TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells
The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 locali...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 2165 - 19 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.
Here the authors show that the telomere repeat-containing RNA (TERRA) undergoes phase separation with the lysine-specific demethylase 1A (LSD1) to promote R-loop formation for homology-directed telomere DNA synthesis in the alternative lengthening of telomere (ALT) pathway. |
---|---|
AbstractList | The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function. The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function. Here the authors show that the telomere repeat-containing RNA (TERRA) undergoes phase separation with the lysine-specific demethylase 1A (LSD1) to promote R-loop formation for homology-directed telomere DNA synthesis in the alternative lengthening of telomere (ALT) pathway. The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.Here the authors show that the telomere repeat-containing RNA (TERRA) undergoes phase separation with the lysine-specific demethylase 1A (LSD1) to promote R-loop formation for homology-directed telomere DNA synthesis in the alternative lengthening of telomere (ALT) pathway. The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function. Abstract The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function. |
ArticleNumber | 2165 |
Author | Moneysmith, Laurel N. Wondisford, Anne R. Zhang, Huaiying Senanayaka, Dulmi Hirschi, Alexander Reiter, Nicholas J. Chigumira, Tafadzwa Tripathi, Astha Chenoweth, David M. O’Sullivan, Roderick J. Tones, Jason Alishiri, Sahar Lackner, Rachel M. Craig, Sara Zhao, Rongwei Xu, Meng |
Author_xml | – sequence: 1 givenname: Meng surname: Xu fullname: Xu, Meng organization: Department of Biology, Carnegie Mellon University – sequence: 2 givenname: Dulmi surname: Senanayaka fullname: Senanayaka, Dulmi organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University – sequence: 3 givenname: Rongwei surname: Zhao fullname: Zhao, Rongwei organization: Department of Biology, Carnegie Mellon University – sequence: 4 givenname: Tafadzwa surname: Chigumira fullname: Chigumira, Tafadzwa organization: Department of Biology, Carnegie Mellon University – sequence: 5 givenname: Astha surname: Tripathi fullname: Tripathi, Astha organization: Department of Biology, Carnegie Mellon University – sequence: 6 givenname: Jason surname: Tones fullname: Tones, Jason organization: Department of Biology, Carnegie Mellon University – sequence: 7 givenname: Rachel M. surname: Lackner fullname: Lackner, Rachel M. organization: Department of Chemistry, University of Pennsylvania – sequence: 8 givenname: Anne R. surname: Wondisford fullname: Wondisford, Anne R. organization: Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh – sequence: 9 givenname: Laurel N. surname: Moneysmith fullname: Moneysmith, Laurel N. organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University – sequence: 10 givenname: Alexander surname: Hirschi fullname: Hirschi, Alexander organization: Cepheid Diagnostics – sequence: 11 givenname: Sara surname: Craig fullname: Craig, Sara organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University – sequence: 12 givenname: Sahar surname: Alishiri fullname: Alishiri, Sahar organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University – sequence: 13 givenname: Roderick J. orcidid: 0000-0002-0289-0911 surname: O’Sullivan fullname: O’Sullivan, Roderick J. organization: Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh – sequence: 14 givenname: David M. surname: Chenoweth fullname: Chenoweth, David M. organization: Department of Chemistry, University of Pennsylvania – sequence: 15 givenname: Nicholas J. surname: Reiter fullname: Reiter, Nicholas J. organization: Klingler College of Arts and Sciences, Department of Chemistry, Marquette University – sequence: 16 givenname: Huaiying orcidid: 0000-0002-1784-2664 surname: Zhang fullname: Zhang, Huaiying email: huaiyinz@andrew.cmu.edu organization: Department of Biology, Carnegie Mellon University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38461301$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVAR_aB_gAOyxIVLwJ-xc0Kr0kKllZCW5Ww5znibVWIHO1uJ_nq8m1LaHuqLx573nscz77Q48sFDUbwj-BPBTH1OnPBKlpjyklcC1-Xdq-KEYk5KIik7ehQfF-cpbXFerCaK8zfFMVO8IgyTk6JZX65Wi3L58ytB441JgBKMJpqpCx6NMQxhgoRWZR_CiFyIw5zJEZqgDwNEQIPp_ATeeAuo82ixXCO7P0Rkoe_T2-K1M32C8_v9rPh1dbm--F4uf3y7vlgsSys4mUqHaSuFawi1VeukqhUDQYVQhjbKYQWGksZJZ7AkrrbWAlGmItJJQZtaATsrrmfdNpitHmM3mPhHB9Ppw0WIG23i1NkedGubqqYto5RYLhuhiLKUtNiyxpKmarPWl1lr3DUDtBb8FE3_RPRpxnc3ehNuNcE1FZhXWeHjvUIMv3eQJj10ad8P4yHskqa14FJKylmGfngG3YZd9LlXBxRjglQio94_Lumhln-zzAA6A2wMKUVwDxCC9d4zevaMzp7RB8_ou0xSz0i2mw4zzt_q-pepbKam_I7fQPxf9gusv5YG1e8 |
CitedBy_id | crossref_primary_10_1002_advs_202405325 crossref_primary_10_1016_j_ijbiomac_2024_134946 crossref_primary_10_12677_acm_2025_153869 crossref_primary_10_3390_ijms25169001 crossref_primary_10_1016_j_jbc_2024_107607 crossref_primary_10_1016_j_tips_2025_01_006 crossref_primary_10_1038_s42003_024_07199_x crossref_primary_10_1002_2211_5463_70026 crossref_primary_10_1007_s00438_024_02206_6 crossref_primary_10_1016_j_canlet_2024_217359 crossref_primary_10_1016_j_jmb_2025_168951 |
Cites_doi | 10.1016/j.cell.2017.06.006 10.1016/S0021-9258(17)49903-0 10.1042/BST20191226 10.1038/s41467-023-35811-x 10.1093/nar/gkac1027 10.1073/pnas.2208669119 10.1016/j.celrep.2014.01.022 10.1038/nature09516 10.1074/jbc.RA118.006620 10.1038/nchem.1805 10.1016/j.cell.2021.10.014 10.1038/ncomms12534 10.1261/rna.053918.115 10.1038/ncomms6220 10.7554/eLife.20533 10.1016/j.celrep.2018.12.102 10.1016/j.chembiol.2013.02.013 10.1016/j.molcel.2016.09.034 10.1021/ja8031532 10.1007/978-1-0716-2477-7_11 10.1016/j.molcel.2015.08.018 10.1016/j.celrep.2018.01.036 10.1016/j.cell.2020.03.046 10.1021/ja109767y 10.1093/nar/gkv051 10.1038/s41589-019-0263-0 10.1093/jb/mvab018 10.1038/s41594-022-00854-z 10.1021/acs.jmedchem.0c00978 10.1016/j.jmb.2020.04.015 10.1073/pnas.1103532108 10.1016/j.cell.2020.03.049 10.1038/s41586-021-03538-8 10.1073/pnas.1001177107 10.1038/s41467-017-02212-w 10.4161/rna.20330 10.1126/science.1192002 10.1038/s41586-020-2815-6 10.1038/ncb1685 10.1038/s41580-022-00566-8 10.1038/ncomms6379 10.1021/bi301606u 10.1016/j.tig.2020.12.006 10.1038/nsmb1004 10.1016/j.molcel.2022.09.025 10.1091/mbc.E19-10-0589 10.1158/0008-5472.CAN-22-2433 10.1126/science.aar7432 10.1126/science.aar3958 10.3389/fmolb.2021.730274 10.1261/rna.057265.116 10.1021/jacs.6b04506 10.1146/annurev-physchem-071819-113553 10.1038/s41467-021-26864-x 10.1016/j.molcel.2022.09.026 10.3389/fmolb.2021.785160 10.1016/j.cell.2019.12.031 10.1016/j.bbagen.2017.01.006 10.1038/s41467-021-23716-6 10.1016/j.molcel.2009.06.025 10.1186/s13059-016-0878-3 10.1016/j.molcel.2015.01.010 10.1038/s41586-019-1374-1 10.1038/s12276-020-00542-2 10.1016/j.tcb.2014.07.007 10.1093/nar/gkab180 10.1016/j.cell.2020.11.030 10.1016/j.cell.2020.11.050 10.1016/j.molcel.2015.09.017 10.1016/j.cell.2017.06.017 10.1038/s41467-018-03916-3 10.1042/ETLS20190164 10.1038/s41598-021-82406-x 10.1016/j.cell.2018.06.006 10.1016/j.molcel.2020.04.019 10.1074/jbc.M509549200 10.1038/nature09772 10.1093/nar/gks744 10.1126/science.1147182 10.1038/emboj.2008.44 10.1038/s41576-019-0135-1 10.1016/j.molcel.2019.06.043 10.1016/j.celrep.2023.112557 10.1038/nature06092 10.1016/j.cell.2014.08.030 10.1002/cbic.202200209 10.1021/ja100345z 10.1016/j.isci.2022.105737 10.1126/science.aar7366 10.1016/j.cell.2004.12.012 10.7150/ijbs.10528 10.1016/j.ceb.2008.03.004 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-46509-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_dcb692d3221c47b5818c21d0c3bc1b6d PMC10925046 38461301 10_1038_s41467_024_46509_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: U01CA260851 funderid: https://doi.org/10.13039/100000002 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: U01CA260851 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-f02d75fb12c6df78983e52558a2b8f08ea21bf7fa071f9ccce18a617f752b98e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:09:47 EDT 2025 Thu Aug 21 18:35:07 EDT 2025 Mon Jul 21 10:33:17 EDT 2025 Wed Aug 13 08:19:26 EDT 2025 Mon Jul 21 06:03:35 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 02:11:01 EDT 2025 Fri Feb 21 02:40:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-f02d75fb12c6df78983e52558a2b8f08ea21bf7fa071f9ccce18a617f752b98e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0289-0911 0000-0002-1784-2664 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-46509-z |
PMID | 38461301 |
PQID | 2954335165 |
PQPubID | 546298 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dcb692d3221c47b5818c21d0c3bc1b6d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10925046 proquest_miscellaneous_2954777243 proquest_journals_2954335165 pubmed_primary_38461301 crossref_primary_10_1038_s41467_024_46509_z crossref_citationtrail_10_1038_s41467_024_46509_z springer_journals_10_1038_s41467_024_46509_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-09 |
PublicationDateYYYYMMDD | 2024-03-09 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | DavidovichCCechTRThe recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2RNA201521200720221:CAS:528:DC%2BC28XntV2msLc%3D26574518464745510.1261/rna.053918.115 ThakurJHenikoffSArchitectural RNA in chromatin organizationBiochem. Soc. Trans.202048196719781:CAS:528:DC%2BB3cXisVyls7jF32897323760902610.1042/BST20191226 Barroso-GonzálezJRAD51AP1 is an essential mediator of alternative lengthening of telomeresMol. Cell2019761126.e73140085010.1016/j.molcel.2019.06.043 BeishlineKCTCF driven TERRA transcription facilitates completion of telomere DNA replicationNat. Commun.201781102017NatCo...8....1B1:CAS:528:DC%2BC1cXptFSgsL0%3D10.1038/s41467-017-02212-w KharelPStress promotes RNA G-quadruplex folding in human cellsNat. Commun.2023141102023NatCo..14....1H10.1038/s41467-023-35811-x FornerisFBindaCVanoniMABattaglioliEMatteviAHuman histone demethylase LSD1 reads the histone codeJ. Biol. Chem.200528041360413651:CAS:528:DC%2BD2MXhtlShsb3L1622372910.1074/jbc.M509549200 ProtterDSWIntrinsically disordered regions can contribute promiscuous interactions to RNP granule assemblyCell Rep.201822140114121:CAS:528:DC%2BC1cXis1Ontbw%3D29425497582473310.1016/j.celrep.2018.01.036 WangJA molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteinsCell2018174688699.e161:CAS:528:DC%2BC1cXht1Cju77K29961577606376010.1016/j.cell.2018.06.006 HendricksonDKelleyDRTenenDBernsteinBRinnJLWidespread RNA binding by chromatin-associated proteinsGenome Biol.20161711810.1186/s13059-016-0878-3 LinYProtterDSWRosenMKParkerRFormation and maturation of phase-separated liquid droplets by RNA-binding proteinsMol. Cell2015602082191:CAS:528:DC%2BC2MXhsFKqsbzM26412307460929910.1016/j.molcel.2015.08.018 AvogaroLLive-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cellsRNA Biol.201815787796296583986152429 XuYSuzukiYItoKKomiyamaMTelomeric repeat-containing RNA structure in living cellsProc. Natl Acad. Sci. USA201010714579145842010PNAS..10714579X1:CAS:528:DC%2BC3cXhtVOgsb7N20679250293046210.1073/pnas.1001177107 RiesRJm6A enhances the phase separation potential of mRNANature20195714244281:CAS:528:DC%2BC1MXhtl2qsLjI31292544666291510.1038/s41586-019-1374-1 DengZNorseenJWiedmerARiethmanHLiebermanPMTERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeresMol. Cell2009354034131:CAS:528:DC%2BD1MXhsVChsrvM19716786274997710.1016/j.molcel.2009.06.025 ZengDAbzhanovaABrownBPReiterNJDissecting monomer-dimer equilibrium of an RNase P protein provides insight into the synergistic flexibility of 5’ leader pre-tRNA recognitionFront. Mol. Biosci.2021811210.3389/fmolb.2021.730274 VohhodinaJBRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damageNat. Commun.20211211610.1038/s41467-021-23716-6 Glousker, G., Fernandes, R. V., Feretzaki, M. & Lingner, J. Detection of TERRA R-Loops at human telomeres. in R-Loops (eds. Aguilera, A. & Ruzov, A.) vol. 2528, 159–171 (Springer US, 2022). XuMHeat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock responseCell Rep.2023421125571:CAS:528:DC%2BB3sXhtVKitbnI372240191059251510.1016/j.celrep.2023.112557 WanatJJTERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeastPLoS One201913123 CollieGWElectrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structuresJ. Am. Chem. Soc.2010132932893341:CAS:528:DC%2BC3cXnslCmtLs%3D2056510910.1021/ja100345z AsamitsuSShiodaNPotential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separationJ. Biochem.20211695275331:CAS:528:DC%2BB3MXhvFCitbbM3359925610.1093/jb/mvab018 QuinodozSARNA promotes the formation of spatial compartments in the nucleusCell2021184577557901:CAS:528:DC%2BB3MXisVamsLzF34739832911587710.1016/j.cell.2021.10.014 ChoNWDilleyRLLampsonMAGreenbergRAInterchromosomal homology searches drive directional ALT telomere movement and synapsisCell20141591081211:CAS:528:DC%2BC2cXhs1Gmtb7M25259924417703910.1016/j.cell.2014.08.030 LacknerRMO’ConnellWZhangHChenowethDMA general strategy for the design and evaluation of heterobifunctional tools: applications to protein localization and phase separationChembiochem202223e2022002091:CAS:528:DC%2BB38XhsFGqsb3F3559923710.1002/cbic.202200209 FlynnRLTERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNANature20114715325362011Natur.471..532F1:CAS:528:DC%2BC3MXjtVGmsL0%3D21399625307863710.1038/nature09772 SilvaBAroraRAzzalinCMThe alternative lengthening of telomeres mechanism jeopardizes telomere integrity if not properly restrictedProc. Natl Acad. Sci. USA20221193510.1073/pnas.2208669119 OuyangJRNA transcripts stimulate homologous recombination by forming DR-loopsNature20215942832882021Natur.594..283O1:CAS:528:DC%2BB3MXhtVOksLjK33981036885534810.1038/s41586-021-03538-8 TsaiM-CLong noncoding RNA as modular scaffold of histone modification complexesScience20103296896932010Sci...329..689T1:CAS:528:DC%2BC3cXps1ehtb0%3D20616235296777710.1126/science.1192002 ZhangJMYadavTOuyangJLanLZouLAlternative lengthening of telomeres through two distinct break-induced replication pathwaysCell Rep.201926955968.e330673617636662810.1016/j.celrep.2018.12.102 ZhaoRChenowethDMZhangHChemical dimerization-induced protein condensates on telomeresJ. Vis. Exp.2021170e62173 MaicherAKastnerLLukeBTelomeres and disease: enter TERRARNA Biol.201298438491:CAS:528:DC%2BC3sXpsVOhsQ%3D%3D2261787710.4161/rna.20330 Roschdi, S. et al. An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol.29, 1113–1121 (2022). MaharanaSRNA buffers the phase separation behavior of prion-like RNA binding proteinsScience20183609189212018Sci...360..918M1:CAS:528:DC%2BC1cXpvFGjtrg%3D29650702609185410.1126/science.aar7366 MonteroJJTERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatinNat. Commun.201892018NatCo...9.1548M29670078590646710.1038/s41467-018-03916-3 FrankLRippeKRepetitive RNAs as regulators of chromatin-associated subcompartment formation by phase separationJ. Mol. Biol.2020432427042861:CAS:528:DC%2BB3cXnvFersbk%3D3232068810.1016/j.jmb.2020.04.015 JiaPZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarizationNat. Commun.2021121171:CAS:528:DC%2BB3MXktVKmsrk%3D10.1038/s41467-021-26864-x TauberDModulation of RNA condensation by the DEAD-box protein eIF4ACell2019180411426.e1610.1016/j.cell.2019.12.031 XuYKaminagaKKomiyamaMG-quadruplex formation by human telomeric repeats-containing RNA in Na+ solutionJ. Am. Chem. Soc.200813011179111841:CAS:528:DC%2BD1cXos12ru7c%3D1864281310.1021/ja8031532 Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023). TakahamaKRegulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUSChem. Biol.2013203413501:CAS:528:DC%2BC3sXksFOrsLk%3D2352179210.1016/j.chembiol.2013.02.013 HenningerJERNA-mediated feedback control of transcriptional condensatesCell20211842072251:CAS:528:DC%2BB3cXis1GntrzO3333301910.1016/j.cell.2020.11.030 PorroAFeuerhahnSLingnerJTERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeresCell Rep.201467657761:CAS:528:DC%2BC2cXisFeltrg%3D2452970810.1016/j.celrep.2014.01.022 HirschiAMartinWJLukaZLoukachevitchLVReiterNJG-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzymeRNA201622125012601:CAS:528:DC%2BC28XhvVelt7vP27277658493111710.1261/rna.057265.116 HeCHigh-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cellsMol. Cell2016644164301:CAS:528:DC%2BC28Xhslels7rP27768875522260610.1016/j.molcel.2016.09.034 PorroAFunctional characterization of the TERRA transcriptome at damaged telomeresNat. Commun.201452014NatCo...5.5379P1:CAS:528:DC%2BC2MXksVenu74%3D2535918910.1038/ncomms6379 HegazyYAFernandoCMTranEJThe balancing act of R-loop biology: The good, the bad, and the uglyJ. Biol. Chem.20202959059133184397010.1016/S0021-9258(17)49903-0 AroraRRNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cellsNat. Commun.201452014NatCo...5.5220A1:CAS:528:DC%2BC2cXhvF2mu7zJ2533084910.1038/ncomms6220 NowotnyMSpecific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBDEMBO J.200827117211811:CAS:528:DC%2BD1cXksVagtb4%3D18337749232325910.1038/emboj.2008.44 YangPG3BP1 is a tunable switch that triggers phase separation to assemble stress granulesCell20201813253451:CAS:528:DC%2BB3cXnsV2ntr4%3D32302571744838310.1016/j.cell.2020.03.046 PerilloBTramontanoAPezoneAMigliaccioALSD1: more than demethylation of histone lysine residuesExp. Mol. Med.202052193619471:CAS:528:DC%2BB3cXis1Sgs7zE33318631808076310.1038/s12276-020-00542-2 GueddoudaNMMendozaOGomezDBourdoncleAMergnyJLG-quadruplexes unfolding by RHAU helicaseBiochim. Biophys. Acta20171861138213881:CAS:528:DC%2BC2sXhtFOitbY%3D10.1016/j.bbagen.2017.01.006 VinyardMECRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AMLNat. Chem. Biol.2019155295391:CAS:528:DC%2BC1MXos12gsb4%3D30992567767902610.1038/s41589-019-0263-0 LangdonEMmRNA structure determines specificity of a polyQ-driven phase separationScience20183609229272018Sci...360..922L1:CAS:528:DC%2BC1cXpvFGjtrw%3D29650703619203010.1126/science.aar7432 KatsudaYA small molecule that represses translation of G-quadruplex-containing mRNAJ. Am. Chem. Soc.2016138903790401:CAS:528:DC%2BC28XhtFKms7%2FP2741067710.1021/jacs.6b04506 TatavosianRNuclear condensates of the polycomb protein chromobox 2 (CBX2) assemble through phase separationJ. Biol. Chem.2019294145114631:CAS:528:DC%2BC1MXit1Krsbo%3D3051476010.1074/jbc.RA118.006620 KhandeliaPYapKMakeyevEVStreamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cellsProc. JJ Montero (46509_CR32) 2016; 7 A Porro (46509_CR13) 2014; 6 X Li (46509_CR85) 2019; 20 F Lan (46509_CR76) 2008; 20 46509_CR80 S Maharana (46509_CR87) 2018; 360 M Graf (46509_CR8) 2017; 170 T Yadav (46509_CR22) 2022; 82 NJ Reiter (46509_CR93) 2012; 40 JJ Wanat (46509_CR12) 2019; 13 J Wang (46509_CR51) 2018; 174 Y Shi (46509_CR30) 2004; 119 L Avogaro (46509_CR33) 2018; 15 B Tsang (46509_CR43) 2020; 183 K Takahama (46509_CR15) 2013; 20 L Frank (46509_CR86) 2020; 432 RM Lackner (46509_CR37) 2022; 23 L Chen (46509_CR11) 2022; 50 CM Azzalin (46509_CR6) 2007; 318 MJ Casey (46509_CR77) 2023; 26 M Xu (46509_CR96) 2023; 42 Y Mei (46509_CR63) 2021; 11 A Porro (46509_CR26) 2014; 5 H Zhang (46509_CR39) 2020; 31 SA Kim (46509_CR34) 2020; 78 F Forneris (46509_CR35) 2005; 280 H Martadinata (46509_CR57) 2013; 52 J Ouyang (46509_CR23) 2021; 594 Y Katsuda (46509_CR64) 2016; 138 R Tatavosian (46509_CR82) 2019; 294 H Zhang (46509_CR46) 2015; 60 SA Quinodoz (46509_CR91) 2021; 184 J Thakur (46509_CR3) 2020; 48 M Feretzaki (46509_CR9) 2020; 587 M Xu (46509_CR38) 2022; 8 J Barroso-González (46509_CR73) 2019; 76 GW Collie (46509_CR60) 2011; 133 DSW Protter (46509_CR49) 2018; 22 D Zeng (46509_CR94) 2021; 8 C Davidovich (46509_CR4) 2015; 21 Y Guo (46509_CR83) 2021; 37 K Wang (46509_CR69) 2021; 7 Y Xu (46509_CR59) 2008; 130 M-C Tsai (46509_CR5) 2010; 329 D Tauber (46509_CR55) 2019; 180 D Hendrickson (46509_CR84) 2016; 17 46509_CR17 AH Buck (46509_CR95) 2005; 12 R Arora (46509_CR21) 2014; 5 K Beishline (46509_CR19) 2017; 8 S Schoeftner (46509_CR75) 2008; 10 GL Dignon (46509_CR41) 2020; 71 EW Martin (46509_CR42) 2020; 4 T Kanouni (46509_CR29) 2020; 63 P Kharel (46509_CR62) 2023; 14 C He (46509_CR36) 2016; 64 JE Henninger (46509_CR45) 2021; 184 Y Xu (46509_CR56) 2010; 107 JJ Montero (46509_CR14) 2018; 9 B Perillo (46509_CR54) 2020; 52 S Pinter (46509_CR81) 2021; 49 YA Hegazy (46509_CR2) 2020; 295 P Jia (46509_CR44) 2021; 12 J Huang (46509_CR78) 2007; 449 P Khandelia (46509_CR92) 2011; 108 46509_CR66 M Nowotny (46509_CR70) 2008; 27 JD Amon (46509_CR71) 2016; 5 46509_CR1 JM Zhang (46509_CR20) 2019; 26 N Kaminski (46509_CR24) 2022; 82 Y Lin (46509_CR50) 2015; 60 A Maicher (46509_CR47) 2012; 9 RL Flynn (46509_CR18) 2011; 471 A Hirschi (46509_CR25) 2016; 22 BR Sabari (46509_CR48) 2018; 361 B Silva (46509_CR74) 2022; 119 NM Gueddouda (46509_CR68) 2017; 1861 ME Vinyard (46509_CR79) 2019; 15 J Guillén-Boixet (46509_CR52) 2020; 181 RJ Ries (46509_CR90) 2019; 571 HP Chu (46509_CR7) 2017; 170 46509_CR72 S Asamitsu (46509_CR89) 2021; 169 J Vohhodina (46509_CR16) 2021; 12 46509_CR31 GW Collie (46509_CR58) 2010; 132 Z Deng (46509_CR10) 2009; 35 MC Chen (46509_CR67) 2015; 43 NW Cho (46509_CR28) 2014; 159 EM Langdon (46509_CR88) 2018; 360 G Biffi (46509_CR65) 2014; 6 R Zhao (46509_CR40) 2021; 170 P Yang (46509_CR53) 2020; 181 RJ O’Sullivan (46509_CR27) 2014; 24 NJ Reiter (46509_CR61) 2010; 468 |
References_xml | – reference: XuYKaminagaKKomiyamaMG-quadruplex formation by human telomeric repeats-containing RNA in Na+ solutionJ. Am. Chem. Soc.200813011179111841:CAS:528:DC%2BD1cXos12ru7c%3D1864281310.1021/ja8031532 – reference: LangdonEMmRNA structure determines specificity of a polyQ-driven phase separationScience20183609229272018Sci...360..922L1:CAS:528:DC%2BC1cXpvFGjtrw%3D29650703619203010.1126/science.aar7432 – reference: ZhangJMYadavTOuyangJLanLZouLAlternative lengthening of telomeres through two distinct break-induced replication pathwaysCell Rep.201926955968.e330673617636662810.1016/j.celrep.2018.12.102 – reference: FrankLRippeKRepetitive RNAs as regulators of chromatin-associated subcompartment formation by phase separationJ. Mol. Biol.2020432427042861:CAS:528:DC%2BB3cXnvFersbk%3D3232068810.1016/j.jmb.2020.04.015 – reference: KhandeliaPYapKMakeyevEVStreamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cellsProc. Natl Acad. Sci. USA201110812799128042011PNAS..10812799K1:CAS:528:DC%2BC3MXhtVenu7fN21768390315088010.1073/pnas.1103532108 – reference: AvogaroLLive-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cellsRNA Biol.201815787796296583986152429 – reference: ChenMCMuratPAbecassisKFerre-D’AmareARBalasubramanianSInsights into the mechanism of a G-quadruplex-unwinding DEAH-box helicaseNucleic Acids Res.201543222322311:CAS:528:DC%2BC2MXhsFaitLzN25653156434449910.1093/nar/gkv051 – reference: MonteroJJTERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatinNat. Commun.201892018NatCo...9.1548M29670078590646710.1038/s41467-018-03916-3 – reference: MartadinataHPhanATStructure of human telomeric RNA (TERRA): stacking of two G-quadruplex blocks in K(+) solutionBiochemistry201352217621831:CAS:528:DC%2BC3sXjt1Wmtro%3D2344544210.1021/bi301606u – reference: LacknerRMO’ConnellWZhangHChenowethDMA general strategy for the design and evaluation of heterobifunctional tools: applications to protein localization and phase separationChembiochem202223e2022002091:CAS:528:DC%2BB38XhsFGqsb3F3559923710.1002/cbic.202200209 – reference: PorroAFunctional characterization of the TERRA transcriptome at damaged telomeresNat. Commun.201452014NatCo...5.5379P1:CAS:528:DC%2BC2MXksVenu74%3D2535918910.1038/ncomms6379 – reference: FornerisFBindaCVanoniMABattaglioliEMatteviAHuman histone demethylase LSD1 reads the histone codeJ. Biol. Chem.200528041360413651:CAS:528:DC%2BD2MXhtlShsb3L1622372910.1074/jbc.M509549200 – reference: KharelPStress promotes RNA G-quadruplex folding in human cellsNat. Commun.2023141102023NatCo..14....1H10.1038/s41467-023-35811-x – reference: WangJA molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteinsCell2018174688699.e161:CAS:528:DC%2BC1cXht1Cju77K29961577606376010.1016/j.cell.2018.06.006 – reference: GrafMTelomere length determines TERRA and R-Loop regulation through the cell cycleCell201717072851:CAS:528:DC%2BC2sXhtFSqsLfI2866612610.1016/j.cell.2017.06.006 – reference: Laurent, B. et al. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol Cell.57, 957–970 (2015). – reference: WanatJJTERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeastPLoS One201913123 – reference: PerilloBTramontanoAPezoneAMigliaccioALSD1: more than demethylation of histone lysine residuesExp. Mol. Med.202052193619471:CAS:528:DC%2BB3cXis1Sgs7zE33318631808076310.1038/s12276-020-00542-2 – reference: Guillén-BoixetJRNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensationCell202018134636132302572718119710.1016/j.cell.2020.03.049 – reference: KanouniTDiscovery of CC-90011: a potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1)J. Med. Chem.20206314522145291:CAS:528:DC%2BB3cXitVSqsr%2FF3303419410.1021/acs.jmedchem.0c00978 – reference: VinyardMECRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AMLNat. Chem. Biol.2019155295391:CAS:528:DC%2BC1MXos12gsb4%3D30992567767902610.1038/s41589-019-0263-0 – reference: VohhodinaJBRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damageNat. Commun.20211211610.1038/s41467-021-23716-6 – reference: Barroso-GonzálezJRAD51AP1 is an essential mediator of alternative lengthening of telomeresMol. Cell2019761126.e73140085010.1016/j.molcel.2019.06.043 – reference: BeishlineKCTCF driven TERRA transcription facilitates completion of telomere DNA replicationNat. Commun.201781102017NatCo...8....1B1:CAS:528:DC%2BC1cXptFSgsL0%3D10.1038/s41467-017-02212-w – reference: RiesRJm6A enhances the phase separation potential of mRNANature20195714244281:CAS:528:DC%2BC1MXhtl2qsLjI31292544666291510.1038/s41586-019-1374-1 – reference: DengZNorseenJWiedmerARiethmanHLiebermanPMTERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeresMol. Cell2009354034131:CAS:528:DC%2BD1MXhsVChsrvM19716786274997710.1016/j.molcel.2009.06.025 – reference: O’SullivanRJAlmouzniGAssembly of telomeric chromatin to create ALTernative endingsTrends Cell Biol.2014246756852517255110.1016/j.tcb.2014.07.007 – reference: AmonJDKoshlandDRNase H enables efficient repair of R-loop induced DNA damageElife2016512010.7554/eLife.20533 – reference: OuyangJRNA transcripts stimulate homologous recombination by forming DR-loopsNature20215942832882021Natur.594..283O1:CAS:528:DC%2BB3MXhtVOksLjK33981036885534810.1038/s41586-021-03538-8 – reference: AroraRRNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cellsNat. Commun.201452014NatCo...5.5220A1:CAS:528:DC%2BC2cXhvF2mu7zJ2533084910.1038/ncomms6220 – reference: MartinEWHolehouseASIntrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereofEmerg. Top. Life Sci.202043073291:CAS:528:DC%2BB3cXis1OgsrfO3307883910.1042/ETLS20190164 – reference: CaseyMJThe scaffolding function of LSD1/KDM1A reinforces a negative feedback loop to repress stem cell gene expression during primitive hematopoiesisiScience2023261057372023iSci...26j5737C1:CAS:528:DC%2BB38XjtFyls7fF3659401610.1016/j.isci.2022.105737 – reference: MaharanaSRNA buffers the phase separation behavior of prion-like RNA binding proteinsScience20183609189212018Sci...360..918M1:CAS:528:DC%2BC1cXpvFGjtrg%3D29650702609185410.1126/science.aar7366 – reference: PorroAFeuerhahnSLingnerJTERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeresCell Rep.201467657761:CAS:528:DC%2BC2cXisFeltrg%3D2452970810.1016/j.celrep.2014.01.022 – reference: Li, M. et al. LSD1 inhibition disrupts super-enhancer driven oncogenic transcriptional programs in castration-resistant prostate cancer. Cancer Res. 83, 1684–1698 (2023). – reference: SchoeftnerSBlascoMADevelopmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase IINat. Cell Biol.2008102282361:CAS:528:DC%2BD1cXhs1Kiur0%3D1815712010.1038/ncb1685 – reference: ChuHPTERRA RNA antagonizes ATRX and protects telomeresCell2017170861011:CAS:528:DC%2BC2sXhtFSqsLbF28666128555236710.1016/j.cell.2017.06.017 – reference: Wang, C., Zhao, L. & Lu, S. Role of TERRA in the regulation of telomere length. Int. J. Biol. Sci. https://doi.org/10.7150/ijbs.10528 (2015). – reference: TauberDModulation of RNA condensation by the DEAD-box protein eIF4ACell2019180411426.e1610.1016/j.cell.2019.12.031 – reference: TatavosianRNuclear condensates of the polycomb protein chromobox 2 (CBX2) assemble through phase separationJ. Biol. Chem.2019294145114631:CAS:528:DC%2BC1MXit1Krsbo%3D3051476010.1074/jbc.RA118.006620 – reference: SabariBRCoactivator condensation at super-enhancers links phase separation and gene controlScience2018361eaar395829930091609219310.1126/science.aar3958 – reference: WangKGenomic profiling of native R loops with a DNA-RNA hybrid recognition sensorSci. Adv.202171181:CAS:528:DC%2BB3MXmt12jsrg%3D – reference: HuangJp53 is regulated by the lysine demethylase LSD1Nature20074491051082007Natur.449..105H1:CAS:528:DC%2BD2sXpvFWrs7w%3D1780529910.1038/nature06092 – reference: Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023). – reference: HendricksonDKelleyDRTenenDBernsteinBRinnJLWidespread RNA binding by chromatin-associated proteinsGenome Biol.20161711810.1186/s13059-016-0878-3 – reference: ZengDAbzhanovaABrownBPReiterNJDissecting monomer-dimer equilibrium of an RNase P protein provides insight into the synergistic flexibility of 5’ leader pre-tRNA recognitionFront. Mol. Biosci.2021811210.3389/fmolb.2021.730274 – reference: DavidovichCCechTRThe recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2RNA201521200720221:CAS:528:DC%2BC28XntV2msLc%3D26574518464745510.1261/rna.053918.115 – reference: MonteroJJLópez De SilanesIGranãOBlascoMATelomeric RNAs are essential to maintain telomeresNat. Commun.2016711310.1038/ncomms12534 – reference: HeCHigh-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cellsMol. Cell2016644164301:CAS:528:DC%2BC28Xhslels7rP27768875522260610.1016/j.molcel.2016.09.034 – reference: AsamitsuSShiodaNPotential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separationJ. Biochem.20211695275331:CAS:528:DC%2BB3MXhvFCitbbM3359925610.1093/jb/mvab018 – reference: ZhangHNuclear body phase separation drives telomere clustering in ALT cancer cellsMol. Biol. Cell202031204820561:CAS:528:DC%2BB3cXhslWntbfJ32579423754307010.1091/mbc.E19-10-0589 – reference: ReiterNJStructure of a bacterial ribonuclease P holoenzyme in complex with tRNANature20104687847892010Natur.468..784R1:CAS:528:DC%2BC3cXhsVWmurvE21076397305890810.1038/nature09516 – reference: ShiYHistone demethylation mediated by the nuclear amine oxidase homolog LSD1Cell20041199419531:CAS:528:DC%2BD2MXltlSitg%3D%3D1562035310.1016/j.cell.2004.12.012 – reference: BiffiGDi AntonioMTannahillDBalasubramanianSVisualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cellsNat. Chem.2014675801:CAS:528:DC%2BC3sXhvVaitL3N2434595010.1038/nchem.1805 – reference: GueddoudaNMMendozaOGomezDBourdoncleAMergnyJLG-quadruplexes unfolding by RHAU helicaseBiochim. Biophys. Acta20171861138213881:CAS:528:DC%2BC2sXhtFOitbY%3D10.1016/j.bbagen.2017.01.006 – reference: FlynnRLTERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNANature20114715325362011Natur.471..532F1:CAS:528:DC%2BC3MXjtVGmsL0%3D21399625307863710.1038/nature09772 – reference: CollieGWElectrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structuresJ. Am. Chem. Soc.2010132932893341:CAS:528:DC%2BC3cXnslCmtLs%3D2056510910.1021/ja100345z – reference: KaminskiNRAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRAMol. Cell20228240014017.e71:CAS:528:DC%2BB38Xis1Krur7J36265488971395210.1016/j.molcel.2022.09.025 – reference: YangPG3BP1 is a tunable switch that triggers phase separation to assemble stress granulesCell20201813253451:CAS:528:DC%2BB3cXnsV2ntr4%3D32302571744838310.1016/j.cell.2020.03.046 – reference: GuoYZhaoSWangGGPolycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘Readout’, and phase separation-based compactionTrends Genet.2021375475651:CAS:528:DC%2BB3MXhs1Orsrk%3D33494958811933710.1016/j.tig.2020.12.006 – reference: HegazyYAFernandoCMTranEJThe balancing act of R-loop biology: The good, the bad, and the uglyJ. Biol. Chem.20202959059133184397010.1016/S0021-9258(17)49903-0 – reference: LanFNottkeACShiYMechanisms involved in the regulation of histone lysine demethylasesCurr. Opin. Cell Biol.2008203163251:CAS:528:DC%2BD1cXmvV2ls7k%3D18440794267437710.1016/j.ceb.2008.03.004 – reference: JiaPZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarizationNat. Commun.2021121171:CAS:528:DC%2BB3MXktVKmsrk%3D10.1038/s41467-021-26864-x – reference: ZhangHRNA controls PolyQ protein phase transitionsMol. Cell2015602202301:CAS:528:DC%2BC2MXhs1Ort77O26474065522151610.1016/j.molcel.2015.09.017 – reference: BuckAHKazantsevAVDalbyABPaceNRStructural perspective on the activation of RNase P RNA by proteinNat. Struct. Mol. Biol.2005129589641:CAS:528:DC%2BD2MXht1WqtrnL1622800410.1038/nsmb1004 – reference: XuYSuzukiYItoKKomiyamaMTelomeric repeat-containing RNA structure in living cellsProc. Natl Acad. Sci. USA201010714579145842010PNAS..10714579X1:CAS:528:DC%2BC3cXhtVOgsb7N20679250293046210.1073/pnas.1001177107 – reference: ReiterNJOstermanAKMondragónAThe bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioningNucleic Acids Res.20124010384103931:CAS:528:DC%2BC38Xhs1WqtrnE22904083348821710.1093/nar/gks744 – reference: ChenLMETTL3-mediated m6A modification stabilizes TERRA and maintains telomere stabilityNucleic Acids Res.20225011619116341:CAS:528:DC%2BB3sXpt1GjsL8%3D36399511972361810.1093/nar/gkac1027 – reference: SilvaBAroraRAzzalinCMThe alternative lengthening of telomeres mechanism jeopardizes telomere integrity if not properly restrictedProc. Natl Acad. Sci. USA20221193510.1073/pnas.2208669119 – reference: HirschiAMartinWJLukaZLoukachevitchLVReiterNJG-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzymeRNA201622125012601:CAS:528:DC%2BC28XhvVelt7vP27277658493111710.1261/rna.057265.116 – reference: AzzalinCMReichenbachPKhoriauliLGiulottoELingnerJTelomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome endsScience20073187988012007Sci...318..798A1:CAS:528:DC%2BD2sXht1elsrfM1791669210.1126/science.1147182 – reference: TakahamaKRegulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUSChem. Biol.2013203413501:CAS:528:DC%2BC3sXksFOrsLk%3D2352179210.1016/j.chembiol.2013.02.013 – reference: ZhaoRChenowethDMZhangHChemical dimerization-induced protein condensates on telomeresJ. Vis. Exp.2021170e62173 – reference: QuinodozSARNA promotes the formation of spatial compartments in the nucleusCell2021184577557901:CAS:528:DC%2BB3MXisVamsLzF34739832911587710.1016/j.cell.2021.10.014 – reference: FeretzakiMRAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loopsNature20205873033082020Natur.587..303F33057192711679510.1038/s41586-020-2815-6 – reference: YadavTTERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switchMol. Cell20228239854000.e41:CAS:528:DC%2BB38Xis1Krur7I36265486963772810.1016/j.molcel.2022.09.026 – reference: ChoNWDilleyRLLampsonMAGreenbergRAInterchromosomal homology searches drive directional ALT telomere movement and synapsisCell20141591081211:CAS:528:DC%2BC2cXhs1Gmtb7M25259924417703910.1016/j.cell.2014.08.030 – reference: TsangBPritišanacISchererSWMosesAMForman-KayJDPhase separation as a missing mechanism for interpretation of disease mutationsCell2020183174217561:CAS:528:DC%2BB3cXis12gsb3L3335739910.1016/j.cell.2020.11.050 – reference: Glousker, G., Fernandes, R. V., Feretzaki, M. & Lingner, J. Detection of TERRA R-Loops at human telomeres. in R-Loops (eds. Aguilera, A. & Ruzov, A.) vol. 2528, 159–171 (Springer US, 2022). – reference: ThakurJHenikoffSArchitectural RNA in chromatin organizationBiochem. Soc. Trans.202048196719781:CAS:528:DC%2BB3cXisVyls7jF32897323760902610.1042/BST20191226 – reference: HenningerJERNA-mediated feedback control of transcriptional condensatesCell20211842072251:CAS:528:DC%2BB3cXis1GntrzO3333301910.1016/j.cell.2020.11.030 – reference: MaicherAKastnerLLukeBTelomeres and disease: enter TERRARNA Biol.201298438491:CAS:528:DC%2BC3sXpsVOhsQ%3D%3D2261787710.4161/rna.20330 – reference: LinYProtterDSWRosenMKParkerRFormation and maturation of phase-separated liquid droplets by RNA-binding proteinsMol. Cell2015602082191:CAS:528:DC%2BC2MXhsFKqsbzM26412307460929910.1016/j.molcel.2015.08.018 – reference: PinterSA functional LSD1 coregulator screen reveals a novel transcriptional regulatory cascade connecting R-loop homeostasis with epigenetic regulationNucleic Acids Res.202149435043701:CAS:528:DC%2BB3MXhvFWgur7K33823549809626510.1093/nar/gkab180 – reference: Roschdi, S. et al. An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol.29, 1113–1121 (2022). – reference: LiXFuXDChromatin-associated RNAs as facilitators of functional genomic interactionsNat. Rev. Genet.2019205035191:CAS:528:DC%2BC1MXhtV2it7jK31160792768497910.1038/s41576-019-0135-1 – reference: MeiYTERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integritySci. Rep.20211111410.1038/s41598-021-82406-x – reference: XuMCRISPR Cas13-based tools to track and manipulate endogenous telomeric repeat-containing RNAs in live cellsFront. Mol. Biosci.20228181:CAS:528:DC%2BB38XhtVGmtrbE10.3389/fmolb.2021.785160 – reference: ProtterDSWIntrinsically disordered regions can contribute promiscuous interactions to RNP granule assemblyCell Rep.201822140114121:CAS:528:DC%2BC1cXis1Ontbw%3D29425497582473310.1016/j.celrep.2018.01.036 – reference: CollieGWSparapaniSParkinsonGNNeidleSStructural basis of telomeric RNA quadruplex-acridine ligand recognitionJ. Am. Chem. Soc.2011133272127281:CAS:528:DC%2BC3MXhsVOnsL8%3D2129121110.1021/ja109767y – reference: NowotnyMSpecific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBDEMBO J.200827117211811:CAS:528:DC%2BD1cXksVagtb4%3D18337749232325910.1038/emboj.2008.44 – reference: XuMHeat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock responseCell Rep.2023421125571:CAS:528:DC%2BB3sXhtVKitbnI372240191059251510.1016/j.celrep.2023.112557 – reference: KatsudaYA small molecule that represses translation of G-quadruplex-containing mRNAJ. Am. Chem. Soc.2016138903790401:CAS:528:DC%2BC28XhtFKms7%2FP2741067710.1021/jacs.6b04506 – reference: TsaiM-CLong noncoding RNA as modular scaffold of histone modification complexesScience20103296896932010Sci...329..689T1:CAS:528:DC%2BC3cXps1ehtb0%3D20616235296777710.1126/science.1192002 – reference: KimSAZhuJYennawarNEekPTanSCrystal structure of the LSD1/CoREST histone demethylase bound to its nucleosome substrateMol. Cell202078903914.e41:CAS:528:DC%2BB3cXptlegsr0%3D32396821727592410.1016/j.molcel.2020.04.019 – reference: DignonGLBestRBMittalJBiomolecular phase separation: from molecular driving forces to macroscopic propertiesAnnu. Rev. Phys. Chem.20207153752020ARPC...71...53D1:CAS:528:DC%2BB3cXnsFeisL8%3D32312191746908910.1146/annurev-physchem-071819-113553 – volume: 170 start-page: 72 year: 2017 ident: 46509_CR8 publication-title: Cell doi: 10.1016/j.cell.2017.06.006 – volume: 295 start-page: 905 year: 2020 ident: 46509_CR2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)49903-0 – volume: 48 start-page: 1967 year: 2020 ident: 46509_CR3 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20191226 – volume: 14 start-page: 1 year: 2023 ident: 46509_CR62 publication-title: Nat. Commun. doi: 10.1038/s41467-023-35811-x – volume: 15 start-page: 787 year: 2018 ident: 46509_CR33 publication-title: RNA Biol. – volume: 50 start-page: 11619 year: 2022 ident: 46509_CR11 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1027 – volume: 119 start-page: 3 year: 2022 ident: 46509_CR74 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2208669119 – volume: 6 start-page: 765 year: 2014 ident: 46509_CR13 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.01.022 – volume: 13 start-page: 1 year: 2019 ident: 46509_CR12 publication-title: PLoS One – volume: 468 start-page: 784 year: 2010 ident: 46509_CR61 publication-title: Nature doi: 10.1038/nature09516 – volume: 294 start-page: 1451 year: 2019 ident: 46509_CR82 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006620 – volume: 6 start-page: 75 year: 2014 ident: 46509_CR65 publication-title: Nat. Chem. doi: 10.1038/nchem.1805 – volume: 184 start-page: 5775 year: 2021 ident: 46509_CR91 publication-title: Cell doi: 10.1016/j.cell.2021.10.014 – volume: 7 start-page: 1 year: 2016 ident: 46509_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms12534 – volume: 21 start-page: 2007 year: 2015 ident: 46509_CR4 publication-title: RNA doi: 10.1261/rna.053918.115 – volume: 5 year: 2014 ident: 46509_CR21 publication-title: Nat. Commun. doi: 10.1038/ncomms6220 – volume: 5 start-page: 1 year: 2016 ident: 46509_CR71 publication-title: Elife doi: 10.7554/eLife.20533 – volume: 26 start-page: 955 year: 2019 ident: 46509_CR20 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.12.102 – volume: 20 start-page: 341 year: 2013 ident: 46509_CR15 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2013.02.013 – volume: 64 start-page: 416 year: 2016 ident: 46509_CR36 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.034 – volume: 130 start-page: 11179 year: 2008 ident: 46509_CR59 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8031532 – ident: 46509_CR72 doi: 10.1007/978-1-0716-2477-7_11 – volume: 60 start-page: 208 year: 2015 ident: 46509_CR50 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.018 – volume: 22 start-page: 1401 year: 2018 ident: 46509_CR49 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.036 – volume: 181 start-page: 325 year: 2020 ident: 46509_CR53 publication-title: Cell doi: 10.1016/j.cell.2020.03.046 – volume: 133 start-page: 2721 year: 2011 ident: 46509_CR60 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109767y – volume: 43 start-page: 2223 year: 2015 ident: 46509_CR67 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv051 – volume: 15 start-page: 529 year: 2019 ident: 46509_CR79 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0263-0 – volume: 169 start-page: 527 year: 2021 ident: 46509_CR89 publication-title: J. Biochem. doi: 10.1093/jb/mvab018 – ident: 46509_CR66 doi: 10.1038/s41594-022-00854-z – volume: 63 start-page: 14522 year: 2020 ident: 46509_CR29 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.0c00978 – volume: 170 start-page: e62173 year: 2021 ident: 46509_CR40 publication-title: J. Vis. Exp. – volume: 432 start-page: 4270 year: 2020 ident: 46509_CR86 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.04.015 – volume: 108 start-page: 12799 year: 2011 ident: 46509_CR92 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1103532108 – volume: 7 start-page: 1 year: 2021 ident: 46509_CR69 publication-title: Sci. Adv. – volume: 181 start-page: 346 year: 2020 ident: 46509_CR52 publication-title: Cell doi: 10.1016/j.cell.2020.03.049 – volume: 594 start-page: 283 year: 2021 ident: 46509_CR23 publication-title: Nature doi: 10.1038/s41586-021-03538-8 – volume: 107 start-page: 14579 year: 2010 ident: 46509_CR56 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1001177107 – volume: 8 start-page: 1 year: 2017 ident: 46509_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02212-w – volume: 9 start-page: 843 year: 2012 ident: 46509_CR47 publication-title: RNA Biol. doi: 10.4161/rna.20330 – volume: 329 start-page: 689 year: 2010 ident: 46509_CR5 publication-title: Science doi: 10.1126/science.1192002 – volume: 587 start-page: 303 year: 2020 ident: 46509_CR9 publication-title: Nature doi: 10.1038/s41586-020-2815-6 – volume: 10 start-page: 228 year: 2008 ident: 46509_CR75 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1685 – ident: 46509_CR1 doi: 10.1038/s41580-022-00566-8 – volume: 5 year: 2014 ident: 46509_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms6379 – volume: 52 start-page: 2176 year: 2013 ident: 46509_CR57 publication-title: Biochemistry doi: 10.1021/bi301606u – volume: 37 start-page: 547 year: 2021 ident: 46509_CR83 publication-title: Trends Genet. doi: 10.1016/j.tig.2020.12.006 – volume: 12 start-page: 958 year: 2005 ident: 46509_CR95 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1004 – volume: 82 start-page: 4001 year: 2022 ident: 46509_CR24 publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.09.025 – volume: 31 start-page: 2048 year: 2020 ident: 46509_CR39 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E19-10-0589 – ident: 46509_CR80 doi: 10.1158/0008-5472.CAN-22-2433 – volume: 360 start-page: 922 year: 2018 ident: 46509_CR88 publication-title: Science doi: 10.1126/science.aar7432 – volume: 361 start-page: eaar3958 year: 2018 ident: 46509_CR48 publication-title: Science doi: 10.1126/science.aar3958 – volume: 8 start-page: 1 year: 2021 ident: 46509_CR94 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.730274 – volume: 22 start-page: 1250 year: 2016 ident: 46509_CR25 publication-title: RNA doi: 10.1261/rna.057265.116 – volume: 138 start-page: 9037 year: 2016 ident: 46509_CR64 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04506 – volume: 71 start-page: 53 year: 2020 ident: 46509_CR41 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-071819-113553 – volume: 12 start-page: 1 year: 2021 ident: 46509_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26864-x – volume: 82 start-page: 3985 year: 2022 ident: 46509_CR22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.09.026 – volume: 8 start-page: 1 year: 2022 ident: 46509_CR38 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.785160 – volume: 180 start-page: 411 year: 2019 ident: 46509_CR55 publication-title: Cell doi: 10.1016/j.cell.2019.12.031 – volume: 1861 start-page: 1382 year: 2017 ident: 46509_CR68 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2017.01.006 – volume: 12 start-page: 1 year: 2021 ident: 46509_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23716-6 – volume: 35 start-page: 403 year: 2009 ident: 46509_CR10 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.06.025 – volume: 17 start-page: 1 year: 2016 ident: 46509_CR84 publication-title: Genome Biol. doi: 10.1186/s13059-016-0878-3 – ident: 46509_CR31 doi: 10.1016/j.molcel.2015.01.010 – volume: 571 start-page: 424 year: 2019 ident: 46509_CR90 publication-title: Nature doi: 10.1038/s41586-019-1374-1 – volume: 52 start-page: 1936 year: 2020 ident: 46509_CR54 publication-title: Exp. Mol. Med. doi: 10.1038/s12276-020-00542-2 – volume: 24 start-page: 675 year: 2014 ident: 46509_CR27 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.07.007 – volume: 49 start-page: 4350 year: 2021 ident: 46509_CR81 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab180 – volume: 184 start-page: 207 year: 2021 ident: 46509_CR45 publication-title: Cell doi: 10.1016/j.cell.2020.11.030 – volume: 183 start-page: 1742 year: 2020 ident: 46509_CR43 publication-title: Cell doi: 10.1016/j.cell.2020.11.050 – volume: 60 start-page: 220 year: 2015 ident: 46509_CR46 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.09.017 – volume: 170 start-page: 86 year: 2017 ident: 46509_CR7 publication-title: Cell doi: 10.1016/j.cell.2017.06.017 – volume: 9 year: 2018 ident: 46509_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03916-3 – volume: 4 start-page: 307 year: 2020 ident: 46509_CR42 publication-title: Emerg. Top. Life Sci. doi: 10.1042/ETLS20190164 – volume: 11 start-page: 1 year: 2021 ident: 46509_CR63 publication-title: Sci. Rep. doi: 10.1038/s41598-021-82406-x – volume: 174 start-page: 688 year: 2018 ident: 46509_CR51 publication-title: Cell doi: 10.1016/j.cell.2018.06.006 – volume: 78 start-page: 903 year: 2020 ident: 46509_CR34 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.019 – volume: 280 start-page: 41360 year: 2005 ident: 46509_CR35 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M509549200 – volume: 471 start-page: 532 year: 2011 ident: 46509_CR18 publication-title: Nature doi: 10.1038/nature09772 – volume: 40 start-page: 10384 year: 2012 ident: 46509_CR93 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks744 – volume: 318 start-page: 798 year: 2007 ident: 46509_CR6 publication-title: Science doi: 10.1126/science.1147182 – volume: 27 start-page: 1172 year: 2008 ident: 46509_CR70 publication-title: EMBO J. doi: 10.1038/emboj.2008.44 – volume: 20 start-page: 503 year: 2019 ident: 46509_CR85 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0135-1 – volume: 76 start-page: 11 year: 2019 ident: 46509_CR73 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.043 – volume: 42 start-page: 112557 year: 2023 ident: 46509_CR96 publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112557 – volume: 449 start-page: 105 year: 2007 ident: 46509_CR78 publication-title: Nature doi: 10.1038/nature06092 – volume: 159 start-page: 108 year: 2014 ident: 46509_CR28 publication-title: Cell doi: 10.1016/j.cell.2014.08.030 – volume: 23 start-page: e202200209 year: 2022 ident: 46509_CR37 publication-title: Chembiochem doi: 10.1002/cbic.202200209 – volume: 132 start-page: 9328 year: 2010 ident: 46509_CR58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100345z – volume: 26 start-page: 105737 year: 2023 ident: 46509_CR77 publication-title: iScience doi: 10.1016/j.isci.2022.105737 – volume: 360 start-page: 918 year: 2018 ident: 46509_CR87 publication-title: Science doi: 10.1126/science.aar7366 – volume: 119 start-page: 941 year: 2004 ident: 46509_CR30 publication-title: Cell doi: 10.1016/j.cell.2004.12.012 – ident: 46509_CR17 doi: 10.7150/ijbs.10528 – volume: 20 start-page: 316 year: 2008 ident: 46509_CR76 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2008.03.004 |
SSID | ssj0000391844 |
Score | 2.5158682 |
Snippet | The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway.... Abstract The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT)... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2165 |
SubjectTerms | 14 14/1 14/32 14/34 14/35 14/63 631/57/2272/2276 631/80/103/560 631/80/304 82/83 Binding Chromatin Deoxyribonucleic acid DNA DNA biosynthesis Histones Homology Humanities and Social Sciences Lysine Maintenance multidisciplinary Phase separation R-loops Ribonucleic acid RNA RNA modification Science Science (multidisciplinary) Synthesis Telomerase Telomeres Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDazGj8T2cQtUFSocSiv1ZvmpVtomq832QH99x0526fK8cNusHcmah-eb2PMNQm_bXHYQZCCu9pYILiSxSbfESid9oCrUNBc4f_naHp6Kz2fN2a1WX_lO2EgPPApuL3jXahbA7qgX0jUQYDyjofbceerakHdfiHm3kqmyB3MNqYuYqmRqrvYGUfYECElEZNY4cr0ViQph_-9Q5q-XJX86MS2B6OABuj8hSDwbV_4Q3YndI3R37Cn5_TFygE-PZ-To20eKF-cQo_AQR37vvsOLcvkuDviYzPt-gTeli_kXXsV5fxmXEV_azCKRqTgivujw7OgE-_ywxPk7__AEnR58OvlwSKZGCsQ3gq5IqlmQTXKU-TYkqbTisYFcQlnmVKpVtIy6JJMFvJG09z5SZQHaJNkwp1XkT9FO13fxOcKtFzBItYjKCUisrdKsliExLxIgG1Uhuhaq8RPLeG52MTfltJsrMyrCgCJMUYS5rtC7zTuLkWPjr7P3s642MzM_dvkDrMZMVmP-ZTUV2l1r2kxOO5h85Ml5Q9umQm82w-BuWba2i_3VOEdCRiJ4hZ6NhrFZCQcsB5CAVkhtmczWUrdHuovzQulNa5255NoKvV9b1491_VkWL_6HLF6ieyy7Rb5Yp3fRzmp5FV8B0lq518WpbgA_CCPf priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest_Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCIkLYidQkJG4gdV4Seyc0LBUFSocSivNzfLaVpomw2R6oL8ePyeTalh6m4wdyfFb_Pn5-XsIva3h2oGXntjSGSK4kMTEpiZGWuk8Vb6kcMH52_f64ER8nVfzMeDWj2mVG5-YHbXvHMTI9-A8ivOK1tWH5U8CVaPgdHUsoXEb3QHqMkjpknM5xViA_VwJMd6VKbna60X2DGlhIgK448jV1nqUafv_hTX_Tpn849w0L0f7D9D9EUfi2SD4h-hWaB-hu0NlyV-PkU0o9WhGDn98pnh5llYq3IeB5btr8TKn4IUeH5FF1y3xdIERfuF1WHQXYRXwhQEuCSDkCPi8xbPDY-zgYYUh2t8_QSf7X44_HZCxnAJxlaBrEkvmZRUtZa72UapG8VClHYUyzKpYqmAYtVFGk1BHbJxzgSqTAE6UFbONCvwp2mm7NjxHuHYiNdJGBGVF2l4b1bBS-siciAnfqALRzaRqN3KNQ8mLhc5n3lzpQRA6CUJnQeirAr2b3lkOTBs39v4Ispp6Akt2_qNbnerR6LR3tm6YTz6LOiFtlcCJY9SXjltHbe0LtLuRtB5Nt9fXilagN1NzMjqYW9OG7nLoI9O-RPACPRsUYxoJT4guAQNaILWlMltD3W5pz88ysTctG2CUqwv0fqNd1-P6_1y8uPkzXqJ7DBQeEueaXbSzXl2GVwlJre3rbC6_ATrlGxQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDehBRmJG1jEj9jOcVmoKlQ4lFbqzYpftNI2WW22B_rrazvZoIWCxC2JJ5LlmfF8tmc-A7wVqezASYdNaRvMGZe4CbXAjTTSOqJcSVKB89dv4vCUfzmrznaAbmphctJ-prTM0_QmO-xDz7NLx4iCeSJ9w9d34G6ibk9WPRfzaV8lMZ4rzsf6mJKpW37dikGZqv82fPlnmuRvZ6U5BB08hAcjdkSzobePYMe3j-HecJvkzydgIjI9nuGj758IWp7H6IR6PzB7dy1a5rQ736NjvOi6JZqKFtMTWvtFd-lXHl02iT8ikXB4dNGi2dEJsullhdIOf_8UTg8-n8wP8XiFArYVJ2scSupkFQyhVrggVa2Yr-IqQjXUqFAq31BiggxNRBqhttZ6opoIaoKsqKmVZ89gt-1a_wKQsDw2kpp7ZXhcUjeqpqV0gVoeIqZRBZDNoGo78ounay4WOp9zM6UHReioCJ0Voa8LeDf9sxzYNf4p_THpapJMzNj5Q7f6oUdL0c4aUVMX5yliuTRVBCSWEldaZiwxwhWwv9G0Ht211-mwk7GKiKqAN1NzdLQ0tk3ru6tBRsa1CGcFPB8MY-oJiyguggFSgNoyma2ubre0F-eZzJuUdWKREwW831jXr379fSxe_p_4HtynyQFS8ly9D7vr1ZV_FdHU2rzO7nMDb5gZbg priority: 102 providerName: Springer Nature |
Title | TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells |
URI | https://link.springer.com/article/10.1038/s41467-024-46509-z https://www.ncbi.nlm.nih.gov/pubmed/38461301 https://www.proquest.com/docview/2954335165 https://www.proquest.com/docview/2954777243 https://pubmed.ncbi.nlm.nih.gov/PMC10925046 https://doaj.org/article/dcb692d3221c47b5818c21d0c3bc1b6d |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF71EBIviLsuJVok3mDBe9i7fkAoDQ1V1FYobaS8Wd6LVkrtNEkl2l_PrO0EBQLiJYd3Ha12ZjzfZHa-QehtGsoOrLREx6YgggtJCp-lpJBaGkuVjWkocD49S49HYjBOxlto2e6o3cD5xtAu9JMazSYfftzcfQaD_9SUjKuPc1GbO3gbIgIhHLnfRrvgmWQw1NMW7tdPZp5BQBMSzSwWlIDv5m0dzeafWfNVNaX_Jhz653HK33KqtavqP0aPWoyJu41SPEFbrnyKHjRdJ--eIQ0IdtglJ-dfKJ5eghfDc9cwgFclntbH89wcD8mkqqZ4VdwYPuGFm1TXbubwdRF4JgJZh8NXJe6eXGATvsxwyATMn6NR_-iid0zaVgvEJIIuiI-ZlYnXlJnUeqkyxV0C0YYqmFY-Vq5gVHvpC0AkPjPGOKoKAD9eJkxnyvEXaKesSreHcGoEDNJMOKUFhN6FylgsrWdGeMA-KkJ0uam5aXnIQzuMSV7nw7nKG0HkIIi8FkR-H6F3q3umDQvHP2cfBlmtZgYG7fpCNfuetwaZW6PTjFl4nlEjpE4AuBhGbWy4NlSnNkIHS0nnS63MQ1KU84SmSYTerIbBIMPeFqWrbps5EmIWwSP0slGM1Uo4oD0ADTRCak1l1pa6PlJeXdak3zTOAttcGqH3S-36ta6_78X-f6zzFXrIgtaHk3XZAdpZzG7da4BaC91B23Is4VX1v3bQbrc7OB_A--HR2bchXO2lvU79J0antrOfjvwpLg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ3AACPBE1iLHSd2HhAqjKlj3R5GJ_Uti29sUpeEphPafhS_EZ_cpnLZ297a2q1cn9vnHJ_vIPQmgbIDIwxRoc4Jj7gguUsTkgsltKHShBQKnPf2k_Eh_zqLZ2voV18LA9cqe5_YOGpTanhGvgn5qCiKaRJ_rH4Q6BoF2dW-hUarFrv2_Kc_stUfdra8fN8ytv1l-nlMuq4CRMecLokLmRGxU5TpxDghUxnZ2ANrmTMlXShtzqhywuU--LpUa22pzH2cdyJmKpU28r97A930gTcEixIzMTzTAbZ1yXlXmxNGcrPmjSfygZBw4KojFyvxr2kT8C9s-_cVzT_ytE34276H7na4FY9aRbuP1mzxAN1qO1meP0TKo-KDEZl826K4OvaREde2ZRUvC1w1V_5sjQ_IvCwrPBRMwiu8tPPy1C4sPs2BuwIIQCw-KfBoMsUa3iwwZBfqR-jwWjb6MVovysI-RTjR3A_SlFupuD_O5zJloTCOae48npIBov2mZrrjNocWG_OsybFHMmsFkXlBZI0gsosAvRu-U7XMHlfO_gSyGmYCK3fzQbn4nnVGnhmtkpQZ7yOp5kLFHgxpRk2oI6WpSkyANnpJZ52rqLNLxQ7Q62HYGznsbV7Y8qydI_w5iEcBetIqxrCSyCNID0RogOSKyqwsdXWkODluiMRpmAKDXRKg9712Xa7r_3vx7Oq_8QrdHk_3JtlkZ3_3ObrDQPnh0l66gdaXizP7wqO4pXrZmA5GR9dtq78BDRVYmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIiXiTsZA4wET2A1dpzYeUCoUKqNlQmNTepbFt_YpC4pTSe0_TR-HT65TeWyt701tRM5PlfnnPMdhF4lUHZghCEq1DnhERckd2lCcqGENlSakEKB85e9ZPuQf57G0zX0q6uFgbTKTifWitqUGr6RDyAeFUUxTeKBa9Mivo7G7-c_CHSQgkhr106jYZFde_7TH9-qdzsjT-vXjI0_HXzcJm2HAaJjTpfEhcyI2CnKdGKckKmMbOydbJkzJV0obc6ocsLl3hC7VGttqcy9zXciZiqVNvLPvYFuCr8ukDExFf33HUBel5y3dTphJAcVr7WSN4qEA24duVixhXXLgH_5uX-na_4Rs61N4fgu2mh9WDxsmO4eWrPFfXSr6Wp5_gAp7yHvD8nk24ji-bG3kriyDcJ4WeB5nf5nK7xPZmU5x33xJPzCSzsrT-3C4tMccCwADMTikwIPJwdYw8UCQ6SheogOr2WjH6H1oizsE4QTzf0gTbmVivujfS5TFgrjmObO-1YyQLTb1Ey3OOfQbmOW1fH2SGYNITJPiKwmRHYRoDf9PfMG5ePK2R-AVv1MQOiu_ygX37NW4DOjVZIy4_Ul1Vyo2DtGmlET6khpqhIToK2O0lmrNqrskskD9LIf9gIPe5sXtjxr5gh_JuJRgB43jNGvJPLepHdKaIDkCsusLHV1pDg5rkHFaZgCml0SoLcdd12u6_97sXn1a7xAt72UZpOdvd2n6A4D3of8vXQLrS8XZ_aZd-iW6nktORgdXbeo_gYuzFzP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TERRA-LSD1+phase+separation+promotes+R-loop+formation+for+telomere+maintenance+in+ALT+cancer+cells&rft.jtitle=Nature+communications&rft.au=Xu%2C+Meng&rft.au=Senanayaka%2C+Dulmi&rft.au=Zhao%2C+Rongwei&rft.au=Chigumira%2C+Tafadzwa&rft.date=2024-03-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=2165&rft_id=info:doi/10.1038%2Fs41467-024-46509-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |