Violating the normality assumption may be the lesser of two evils
When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and c...
Saved in:
Published in | Behavior research methods Vol. 53; no. 6; pp. 2576 - 2590 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that
p
values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data. |
---|---|
AbstractList | When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data. When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data. When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data.When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data. |
Author | Forstmeier, Wolfgang Knief, Ulrich |
Author_xml | – sequence: 1 givenname: Ulrich orcidid: 0000-0001-6959-3033 surname: Knief fullname: Knief, Ulrich email: knief@biologie.uni-muenchen.de organization: Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich – sequence: 2 givenname: Wolfgang surname: Forstmeier fullname: Forstmeier, Wolfgang organization: Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33963496$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9P3DAQxS1EVWDbL8ChisSll7T-mzgXJIQoVELiQnu1HO9kMXLsre2A9tvjsECBAydbnt8bv5l3gHZ98IDQIcE_WCvkz0QYp7LGlNSYCNnWYgftEyF4zQSVu6_ue-ggpVuMmaSEf0Z7jHUN412zj07-2uB0tn5V5RuofIijdjZvKp3SNK6zDb4a9abq4bHuICWIVRiqfB8quLMufUGfBu0SfH06F-jPr7Pr04v68ur89-nJZW0EJ7mGjkkNuDF9h3si2oG2nJiBtYMGLbpBk14QuaTLBgQMmLEGgGjOqDHlwXC2QMfbvuupH2FpwOeonVpHO-q4UUFb9bbi7Y1ahTslG8JIabhA358axPBvgpTVaJMB57SHMCVFBeXzssSMHr1Db8MUfRlP0QbT2R1tCvXttaMXK8_bLQDdAiaGlCIMLwjBao5QbSNUJUL1GKESRSTfiYzNeg6iTGXdx1K2labyj19B_G_7A9UDhgKw0Q |
CitedBy_id | crossref_primary_10_1080_1463922X_2024_2446848 crossref_primary_10_1109_ACCESS_2022_3189017 crossref_primary_10_1007_s00784_024_05908_8 crossref_primary_10_1136_jech_2023_220500 crossref_primary_10_1111_1744_7917_13406 crossref_primary_10_3390_metabo12090783 crossref_primary_10_1016_j_erss_2022_102791 crossref_primary_10_3389_fmars_2023_949263 crossref_primary_10_5194_ascmo_10_143_2024 crossref_primary_10_1162_imag_a_00082 crossref_primary_10_24017_science_2025_1_1 crossref_primary_10_7202_1094897ar crossref_primary_10_1007_s13239_023_00671_5 crossref_primary_10_1093_occmed_kqad090 crossref_primary_10_1145_3688832 crossref_primary_10_1080_00224499_2023_2174248 crossref_primary_10_1038_s41593_024_01586_7 crossref_primary_10_3390_land14040690 crossref_primary_10_1080_09593985_2023_2204962 crossref_primary_10_1371_journal_pone_0294555 crossref_primary_10_1038_s41467_021_26682_1 crossref_primary_10_3390_rs14061482 crossref_primary_10_3389_fnagi_2023_1299451 crossref_primary_10_3390_ijerph19138223 crossref_primary_10_3758_s13428_023_02253_8 crossref_primary_10_3390_buildings15010084 crossref_primary_10_1016_j_bodyim_2024_101696 crossref_primary_10_1016_j_jamda_2021_09_003 crossref_primary_10_1016_j_lmot_2024_101962 crossref_primary_10_1080_00273171_2023_2254769 crossref_primary_10_1016_j_bodyim_2023_101637 crossref_primary_10_1007_s11252_023_01427_8 crossref_primary_10_1016_j_jadr_2022_100442 crossref_primary_10_1016_j_atherosclerosis_2024_117505 crossref_primary_10_1210_clinem_dgac590 crossref_primary_10_1186_s12955_021_01866_x crossref_primary_10_1016_j_jml_2024_104510 crossref_primary_10_1002_vetr_4534 crossref_primary_10_3390_nu15132972 crossref_primary_10_1155_2023_4082587 crossref_primary_10_1111_1365_2656_13880 crossref_primary_10_1021_acs_langmuir_4c01786 crossref_primary_10_1007_s12144_022_04124_5 crossref_primary_10_1111_ibi_13186 crossref_primary_10_1080_14763141_2024_2393188 crossref_primary_10_1038_s44321_024_00119_w crossref_primary_10_1016_j_conctc_2023_101119 crossref_primary_10_1016_j_neucom_2025_129611 crossref_primary_10_1242_jeb_244147 crossref_primary_10_1002_tafs_10457 crossref_primary_10_3389_fnbot_2024_1339000 crossref_primary_10_1007_s10071_024_01895_1 crossref_primary_10_1016_j_biortech_2024_131003 crossref_primary_10_1007_s00213_023_06502_8 crossref_primary_10_1007_s10926_024_10220_z crossref_primary_10_1007_s11145_022_10321_2 crossref_primary_10_1016_j_psyneuen_2023_106372 crossref_primary_10_1186_s12874_024_02442_9 crossref_primary_10_1016_j_cbpra_2024_08_004 crossref_primary_10_1187_cbe_21_06_0167 crossref_primary_10_1093_gerona_glae290 crossref_primary_10_1007_s41465_023_00279_6 crossref_primary_10_1108_BPMJ_05_2024_0360 crossref_primary_10_1093_beheco_arac044 crossref_primary_10_1177_02134748241304921 crossref_primary_10_1038_s41598_024_62210_z crossref_primary_10_2174_0122103155302871240527094915 crossref_primary_10_51867_ajernet_5_1_35 crossref_primary_10_1080_13811118_2023_2265433 crossref_primary_10_1111_rec_13876 crossref_primary_10_1007_s10804_024_09495_6 crossref_primary_10_1080_03610918_2022_2053863 crossref_primary_10_3389_fnins_2022_889211 crossref_primary_10_1016_j_enpol_2023_113683 crossref_primary_10_3390_s23156921 crossref_primary_10_1097_AUD_0000000000001499 crossref_primary_10_3390_nu16121795 crossref_primary_10_3390_s24175659 crossref_primary_10_1186_s40101_023_00343_2 crossref_primary_10_1093_aob_mcac028 crossref_primary_10_1002_soej_12666 crossref_primary_10_3389_fpsyg_2022_911854 crossref_primary_10_1111_mms_12919 crossref_primary_10_3390_ijerph19137684 crossref_primary_10_1057_s41599_023_01714_x crossref_primary_10_1007_s10798_024_09909_2 crossref_primary_10_1002_ece3_70942 crossref_primary_10_3390_rel14060797 crossref_primary_10_1093_evolut_qpae131 crossref_primary_10_1371_journal_pone_0281785 crossref_primary_10_1016_j_molbiopara_2022_111458 crossref_primary_10_1016_j_cbpa_2024_111752 crossref_primary_10_36096_ijbes_v6i5_588 crossref_primary_10_14746_ssllt_42376 crossref_primary_10_3390_jcm13092565 crossref_primary_10_7717_peerj_cs_2286 crossref_primary_10_1007_s10021_023_00876_8 crossref_primary_10_51847_LSsHBTTTHg crossref_primary_10_1016_j_chb_2025_108647 crossref_primary_10_1080_02640414_2023_2301143 crossref_primary_10_3389_fninf_2021_738342 crossref_primary_10_5327_Z217694781043 crossref_primary_10_1080_09291016_2022_2081400 crossref_primary_10_1016_j_enbuild_2024_114934 crossref_primary_10_3390_ijerph20176711 crossref_primary_10_1002_ecy_4505 crossref_primary_10_3390_su16156372 crossref_primary_10_3758_s13428_023_02072_x crossref_primary_10_1038_s41562_023_01687_6 crossref_primary_10_1177_01461672231224991 crossref_primary_10_1080_24733938_2024_2325135 crossref_primary_10_1007_s10964_024_02096_2 crossref_primary_10_1167_jov_24_2_14 crossref_primary_10_1007_s11165_024_10190_5 crossref_primary_10_1088_2515_7620_acda80 crossref_primary_10_5253_arde_2022_a6 crossref_primary_10_1016_j_jbusres_2022_04_055 crossref_primary_10_1007_s11136_024_03682_4 crossref_primary_10_1523_ENEURO_0204_22_2023 crossref_primary_10_1038_s42003_024_06945_5 crossref_primary_10_1016_j_beth_2024_06_004 crossref_primary_10_1038_s41598_024_56840_6 crossref_primary_10_5937_ekonhor2301003A crossref_primary_10_1016_j_aca_2024_342444 crossref_primary_10_1177_10464964231185748 crossref_primary_10_3389_fanim_2024_1423814 crossref_primary_10_1371_journal_pgen_1010901 crossref_primary_10_30935_jdet_14039 crossref_primary_10_1186_s12913_024_10681_1 crossref_primary_10_23887_jp2_v6i2_58885 crossref_primary_10_3390_math10214137 crossref_primary_10_1002_wlb3_01380 crossref_primary_10_1016_j_paid_2021_111112 crossref_primary_10_1364_BOE_538141 crossref_primary_10_1371_journal_pone_0276665 crossref_primary_10_1016_j_jecp_2025_106202 crossref_primary_10_1249_MSS_0000000000003219 crossref_primary_10_3233_JAD_231047 crossref_primary_10_1016_j_jclepro_2023_139587 crossref_primary_10_3847_1538_4357_ac85ba crossref_primary_10_1080_08946566_2023_2236786 crossref_primary_10_3390_jzbg4040053 crossref_primary_10_1093_aobpla_plae058 crossref_primary_10_32615_ps_2023_018 crossref_primary_10_1109_TAFFC_2023_3272031 crossref_primary_10_1007_s10342_024_01730_9 crossref_primary_10_1080_15299732_2024_2326511 crossref_primary_10_1080_13803611_2025_2475863 crossref_primary_10_3934_mbe_2024341 crossref_primary_10_1002_oa_3326 crossref_primary_10_1093_police_paae031 crossref_primary_10_1016_j_jhydrol_2021_126834 crossref_primary_10_1097_NPT_0000000000000403 crossref_primary_10_1080_08039488_2022_2089231 crossref_primary_10_1002_tea_21947 crossref_primary_10_3390_ijerph182111091 crossref_primary_10_1016_j_whi_2023_05_004 crossref_primary_10_25259_ijmr_453_22 crossref_primary_10_1371_journal_pone_0290467 crossref_primary_10_1080_15614263_2024_2308918 crossref_primary_10_1071_WF23182 crossref_primary_10_1016_j_applanim_2021_105507 crossref_primary_10_1002_jor_25268 crossref_primary_10_1016_j_anbehav_2021_09_009 crossref_primary_10_1063_5_0084302 crossref_primary_10_1111_mec_16963 crossref_primary_10_1016_j_yhbeh_2022_105243 crossref_primary_10_1515_phon_2023_0017 crossref_primary_10_1002_ece3_9805 crossref_primary_10_1007_s40279_023_01962_6 crossref_primary_10_1016_j_catena_2022_106843 crossref_primary_10_21511_imfi_21_1__2024_33 crossref_primary_10_3389_fnsys_2021_724805 crossref_primary_10_1016_j_bodyim_2024_101749 crossref_primary_10_1007_s10682_022_10209_1 crossref_primary_10_1523_JNEUROSCI_1786_21_2022 crossref_primary_10_1007_s00359_023_01628_8 crossref_primary_10_1242_jeb_245192 crossref_primary_10_1016_j_asr_2024_10_065 crossref_primary_10_4103_jmhhb_jmhhb_237_23 crossref_primary_10_3168_jds_2021_20158 crossref_primary_10_1080_13552600_2025_2471770 crossref_primary_10_3390_su14148462 crossref_primary_10_12688_openreseurope_19236_1 crossref_primary_10_1038_s41586_021_04269_6 crossref_primary_10_1249_MSS_0000000000003341 crossref_primary_10_1007_s10646_025_02856_1 crossref_primary_10_1080_00224499_2024_2435619 crossref_primary_10_1016_j_foodchem_2022_134565 crossref_primary_10_1038_s41386_023_01621_4 crossref_primary_10_1016_j_ajog_2024_05_049 crossref_primary_10_1111_acv_13001 crossref_primary_10_1186_s12974_024_03046_2 crossref_primary_10_1371_journal_pone_0282183 crossref_primary_10_1108_LHT_01_2023_0022 crossref_primary_10_1111_fare_12728 crossref_primary_10_37394_23207_2024_21_8 crossref_primary_10_1167_jov_24_13_11 crossref_primary_10_3390_soilsystems8010022 crossref_primary_10_1007_s00300_023_03199_5 crossref_primary_10_1242_jeb_245634 crossref_primary_10_1016_j_learninstruc_2025_102103 crossref_primary_10_1126_sciadv_ado4140 crossref_primary_10_1093_molbev_msae092 crossref_primary_10_3389_fendo_2023_1089190 crossref_primary_10_1016_j_heliyon_2025_e41787 crossref_primary_10_1093_g3journal_jkab307 crossref_primary_10_1016_j_marpol_2024_106574 crossref_primary_10_1080_02699931_2024_2434156 crossref_primary_10_1242_jeb_245093 crossref_primary_10_5194_acp_22_15223_2022 crossref_primary_10_1111_opo_13292 crossref_primary_10_3390_biology14030233 crossref_primary_10_3390_su16198476 crossref_primary_10_1007_s11524_024_00930_3 crossref_primary_10_1186_s40850_022_00150_9 crossref_primary_10_1038_s41467_023_43071_y crossref_primary_10_1080_10926771_2024_2327002 crossref_primary_10_20982_tqmp_19_4_p302 crossref_primary_10_1016_j_ijedro_2024_100422 crossref_primary_10_1111_ejss_13258 crossref_primary_10_1111_fme_12800 crossref_primary_10_3389_fpsyg_2022_951757 crossref_primary_10_1007_s11136_022_03222_y crossref_primary_10_3354_meps13957 crossref_primary_10_1016_j_biocon_2023_110021 crossref_primary_10_3390_microorganisms11112642 crossref_primary_10_3390_su151411403 crossref_primary_10_1016_j_ssaho_2024_101235 crossref_primary_10_1080_15374416_2024_2301770 crossref_primary_10_1089_jicm_2022_0789 crossref_primary_10_1016_j_imu_2024_101463 crossref_primary_10_1016_j_celrep_2023_113432 crossref_primary_10_51574_ijrer_v1i4_426 crossref_primary_10_1038_s41598_022_24325_z crossref_primary_10_1123_ijspp_2021_0406 crossref_primary_10_1177_10790632231153635 crossref_primary_10_1186_s40359_023_01464_0 crossref_primary_10_1080_13803395_2023_2232122 crossref_primary_10_1186_s42408_024_00266_y crossref_primary_10_1016_j_autcon_2024_105876 crossref_primary_10_1088_1361_6579_ad133a crossref_primary_10_1080_09670874_2021_2019349 crossref_primary_10_1007_s40477_023_00820_5 crossref_primary_10_1007_s11251_025_09706_x crossref_primary_10_1038_s41419_024_07249_6 crossref_primary_10_1038_s41562_023_01705_7 crossref_primary_10_52589_BJMMS_JAC4UKQH crossref_primary_10_1167_iovs_65_14_9 crossref_primary_10_1038_s41467_022_32113_6 crossref_primary_10_1038_s41586_024_08580_w crossref_primary_10_1186_s12910_022_00769_w crossref_primary_10_3390_ijerph20054403 crossref_primary_10_2478_ejthr_2023_0013 crossref_primary_10_1038_s41598_022_19661_z crossref_primary_10_1242_jeb_247962 crossref_primary_10_1371_journal_pone_0311860 crossref_primary_10_1016_j_anbehav_2024_06_009 crossref_primary_10_1016_j_frl_2025_107173 crossref_primary_10_1093_ornithology_ukae016 crossref_primary_10_1044_2024_JSLHR_24_00189 crossref_primary_10_1038_s41598_023_42156_4 crossref_primary_10_1007_s12144_024_06515_2 crossref_primary_10_3390_app13052784 crossref_primary_10_1177_03611981241263341 crossref_primary_10_1016_j_lingua_2024_103875 crossref_primary_10_1038_s41612_023_00454_8 crossref_primary_10_1016_j_wocn_2022_101191 crossref_primary_10_1007_s10288_023_00553_5 crossref_primary_10_1016_j_biocon_2024_110488 crossref_primary_10_3390_ijerph182010728 crossref_primary_10_1002_cpt_3194 crossref_primary_10_1038_s41467_024_52179_8 crossref_primary_10_1080_23311975_2024_2315668 crossref_primary_10_1016_j_ajic_2024_08_021 crossref_primary_10_1080_13215906_2023_2270447 crossref_primary_10_3168_jds_2024_24897 crossref_primary_10_1073_pnas_2321965121 crossref_primary_10_1016_j_anbehav_2023_04_013 crossref_primary_10_1016_j_ypmed_2023_107669 crossref_primary_10_1038_s41390_022_02424_x crossref_primary_10_1016_j_eja_2022_126666 crossref_primary_10_3390_psycholint6040056 crossref_primary_10_1002_ijop_13246 crossref_primary_10_1016_j_scs_2023_104763 crossref_primary_10_1038_s41386_023_01592_6 crossref_primary_10_3390_vaccines10091501 crossref_primary_10_3390_jmse9080864 crossref_primary_10_1039_D2RP00055E |
Cites_doi | 10.1093/biomet/45.1-2.260 10.1017/CBO9780511790942 10.1111/2041-210X.13434 10.1093/biomet/40.3-4.318 10.1146/annurev.publhealth.23.100901.140546 10.1111/mec.14009 10.5735/086.046.0205 10.1007/978-0-387-87458-6 10.1093/biomet/37.3-4.256 10.1111/j.2041-210X.2010.00021.x 10.5812/ijem.3505 10.1080/00273170802285693 10.1007/s11356-015-4579-3 10.1111/brv.12315 10.7717/peerj.616 10.7717/peerj.1114 10.1177/0956797611417632 10.3389/fevo.2019.00142 10.1016/j.tree.2019.12.004 10.1046/j.1442-9993.2002.01233.x 10.3102/00346543042003237 10.1016/j.tree.2008.10.008 10.1093/biomet/49.1-2.93 10.1017/CBO9780511806384 10.62798/TZQQ1969 10.1038/s41562-018-0399-z 10.1111/j.2041-210X.2009.00001.x 10.1093/biomet/58.1.105 10.1371/journal.pone.0026785 10.1016/S0197-2456(98)00037-3 10.1002/cjs.10004 10.1016/j.anbehav.2014.05.003 10.2307/2532051 10.1007/s00265-010-1045-6 10.1371/journal.pcbi.1004961 10.1002/hyp.8438 10.1111/j.1420-9101.2009.01775.x 10.1890/10-0340.1 10.3758/BF03192961 10.18637/jss.v067.i01 10.1111/2041-210X.12552 10.1016/j.jesp.2015.10.012 10.1007/978-1-4419-0318-1 10.1186/s12983-019-0313-1 10.1111/2041-210X.12386 10.1016/0304-4076(94)01700-X 10.2307/1912934 10.7717/peerj.4794 10.1007/978-3-662-43550-2_9 10.1126/science.aac4716 10.1177/2515245918810511 10.3389/fevo.2019.00094 10.1101/819334 10.1016/j.jml.2012.11.001 10.1101/132753 10.1007/978-0-387-45972-1 10.2307/1400385 10.1037/a0028087 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7TK K9. 7X8 5PM |
DOI | 10.3758/s13428-021-01587-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Docstoc MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1554-3528 |
EndPage | 2590 |
ExternalDocumentID | PMC8613103 33963496 10_3758_s13428_021_01587_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ludwig-Maximilians-Universität München (1024) – fundername: ; |
GroupedDBID | --- -55 -5G -BR -DZ -EM -ET -~C -~X 0-V 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40E 53G 5GY 7X7 875 88E 8AO 8FI 8FJ 8G5 8TC 8UJ 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABIVO ABJNI ABJOX ABJUD ABKCH ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFFNX AFKRA AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BAWUL BENPR BGNMA BPHCQ BVXVI C1A C6C CAG CCPQU COF CSCUP DDRTE DIK DNIVK DPUIP DWQXO E3Z EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ3 GQ6 GQ7 GUQSH H13 HF~ HMCUK HMJXF HRMNR HVGLF HZ~ H~9 IAO IHR IKXTQ INH IPY IRVIT ITC ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M1P M2M M2O M2R M4Y MVM N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OHT OK1 P2P P9L PADUT PF- PQQKQ PROAC PSQYO PSYQQ PT4 R9I RIG ROL RPV RSV S16 S1Z S27 S3B SBS SBU SCLPG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TR2 TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UPT UTJUX UZXMN VFIZW VXZ W48 WH7 WK8 XJT XOL XSW Z7R Z7S Z7W Z81 Z83 Z88 Z8N Z92 ZMTXR ZOVNA ZUP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 4T- 7TK ABRTQ K9. 7X8 5PM |
ID | FETCH-LOGICAL-c541t-e938ae06cb90b157f2741cf37faea59fa1b518d2d6e5ef0336ee1a432cce5ec43 |
IEDL.DBID | U2A |
ISSN | 1554-3528 1554-351X |
IngestDate | Thu Aug 21 18:22:46 EDT 2025 Fri Jul 11 10:49:49 EDT 2025 Fri Jul 25 23:02:47 EDT 2025 Wed Feb 19 02:26:32 EST 2025 Thu Apr 24 23:05:30 EDT 2025 Tue Jul 01 01:05:57 EDT 2025 Fri Feb 21 02:47:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Hypothesis testing Regression Normality Linear model |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-e938ae06cb90b157f2741cf37faea59fa1b518d2d6e5ef0336ee1a432cce5ec43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6959-3033 |
OpenAccessLink | https://link.springer.com/10.3758/s13428-021-01587-5 |
PMID | 33963496 |
PQID | 2602033626 |
PQPubID | 976348 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8613103 proquest_miscellaneous_2524352853 proquest_journals_2602033626 pubmed_primary_33963496 crossref_primary_10_3758_s13428_021_01587_5 crossref_citationtrail_10_3758_s13428_021_01587_5 springer_journals_10_3758_s13428_021_01587_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Behavior research methods |
PublicationTitleAbbrev | Behav Res |
PublicationTitleAlternate | Behav Res Methods |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. Berkeley Symp on Math Statist and Prob5.1, 221–233. BatesDMächlerMBolkerBMWalkerSCFitting linear mixed-effects models using lme4J Stat Softw20156714810.18637/jss.v067.i01 Ramsey F, Schafer DW (2013) The statistical sleuth: a course in methods of data analysis. Brooks/Cole. EbersoleCRAthertonOEBelangerALSkulborstadHMAllenJMBanksJBMany labs 3: evaluating participant pool quality across the academic semester via replicationJ Exp Soc Psychol201667688210.1016/j.jesp.2015.10.012 CochranWGThe comparison of percentages in matched samplesBiometrika19503725626610.1093/biomet/37.3-4.256 Osborne JW, Waters E (2002) Four assumptions of multiple regression that researchers should always test. Pract Assess Res Evaluation8, art2. Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ2, e616. ForstmeierWWagenmakersEJParkerTHDetecting and avoiding likely false-positive findings – a practical guideBiol Rev2017921941196810.1111/brv.12315 Ali MM, Sharma SC (1996) Robustness to nonnormality of regression F-tests. J Econom71, 175–205. Harrison XA (2015) A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ3, e1114. Good PI (2005) Permutation, parametric, and bootstrap tests of hypotheses. Springer. Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman. KniefUSchielzethHBackströmNHemmrich-StanisakGWittigMFrankeAAssociation mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populationsMol Ecol2017261285130510.1111/mec.14009 LinLIA concordance correlation-coefficient to evaluate reproducibilityBiometrics19894525526810.2307/2532051 Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, … Nosek BA (2018) Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv Methods Pract Psychol Sci1, 337–356. Qiu W (2018) powerMediation: Power/Sample Size Calculation for Mediation Analysis. R package version 0.2.9. Komsta L, Novomestky F (2015) moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. McGuinnessKAOf rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumptionAustral Ecol20022768168810.1046/j.1442-9993.2002.01233.x BarrDJLevyRScheepersCTilyHJRandom effects structure for confirmatory hypothesis testing: keep it maximalJ Mem Lang20136825527810.1016/j.jml.2012.11.001 HayesAFCaiLUsing heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementationBehav Res Methods20073970972210.3758/BF03192961 Frank SA (2009) The common patterns of nature. J Evol Biol22, 1563–1585. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer. WedderburnRWMQuasi-likelihood functions, generalized linear models, and the Gauss-Newton methodBiometrika197461439447 Young LJ, Campbell NL, Capuano GA (1999) Analysis of overdispersed count data from single-factor experiments: a comparative study. J Agric Biol Environ Stat4, 258–275. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer. PlaschkeSBullaMCruz-LópezMGómez del ÁngelSKüpperCNest initiation and flooding in response to season and semi-lunar spring tides in a ground-nesting shorebirdFront Zool201916e1510.1186/s12983-019-0313-1 Brunner J, Austin PC (2009) Inflation of type I error rate in multiple regression when independent variables are measured with error. Can J Stat37, 33–46. Zuur AK, Ieno EN, Smith GM (2007) Analysing ecological data. Springer Science + Business Media, LLC. Schönbrodt F (2012) Ruscio - Code for generating correlating variables with arbitrary distributions. https://gist.github.com/nicebread/4045717. SchielzethHDingemanseNJNakagawaSWestneatDFAllegueHTeplitskyCRobustness of linear mixed-effects models to violations of distributional assumptionsMethods Ecol Evol2020111141115210.1111/2041-210X.13434 SimmonsJPNelsonLDSimonsohnUFalse-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significantPsychol Sci2011221359136610.1177/0956797611417632 CamererCFDreberAHolzmeisterFHoTHHuberJJohannessonMEvaluating the replicability of social science experiments in Nature and Science between 2010 and 2015Nat Hum Behav2018263764410.1038/s41562-018-0399-z Arnqvist G (2020) Mixed models offer no freedom from degrees of freedom. Trends Ecol Evol35, 329–335. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. Williams MN, Grajales CAG, Kurkiewicz D (2013) Assumptions of multiple regression: correcting two misconceptions. Pract Assess Res Evaluation18, art11. BoxGEPWatsonGSRobustness to non-normality of regression testsBiometrika1962499310610.1093/biomet/49.1-2.93 Ives AR, Garland T (2014) Phylogenetic regression for binary dependent variables. In: Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi LZ), pp. 231–261. Springer, Berlin, Heidelberg. RuscioJKaczetowWSimulating multivariate nonnormal data using an iterative algorithmMultivar Behav Res20084335538110.1080/00273170802285693 ÖnözBBayazitMBlock bootstrap for Mann–Kendall trend test of serially dependent dataHydrol Process2012263552356010.1002/hyp.8438 Fordyce JA, Gompert Z, Forister ML, Nice CC (2011) A hierarchical Bayesian approach to ecological count data: a flexible tool for ecologists. PLOS ONE6, e26785. WhiteHA Heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticityEconometrica19804881783810.2307/1912934 Miller RG (1986) Beyond ANOVA: basics of applied statistics. John Wiley & Sons, Inc. DupontWDPlummerWDPower and sample size calculations for studies involving linear regressionControl Clin Trials19981958960110.1016/S0197-2456(98)00037-3 Bliss CI (1967) Statistics in biology. McGraw-Hill. Szöcs E, Schäfer RB (2015) Ecotoxicology is not normal. Environ Sci Pollut Res22, 13990–13999. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, … Bolker BM (2017) Modeling zero-inflated count data with glmmTMB. bioRxiv, e132753. SantemaPSchlichtEKempenaersBTesting the conditional cooperation model: what can we learn from parents taking turns when feeding offspring?Front Ecol Evol20197e9410.3389/fevo.2019.00094 Blair RC, Lawson SB (1982) Another look at the robustness of the product-moment correlation coefficient to population non-normality. Florida J Educ Res24, 11–15. O'HaraRBHow to make models add up—a primer on GLMMsAnn Zool Fenn20094612413710.5735/086.046.0205 BisharaAJHittnerJBTesting the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approachesPsychol Methods20121739941710.1037/a0028087 Kass RE, Caffo BS, Davidian M, Meng XL, Yu B, Reid N (2016) Ten simple rules for effective statistical practice. PLOS Comput Biol12, e1004961. Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annu Rev Public Health23, 151–169. HackHRBAn empirical investigation into the distribution of the F-ratio in samples from two non-normal populationsBiometrika19584526026510.1093/biomet/45.1-2.260 PuthMTNeuhauserMRuxtonGDEffective use of Pearson's product-moment correlation coefficientAnim Behav20149318318910.1016/j.anbehav.2014.05.003 GhasemiAZahediaslSNormality tests for statistical analysis: a guide for non-statisticiansInt J Endocrinol Metab20121048648910.5812/ijem.3505 BolkerBMBrooksMEClarkCJGeangeSWPoulsenJRStevensMHHWhiteJSSGeneralized linear mixed models: a practical guide for ecology and evolutionTrends Ecol Evol20092412713510.1016/j.tree.2008.10.008 BoxGEPNon-normality and tests on variancesBiometrika19534031833510.1093/biomet/40.3-4.318 IhleMPickJLWinneyISNakagawaSBurkeTMeasuring up to reality: null models and analysis simulations to study parental coordination over provisioning offspringFront Ecol Evol20197e14210.3389/fevo.2019.00142 IvesARFor testing the significance of regression coefficients, go ahead and log-transform count dataMethods Ecol Evol2015682883510.1111/2041-210X.12386 Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press. WartonDILyonsMStoklosaJIvesARThree points to consider when choosing a LM or GLM test for count dataMethods Ecol Evol2016788289010.1111/2041-210X.12552 Saravanan V, Berman GJ, Sober SJ (2020) Application of the hierarchical bootstrap to multi-level data in neuroscience. bioRxiv, e819334. O'HaraRBKotzeDJDo not log-transform count dataMethods Ecol Evol2010111812210.1111/j.2041-210X.2010.00021.x WartonDIHuiFKCThe arcsine is asinine: the analysis of proportions in ecologyEcology20119231010.1890/10-0340.1 Casella G, Berger RL (2002) Statistical inference. Duxbury Press. Open Science CollaborationEstimating the reproducibility of psychological scienceScience2015349aac471610.1126/science.aac4716 Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CE, … Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ6, e4794. MardiaKVThe effect of nonnormality on some multivariate tests and robustness to nonnormality in the linear modelBiometrika19715810512110.1093/biomet/58.1.105 FreckletonRPDealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement errorBehav Ecol Sociobiol2011659110110.1007/s00265-010-1045-6 Glass GV, Peckham PD, Sanders JR (1972) Consequences of failure to meet assumptions underlying the fixed effects analysis of variance and covariance. Rev Educ Res42, 237–288. Osborne JW, Overbay A (2004) The power of outliers (and why researchers should ALWAYS check for them). Pract Assess Res Evaluation9, art6. ZuurAFIenoENElphickCSA pr 1587_CR1 1587_CR42 Open Science Collaboration (1587_CR46) 2015; 349 1587_CR2 AF Hayes (1587_CR30) 2007; 39 P Santema (1587_CR56) 2019; 7 LI Lin (1587_CR38) 1989; 45 1587_CR48 AR Ives (1587_CR33) 2015; 6 1587_CR47 WD Dupont (1587_CR16) 1998; 19 J Ruscio (1587_CR55) 2008; 43 1587_CR7 1587_CR6 RB O'Hara (1587_CR44) 2010; 1 M Ihle (1587_CR32) 2019; 7 B Önöz (1587_CR45) 2012; 26 AJ Bishara (1587_CR5) 2012; 17 KV Mardia (1587_CR40) 1971; 58 RP Freckleton (1587_CR21) 2011; 65 1587_CR49 AF Zuur (1587_CR71) 2010; 1 1587_CR53 1587_CR52 1587_CR11 1587_CR54 1587_CR57 1587_CR12 1587_CR59 1587_CR14 DI Warton (1587_CR65) 2016; 7 D Bates (1587_CR4) 2015; 67 BM Bolker (1587_CR8) 2009; 24 H White (1587_CR67) 1980; 48 S Plaschke (1587_CR50) 2019; 16 WG Cochran (1587_CR15) 1950; 37 1587_CR18 CR Ebersole (1587_CR17) 2016; 67 1587_CR20 1587_CR63 1587_CR22 HRB Hack (1587_CR26) 1958; 45 1587_CR24 MT Puth (1587_CR51) 2014; 93 1587_CR68 1587_CR25 JP Simmons (1587_CR61) 2011; 22 1587_CR69 DJ Barr (1587_CR3) 2013; 68 1587_CR60 1587_CR62 H Schielzeth (1587_CR58) 2020; 11 CF Camerer (1587_CR13) 2018; 2 1587_CR28 A Ghasemi (1587_CR23) 2012; 10 1587_CR27 1587_CR29 DI Warton (1587_CR64) 2011; 92 GEP Box (1587_CR10) 1962; 49 1587_CR31 RWM Wedderburn (1587_CR66) 1974; 61 1587_CR35 1587_CR34 KA McGuinness (1587_CR41) 2002; 27 1587_CR37 1587_CR70 1587_CR72 GEP Box (1587_CR9) 1953; 40 RB O'Hara (1587_CR43) 2009; 46 1587_CR39 U Knief (1587_CR36) 2017; 26 W Forstmeier (1587_CR19) 2017; 92 |
References_xml | – reference: Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ2, e616. – reference: BoxGEPWatsonGSRobustness to non-normality of regression testsBiometrika1962499310610.1093/biomet/49.1-2.93 – reference: Komsta L, Novomestky F (2015) moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. – reference: Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. – reference: Ramsey F, Schafer DW (2013) The statistical sleuth: a course in methods of data analysis. Brooks/Cole. – reference: O'HaraRBKotzeDJDo not log-transform count dataMethods Ecol Evol2010111812210.1111/j.2041-210X.2010.00021.x – reference: Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman. – reference: Schönbrodt F (2012) Ruscio - Code for generating correlating variables with arbitrary distributions. https://gist.github.com/nicebread/4045717. – reference: KniefUSchielzethHBackströmNHemmrich-StanisakGWittigMFrankeAAssociation mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populationsMol Ecol2017261285130510.1111/mec.14009 – reference: ZuurAFIenoENElphickCSA protocol for data exploration to avoid common statistical problemsMethods Ecol Evol2010131410.1111/j.2041-210X.2009.00001.x – reference: LinLIA concordance correlation-coefficient to evaluate reproducibilityBiometrics19894525526810.2307/2532051 – reference: Ives AR, Garland T (2014) Phylogenetic regression for binary dependent variables. In: Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi LZ), pp. 231–261. Springer, Berlin, Heidelberg. – reference: Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, … Bolker BM (2017) Modeling zero-inflated count data with glmmTMB. bioRxiv, e132753. – reference: ForstmeierWWagenmakersEJParkerTHDetecting and avoiding likely false-positive findings – a practical guideBiol Rev2017921941196810.1111/brv.12315 – reference: WartonDILyonsMStoklosaJIvesARThree points to consider when choosing a LM or GLM test for count dataMethods Ecol Evol2016788289010.1111/2041-210X.12552 – reference: MardiaKVThe effect of nonnormality on some multivariate tests and robustness to nonnormality in the linear modelBiometrika19715810512110.1093/biomet/58.1.105 – reference: WedderburnRWMQuasi-likelihood functions, generalized linear models, and the Gauss-Newton methodBiometrika197461439447 – reference: EbersoleCRAthertonOEBelangerALSkulborstadHMAllenJMBanksJBMany labs 3: evaluating participant pool quality across the academic semester via replicationJ Exp Soc Psychol201667688210.1016/j.jesp.2015.10.012 – reference: Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer. – reference: SimmonsJPNelsonLDSimonsohnUFalse-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significantPsychol Sci2011221359136610.1177/0956797611417632 – reference: BoxGEPNon-normality and tests on variancesBiometrika19534031833510.1093/biomet/40.3-4.318 – reference: SchielzethHDingemanseNJNakagawaSWestneatDFAllegueHTeplitskyCRobustness of linear mixed-effects models to violations of distributional assumptionsMethods Ecol Evol2020111141115210.1111/2041-210X.13434 – reference: Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press. – reference: Osborne JW, Waters E (2002) Four assumptions of multiple regression that researchers should always test. Pract Assess Res Evaluation8, art2. – reference: Harrison XA (2015) A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ3, e1114. – reference: Fordyce JA, Gompert Z, Forister ML, Nice CC (2011) A hierarchical Bayesian approach to ecological count data: a flexible tool for ecologists. PLOS ONE6, e26785. – reference: Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CE, … Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ6, e4794. – reference: Szöcs E, Schäfer RB (2015) Ecotoxicology is not normal. Environ Sci Pollut Res22, 13990–13999. – reference: BisharaAJHittnerJBTesting the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approachesPsychol Methods20121739941710.1037/a0028087 – reference: WartonDIHuiFKCThe arcsine is asinine: the analysis of proportions in ecologyEcology20119231010.1890/10-0340.1 – reference: CamererCFDreberAHolzmeisterFHoTHHuberJJohannessonMEvaluating the replicability of social science experiments in Nature and Science between 2010 and 2015Nat Hum Behav2018263764410.1038/s41562-018-0399-z – reference: FreckletonRPDealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement errorBehav Ecol Sociobiol2011659110110.1007/s00265-010-1045-6 – reference: HayesAFCaiLUsing heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementationBehav Res Methods20073970972210.3758/BF03192961 – reference: McGuinnessKAOf rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumptionAustral Ecol20022768168810.1046/j.1442-9993.2002.01233.x – reference: Zuur AK, Ieno EN, Smith GM (2007) Analysing ecological data. Springer Science + Business Media, LLC. – reference: BarrDJLevyRScheepersCTilyHJRandom effects structure for confirmatory hypothesis testing: keep it maximalJ Mem Lang20136825527810.1016/j.jml.2012.11.001 – reference: DupontWDPlummerWDPower and sample size calculations for studies involving linear regressionControl Clin Trials19981958960110.1016/S0197-2456(98)00037-3 – reference: Williams MN, Grajales CAG, Kurkiewicz D (2013) Assumptions of multiple regression: correcting two misconceptions. Pract Assess Res Evaluation18, art11. – reference: BatesDMächlerMBolkerBMWalkerSCFitting linear mixed-effects models using lme4J Stat Softw20156714810.18637/jss.v067.i01 – reference: CochranWGThe comparison of percentages in matched samplesBiometrika19503725626610.1093/biomet/37.3-4.256 – reference: Qiu W (2018) powerMediation: Power/Sample Size Calculation for Mediation Analysis. R package version 0.2.9. – reference: Kass RE, Caffo BS, Davidian M, Meng XL, Yu B, Reid N (2016) Ten simple rules for effective statistical practice. PLOS Comput Biol12, e1004961. – reference: Open Science CollaborationEstimating the reproducibility of psychological scienceScience2015349aac471610.1126/science.aac4716 – reference: PuthMTNeuhauserMRuxtonGDEffective use of Pearson's product-moment correlation coefficientAnim Behav20149318318910.1016/j.anbehav.2014.05.003 – reference: Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, … Nosek BA (2018) Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv Methods Pract Psychol Sci1, 337–356. – reference: WhiteHA Heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticityEconometrica19804881783810.2307/1912934 – reference: SantemaPSchlichtEKempenaersBTesting the conditional cooperation model: what can we learn from parents taking turns when feeding offspring?Front Ecol Evol20197e9410.3389/fevo.2019.00094 – reference: Frank SA (2009) The common patterns of nature. J Evol Biol22, 1563–1585. – reference: ÖnözBBayazitMBlock bootstrap for Mann–Kendall trend test of serially dependent dataHydrol Process2012263552356010.1002/hyp.8438 – reference: Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annu Rev Public Health23, 151–169. – reference: Osborne JW, Overbay A (2004) The power of outliers (and why researchers should ALWAYS check for them). Pract Assess Res Evaluation9, art6. – reference: HackHRBAn empirical investigation into the distribution of the F-ratio in samples from two non-normal populationsBiometrika19584526026510.1093/biomet/45.1-2.260 – reference: IvesARFor testing the significance of regression coefficients, go ahead and log-transform count dataMethods Ecol Evol2015682883510.1111/2041-210X.12386 – reference: Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer. – reference: Casella G, Berger RL (2002) Statistical inference. Duxbury Press. – reference: GhasemiAZahediaslSNormality tests for statistical analysis: a guide for non-statisticiansInt J Endocrinol Metab20121048648910.5812/ijem.3505 – reference: Good PI (2005) Permutation, parametric, and bootstrap tests of hypotheses. Springer. – reference: Young LJ, Campbell NL, Capuano GA (1999) Analysis of overdispersed count data from single-factor experiments: a comparative study. J Agric Biol Environ Stat4, 258–275. – reference: Bliss CI (1967) Statistics in biology. McGraw-Hill. – reference: PlaschkeSBullaMCruz-LópezMGómez del ÁngelSKüpperCNest initiation and flooding in response to season and semi-lunar spring tides in a ground-nesting shorebirdFront Zool201916e1510.1186/s12983-019-0313-1 – reference: Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. Berkeley Symp on Math Statist and Prob5.1, 221–233. – reference: Ali MM, Sharma SC (1996) Robustness to nonnormality of regression F-tests. J Econom71, 175–205. – reference: RuscioJKaczetowWSimulating multivariate nonnormal data using an iterative algorithmMultivar Behav Res20084335538110.1080/00273170802285693 – reference: Blair RC, Lawson SB (1982) Another look at the robustness of the product-moment correlation coefficient to population non-normality. Florida J Educ Res24, 11–15. – reference: Glass GV, Peckham PD, Sanders JR (1972) Consequences of failure to meet assumptions underlying the fixed effects analysis of variance and covariance. Rev Educ Res42, 237–288. – reference: BolkerBMBrooksMEClarkCJGeangeSWPoulsenJRStevensMHHWhiteJSSGeneralized linear mixed models: a practical guide for ecology and evolutionTrends Ecol Evol20092412713510.1016/j.tree.2008.10.008 – reference: Arnqvist G (2020) Mixed models offer no freedom from degrees of freedom. Trends Ecol Evol35, 329–335. – reference: O'HaraRBHow to make models add up—a primer on GLMMsAnn Zool Fenn20094612413710.5735/086.046.0205 – reference: Saravanan V, Berman GJ, Sober SJ (2020) Application of the hierarchical bootstrap to multi-level data in neuroscience. bioRxiv, e819334. – reference: Brunner J, Austin PC (2009) Inflation of type I error rate in multiple regression when independent variables are measured with error. Can J Stat37, 33–46. – reference: IhleMPickJLWinneyISNakagawaSBurkeTMeasuring up to reality: null models and analysis simulations to study parental coordination over provisioning offspringFront Ecol Evol20197e14210.3389/fevo.2019.00142 – reference: Miller RG (1986) Beyond ANOVA: basics of applied statistics. John Wiley & Sons, Inc. – volume: 45 start-page: 260 year: 1958 ident: 1587_CR26 publication-title: Biometrika doi: 10.1093/biomet/45.1-2.260 – ident: 1587_CR22 doi: 10.1017/CBO9780511790942 – volume: 11 start-page: 1141 year: 2020 ident: 1587_CR58 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13434 – volume: 40 start-page: 318 year: 1953 ident: 1587_CR9 publication-title: Biometrika doi: 10.1093/biomet/40.3-4.318 – volume: 61 start-page: 439 year: 1974 ident: 1587_CR66 publication-title: Biometrika – ident: 1587_CR39 doi: 10.1146/annurev.publhealth.23.100901.140546 – volume: 26 start-page: 1285 year: 2017 ident: 1587_CR36 publication-title: Mol Ecol doi: 10.1111/mec.14009 – volume: 46 start-page: 124 year: 2009 ident: 1587_CR43 publication-title: Ann Zool Fenn doi: 10.5735/086.046.0205 – ident: 1587_CR70 doi: 10.1007/978-0-387-87458-6 – volume: 37 start-page: 256 year: 1950 ident: 1587_CR15 publication-title: Biometrika doi: 10.1093/biomet/37.3-4.256 – volume: 1 start-page: 118 year: 2010 ident: 1587_CR44 publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2010.00021.x – volume: 10 start-page: 486 year: 2012 ident: 1587_CR23 publication-title: Int J Endocrinol Metab doi: 10.5812/ijem.3505 – volume: 43 start-page: 355 year: 2008 ident: 1587_CR55 publication-title: Multivar Behav Res doi: 10.1080/00273170802285693 – ident: 1587_CR25 – ident: 1587_CR63 doi: 10.1007/s11356-015-4579-3 – volume: 92 start-page: 1941 year: 2017 ident: 1587_CR19 publication-title: Biol Rev doi: 10.1111/brv.12315 – ident: 1587_CR27 doi: 10.7717/peerj.616 – ident: 1587_CR48 – ident: 1587_CR28 doi: 10.7717/peerj.1114 – volume: 22 start-page: 1359 year: 2011 ident: 1587_CR61 publication-title: Psychol Sci doi: 10.1177/0956797611417632 – ident: 1587_CR37 – volume: 7 start-page: e142 year: 2019 ident: 1587_CR32 publication-title: Front Ecol Evol doi: 10.3389/fevo.2019.00142 – ident: 1587_CR2 doi: 10.1016/j.tree.2019.12.004 – ident: 1587_CR54 – volume: 27 start-page: 681 year: 2002 ident: 1587_CR41 publication-title: Austral Ecol doi: 10.1046/j.1442-9993.2002.01233.x – ident: 1587_CR24 doi: 10.3102/00346543042003237 – volume: 24 start-page: 127 year: 2009 ident: 1587_CR8 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2008.10.008 – ident: 1587_CR68 – volume: 49 start-page: 93 year: 1962 ident: 1587_CR10 publication-title: Biometrika doi: 10.1093/biomet/49.1-2.93 – ident: 1587_CR47 – ident: 1587_CR53 doi: 10.1017/CBO9780511806384 – ident: 1587_CR6 doi: 10.62798/TZQQ1969 – ident: 1587_CR59 – volume: 2 start-page: 637 year: 2018 ident: 1587_CR13 publication-title: Nat Hum Behav doi: 10.1038/s41562-018-0399-z – volume: 1 start-page: 3 year: 2010 ident: 1587_CR71 publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2009.00001.x – volume: 58 start-page: 105 year: 1971 ident: 1587_CR40 publication-title: Biometrika doi: 10.1093/biomet/58.1.105 – ident: 1587_CR18 doi: 10.1371/journal.pone.0026785 – volume: 19 start-page: 589 year: 1998 ident: 1587_CR16 publication-title: Control Clin Trials doi: 10.1016/S0197-2456(98)00037-3 – ident: 1587_CR12 doi: 10.1002/cjs.10004 – volume: 93 start-page: 183 year: 2014 ident: 1587_CR51 publication-title: Anim Behav doi: 10.1016/j.anbehav.2014.05.003 – volume: 45 start-page: 255 year: 1989 ident: 1587_CR38 publication-title: Biometrics doi: 10.2307/2532051 – volume: 65 start-page: 91 year: 2011 ident: 1587_CR21 publication-title: Behav Ecol Sociobiol doi: 10.1007/s00265-010-1045-6 – ident: 1587_CR35 doi: 10.1371/journal.pcbi.1004961 – volume: 26 start-page: 3552 year: 2012 ident: 1587_CR45 publication-title: Hydrol Process doi: 10.1002/hyp.8438 – ident: 1587_CR20 doi: 10.1111/j.1420-9101.2009.01775.x – ident: 1587_CR42 – ident: 1587_CR7 – volume: 92 start-page: 3 year: 2011 ident: 1587_CR64 publication-title: Ecology doi: 10.1890/10-0340.1 – volume: 39 start-page: 709 year: 2007 ident: 1587_CR30 publication-title: Behav Res Methods doi: 10.3758/BF03192961 – volume: 67 start-page: 1 year: 2015 ident: 1587_CR4 publication-title: J Stat Softw doi: 10.18637/jss.v067.i01 – volume: 7 start-page: 882 year: 2016 ident: 1587_CR65 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12552 – volume: 67 start-page: 68 year: 2016 ident: 1587_CR17 publication-title: J Exp Soc Psychol doi: 10.1016/j.jesp.2015.10.012 – ident: 1587_CR49 doi: 10.1007/978-1-4419-0318-1 – volume: 16 start-page: e15 year: 2019 ident: 1587_CR50 publication-title: Front Zool doi: 10.1186/s12983-019-0313-1 – ident: 1587_CR52 – volume: 6 start-page: 828 year: 2015 ident: 1587_CR33 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12386 – ident: 1587_CR14 – ident: 1587_CR31 – ident: 1587_CR1 doi: 10.1016/0304-4076(94)01700-X – volume: 48 start-page: 817 year: 1980 ident: 1587_CR67 publication-title: Econometrica doi: 10.2307/1912934 – ident: 1587_CR29 doi: 10.7717/peerj.4794 – ident: 1587_CR34 doi: 10.1007/978-3-662-43550-2_9 – volume: 349 start-page: aac4716 year: 2015 ident: 1587_CR46 publication-title: Science doi: 10.1126/science.aac4716 – ident: 1587_CR60 doi: 10.1177/2515245918810511 – volume: 7 start-page: e94 year: 2019 ident: 1587_CR56 publication-title: Front Ecol Evol doi: 10.3389/fevo.2019.00094 – ident: 1587_CR57 doi: 10.1101/819334 – volume: 68 start-page: 255 year: 2013 ident: 1587_CR3 publication-title: J Mem Lang doi: 10.1016/j.jml.2012.11.001 – ident: 1587_CR11 doi: 10.1101/132753 – ident: 1587_CR72 doi: 10.1007/978-0-387-45972-1 – ident: 1587_CR62 – ident: 1587_CR69 doi: 10.2307/1400385 – volume: 17 start-page: 399 year: 2012 ident: 1587_CR5 publication-title: Psychol Methods doi: 10.1037/a0028087 |
SSID | ssj0038214 |
Score | 2.7008448 |
Snippet | When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian errors, or whether one has... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2576 |
SubjectTerms | Behavioral Science and Psychology Cognitive Psychology Data Interpretation, Statistical Humans Monte Carlo Method Normal Distribution Parameter estimation Psychology Reproducibility of Results Sample Size |
Title | Violating the normality assumption may be the lesser of two evils |
URI | https://link.springer.com/article/10.3758/s13428-021-01587-5 https://www.ncbi.nlm.nih.gov/pubmed/33963496 https://www.proquest.com/docview/2602033626 https://www.proquest.com/docview/2524352853 https://pubmed.ncbi.nlm.nih.gov/PMC8613103 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71cekFAeWx0K6MxI1GxK_YOa5WfQgEJxa1p8h2HKi0TaruVqj_npm8qm1VJC45xOPEmZmMv5HHnwE-isxzU3mbGOuyBPEtT6yNNlHO8JJHrkJK-52_fc_OFurLuT7vN4Wthmr3YUmyjdSUVyKo_bziUhGbsqD0V-OvobdhV1Pujl68ELMh_koruOq2xzzRb3MKeoQrH5dHPlgjbaeek-fwrMeMbNYZ-QVsxfol7I2h624fZj8vGypqq38xBHSsJiBK-JohNEZ7kfLZlbtjPrbty5YwnDUVW_9pGE6Ny9UrWJwc_5ifJf3hCEnQiq-TmEvrYpoFn6eea1MRD02opKlcdDqvHPea21KUWdSxSqXMYuROSREC3ghKvoaduqnjW2BeeRdLE-iqiAArcq9CXvFSa8OjmQAf9FWEnjmcDrBYFphBkI6LTscF6rhodVzoCXwa-1x3vBn_lD4YzFD0_9CqwExL0LhFNoEPYzN6Py1puDo2tyijhSJ-Gi0n8Kaz2vg6KTG4qBx7mw17jgLErL3ZUl_-bhm2LYIcnuIzjwbL3w_r6a9493_i72FPkFe2tTEHsLO-uY2HiHDWfgq7s9OLr8dT2J5n82nr3n8BbmX3Pw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe6AXVN5LCxiJG0TEr9g5ViuqbWl7alFvlu1MoNKSIHYr1H_fmSSbslRF4pJDPE7sGT--0Yw_M_ZeFlHYOrrMulBkiG9F5hy4TAcrKgFCp5zOO5-cFrNzfXRhLgaaHDoL80f8XiGU_bQQShOHsiSn1-CEMA_YlkZPmdL3psV0teoqJ4XuD8XcU29947mDJu8mRf4VGe02nIMd9mhAiny_N-1jtgHNE7Y9LljXT9n-18uWUtmabxxhHG8IfhKq5giI0Uqkcv4jXPMIXfm8ownnbc2Xv1uOG-J88YydH3w-m86y4UqELBktlhmUygXIixTLPApja2KfSbWydYBgyjqIaISrZFWAgTpXqgAQQSuZEr5IWj1nm03bwEvGo44BKpvoqYn2CkTUqaxFZYwVYCdMrPTl08AXTtdWzD36DaRj3-vYo459p2NvJuzDWOdnz5bxT-m9lRn8MHMWHv0rSe2WxYS9G4txzFMgIzTQXqGMkZpYaYyasBe91cbfKYVLii6xtl2z5yhAfNrrJc3l945X2yG0ETl-8-PK8rfNur8Xr_5P_C17ODs7OfbHh6dfdtm2pBHaZcfssc3lryt4jRhnGd90g_sGjS3zoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSKgXxJstBYzEDaLGr9g5Vgur8qo4UNSbZTt2qbQkVTcV6r9nxtkElqpIXHKIx4kzE9vfaGY-E_KKV57p5E2hjasKwLesMCaaQjrNGhaZDCXWO38-rA6O5IdjdfxHFX_Odh9DkkNNA7I0tf3eWZNwigsAuHsrJiQyK3N0hRVME3WT3AJPJQdq59V8XIuF4UwOpTLX9Nvcjq5gzKupkn_FS_M2tLhL7qzxI90fDH6P3IjtfbI9LWOXD8j-t9MOE9zaEwrgjrYIShFrU4DJYDs0BP3hLqmPuX2ZycNpl2j_s6OwTS5XD8nR4t3X-UGxPiihCEqyvoi1MC6WVfB16ZnSCTlpQhI6uehUnRzzipmGN1VUMZVCVDEyJwUPAW4EKR6RrbZr4xNCvfQuNjrgVSIZVmRehjqxRinNop4RNurLhjWLOB5msbTgTaCO7aBjCzq2WcdWzcjrqc_ZwKHxT-nd0Qx2PZ9WFrwujuPm1Yy8nJphJmB4w7WxuwAZxSVy1SgxI48Hq02vEwIWGllDb71hz0kAWbY3W9rT75lt2wDgYSU8881o-d_Duv4rdv5P_AW5_eXtwn56f_jxKdnm-IPmlJldstWfX8RnAHx6_zz_278AmQT75w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Violating+the+normality+assumption+may+be+the+lesser+of+two+evils&rft.jtitle=Behavior+research+methods&rft.au=Knief+Ulrich&rft.au=stmeier%2C+Wolfgang&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=1554-3528&rft.volume=53&rft.issue=6&rft.spage=2576&rft.epage=2590&rft_id=info:doi/10.3758%2Fs13428-021-01587-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon |