reference: GuoYZhaoSWangGGPolycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘Readout’, and phase separation-based compactionTrends Genet.2021375475651:CAS:528:DC%2BB3MXhs1Orsrk%3D33494958811933710.1016/j.tig.2020.12.006
– reference: HegazyYAFernandoCMTranEJThe balancing act of R-loop biology: The good, the bad, and the uglyJ. Biol. Chem.20202959059133184397010.1016/S0021-9258(17)49903-0
– reference: LanFNottkeACShiYMechanisms involved in the regulation of histone lysine demethylasesCurr. Opin. Cell Biol.2008203163251:CAS:528:DC%2BD1cXmvV2ls7k%3D18440794267437710.1016/j.ceb.2008.03.004
– reference: JiaPZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarizationNat. Commun.2021121171:CAS:528:DC%2BB3MXktVKmsrk%3D10.1038/s41467-021-26864-x
– reference: ZhangHRNA controls PolyQ protein phase transitionsMol. Cell2015602202301:CAS:528:DC%2BC2MXhs1Ort77O26474065522151610.1016/j.molcel.2015.09.017
– reference: BuckAHKazantsevAVDalbyABPaceNRStructural perspective on the activation of RNase P RNA by proteinNat. Struct. Mol. Biol.2005129589641:CAS:528:DC%2BD2MXht1WqtrnL1622800410.1038/nsmb1004
– reference: XuYSuzukiYItoKKomiyamaMTelomeric repeat-containing RNA structure in living cellsProc. Natl Acad. Sci. USA201010714579145842010PNAS..10714579X1:CAS:528:DC%2BC3cXhtVOgsb7N20679250293046210.1073/pnas.1001177107
– reference: ReiterNJOstermanAKMondragónAThe bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioningNucleic Acids Res.20124010384103931:CAS:528:DC%2BC38Xhs1WqtrnE22904083348821710.1093/nar/gks744
– reference: ChenLMETTL3-mediated m6A modification stabilizes TERRA and maintains telomere stabilityNucleic Acids Res.20225011619116341:CAS:528:DC%2BB3sXpt1GjsL8%3D36399511972361810.1093/nar/gkac1027
– reference: SilvaBAroraRAzzalinCMThe alternative lengthening of telomeres mechanism jeopardizes telomere integrity if not properly restrictedProc. Natl Acad. Sci. USA20221193510.1073/pnas.2208669119
– reference: HirschiAMartinWJLukaZLoukachevitchLVReiterNJG-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzymeRNA201622125012601:CAS:528:DC%2BC28XhvVelt7vP27277658493111710.1261/rna.057265.116
– reference: AzzalinCMReichenbachPKhoriauliLGiulottoELingnerJTelomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome endsScience20073187988012007Sci...318..798A1:CAS:528:DC%2BD2sXht1elsrfM1791669210.1126/science.1147182
– reference: TakahamaKRegulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUSChem. Biol.2013203413501:CAS:528:DC%2BC3sXksFOrsLk%3D2352179210.1016/j.chembiol.2013.02.013
– reference: ZhaoRChenowethDMZhangHChemical dimerization-induced protein condensates on telomeresJ. Vis. Exp.2021170e62173
– reference: QuinodozSARNA promotes the formation of spatial compartments in the nucleusCell2021184577557901:CAS:528:DC%2BB3MXisVamsLzF34739832911587710.1016/j.cell.2021.10.014
– reference: FeretzakiMRAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loopsNature20205873033082020Natur.587..303F33057192711679510.1038/s41586-020-2815-6
– reference: YadavTTERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switchMol. Cell20228239854000.e41:CAS:528:DC%2BB38Xis1Krur7I36265486963772810.1016/j.molcel.2022.09.026
– reference: ChoNWDilleyRLLampsonMAGreenbergRAInterchromosomal homology searches drive directional ALT telomere movement and synapsisCell20141591081211:CAS:528:DC%2BC2cXhs1Gmtb7M25259924417703910.1016/j.cell.2014.08.030
– reference: TsangBPritišanacISchererSWMosesAMForman-KayJDPhase separation as a missing mechanism for interpretation of disease mutationsCell2020183174217561:CAS:528:DC%2BB3cXis12gsb3L3335739910.1016/j.cell.2020.11.050
– reference: Glousker, G., Fernandes, R. V., Feretzaki, M. & Lingner, J. Detection of TERRA R-Loops at human telomeres. in R-Loops (eds. Aguilera, A. & Ruzov, A.) vol. 2528, 159–171 (Springer US, 2022).
– reference: ThakurJHenikoffSArchitectural RNA in chromatin organizationBiochem. Soc. Trans.202048196719781:CAS:528:DC%2BB3cXisVyls7jF32897323760902610.1042/BST20191226
– reference: HenningerJERNA-mediated feedback control of transcriptional condensatesCell20211842072251:CAS:528:DC%2BB3cXis1GntrzO3333301910.1016/j.cell.2020.11.030
– reference: MaicherAKastnerLLukeBTelomeres and disease: enter TERRARNA Biol.201298438491:CAS:528:DC%2BC3sXpsVOhsQ%3D%3D2261787710.4161/rna.20330
– reference: LinYProtterDSWRosenMKParkerRFormation and maturation of phase-separated liquid droplets by RNA-binding proteinsMol. Cell2015602082191:CAS:528:DC%2BC2MXhsFKqsbzM26412307460929910.1016/j.molcel.2015.08.018
– reference: PinterSA functional LSD1 coregulator screen reveals a novel transcriptional regulatory cascade connecting R-loop homeostasis with epigenetic regulationNucleic Acids Res.202149435043701:CAS:528:DC%2BB3MXhvFWgur7K33823549809626510.1093/nar/gkab180
– reference: Roschdi, S. et al. An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol.29, 1113–1121 (2022).
– reference: LiXFuXDChromatin-associated RNAs as facilitators of functional genomic interactionsNat. Rev. Genet.2019205035191:CAS:528:DC%2BC1MXhtV2it7jK31160792768497910.1038/s41576-019-0135-1
– reference: MeiYTERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integritySci. Rep.20211111410.1038/s41598-021-82406-x
– reference: XuMCRISPR Cas13-based tools to track and manipulate endogenous telomeric repeat-containing RNAs in live cellsFront. Mol. Biosci.20228181:CAS:528:DC%2BB38XhtVGmtrbE10.3389/fmolb.2021.785160
– reference: ProtterDSWIntrinsically disordered regions can contribute promiscuous interactions to RNP granule assemblyCell Rep.201822140114121:CAS:528:DC%2BC1cXis1Ontbw%3D29425497582473310.1016/j.celrep.2018.01.036
– reference: CollieGWSparapaniSParkinsonGNNeidleSStructural basis of telomeric RNA quadruplex-acridine ligand recognitionJ. Am. Chem. Soc.2011133272127281:CAS:528:DC%2BC3MXhsVOnsL8%3D2129121110.1021/ja109767y
– reference: NowotnyMSpecific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBDEMBO J.200827117211811:CAS:528:DC%2BD1cXksVagtb4%3D18337749232325910.1038/emboj.2008.44
– reference: XuMHeat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock responseCell Rep.2023421125571:CAS:528:DC%2BB3sXhtVKitbnI372240191059251510.1016/j.celrep.2023.112557
– reference: KatsudaYA small molecule that represses translation of G-quadruplex-containing mRNAJ. Am. Chem. Soc.2016138903790401:CAS:528:DC%2BC28XhtFKms7%2FP2741067710.1021/jacs.6b04506
– reference: TsaiM-CLong noncoding RNA as modular scaffold of histone modification complexesScience20103296896932010Sci...329..689T1:CAS:528:DC%2BC3cXps1ehtb0%3D20616235296777710.1126/science.1192002
– reference: KimSAZhuJYennawarNEekPTanSCrystal structure of the LSD1/CoREST histone demethylase bound to its nucleosome substrateMol. Cell202078903914.e41:CAS:528:DC%2BB3cXptlegsr0%3D32396821727592410.1016/j.molcel.2020.04.019
– reference: DignonGLBestRBMittalJBiomolecular phase separation: from molecular driving forces to macroscopic propertiesAnnu. Rev. Phys. Chem.20207153752020ARPC...71...53D1:CAS:528:DC%2BB3cXnsFeisL8%3D32312191746908910.1146/annurev-physchem-071819-113553
– volume: 170
  start-page: 72
  year: 2017
  ident: 46509_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.006
– volume: 295
  start-page: 905
  year: 2020
  ident: 46509_CR2
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)49903-0
– volume: 48
  start-page: 1967
  year: 2020
  ident: 46509_CR3
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20191226
– volume: 14
  start-page: 1
  year: 2023
  ident: 46509_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35811-x
– volume: 15
  start-page: 787
  year: 2018
  ident: 46509_CR33
  publication-title: RNA Biol.
– volume: 50
  start-page: 11619
  year: 2022
  ident: 46509_CR11
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac1027
– volume: 119
  start-page: 3
  year: 2022
  ident: 46509_CR74
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2208669119
– volume: 6
  start-page: 765
  year: 2014
  ident: 46509_CR13
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.01.022
– volume: 13
  start-page: 1
  year: 2019
  ident: 46509_CR12
  publication-title: PLoS One
– volume: 468
  start-page: 784
  year: 2010
  ident: 46509_CR61
  publication-title: Nature
  doi: 10.1038/nature09516
– volume: 294
  start-page: 1451
  year: 2019
  ident: 46509_CR82
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.006620
– volume: 6
  start-page: 75
  year: 2014
  ident: 46509_CR65
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1805
– volume: 184
  start-page: 5775
  year: 2021
  ident: 46509_CR91
  publication-title: Cell
  doi: 10.1016/j.cell.2021.10.014
– volume: 7
  start-page: 1
  year: 2016
  ident: 46509_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12534
– volume: 21
  start-page: 2007
  year: 2015
  ident: 46509_CR4
  publication-title: RNA
  doi: 10.1261/rna.053918.115
– volume: 5
  year: 2014
  ident: 46509_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6220
– volume: 5
  start-page: 1
  year: 2016
  ident: 46509_CR71
  publication-title: Elife
  doi: 10.7554/eLife.20533
– volume: 26
  start-page: 955
  year: 2019
  ident: 46509_CR20
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.12.102
– volume: 20
  start-page: 341
  year: 2013
  ident: 46509_CR15
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2013.02.013
– volume: 64
  start-page: 416
  year: 2016
  ident: 46509_CR36
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.09.034
– volume: 130
  start-page: 11179
  year: 2008
  ident: 46509_CR59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8031532
– ident: 46509_CR72
  doi: 10.1007/978-1-0716-2477-7_11
– volume: 60
  start-page: 208
  year: 2015
  ident: 46509_CR50
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.018
– volume: 22
  start-page: 1401
  year: 2018
  ident: 46509_CR49
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.036
– volume: 181
  start-page: 325
  year: 2020
  ident: 46509_CR53
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.046
– volume: 133
  start-page: 2721
  year: 2011
  ident: 46509_CR60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109767y
– volume: 43
  start-page: 2223
  year: 2015
  ident: 46509_CR67
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv051
– volume: 15
  start-page: 529
  year: 2019
  ident: 46509_CR79
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0263-0
– volume: 169
  start-page: 527
  year: 2021
  ident: 46509_CR89
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvab018
– ident: 46509_CR66
  doi: 10.1038/s41594-022-00854-z
– volume: 63
  start-page: 14522
  year: 2020
  ident: 46509_CR29
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.0c00978
– volume: 170
  start-page: e62173
  year: 2021
  ident: 46509_CR40
  publication-title: J. Vis. Exp.
– volume: 432
  start-page: 4270
  year: 2020
  ident: 46509_CR86
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.04.015
– volume: 108
  start-page: 12799
  year: 2011
  ident: 46509_CR92
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1103532108
– volume: 7
  start-page: 1
  year: 2021
  ident: 46509_CR69
  publication-title: Sci. Adv.
– volume: 181
  start-page: 346
  year: 2020
  ident: 46509_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.049
– volume: 594
  start-page: 283
  year: 2021
  ident: 46509_CR23
  publication-title: Nature
  doi: 10.1038/s41586-021-03538-8
– volume: 107
  start-page: 14579
  year: 2010
  ident: 46509_CR56
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1001177107
– volume: 8
  start-page: 1
  year: 2017
  ident: 46509_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02212-w
– volume: 9
  start-page: 843
  year: 2012
  ident: 46509_CR47
  publication-title: RNA Biol.
  doi: 10.4161/rna.20330
– volume: 329
  start-page: 689
  year: 2010
  ident: 46509_CR5
  publication-title: Science
  doi: 10.1126/science.1192002
– volume: 587
  start-page: 303
  year: 2020
  ident: 46509_CR9
  publication-title: Nature
  doi: 10.1038/s41586-020-2815-6
– volume: 10
  start-page: 228
  year: 2008
  ident: 46509_CR75
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1685
– ident: 46509_CR1
  doi: 10.1038/s41580-022-00566-8
– volume: 5
  year: 2014
  ident: 46509_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6379
– volume: 52
  start-page: 2176
  year: 2013
  ident: 46509_CR57
  publication-title: Biochemistry
  doi: 10.1021/bi301606u
– volume: 37
  start-page: 547
  year: 2021
  ident: 46509_CR83
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2020.12.006
– volume: 12
  start-page: 958
  year: 2005
  ident: 46509_CR95
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1004
– volume: 82
  start-page: 4001
  year: 2022
  ident: 46509_CR24
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.09.025
– volume: 31
  start-page: 2048
  year: 2020
  ident: 46509_CR39
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E19-10-0589
– ident: 46509_CR80
  doi: 10.1158/0008-5472.CAN-22-2433
– volume: 360
  start-page: 922
  year: 2018
  ident: 46509_CR88
  publication-title: Science
  doi: 10.1126/science.aar7432
– volume: 361
  start-page: eaar3958
  year: 2018
  ident: 46509_CR48
  publication-title: Science
  doi: 10.1126/science.aar3958
– volume: 8
  start-page: 1
  year: 2021
  ident: 46509_CR94
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.730274
– volume: 22
  start-page: 1250
  year: 2016
  ident: 46509_CR25
  publication-title: RNA
  doi: 10.1261/rna.057265.116
– volume: 138
  start-page: 9037
  year: 2016
  ident: 46509_CR64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04506
– volume: 71
  start-page: 53
  year: 2020
  ident: 46509_CR41
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-071819-113553
– volume: 12
  start-page: 1
  year: 2021
  ident: 46509_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26864-x
– volume: 82
  start-page: 3985
  year: 2022
  ident: 46509_CR22
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.09.026
– volume: 8
  start-page: 1
  year: 2022
  ident: 46509_CR38
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.785160
– volume: 180
  start-page: 411
  year: 2019
  ident: 46509_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2019.12.031
– volume: 1861
  start-page: 1382
  year: 2017
  ident: 46509_CR68
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2017.01.006
– volume: 12
  start-page: 1
  year: 2021
  ident: 46509_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23716-6
– volume: 35
  start-page: 403
  year: 2009
  ident: 46509_CR10
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.06.025
– volume: 17
  start-page: 1
  year: 2016
  ident: 46509_CR84
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0878-3
– ident: 46509_CR31
  doi: 10.1016/j.molcel.2015.01.010
– volume: 571
  start-page: 424
  year: 2019
  ident: 46509_CR90
  publication-title: Nature
  doi: 10.1038/s41586-019-1374-1
– volume: 52
  start-page: 1936
  year: 2020
  ident: 46509_CR54
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-020-00542-2
– volume: 24
  start-page: 675
  year: 2014
  ident: 46509_CR27
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2014.07.007
– volume: 49
  start-page: 4350
  year: 2021
  ident: 46509_CR81
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab180
– volume: 184
  start-page: 207
  year: 2021
  ident: 46509_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.030
– volume: 183
  start-page: 1742
  year: 2020
  ident: 46509_CR43
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.050
– volume: 60
  start-page: 220
  year: 2015
  ident: 46509_CR46
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.09.017
– volume: 170
  start-page: 86
  year: 2017
  ident: 46509_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.017
– volume: 9
  year: 2018
  ident: 46509_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03916-3
– volume: 4
  start-page: 307
  year: 2020
  ident: 46509_CR42
  publication-title: Emerg. Top. Life Sci.
  doi: 10.1042/ETLS20190164
– volume: 11
  start-page: 1
  year: 2021
  ident: 46509_CR63
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82406-x
– volume: 174
  start-page: 688
  year: 2018
  ident: 46509_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.006
– volume: 78
  start-page: 903
  year: 2020
  ident: 46509_CR34
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.019
– volume: 280
  start-page: 41360
  year: 2005
  ident: 46509_CR35
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M509549200
– volume: 471
  start-page: 532
  year: 2011
  ident: 46509_CR18
  publication-title: Nature
  doi: 10.1038/nature09772
– volume: 40
  start-page: 10384
  year: 2012
  ident: 46509_CR93
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks744
– volume: 318
  start-page: 798
  year: 2007
  ident: 46509_CR6
  publication-title: Science
  doi: 10.1126/science.1147182
– volume: 27
  start-page: 1172
  year: 2008
  ident: 46509_CR70
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.44
– volume: 20
  start-page: 503
  year: 2019
  ident: 46509_CR85
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0135-1
– volume: 76
  start-page: 11
  year: 2019
  ident: 46509_CR73
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.043
– volume: 42
  start-page: 112557
  year: 2023
  ident: 46509_CR96
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.112557
– volume: 449
  start-page: 105
  year: 2007
  ident: 46509_CR78
  publication-title: Nature
  doi: 10.1038/nature06092
– volume: 159
  start-page: 108
  year: 2014
  ident: 46509_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.030
– volume: 23
  start-page: e202200209
  year: 2022
  ident: 46509_CR37
  publication-title: Chembiochem
  doi: 10.1002/cbic.202200209
– volume: 132
  start-page: 9328
  year: 2010
  ident: 46509_CR58
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100345z
– volume: 26
  start-page: 105737
  year: 2023
  ident: 46509_CR77
  publication-title: iScience
  doi: 10.1016/j.isci.2022.105737
– volume: 360
  start-page: 918
  year: 2018
  ident: 46509_CR87
  publication-title: Science
  doi: 10.1126/science.aar7366
– volume: 119
  start-page: 941
  year: 2004
  ident: 46509_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.012
– ident: 46509_CR17
  doi: 10.7150/ijbs.10528
– volume: 20
  start-page: 316
  year: 2008
  ident: 46509_CR76
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.03.004
SSID ssj0000391844
Score 2.5158682
Snippet The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway....
Abstract The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2165
SubjectTerms 14
14/1
14/32
14/34
14/35
14/63
631/57/2272/2276
631/80/103/560
631/80/304
82/83
Binding
Chromatin
Deoxyribonucleic acid
DNA
DNA biosynthesis
Histones
Homology
Humanities and Social Sciences
Lysine
Maintenance
multidisciplinary
Phase separation
R-loops
Ribonucleic acid
RNA
RNA modification
Science
Science (multidisciplinary)
Synthesis
Telomerase
Telomeres
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDazGj8T2cQtUFSocSiv1ZvmpVtomq832QH99x0526fK8cNusHcmah-eb2PMNQm_bXHYQZCCu9pYILiSxSbfESid9oCrUNBc4f_naHp6Kz2fN2a1WX_lO2EgPPApuL3jXahbA7qgX0jUQYDyjofbceerakHdfiHm3kqmyB3MNqYuYqmRqrvYGUfYECElEZNY4cr0ViQph_-9Q5q-XJX86MS2B6OABuj8hSDwbV_4Q3YndI3R37Cn5_TFygE-PZ-To20eKF-cQo_AQR37vvsOLcvkuDviYzPt-gTeli_kXXsV5fxmXEV_azCKRqTgivujw7OgE-_ywxPk7__AEnR58OvlwSKZGCsQ3gq5IqlmQTXKU-TYkqbTisYFcQlnmVKpVtIy6JJMFvJG09z5SZQHaJNkwp1XkT9FO13fxOcKtFzBItYjKCUisrdKsliExLxIgG1Uhuhaq8RPLeG52MTfltJsrMyrCgCJMUYS5rtC7zTuLkWPjr7P3s642MzM_dvkDrMZMVmP-ZTUV2l1r2kxOO5h85Ml5Q9umQm82w-BuWba2i_3VOEdCRiJ4hZ6NhrFZCQcsB5CAVkhtmczWUrdHuovzQulNa5255NoKvV9b1491_VkWL_6HLF6ieyy7Rb5Yp3fRzmp5FV8B0lq518WpbgA_CCPf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest_Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCIkLYidQkJG4gdV4Seyc0LBUFSocSivNzfLaVpomw2R6oL8ePyeTalh6m4wdyfFb_Pn5-XsIva3h2oGXntjSGSK4kMTEpiZGWuk8Vb6kcMH52_f64ER8nVfzMeDWj2mVG5-YHbXvHMTI9-A8ivOK1tWH5U8CVaPgdHUsoXEb3QHqMkjpknM5xViA_VwJMd6VKbna60X2DGlhIgK448jV1nqUafv_hTX_Tpn849w0L0f7D9D9EUfi2SD4h-hWaB-hu0NlyV-PkU0o9WhGDn98pnh5llYq3IeB5btr8TKn4IUeH5FF1y3xdIERfuF1WHQXYRXwhQEuCSDkCPi8xbPDY-zgYYUh2t8_QSf7X44_HZCxnAJxlaBrEkvmZRUtZa72UapG8VClHYUyzKpYqmAYtVFGk1BHbJxzgSqTAE6UFbONCvwp2mm7NjxHuHYiNdJGBGVF2l4b1bBS-siciAnfqALRzaRqN3KNQ8mLhc5n3lzpQRA6CUJnQeirAr2b3lkOTBs39v4Ispp6Akt2_qNbnerR6LR3tm6YTz6LOiFtlcCJY9SXjltHbe0LtLuRtB5Nt9fXilagN1NzMjqYW9OG7nLoI9O-RPACPRsUYxoJT4guAQNaILWlMltD3W5pz88ysTctG2CUqwv0fqNd1-P6_1y8uPkzXqJ7DBQeEueaXbSzXl2GVwlJre3rbC6_ATrlGxQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDehBRmJG1jEj9jOcVmoKlQ4lFbqzYpftNI2WW22B_rrazvZoIWCxC2JJ5LlmfF8tmc-A7wVqezASYdNaRvMGZe4CbXAjTTSOqJcSVKB89dv4vCUfzmrznaAbmphctJ-prTM0_QmO-xDz7NLx4iCeSJ9w9d34G6ibk9WPRfzaV8lMZ4rzsf6mJKpW37dikGZqv82fPlnmuRvZ6U5BB08hAcjdkSzobePYMe3j-HecJvkzydgIjI9nuGj758IWp7H6IR6PzB7dy1a5rQ736NjvOi6JZqKFtMTWvtFd-lXHl02iT8ikXB4dNGi2dEJsullhdIOf_8UTg8-n8wP8XiFArYVJ2scSupkFQyhVrggVa2Yr-IqQjXUqFAq31BiggxNRBqhttZ6opoIaoKsqKmVZ89gt-1a_wKQsDw2kpp7ZXhcUjeqpqV0gVoeIqZRBZDNoGo78ounay4WOp9zM6UHReioCJ0Voa8LeDf9sxzYNf4p_THpapJMzNj5Q7f6oUdL0c4aUVMX5yliuTRVBCSWEldaZiwxwhWwv9G0Ht211-mwk7GKiKqAN1NzdLQ0tk3ru6tBRsa1CGcFPB8MY-oJiyguggFSgNoyma2ubre0F-eZzJuUdWKREwW831jXr379fSxe_p_4HtynyQFS8ly9D7vr1ZV_FdHU2rzO7nMDb5gZbg
  priority: 102
  providerName: Springer Nature
Title TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells
URI https://link.springer.com/article/10.1038/s41467-024-46509-z
https://www.ncbi.nlm.nih.gov/pubmed/38461301
https://www.proquest.com/docview/2954335165
https://www.proquest.com/docview/2954777243
https://pubmed.ncbi.nlm.nih.gov/PMC10925046
https://doaj.org/article/dcb692d3221c47b5818c21d0c3bc1b6d
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF71EBIviLsuJVok3mDBe9i7fkAoDQ1V1FYobaS8Wd6LVkrtNEkl2l_PrO0EBQLiJYd3Ha12ZjzfZHa-QehtGsoOrLREx6YgggtJCp-lpJBaGkuVjWkocD49S49HYjBOxlto2e6o3cD5xtAu9JMazSYfftzcfQaD_9SUjKuPc1GbO3gbIgIhHLnfRrvgmWQw1NMW7tdPZp5BQBMSzSwWlIDv5m0dzeafWfNVNaX_Jhz653HK33KqtavqP0aPWoyJu41SPEFbrnyKHjRdJ--eIQ0IdtglJ-dfKJ5eghfDc9cwgFclntbH89wcD8mkqqZ4VdwYPuGFm1TXbubwdRF4JgJZh8NXJe6eXGATvsxwyATMn6NR_-iid0zaVgvEJIIuiI-ZlYnXlJnUeqkyxV0C0YYqmFY-Vq5gVHvpC0AkPjPGOKoKAD9eJkxnyvEXaKesSreHcGoEDNJMOKUFhN6FylgsrWdGeMA-KkJ0uam5aXnIQzuMSV7nw7nKG0HkIIi8FkR-H6F3q3umDQvHP2cfBlmtZgYG7fpCNfuetwaZW6PTjFl4nlEjpE4AuBhGbWy4NlSnNkIHS0nnS63MQ1KU84SmSYTerIbBIMPeFqWrbps5EmIWwSP0slGM1Uo4oD0ADTRCak1l1pa6PlJeXdak3zTOAttcGqH3S-36ta6_78X-f6zzFXrIgtaHk3XZAdpZzG7da4BaC91B23Is4VX1v3bQbrc7OB_A--HR2bchXO2lvU79J0antrOfjvwpLg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ3AACPBE1iLHSd2HhAqjKlj3R5GJ_Uti29sUpeEphPafhS_EZ_cpnLZ297a2q1cn9vnHJ_vIPQmgbIDIwxRoc4Jj7gguUsTkgsltKHShBQKnPf2k_Eh_zqLZ2voV18LA9cqe5_YOGpTanhGvgn5qCiKaRJ_rH4Q6BoF2dW-hUarFrv2_Kc_stUfdra8fN8ytv1l-nlMuq4CRMecLokLmRGxU5TpxDghUxnZ2ANrmTMlXShtzqhywuU--LpUa22pzH2cdyJmKpU28r97A930gTcEixIzMTzTAbZ1yXlXmxNGcrPmjSfygZBw4KojFyvxr2kT8C9s-_cVzT_ytE34276H7na4FY9aRbuP1mzxAN1qO1meP0TKo-KDEZl826K4OvaREde2ZRUvC1w1V_5sjQ_IvCwrPBRMwiu8tPPy1C4sPs2BuwIIQCw-KfBoMsUa3iwwZBfqR-jwWjb6MVovysI-RTjR3A_SlFupuD_O5zJloTCOae48npIBov2mZrrjNocWG_OsybFHMmsFkXlBZI0gsosAvRu-U7XMHlfO_gSyGmYCK3fzQbn4nnVGnhmtkpQZ7yOp5kLFHgxpRk2oI6WpSkyANnpJZ52rqLNLxQ7Q62HYGznsbV7Y8qydI_w5iEcBetIqxrCSyCNID0RogOSKyqwsdXWkODluiMRpmAKDXRKg9712Xa7r_3vx7Oq_8QrdHk_3JtlkZ3_3ObrDQPnh0l66gdaXizP7wqO4pXrZmA5GR9dtq78BDRVYmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIiXiTsZA4wET2A1dpzYeUCoUKqNlQmNTepbFt_YpC4pTSe0_TR-HT65TeWyt701tRM5PlfnnPMdhF4lUHZghCEq1DnhERckd2lCcqGENlSakEKB85e9ZPuQf57G0zX0q6uFgbTKTifWitqUGr6RDyAeFUUxTeKBa9Mivo7G7-c_CHSQgkhr106jYZFde_7TH9-qdzsjT-vXjI0_HXzcJm2HAaJjTpfEhcyI2CnKdGKckKmMbOydbJkzJV0obc6ocsLl3hC7VGttqcy9zXciZiqVNvLPvYFuCr8ukDExFf33HUBel5y3dTphJAcVr7WSN4qEA24duVixhXXLgH_5uX-na_4Rs61N4fgu2mh9WDxsmO4eWrPFfXSr6Wp5_gAp7yHvD8nk24ji-bG3kriyDcJ4WeB5nf5nK7xPZmU5x33xJPzCSzsrT-3C4tMccCwADMTikwIPJwdYw8UCQ6SheogOr2WjH6H1oizsE4QTzf0gTbmVivujfS5TFgrjmObO-1YyQLTb1Ey3OOfQbmOW1fH2SGYNITJPiKwmRHYRoDf9PfMG5ePK2R-AVv1MQOiu_ygX37NW4DOjVZIy4_Ul1Vyo2DtGmlET6khpqhIToK2O0lmrNqrskskD9LIf9gIPe5sXtjxr5gh_JuJRgB43jNGvJPLepHdKaIDkCsusLHV1pDg5rkHFaZgCml0SoLcdd12u6_97sXn1a7xAt72UZpOdvd2n6A4D3of8vXQLrS8XZ_aZd-iW6nktORgdXbeo_gYuzFzP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TERRA-LSD1+phase+separation+promotes+R-loop+formation+for+telomere+maintenance+in+ALT+cancer+cells&rft.jtitle=Nature+communications&rft.au=Xu%2C+Meng&rft.au=Senanayaka%2C+Dulmi&rft.au=Zhao%2C+Rongwei&rft.au=Chigumira%2C+Tafadzwa&rft.date=2024-03-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=2165&rft_id=info:doi/10.1038%2Fs41467-024-46509-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon