Violating the normality assumption may be the lesser of two evils

When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and c...

Full description

Saved in:
Bibliographic Details
Published inBehavior research methods Vol. 53; no. 6; pp. 2576 - 2590
Main Authors Knief, Ulrich, Forstmeier, Wolfgang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data.
AbstractList When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data.
When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data.
When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data.When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data.
Author Forstmeier, Wolfgang
Knief, Ulrich
Author_xml – sequence: 1
  givenname: Ulrich
  orcidid: 0000-0001-6959-3033
  surname: Knief
  fullname: Knief, Ulrich
  email: knief@biologie.uni-muenchen.de
  organization: Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich
– sequence: 2
  givenname: Wolfgang
  surname: Forstmeier
  fullname: Forstmeier, Wolfgang
  organization: Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33963496$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P3DAQxS1EVWDbL8ChisSll7T-mzgXJIQoVELiQnu1HO9kMXLsre2A9tvjsECBAydbnt8bv5l3gHZ98IDQIcE_WCvkz0QYp7LGlNSYCNnWYgftEyF4zQSVu6_ue-ggpVuMmaSEf0Z7jHUN412zj07-2uB0tn5V5RuofIijdjZvKp3SNK6zDb4a9abq4bHuICWIVRiqfB8quLMufUGfBu0SfH06F-jPr7Pr04v68ur89-nJZW0EJ7mGjkkNuDF9h3si2oG2nJiBtYMGLbpBk14QuaTLBgQMmLEGgGjOqDHlwXC2QMfbvuupH2FpwOeonVpHO-q4UUFb9bbi7Y1ahTslG8JIabhA358axPBvgpTVaJMB57SHMCVFBeXzssSMHr1Db8MUfRlP0QbT2R1tCvXttaMXK8_bLQDdAiaGlCIMLwjBao5QbSNUJUL1GKESRSTfiYzNeg6iTGXdx1K2labyj19B_G_7A9UDhgKw0Q
CitedBy_id crossref_primary_10_1080_1463922X_2024_2446848
crossref_primary_10_1109_ACCESS_2022_3189017
crossref_primary_10_1007_s00784_024_05908_8
crossref_primary_10_1136_jech_2023_220500
crossref_primary_10_1111_1744_7917_13406
crossref_primary_10_3390_metabo12090783
crossref_primary_10_1016_j_erss_2022_102791
crossref_primary_10_3389_fmars_2023_949263
crossref_primary_10_5194_ascmo_10_143_2024
crossref_primary_10_1162_imag_a_00082
crossref_primary_10_24017_science_2025_1_1
crossref_primary_10_7202_1094897ar
crossref_primary_10_1007_s13239_023_00671_5
crossref_primary_10_1093_occmed_kqad090
crossref_primary_10_1145_3688832
crossref_primary_10_1080_00224499_2023_2174248
crossref_primary_10_1038_s41593_024_01586_7
crossref_primary_10_3390_land14040690
crossref_primary_10_1080_09593985_2023_2204962
crossref_primary_10_1371_journal_pone_0294555
crossref_primary_10_1038_s41467_021_26682_1
crossref_primary_10_3390_rs14061482
crossref_primary_10_3389_fnagi_2023_1299451
crossref_primary_10_3390_ijerph19138223
crossref_primary_10_3758_s13428_023_02253_8
crossref_primary_10_3390_buildings15010084
crossref_primary_10_1016_j_bodyim_2024_101696
crossref_primary_10_1016_j_jamda_2021_09_003
crossref_primary_10_1016_j_lmot_2024_101962
crossref_primary_10_1080_00273171_2023_2254769
crossref_primary_10_1016_j_bodyim_2023_101637
crossref_primary_10_1007_s11252_023_01427_8
crossref_primary_10_1016_j_jadr_2022_100442
crossref_primary_10_1016_j_atherosclerosis_2024_117505
crossref_primary_10_1210_clinem_dgac590
crossref_primary_10_1186_s12955_021_01866_x
crossref_primary_10_1016_j_jml_2024_104510
crossref_primary_10_1002_vetr_4534
crossref_primary_10_3390_nu15132972
crossref_primary_10_1155_2023_4082587
crossref_primary_10_1111_1365_2656_13880
crossref_primary_10_1021_acs_langmuir_4c01786
crossref_primary_10_1007_s12144_022_04124_5
crossref_primary_10_1111_ibi_13186
crossref_primary_10_1080_14763141_2024_2393188
crossref_primary_10_1038_s44321_024_00119_w
crossref_primary_10_1016_j_conctc_2023_101119
crossref_primary_10_1016_j_neucom_2025_129611
crossref_primary_10_1242_jeb_244147
crossref_primary_10_1002_tafs_10457
crossref_primary_10_3389_fnbot_2024_1339000
crossref_primary_10_1007_s10071_024_01895_1
crossref_primary_10_1016_j_biortech_2024_131003
crossref_primary_10_1007_s00213_023_06502_8
crossref_primary_10_1007_s10926_024_10220_z
crossref_primary_10_1007_s11145_022_10321_2
crossref_primary_10_1016_j_psyneuen_2023_106372
crossref_primary_10_1186_s12874_024_02442_9
crossref_primary_10_1016_j_cbpra_2024_08_004
crossref_primary_10_1187_cbe_21_06_0167
crossref_primary_10_1093_gerona_glae290
crossref_primary_10_1007_s41465_023_00279_6
crossref_primary_10_1108_BPMJ_05_2024_0360
crossref_primary_10_1093_beheco_arac044
crossref_primary_10_1177_02134748241304921
crossref_primary_10_1038_s41598_024_62210_z
crossref_primary_10_2174_0122103155302871240527094915
crossref_primary_10_51867_ajernet_5_1_35
crossref_primary_10_1080_13811118_2023_2265433
crossref_primary_10_1111_rec_13876
crossref_primary_10_1007_s10804_024_09495_6
crossref_primary_10_1080_03610918_2022_2053863
crossref_primary_10_3389_fnins_2022_889211
crossref_primary_10_1016_j_enpol_2023_113683
crossref_primary_10_3390_s23156921
crossref_primary_10_1097_AUD_0000000000001499
crossref_primary_10_3390_nu16121795
crossref_primary_10_3390_s24175659
crossref_primary_10_1186_s40101_023_00343_2
crossref_primary_10_1093_aob_mcac028
crossref_primary_10_1002_soej_12666
crossref_primary_10_3389_fpsyg_2022_911854
crossref_primary_10_1111_mms_12919
crossref_primary_10_3390_ijerph19137684
crossref_primary_10_1057_s41599_023_01714_x
crossref_primary_10_1007_s10798_024_09909_2
crossref_primary_10_1002_ece3_70942
crossref_primary_10_3390_rel14060797
crossref_primary_10_1093_evolut_qpae131
crossref_primary_10_1371_journal_pone_0281785
crossref_primary_10_1016_j_molbiopara_2022_111458
crossref_primary_10_1016_j_cbpa_2024_111752
crossref_primary_10_36096_ijbes_v6i5_588
crossref_primary_10_14746_ssllt_42376
crossref_primary_10_3390_jcm13092565
crossref_primary_10_7717_peerj_cs_2286
crossref_primary_10_1007_s10021_023_00876_8
crossref_primary_10_51847_LSsHBTTTHg
crossref_primary_10_1016_j_chb_2025_108647
crossref_primary_10_1080_02640414_2023_2301143
crossref_primary_10_3389_fninf_2021_738342
crossref_primary_10_5327_Z217694781043
crossref_primary_10_1080_09291016_2022_2081400
crossref_primary_10_1016_j_enbuild_2024_114934
crossref_primary_10_3390_ijerph20176711
crossref_primary_10_1002_ecy_4505
crossref_primary_10_3390_su16156372
crossref_primary_10_3758_s13428_023_02072_x
crossref_primary_10_1038_s41562_023_01687_6
crossref_primary_10_1177_01461672231224991
crossref_primary_10_1080_24733938_2024_2325135
crossref_primary_10_1007_s10964_024_02096_2
crossref_primary_10_1167_jov_24_2_14
crossref_primary_10_1007_s11165_024_10190_5
crossref_primary_10_1088_2515_7620_acda80
crossref_primary_10_5253_arde_2022_a6
crossref_primary_10_1016_j_jbusres_2022_04_055
crossref_primary_10_1007_s11136_024_03682_4
crossref_primary_10_1523_ENEURO_0204_22_2023
crossref_primary_10_1038_s42003_024_06945_5
crossref_primary_10_1016_j_beth_2024_06_004
crossref_primary_10_1038_s41598_024_56840_6
crossref_primary_10_5937_ekonhor2301003A
crossref_primary_10_1016_j_aca_2024_342444
crossref_primary_10_1177_10464964231185748
crossref_primary_10_3389_fanim_2024_1423814
crossref_primary_10_1371_journal_pgen_1010901
crossref_primary_10_30935_jdet_14039
crossref_primary_10_1186_s12913_024_10681_1
crossref_primary_10_23887_jp2_v6i2_58885
crossref_primary_10_3390_math10214137
crossref_primary_10_1002_wlb3_01380
crossref_primary_10_1016_j_paid_2021_111112
crossref_primary_10_1364_BOE_538141
crossref_primary_10_1371_journal_pone_0276665
crossref_primary_10_1016_j_jecp_2025_106202
crossref_primary_10_1249_MSS_0000000000003219
crossref_primary_10_3233_JAD_231047
crossref_primary_10_1016_j_jclepro_2023_139587
crossref_primary_10_3847_1538_4357_ac85ba
crossref_primary_10_1080_08946566_2023_2236786
crossref_primary_10_3390_jzbg4040053
crossref_primary_10_1093_aobpla_plae058
crossref_primary_10_32615_ps_2023_018
crossref_primary_10_1109_TAFFC_2023_3272031
crossref_primary_10_1007_s10342_024_01730_9
crossref_primary_10_1080_15299732_2024_2326511
crossref_primary_10_1080_13803611_2025_2475863
crossref_primary_10_3934_mbe_2024341
crossref_primary_10_1002_oa_3326
crossref_primary_10_1093_police_paae031
crossref_primary_10_1016_j_jhydrol_2021_126834
crossref_primary_10_1097_NPT_0000000000000403
crossref_primary_10_1080_08039488_2022_2089231
crossref_primary_10_1002_tea_21947
crossref_primary_10_3390_ijerph182111091
crossref_primary_10_1016_j_whi_2023_05_004
crossref_primary_10_25259_ijmr_453_22
crossref_primary_10_1371_journal_pone_0290467
crossref_primary_10_1080_15614263_2024_2308918
crossref_primary_10_1071_WF23182
crossref_primary_10_1016_j_applanim_2021_105507
crossref_primary_10_1002_jor_25268
crossref_primary_10_1016_j_anbehav_2021_09_009
crossref_primary_10_1063_5_0084302
crossref_primary_10_1111_mec_16963
crossref_primary_10_1016_j_yhbeh_2022_105243
crossref_primary_10_1515_phon_2023_0017
crossref_primary_10_1002_ece3_9805
crossref_primary_10_1007_s40279_023_01962_6
crossref_primary_10_1016_j_catena_2022_106843
crossref_primary_10_21511_imfi_21_1__2024_33
crossref_primary_10_3389_fnsys_2021_724805
crossref_primary_10_1016_j_bodyim_2024_101749
crossref_primary_10_1007_s10682_022_10209_1
crossref_primary_10_1523_JNEUROSCI_1786_21_2022
crossref_primary_10_1007_s00359_023_01628_8
crossref_primary_10_1242_jeb_245192
crossref_primary_10_1016_j_asr_2024_10_065
crossref_primary_10_4103_jmhhb_jmhhb_237_23
crossref_primary_10_3168_jds_2021_20158
crossref_primary_10_1080_13552600_2025_2471770
crossref_primary_10_3390_su14148462
crossref_primary_10_12688_openreseurope_19236_1
crossref_primary_10_1038_s41586_021_04269_6
crossref_primary_10_1249_MSS_0000000000003341
crossref_primary_10_1007_s10646_025_02856_1
crossref_primary_10_1080_00224499_2024_2435619
crossref_primary_10_1016_j_foodchem_2022_134565
crossref_primary_10_1038_s41386_023_01621_4
crossref_primary_10_1016_j_ajog_2024_05_049
crossref_primary_10_1111_acv_13001
crossref_primary_10_1186_s12974_024_03046_2
crossref_primary_10_1371_journal_pone_0282183
crossref_primary_10_1108_LHT_01_2023_0022
crossref_primary_10_1111_fare_12728
crossref_primary_10_37394_23207_2024_21_8
crossref_primary_10_1167_jov_24_13_11
crossref_primary_10_3390_soilsystems8010022
crossref_primary_10_1007_s00300_023_03199_5
crossref_primary_10_1242_jeb_245634
crossref_primary_10_1016_j_learninstruc_2025_102103
crossref_primary_10_1126_sciadv_ado4140
crossref_primary_10_1093_molbev_msae092
crossref_primary_10_3389_fendo_2023_1089190
crossref_primary_10_1016_j_heliyon_2025_e41787
crossref_primary_10_1093_g3journal_jkab307
crossref_primary_10_1016_j_marpol_2024_106574
crossref_primary_10_1080_02699931_2024_2434156
crossref_primary_10_1242_jeb_245093
crossref_primary_10_5194_acp_22_15223_2022
crossref_primary_10_1111_opo_13292
crossref_primary_10_3390_biology14030233
crossref_primary_10_3390_su16198476
crossref_primary_10_1007_s11524_024_00930_3
crossref_primary_10_1186_s40850_022_00150_9
crossref_primary_10_1038_s41467_023_43071_y
crossref_primary_10_1080_10926771_2024_2327002
crossref_primary_10_20982_tqmp_19_4_p302
crossref_primary_10_1016_j_ijedro_2024_100422
crossref_primary_10_1111_ejss_13258
crossref_primary_10_1111_fme_12800
crossref_primary_10_3389_fpsyg_2022_951757
crossref_primary_10_1007_s11136_022_03222_y
crossref_primary_10_3354_meps13957
crossref_primary_10_1016_j_biocon_2023_110021
crossref_primary_10_3390_microorganisms11112642
crossref_primary_10_3390_su151411403
crossref_primary_10_1016_j_ssaho_2024_101235
crossref_primary_10_1080_15374416_2024_2301770
crossref_primary_10_1089_jicm_2022_0789
crossref_primary_10_1016_j_imu_2024_101463
crossref_primary_10_1016_j_celrep_2023_113432
crossref_primary_10_51574_ijrer_v1i4_426
crossref_primary_10_1038_s41598_022_24325_z
crossref_primary_10_1123_ijspp_2021_0406
crossref_primary_10_1177_10790632231153635
crossref_primary_10_1186_s40359_023_01464_0
crossref_primary_10_1080_13803395_2023_2232122
crossref_primary_10_1186_s42408_024_00266_y
crossref_primary_10_1016_j_autcon_2024_105876
crossref_primary_10_1088_1361_6579_ad133a
crossref_primary_10_1080_09670874_2021_2019349
crossref_primary_10_1007_s40477_023_00820_5
crossref_primary_10_1007_s11251_025_09706_x
crossref_primary_10_1038_s41419_024_07249_6
crossref_primary_10_1038_s41562_023_01705_7
crossref_primary_10_52589_BJMMS_JAC4UKQH
crossref_primary_10_1167_iovs_65_14_9
crossref_primary_10_1038_s41467_022_32113_6
crossref_primary_10_1038_s41586_024_08580_w
crossref_primary_10_1186_s12910_022_00769_w
crossref_primary_10_3390_ijerph20054403
crossref_primary_10_2478_ejthr_2023_0013
crossref_primary_10_1038_s41598_022_19661_z
crossref_primary_10_1242_jeb_247962
crossref_primary_10_1371_journal_pone_0311860
crossref_primary_10_1016_j_anbehav_2024_06_009
crossref_primary_10_1016_j_frl_2025_107173
crossref_primary_10_1093_ornithology_ukae016
crossref_primary_10_1044_2024_JSLHR_24_00189
crossref_primary_10_1038_s41598_023_42156_4
crossref_primary_10_1007_s12144_024_06515_2
crossref_primary_10_3390_app13052784
crossref_primary_10_1177_03611981241263341
crossref_primary_10_1016_j_lingua_2024_103875
crossref_primary_10_1038_s41612_023_00454_8
crossref_primary_10_1016_j_wocn_2022_101191
crossref_primary_10_1007_s10288_023_00553_5
crossref_primary_10_1016_j_biocon_2024_110488
crossref_primary_10_3390_ijerph182010728
crossref_primary_10_1002_cpt_3194
crossref_primary_10_1038_s41467_024_52179_8
crossref_primary_10_1080_23311975_2024_2315668
crossref_primary_10_1016_j_ajic_2024_08_021
crossref_primary_10_1080_13215906_2023_2270447
crossref_primary_10_3168_jds_2024_24897
crossref_primary_10_1073_pnas_2321965121
crossref_primary_10_1016_j_anbehav_2023_04_013
crossref_primary_10_1016_j_ypmed_2023_107669
crossref_primary_10_1038_s41390_022_02424_x
crossref_primary_10_1016_j_eja_2022_126666
crossref_primary_10_3390_psycholint6040056
crossref_primary_10_1002_ijop_13246
crossref_primary_10_1016_j_scs_2023_104763
crossref_primary_10_1038_s41386_023_01592_6
crossref_primary_10_3390_vaccines10091501
crossref_primary_10_3390_jmse9080864
crossref_primary_10_1039_D2RP00055E
Cites_doi 10.1093/biomet/45.1-2.260
10.1017/CBO9780511790942
10.1111/2041-210X.13434
10.1093/biomet/40.3-4.318
10.1146/annurev.publhealth.23.100901.140546
10.1111/mec.14009
10.5735/086.046.0205
10.1007/978-0-387-87458-6
10.1093/biomet/37.3-4.256
10.1111/j.2041-210X.2010.00021.x
10.5812/ijem.3505
10.1080/00273170802285693
10.1007/s11356-015-4579-3
10.1111/brv.12315
10.7717/peerj.616
10.7717/peerj.1114
10.1177/0956797611417632
10.3389/fevo.2019.00142
10.1016/j.tree.2019.12.004
10.1046/j.1442-9993.2002.01233.x
10.3102/00346543042003237
10.1016/j.tree.2008.10.008
10.1093/biomet/49.1-2.93
10.1017/CBO9780511806384
10.62798/TZQQ1969
10.1038/s41562-018-0399-z
10.1111/j.2041-210X.2009.00001.x
10.1093/biomet/58.1.105
10.1371/journal.pone.0026785
10.1016/S0197-2456(98)00037-3
10.1002/cjs.10004
10.1016/j.anbehav.2014.05.003
10.2307/2532051
10.1007/s00265-010-1045-6
10.1371/journal.pcbi.1004961
10.1002/hyp.8438
10.1111/j.1420-9101.2009.01775.x
10.1890/10-0340.1
10.3758/BF03192961
10.18637/jss.v067.i01
10.1111/2041-210X.12552
10.1016/j.jesp.2015.10.012
10.1007/978-1-4419-0318-1
10.1186/s12983-019-0313-1
10.1111/2041-210X.12386
10.1016/0304-4076(94)01700-X
10.2307/1912934
10.7717/peerj.4794
10.1007/978-3-662-43550-2_9
10.1126/science.aac4716
10.1177/2515245918810511
10.3389/fevo.2019.00094
10.1101/819334
10.1016/j.jml.2012.11.001
10.1101/132753
10.1007/978-0-387-45972-1
10.2307/1400385
10.1037/a0028087
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
5PM
DOI 10.3758/s13428-021-01587-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Docstoc
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 2590
ExternalDocumentID PMC8613103
33963496
10_3758_s13428_021_01587_5
Genre Journal Article
GrantInformation_xml – fundername: Ludwig-Maximilians-Universität München (1024)
– fundername: ;
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
ABRTQ
K9.
7X8
5PM
ID FETCH-LOGICAL-c541t-e938ae06cb90b157f2741cf37faea59fa1b518d2d6e5ef0336ee1a432cce5ec43
IEDL.DBID U2A
ISSN 1554-3528
1554-351X
IngestDate Thu Aug 21 18:22:46 EDT 2025
Fri Jul 11 10:49:49 EDT 2025
Fri Jul 25 23:02:47 EDT 2025
Wed Feb 19 02:26:32 EST 2025
Thu Apr 24 23:05:30 EDT 2025
Tue Jul 01 01:05:57 EDT 2025
Fri Feb 21 02:47:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Hypothesis testing
Regression
Normality
Linear model
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e938ae06cb90b157f2741cf37faea59fa1b518d2d6e5ef0336ee1a432cce5ec43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6959-3033
OpenAccessLink https://link.springer.com/10.3758/s13428-021-01587-5
PMID 33963496
PQID 2602033626
PQPubID 976348
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8613103
proquest_miscellaneous_2524352853
proquest_journals_2602033626
pubmed_primary_33963496
crossref_primary_10_3758_s13428_021_01587_5
crossref_citationtrail_10_3758_s13428_021_01587_5
springer_journals_10_3758_s13428_021_01587_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. Berkeley Symp on Math Statist and Prob5.1, 221–233.
BatesDMächlerMBolkerBMWalkerSCFitting linear mixed-effects models using lme4J Stat Softw20156714810.18637/jss.v067.i01
Ramsey F, Schafer DW (2013) The statistical sleuth: a course in methods of data analysis. Brooks/Cole.
EbersoleCRAthertonOEBelangerALSkulborstadHMAllenJMBanksJBMany labs 3: evaluating participant pool quality across the academic semester via replicationJ Exp Soc Psychol201667688210.1016/j.jesp.2015.10.012
CochranWGThe comparison of percentages in matched samplesBiometrika19503725626610.1093/biomet/37.3-4.256
Osborne JW, Waters E (2002) Four assumptions of multiple regression that researchers should always test. Pract Assess Res Evaluation8, art2.
Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ2, e616.
ForstmeierWWagenmakersEJParkerTHDetecting and avoiding likely false-positive findings – a practical guideBiol Rev2017921941196810.1111/brv.12315
Ali MM, Sharma SC (1996) Robustness to nonnormality of regression F-tests. J Econom71, 175–205.
Harrison XA (2015) A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ3, e1114.
Good PI (2005) Permutation, parametric, and bootstrap tests of hypotheses. Springer.
Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman.
KniefUSchielzethHBackströmNHemmrich-StanisakGWittigMFrankeAAssociation mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populationsMol Ecol2017261285130510.1111/mec.14009
LinLIA concordance correlation-coefficient to evaluate reproducibilityBiometrics19894525526810.2307/2532051
Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, … Nosek BA (2018) Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv Methods Pract Psychol Sci1, 337–356.
Qiu W (2018) powerMediation: Power/Sample Size Calculation for Mediation Analysis. R package version 0.2.9.
Komsta L, Novomestky F (2015) moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14.
McGuinnessKAOf rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumptionAustral Ecol20022768168810.1046/j.1442-9993.2002.01233.x
BarrDJLevyRScheepersCTilyHJRandom effects structure for confirmatory hypothesis testing: keep it maximalJ Mem Lang20136825527810.1016/j.jml.2012.11.001
HayesAFCaiLUsing heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementationBehav Res Methods20073970972210.3758/BF03192961
Frank SA (2009) The common patterns of nature. J Evol Biol22, 1563–1585.
Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer.
WedderburnRWMQuasi-likelihood functions, generalized linear models, and the Gauss-Newton methodBiometrika197461439447
Young LJ, Campbell NL, Capuano GA (1999) Analysis of overdispersed count data from single-factor experiments: a comparative study. J Agric Biol Environ Stat4, 258–275.
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer.
PlaschkeSBullaMCruz-LópezMGómez del ÁngelSKüpperCNest initiation and flooding in response to season and semi-lunar spring tides in a ground-nesting shorebirdFront Zool201916e1510.1186/s12983-019-0313-1
Brunner J, Austin PC (2009) Inflation of type I error rate in multiple regression when independent variables are measured with error. Can J Stat37, 33–46.
Zuur AK, Ieno EN, Smith GM (2007) Analysing ecological data. Springer Science + Business Media, LLC.
Schönbrodt F (2012) Ruscio - Code for generating correlating variables with arbitrary distributions. https://gist.github.com/nicebread/4045717.
SchielzethHDingemanseNJNakagawaSWestneatDFAllegueHTeplitskyCRobustness of linear mixed-effects models to violations of distributional assumptionsMethods Ecol Evol2020111141115210.1111/2041-210X.13434
SimmonsJPNelsonLDSimonsohnUFalse-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significantPsychol Sci2011221359136610.1177/0956797611417632
CamererCFDreberAHolzmeisterFHoTHHuberJJohannessonMEvaluating the replicability of social science experiments in Nature and Science between 2010 and 2015Nat Hum Behav2018263764410.1038/s41562-018-0399-z
Arnqvist G (2020) Mixed models offer no freedom from degrees of freedom. Trends Ecol Evol35, 329–335.
Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Williams MN, Grajales CAG, Kurkiewicz D (2013) Assumptions of multiple regression: correcting two misconceptions. Pract Assess Res Evaluation18, art11.
BoxGEPWatsonGSRobustness to non-normality of regression testsBiometrika1962499310610.1093/biomet/49.1-2.93
Ives AR, Garland T (2014) Phylogenetic regression for binary dependent variables. In: Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi LZ), pp. 231–261. Springer, Berlin, Heidelberg.
RuscioJKaczetowWSimulating multivariate nonnormal data using an iterative algorithmMultivar Behav Res20084335538110.1080/00273170802285693
ÖnözBBayazitMBlock bootstrap for Mann–Kendall trend test of serially dependent dataHydrol Process2012263552356010.1002/hyp.8438
Fordyce JA, Gompert Z, Forister ML, Nice CC (2011) A hierarchical Bayesian approach to ecological count data: a flexible tool for ecologists. PLOS ONE6, e26785.
WhiteHA Heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticityEconometrica19804881783810.2307/1912934
Miller RG (1986) Beyond ANOVA: basics of applied statistics. John Wiley & Sons, Inc.
DupontWDPlummerWDPower and sample size calculations for studies involving linear regressionControl Clin Trials19981958960110.1016/S0197-2456(98)00037-3
Bliss CI (1967) Statistics in biology. McGraw-Hill.
Szöcs E, Schäfer RB (2015) Ecotoxicology is not normal. Environ Sci Pollut Res22, 13990–13999.
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, … Bolker BM (2017) Modeling zero-inflated count data with glmmTMB. bioRxiv, e132753.
SantemaPSchlichtEKempenaersBTesting the conditional cooperation model: what can we learn from parents taking turns when feeding offspring?Front Ecol Evol20197e9410.3389/fevo.2019.00094
Blair RC, Lawson SB (1982) Another look at the robustness of the product-moment correlation coefficient to population non-normality. Florida J Educ Res24, 11–15.
O'HaraRBHow to make models add up—a primer on GLMMsAnn Zool Fenn20094612413710.5735/086.046.0205
BisharaAJHittnerJBTesting the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approachesPsychol Methods20121739941710.1037/a0028087
Kass RE, Caffo BS, Davidian M, Meng XL, Yu B, Reid N (2016) Ten simple rules for effective statistical practice. PLOS Comput Biol12, e1004961.
Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annu Rev Public Health23, 151–169.
HackHRBAn empirical investigation into the distribution of the F-ratio in samples from two non-normal populationsBiometrika19584526026510.1093/biomet/45.1-2.260
PuthMTNeuhauserMRuxtonGDEffective use of Pearson's product-moment correlation coefficientAnim Behav20149318318910.1016/j.anbehav.2014.05.003
GhasemiAZahediaslSNormality tests for statistical analysis: a guide for non-statisticiansInt J Endocrinol Metab20121048648910.5812/ijem.3505
BolkerBMBrooksMEClarkCJGeangeSWPoulsenJRStevensMHHWhiteJSSGeneralized linear mixed models: a practical guide for ecology and evolutionTrends Ecol Evol20092412713510.1016/j.tree.2008.10.008
BoxGEPNon-normality and tests on variancesBiometrika19534031833510.1093/biomet/40.3-4.318
IhleMPickJLWinneyISNakagawaSBurkeTMeasuring up to reality: null models and analysis simulations to study parental coordination over provisioning offspringFront Ecol Evol20197e14210.3389/fevo.2019.00142
IvesARFor testing the significance of regression coefficients, go ahead and log-transform count dataMethods Ecol Evol2015682883510.1111/2041-210X.12386
Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press.
WartonDILyonsMStoklosaJIvesARThree points to consider when choosing a LM or GLM test for count dataMethods Ecol Evol2016788289010.1111/2041-210X.12552
Saravanan V, Berman GJ, Sober SJ (2020) Application of the hierarchical bootstrap to multi-level data in neuroscience. bioRxiv, e819334.
O'HaraRBKotzeDJDo not log-transform count dataMethods Ecol Evol2010111812210.1111/j.2041-210X.2010.00021.x
WartonDIHuiFKCThe arcsine is asinine: the analysis of proportions in ecologyEcology20119231010.1890/10-0340.1
Casella G, Berger RL (2002) Statistical inference. Duxbury Press.
Open Science CollaborationEstimating the reproducibility of psychological scienceScience2015349aac471610.1126/science.aac4716
Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CE, … Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ6, e4794.
MardiaKVThe effect of nonnormality on some multivariate tests and robustness to nonnormality in the linear modelBiometrika19715810512110.1093/biomet/58.1.105
FreckletonRPDealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement errorBehav Ecol Sociobiol2011659110110.1007/s00265-010-1045-6
Glass GV, Peckham PD, Sanders JR (1972) Consequences of failure to meet assumptions underlying the fixed effects analysis of variance and covariance. Rev Educ Res42, 237–288.
Osborne JW, Overbay A (2004) The power of outliers (and why researchers should ALWAYS check for them). Pract Assess Res Evaluation9, art6.
ZuurAFIenoENElphickCSA pr
1587_CR1
1587_CR42
Open Science Collaboration (1587_CR46) 2015; 349
1587_CR2
AF Hayes (1587_CR30) 2007; 39
P Santema (1587_CR56) 2019; 7
LI Lin (1587_CR38) 1989; 45
1587_CR48
AR Ives (1587_CR33) 2015; 6
1587_CR47
WD Dupont (1587_CR16) 1998; 19
J Ruscio (1587_CR55) 2008; 43
1587_CR7
1587_CR6
RB O'Hara (1587_CR44) 2010; 1
M Ihle (1587_CR32) 2019; 7
B Önöz (1587_CR45) 2012; 26
AJ Bishara (1587_CR5) 2012; 17
KV Mardia (1587_CR40) 1971; 58
RP Freckleton (1587_CR21) 2011; 65
1587_CR49
AF Zuur (1587_CR71) 2010; 1
1587_CR53
1587_CR52
1587_CR11
1587_CR54
1587_CR57
1587_CR12
1587_CR59
1587_CR14
DI Warton (1587_CR65) 2016; 7
D Bates (1587_CR4) 2015; 67
BM Bolker (1587_CR8) 2009; 24
H White (1587_CR67) 1980; 48
S Plaschke (1587_CR50) 2019; 16
WG Cochran (1587_CR15) 1950; 37
1587_CR18
CR Ebersole (1587_CR17) 2016; 67
1587_CR20
1587_CR63
1587_CR22
HRB Hack (1587_CR26) 1958; 45
1587_CR24
MT Puth (1587_CR51) 2014; 93
1587_CR68
1587_CR25
JP Simmons (1587_CR61) 2011; 22
1587_CR69
DJ Barr (1587_CR3) 2013; 68
1587_CR60
1587_CR62
H Schielzeth (1587_CR58) 2020; 11
CF Camerer (1587_CR13) 2018; 2
1587_CR28
A Ghasemi (1587_CR23) 2012; 10
1587_CR27
1587_CR29
DI Warton (1587_CR64) 2011; 92
GEP Box (1587_CR10) 1962; 49
1587_CR31
RWM Wedderburn (1587_CR66) 1974; 61
1587_CR35
1587_CR34
KA McGuinness (1587_CR41) 2002; 27
1587_CR37
1587_CR70
1587_CR72
GEP Box (1587_CR9) 1953; 40
RB O'Hara (1587_CR43) 2009; 46
1587_CR39
U Knief (1587_CR36) 2017; 26
W Forstmeier (1587_CR19) 2017; 92
References_xml – reference: Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ2, e616.
– reference: BoxGEPWatsonGSRobustness to non-normality of regression testsBiometrika1962499310610.1093/biomet/49.1-2.93
– reference: Komsta L, Novomestky F (2015) moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14.
– reference: Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
– reference: Ramsey F, Schafer DW (2013) The statistical sleuth: a course in methods of data analysis. Brooks/Cole.
– reference: O'HaraRBKotzeDJDo not log-transform count dataMethods Ecol Evol2010111812210.1111/j.2041-210X.2010.00021.x
– reference: Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman.
– reference: Schönbrodt F (2012) Ruscio - Code for generating correlating variables with arbitrary distributions. https://gist.github.com/nicebread/4045717.
– reference: KniefUSchielzethHBackströmNHemmrich-StanisakGWittigMFrankeAAssociation mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populationsMol Ecol2017261285130510.1111/mec.14009
– reference: ZuurAFIenoENElphickCSA protocol for data exploration to avoid common statistical problemsMethods Ecol Evol2010131410.1111/j.2041-210X.2009.00001.x
– reference: LinLIA concordance correlation-coefficient to evaluate reproducibilityBiometrics19894525526810.2307/2532051
– reference: Ives AR, Garland T (2014) Phylogenetic regression for binary dependent variables. In: Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi LZ), pp. 231–261. Springer, Berlin, Heidelberg.
– reference: Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, … Bolker BM (2017) Modeling zero-inflated count data with glmmTMB. bioRxiv, e132753.
– reference: ForstmeierWWagenmakersEJParkerTHDetecting and avoiding likely false-positive findings – a practical guideBiol Rev2017921941196810.1111/brv.12315
– reference: WartonDILyonsMStoklosaJIvesARThree points to consider when choosing a LM or GLM test for count dataMethods Ecol Evol2016788289010.1111/2041-210X.12552
– reference: MardiaKVThe effect of nonnormality on some multivariate tests and robustness to nonnormality in the linear modelBiometrika19715810512110.1093/biomet/58.1.105
– reference: WedderburnRWMQuasi-likelihood functions, generalized linear models, and the Gauss-Newton methodBiometrika197461439447
– reference: EbersoleCRAthertonOEBelangerALSkulborstadHMAllenJMBanksJBMany labs 3: evaluating participant pool quality across the academic semester via replicationJ Exp Soc Psychol201667688210.1016/j.jesp.2015.10.012
– reference: Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer.
– reference: SimmonsJPNelsonLDSimonsohnUFalse-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significantPsychol Sci2011221359136610.1177/0956797611417632
– reference: BoxGEPNon-normality and tests on variancesBiometrika19534031833510.1093/biomet/40.3-4.318
– reference: SchielzethHDingemanseNJNakagawaSWestneatDFAllegueHTeplitskyCRobustness of linear mixed-effects models to violations of distributional assumptionsMethods Ecol Evol2020111141115210.1111/2041-210X.13434
– reference: Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press.
– reference: Osborne JW, Waters E (2002) Four assumptions of multiple regression that researchers should always test. Pract Assess Res Evaluation8, art2.
– reference: Harrison XA (2015) A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ3, e1114.
– reference: Fordyce JA, Gompert Z, Forister ML, Nice CC (2011) A hierarchical Bayesian approach to ecological count data: a flexible tool for ecologists. PLOS ONE6, e26785.
– reference: Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CE, … Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ6, e4794.
– reference: Szöcs E, Schäfer RB (2015) Ecotoxicology is not normal. Environ Sci Pollut Res22, 13990–13999.
– reference: BisharaAJHittnerJBTesting the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approachesPsychol Methods20121739941710.1037/a0028087
– reference: WartonDIHuiFKCThe arcsine is asinine: the analysis of proportions in ecologyEcology20119231010.1890/10-0340.1
– reference: CamererCFDreberAHolzmeisterFHoTHHuberJJohannessonMEvaluating the replicability of social science experiments in Nature and Science between 2010 and 2015Nat Hum Behav2018263764410.1038/s41562-018-0399-z
– reference: FreckletonRPDealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement errorBehav Ecol Sociobiol2011659110110.1007/s00265-010-1045-6
– reference: HayesAFCaiLUsing heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementationBehav Res Methods20073970972210.3758/BF03192961
– reference: McGuinnessKAOf rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumptionAustral Ecol20022768168810.1046/j.1442-9993.2002.01233.x
– reference: Zuur AK, Ieno EN, Smith GM (2007) Analysing ecological data. Springer Science + Business Media, LLC.
– reference: BarrDJLevyRScheepersCTilyHJRandom effects structure for confirmatory hypothesis testing: keep it maximalJ Mem Lang20136825527810.1016/j.jml.2012.11.001
– reference: DupontWDPlummerWDPower and sample size calculations for studies involving linear regressionControl Clin Trials19981958960110.1016/S0197-2456(98)00037-3
– reference: Williams MN, Grajales CAG, Kurkiewicz D (2013) Assumptions of multiple regression: correcting two misconceptions. Pract Assess Res Evaluation18, art11.
– reference: BatesDMächlerMBolkerBMWalkerSCFitting linear mixed-effects models using lme4J Stat Softw20156714810.18637/jss.v067.i01
– reference: CochranWGThe comparison of percentages in matched samplesBiometrika19503725626610.1093/biomet/37.3-4.256
– reference: Qiu W (2018) powerMediation: Power/Sample Size Calculation for Mediation Analysis. R package version 0.2.9.
– reference: Kass RE, Caffo BS, Davidian M, Meng XL, Yu B, Reid N (2016) Ten simple rules for effective statistical practice. PLOS Comput Biol12, e1004961.
– reference: Open Science CollaborationEstimating the reproducibility of psychological scienceScience2015349aac471610.1126/science.aac4716
– reference: PuthMTNeuhauserMRuxtonGDEffective use of Pearson's product-moment correlation coefficientAnim Behav20149318318910.1016/j.anbehav.2014.05.003
– reference: Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, … Nosek BA (2018) Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv Methods Pract Psychol Sci1, 337–356.
– reference: WhiteHA Heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticityEconometrica19804881783810.2307/1912934
– reference: SantemaPSchlichtEKempenaersBTesting the conditional cooperation model: what can we learn from parents taking turns when feeding offspring?Front Ecol Evol20197e9410.3389/fevo.2019.00094
– reference: Frank SA (2009) The common patterns of nature. J Evol Biol22, 1563–1585.
– reference: ÖnözBBayazitMBlock bootstrap for Mann–Kendall trend test of serially dependent dataHydrol Process2012263552356010.1002/hyp.8438
– reference: Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annu Rev Public Health23, 151–169.
– reference: Osborne JW, Overbay A (2004) The power of outliers (and why researchers should ALWAYS check for them). Pract Assess Res Evaluation9, art6.
– reference: HackHRBAn empirical investigation into the distribution of the F-ratio in samples from two non-normal populationsBiometrika19584526026510.1093/biomet/45.1-2.260
– reference: IvesARFor testing the significance of regression coefficients, go ahead and log-transform count dataMethods Ecol Evol2015682883510.1111/2041-210X.12386
– reference: Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer.
– reference: Casella G, Berger RL (2002) Statistical inference. Duxbury Press.
– reference: GhasemiAZahediaslSNormality tests for statistical analysis: a guide for non-statisticiansInt J Endocrinol Metab20121048648910.5812/ijem.3505
– reference: Good PI (2005) Permutation, parametric, and bootstrap tests of hypotheses. Springer.
– reference: Young LJ, Campbell NL, Capuano GA (1999) Analysis of overdispersed count data from single-factor experiments: a comparative study. J Agric Biol Environ Stat4, 258–275.
– reference: Bliss CI (1967) Statistics in biology. McGraw-Hill.
– reference: PlaschkeSBullaMCruz-LópezMGómez del ÁngelSKüpperCNest initiation and flooding in response to season and semi-lunar spring tides in a ground-nesting shorebirdFront Zool201916e1510.1186/s12983-019-0313-1
– reference: Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. Berkeley Symp on Math Statist and Prob5.1, 221–233.
– reference: Ali MM, Sharma SC (1996) Robustness to nonnormality of regression F-tests. J Econom71, 175–205.
– reference: RuscioJKaczetowWSimulating multivariate nonnormal data using an iterative algorithmMultivar Behav Res20084335538110.1080/00273170802285693
– reference: Blair RC, Lawson SB (1982) Another look at the robustness of the product-moment correlation coefficient to population non-normality. Florida J Educ Res24, 11–15.
– reference: Glass GV, Peckham PD, Sanders JR (1972) Consequences of failure to meet assumptions underlying the fixed effects analysis of variance and covariance. Rev Educ Res42, 237–288.
– reference: BolkerBMBrooksMEClarkCJGeangeSWPoulsenJRStevensMHHWhiteJSSGeneralized linear mixed models: a practical guide for ecology and evolutionTrends Ecol Evol20092412713510.1016/j.tree.2008.10.008
– reference: Arnqvist G (2020) Mixed models offer no freedom from degrees of freedom. Trends Ecol Evol35, 329–335.
– reference: O'HaraRBHow to make models add up—a primer on GLMMsAnn Zool Fenn20094612413710.5735/086.046.0205
– reference: Saravanan V, Berman GJ, Sober SJ (2020) Application of the hierarchical bootstrap to multi-level data in neuroscience. bioRxiv, e819334.
– reference: Brunner J, Austin PC (2009) Inflation of type I error rate in multiple regression when independent variables are measured with error. Can J Stat37, 33–46.
– reference: IhleMPickJLWinneyISNakagawaSBurkeTMeasuring up to reality: null models and analysis simulations to study parental coordination over provisioning offspringFront Ecol Evol20197e14210.3389/fevo.2019.00142
– reference: Miller RG (1986) Beyond ANOVA: basics of applied statistics. John Wiley & Sons, Inc.
– volume: 45
  start-page: 260
  year: 1958
  ident: 1587_CR26
  publication-title: Biometrika
  doi: 10.1093/biomet/45.1-2.260
– ident: 1587_CR22
  doi: 10.1017/CBO9780511790942
– volume: 11
  start-page: 1141
  year: 2020
  ident: 1587_CR58
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13434
– volume: 40
  start-page: 318
  year: 1953
  ident: 1587_CR9
  publication-title: Biometrika
  doi: 10.1093/biomet/40.3-4.318
– volume: 61
  start-page: 439
  year: 1974
  ident: 1587_CR66
  publication-title: Biometrika
– ident: 1587_CR39
  doi: 10.1146/annurev.publhealth.23.100901.140546
– volume: 26
  start-page: 1285
  year: 2017
  ident: 1587_CR36
  publication-title: Mol Ecol
  doi: 10.1111/mec.14009
– volume: 46
  start-page: 124
  year: 2009
  ident: 1587_CR43
  publication-title: Ann Zool Fenn
  doi: 10.5735/086.046.0205
– ident: 1587_CR70
  doi: 10.1007/978-0-387-87458-6
– volume: 37
  start-page: 256
  year: 1950
  ident: 1587_CR15
  publication-title: Biometrika
  doi: 10.1093/biomet/37.3-4.256
– volume: 1
  start-page: 118
  year: 2010
  ident: 1587_CR44
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2010.00021.x
– volume: 10
  start-page: 486
  year: 2012
  ident: 1587_CR23
  publication-title: Int J Endocrinol Metab
  doi: 10.5812/ijem.3505
– volume: 43
  start-page: 355
  year: 2008
  ident: 1587_CR55
  publication-title: Multivar Behav Res
  doi: 10.1080/00273170802285693
– ident: 1587_CR25
– ident: 1587_CR63
  doi: 10.1007/s11356-015-4579-3
– volume: 92
  start-page: 1941
  year: 2017
  ident: 1587_CR19
  publication-title: Biol Rev
  doi: 10.1111/brv.12315
– ident: 1587_CR27
  doi: 10.7717/peerj.616
– ident: 1587_CR48
– ident: 1587_CR28
  doi: 10.7717/peerj.1114
– volume: 22
  start-page: 1359
  year: 2011
  ident: 1587_CR61
  publication-title: Psychol Sci
  doi: 10.1177/0956797611417632
– ident: 1587_CR37
– volume: 7
  start-page: e142
  year: 2019
  ident: 1587_CR32
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2019.00142
– ident: 1587_CR2
  doi: 10.1016/j.tree.2019.12.004
– ident: 1587_CR54
– volume: 27
  start-page: 681
  year: 2002
  ident: 1587_CR41
  publication-title: Austral Ecol
  doi: 10.1046/j.1442-9993.2002.01233.x
– ident: 1587_CR24
  doi: 10.3102/00346543042003237
– volume: 24
  start-page: 127
  year: 2009
  ident: 1587_CR8
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2008.10.008
– ident: 1587_CR68
– volume: 49
  start-page: 93
  year: 1962
  ident: 1587_CR10
  publication-title: Biometrika
  doi: 10.1093/biomet/49.1-2.93
– ident: 1587_CR47
– ident: 1587_CR53
  doi: 10.1017/CBO9780511806384
– ident: 1587_CR6
  doi: 10.62798/TZQQ1969
– ident: 1587_CR59
– volume: 2
  start-page: 637
  year: 2018
  ident: 1587_CR13
  publication-title: Nat Hum Behav
  doi: 10.1038/s41562-018-0399-z
– volume: 1
  start-page: 3
  year: 2010
  ident: 1587_CR71
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2009.00001.x
– volume: 58
  start-page: 105
  year: 1971
  ident: 1587_CR40
  publication-title: Biometrika
  doi: 10.1093/biomet/58.1.105
– ident: 1587_CR18
  doi: 10.1371/journal.pone.0026785
– volume: 19
  start-page: 589
  year: 1998
  ident: 1587_CR16
  publication-title: Control Clin Trials
  doi: 10.1016/S0197-2456(98)00037-3
– ident: 1587_CR12
  doi: 10.1002/cjs.10004
– volume: 93
  start-page: 183
  year: 2014
  ident: 1587_CR51
  publication-title: Anim Behav
  doi: 10.1016/j.anbehav.2014.05.003
– volume: 45
  start-page: 255
  year: 1989
  ident: 1587_CR38
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 65
  start-page: 91
  year: 2011
  ident: 1587_CR21
  publication-title: Behav Ecol Sociobiol
  doi: 10.1007/s00265-010-1045-6
– ident: 1587_CR35
  doi: 10.1371/journal.pcbi.1004961
– volume: 26
  start-page: 3552
  year: 2012
  ident: 1587_CR45
  publication-title: Hydrol Process
  doi: 10.1002/hyp.8438
– ident: 1587_CR20
  doi: 10.1111/j.1420-9101.2009.01775.x
– ident: 1587_CR42
– ident: 1587_CR7
– volume: 92
  start-page: 3
  year: 2011
  ident: 1587_CR64
  publication-title: Ecology
  doi: 10.1890/10-0340.1
– volume: 39
  start-page: 709
  year: 2007
  ident: 1587_CR30
  publication-title: Behav Res Methods
  doi: 10.3758/BF03192961
– volume: 67
  start-page: 1
  year: 2015
  ident: 1587_CR4
  publication-title: J Stat Softw
  doi: 10.18637/jss.v067.i01
– volume: 7
  start-page: 882
  year: 2016
  ident: 1587_CR65
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12552
– volume: 67
  start-page: 68
  year: 2016
  ident: 1587_CR17
  publication-title: J Exp Soc Psychol
  doi: 10.1016/j.jesp.2015.10.012
– ident: 1587_CR49
  doi: 10.1007/978-1-4419-0318-1
– volume: 16
  start-page: e15
  year: 2019
  ident: 1587_CR50
  publication-title: Front Zool
  doi: 10.1186/s12983-019-0313-1
– ident: 1587_CR52
– volume: 6
  start-page: 828
  year: 2015
  ident: 1587_CR33
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12386
– ident: 1587_CR14
– ident: 1587_CR31
– ident: 1587_CR1
  doi: 10.1016/0304-4076(94)01700-X
– volume: 48
  start-page: 817
  year: 1980
  ident: 1587_CR67
  publication-title: Econometrica
  doi: 10.2307/1912934
– ident: 1587_CR29
  doi: 10.7717/peerj.4794
– ident: 1587_CR34
  doi: 10.1007/978-3-662-43550-2_9
– volume: 349
  start-page: aac4716
  year: 2015
  ident: 1587_CR46
  publication-title: Science
  doi: 10.1126/science.aac4716
– ident: 1587_CR60
  doi: 10.1177/2515245918810511
– volume: 7
  start-page: e94
  year: 2019
  ident: 1587_CR56
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2019.00094
– ident: 1587_CR57
  doi: 10.1101/819334
– volume: 68
  start-page: 255
  year: 2013
  ident: 1587_CR3
  publication-title: J Mem Lang
  doi: 10.1016/j.jml.2012.11.001
– ident: 1587_CR11
  doi: 10.1101/132753
– ident: 1587_CR72
  doi: 10.1007/978-0-387-45972-1
– ident: 1587_CR62
– ident: 1587_CR69
  doi: 10.2307/1400385
– volume: 17
  start-page: 399
  year: 2012
  ident: 1587_CR5
  publication-title: Psychol Methods
  doi: 10.1037/a0028087
SSID ssj0038214
Score 2.7008448
Snippet When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2576
SubjectTerms Behavioral Science and Psychology
Cognitive Psychology
Data Interpretation, Statistical
Humans
Monte Carlo Method
Normal Distribution
Parameter estimation
Psychology
Reproducibility of Results
Sample Size
Title Violating the normality assumption may be the lesser of two evils
URI https://link.springer.com/article/10.3758/s13428-021-01587-5
https://www.ncbi.nlm.nih.gov/pubmed/33963496
https://www.proquest.com/docview/2602033626
https://www.proquest.com/docview/2524352853
https://pubmed.ncbi.nlm.nih.gov/PMC8613103
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71cekFAeWx0K6MxI1GxK_YOa5WfQgEJxa1p8h2HKi0TaruVqj_npm8qm1VJC45xOPEmZmMv5HHnwE-isxzU3mbGOuyBPEtT6yNNlHO8JJHrkJK-52_fc_OFurLuT7vN4Wthmr3YUmyjdSUVyKo_bziUhGbsqD0V-OvobdhV1Pujl68ELMh_koruOq2xzzRb3MKeoQrH5dHPlgjbaeek-fwrMeMbNYZ-QVsxfol7I2h624fZj8vGypqq38xBHSsJiBK-JohNEZ7kfLZlbtjPrbty5YwnDUVW_9pGE6Ny9UrWJwc_5ifJf3hCEnQiq-TmEvrYpoFn6eea1MRD02opKlcdDqvHPea21KUWdSxSqXMYuROSREC3ghKvoaduqnjW2BeeRdLE-iqiAArcq9CXvFSa8OjmQAf9FWEnjmcDrBYFphBkI6LTscF6rhodVzoCXwa-1x3vBn_lD4YzFD0_9CqwExL0LhFNoEPYzN6Py1puDo2tyijhSJ-Gi0n8Kaz2vg6KTG4qBx7mw17jgLErL3ZUl_-bhm2LYIcnuIzjwbL3w_r6a9493_i72FPkFe2tTEHsLO-uY2HiHDWfgq7s9OLr8dT2J5n82nr3n8BbmX3Pw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe6AXVN5LCxiJG0TEr9g5ViuqbWl7alFvlu1MoNKSIHYr1H_fmSSbslRF4pJDPE7sGT--0Yw_M_ZeFlHYOrrMulBkiG9F5hy4TAcrKgFCp5zOO5-cFrNzfXRhLgaaHDoL80f8XiGU_bQQShOHsiSn1-CEMA_YlkZPmdL3psV0teoqJ4XuD8XcU29947mDJu8mRf4VGe02nIMd9mhAiny_N-1jtgHNE7Y9LljXT9n-18uWUtmabxxhHG8IfhKq5giI0Uqkcv4jXPMIXfm8ownnbc2Xv1uOG-J88YydH3w-m86y4UqELBktlhmUygXIixTLPApja2KfSbWydYBgyjqIaISrZFWAgTpXqgAQQSuZEr5IWj1nm03bwEvGo44BKpvoqYn2CkTUqaxFZYwVYCdMrPTl08AXTtdWzD36DaRj3-vYo459p2NvJuzDWOdnz5bxT-m9lRn8MHMWHv0rSe2WxYS9G4txzFMgIzTQXqGMkZpYaYyasBe91cbfKYVLii6xtl2z5yhAfNrrJc3l945X2yG0ETl-8-PK8rfNur8Xr_5P_C17ODs7OfbHh6dfdtm2pBHaZcfssc3lryt4jRhnGd90g_sGjS3zoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSKgXxJstBYzEDaLGr9g5Vgur8qo4UNSbZTt2qbQkVTcV6r9nxtkElqpIXHKIx4kzE9vfaGY-E_KKV57p5E2hjasKwLesMCaaQjrNGhaZDCXWO38-rA6O5IdjdfxHFX_Odh9DkkNNA7I0tf3eWZNwigsAuHsrJiQyK3N0hRVME3WT3AJPJQdq59V8XIuF4UwOpTLX9Nvcjq5gzKupkn_FS_M2tLhL7qzxI90fDH6P3IjtfbI9LWOXD8j-t9MOE9zaEwrgjrYIShFrU4DJYDs0BP3hLqmPuX2ZycNpl2j_s6OwTS5XD8nR4t3X-UGxPiihCEqyvoi1MC6WVfB16ZnSCTlpQhI6uehUnRzzipmGN1VUMZVCVDEyJwUPAW4EKR6RrbZr4xNCvfQuNjrgVSIZVmRehjqxRinNop4RNurLhjWLOB5msbTgTaCO7aBjCzq2WcdWzcjrqc_ZwKHxT-nd0Qx2PZ9WFrwujuPm1Yy8nJphJmB4w7WxuwAZxSVy1SgxI48Hq02vEwIWGllDb71hz0kAWbY3W9rT75lt2wDgYSU8881o-d_Duv4rdv5P_AW5_eXtwn56f_jxKdnm-IPmlJldstWfX8RnAHx6_zz_278AmQT75w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Violating+the+normality+assumption+may+be+the+lesser+of+two+evils&rft.jtitle=Behavior+research+methods&rft.au=Knief+Ulrich&rft.au=stmeier%2C+Wolfgang&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=1554-3528&rft.volume=53&rft.issue=6&rft.spage=2576&rft.epage=2590&rft_id=info:doi/10.3758%2Fs13428-021-01587-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon