A deep learning approach for fast muscle water T2 mapping with subject specific fat T2 calibration from multi-spin-echo acquisitions

This work presents a deep learning approach for rapid and accurate muscle water T 2 with subject-specific fat T 2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squ...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 8253 - 11
Main Authors Barbieri, Marco, Hooijmans, Melissa T., Moulin, Kevin, Cork, Tyler E., Ennis, Daniel B., Gold, Garry E., Kogan, Feliks, Mazzoli, Valentina
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-58812-2

Cover

Loading…
Abstract This work presents a deep learning approach for rapid and accurate muscle water T 2 with subject-specific fat T 2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin’s concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T 2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T 2 map of muscle in clinical and research studies.
AbstractList This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin’s concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T2 map of muscle in clinical and research studies.
This work presents a deep learning approach for rapid and accurate muscle water T 2 with subject-specific fat T 2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin’s concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T 2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T 2 map of muscle in clinical and research studies.
This work presents a deep learning approach for rapid and accurate muscle water T with subject-specific fat T calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin's concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T map of muscle in clinical and research studies.
This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin's concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T2 map of muscle in clinical and research studies.This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin's concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T2 map of muscle in clinical and research studies.
Abstract This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin’s concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T2 map of muscle in clinical and research studies.
ArticleNumber 8253
Author Cork, Tyler E.
Hooijmans, Melissa T.
Kogan, Feliks
Gold, Garry E.
Barbieri, Marco
Ennis, Daniel B.
Mazzoli, Valentina
Moulin, Kevin
Author_xml – sequence: 1
  givenname: Marco
  surname: Barbieri
  fullname: Barbieri, Marco
  email: mb7@stanford.edu
  organization: Department of Radiology, Stanford University
– sequence: 2
  givenname: Melissa T.
  surname: Hooijmans
  fullname: Hooijmans, Melissa T.
  organization: Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center
– sequence: 3
  givenname: Kevin
  surname: Moulin
  fullname: Moulin, Kevin
  organization: Department of Cardiology, Boston Children’s Hospital, Harvard Medical School
– sequence: 4
  givenname: Tyler E.
  surname: Cork
  fullname: Cork, Tyler E.
  organization: Department of Radiology, Stanford University
– sequence: 5
  givenname: Daniel B.
  surname: Ennis
  fullname: Ennis, Daniel B.
  organization: Department of Radiology, Stanford University
– sequence: 6
  givenname: Garry E.
  surname: Gold
  fullname: Gold, Garry E.
  organization: Department of Radiology, Stanford University, Department of Bioengineering, Stanford University
– sequence: 7
  givenname: Feliks
  surname: Kogan
  fullname: Kogan, Feliks
  organization: Department of Radiology, Stanford University
– sequence: 8
  givenname: Valentina
  surname: Mazzoli
  fullname: Mazzoli, Valentina
  organization: Department of Radiology, Stanford University, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38589478$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu3CAUhlGVqknTvEAXFVI33bjlOoZVFUW9RIrUTbpGGB_PMLKNA7hR933w4nGaJlkEJEDw_T_nwHmNjsYwAkJvKflICVefkqBSq4owUUmlKKvYC3TCiJAV44wdPVgfo7OU9qQ0ybSg-hU65koqLWp1gv6c4xZgwj3YOPpxi-00xWDdDnch4s6mjIc5uR7wrc0Q8TXDQ0EW8tbnHU5zsweXcZrA-c67IskL5Gzvm2izDyPuYhiKS599lYqyArcL2Lqb2Se_AOkNetnZPsHZ3XyKfn79cn3xvbr68e3y4vyqclLQXIHmdcNh4xxVXGtKNCtjo6hiddeA5Zy1Aqgtg1OgKW25aC0AyKZzrQZ-ii5X3zbYvZmiH2z8bYL15rAR4tbYmH3J1thGS6FrTihngnWgNoppWrw63lIQunh9Xr2muRmgdTDmaPtHpo9PRr8z2_DLUEoIK704fLhziOFmhpTN4JODvrcjhDkZTrgktWJMFfT9E3Qf5jiWt1ooITc1pQv17mFI97H8--0CsBVwMaQUobtHKDFLVZm1qkypKnOoKsOKSD0ROZ8PH1vS8v3zUr5KU7ln3EL8H_Yzqr9o1uJV
CitedBy_id crossref_primary_10_1002_jmri_29646
Cites_doi 10.1002/mus.24679
10.1186/2046-2395-3-9
10.1002/mrm.1910030305
10.1111/eci.12843
10.1002/jcsm.12987
10.1002/jmri.24613
10.1016/0893-6080(91)90009-T
10.1002/jmri.27106
10.2307/2532051
10.1007/s00330-020-06999-z
10.1016/j.ejmp.2021.07.013
10.1002/mrm.28290
10.1002/nbm.4670
10.1148/radiol.2017171316
10.1002/nbm.3459
10.1109/42.75611
10.1109/TMI.2009.2035616
10.1186/s12891-022-05907-4
10.1002/jcsm.12473
10.1109/TIT.1982.1056489
10.3233/JND-180333
10.1007/s40520-020-01530-2
10.1016/j.nmd.2013.12.012
10.3389/fneur.2021.630387
10.1002/mrm.22487
10.1016/S0140-6736(86)90837-8
10.1002/jmri.22153
10.48550/arXiv.2302.06352
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-58812-2
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_ab954973013242fe868291eeef3d1e49
PMC11002020
38589478
10_1038_s41598_024_58812_2
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R00 AG071735
– fundername: NIA NIH HHS
  grantid: K99 AG071735
– fundername: NIAMS NIH HHS
  grantid: R01 AR074492
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-e937b3e6cc183991092991b81827fbea332d4e1ad4ec8e911d34daeee5bfcd9e3
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Aug 21 18:34:05 EDT 2025
Fri Jul 11 11:35:52 EDT 2025
Wed Aug 13 01:45:35 EDT 2025
Sat Mar 22 01:33:40 EDT 2025
Tue Jul 01 00:51:46 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e937b3e6cc183991092991b81827fbea332d4e1ad4ec8e911d34daeee5bfcd9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-024-58812-2
PMID 38589478
PQID 3034567118
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ab954973013242fe868291eeef3d1e49
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11002020
proquest_miscellaneous_3035078228
proquest_journals_3034567118
pubmed_primary_38589478
crossref_primary_10_1038_s41598_024_58812_2
crossref_citationtrail_10_1038_s41598_024_58812_2
springer_journals_10_1038_s41598_024_58812_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-08
PublicationDateYYYYMMDD 2024-04-08
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Klein, Staring, Murphy, Viergever, Pluim (CR30) 2010; 29
Rostron (CR8) 2022; 23
Barbieri (CR25) 2021; 89
Keene (CR19) 2020; 84
Biglands (CR15) 2020; 30
Bland, Altman (CR32) 1986; 327
Mavrogeni (CR9) 2017; 47
Monforte (CR10) 2019; 10
Marty (CR17) 2016; 29
Reyngoudt (CR13) 2022; 13
Yoon (CR6) 2018; 287
Santini, Deligianni, Paoletti, Weigel, Monforte, Tasca, Pichiecchio, Bergsland (CR18) 2021; 26
Lin (CR33) 1989; 45
Farrow (CR5) 2021; 33
Lloyd (CR31) 1982; 28
Hornik (CR20) 1991; 4
Bogdanov (CR7) 2021; 1
CR4
Pauly, Le Roux, Nishimura, Macovski (CR22) 1991; 10
Hooijmans (CR28) 2020; 52
CR29
CR27
CR24
CR23
Smeulders (CR2) 2010; 31
Strijkers (CR3) 2019; 6
Azzabou, Loureiro Sousa, Caldas, Carlier (CR14) 2015; 41
Lebel, Wilman (CR21) 2010; 64
McGregor, Cameron-Smith, Poppitt (CR1) 2014; 3
Wokke (CR12) 2016; 53
Majumdar, Orphanoudakis, Gmitro, O’Donnell, Gore (CR16) 1986; 3
Willcocks (CR11) 2014; 24
Barbieri (CR26) 2022; 35
RJ Willcocks (58812_CR11) 2014; 24
M Monforte (58812_CR10) 2019; 10
M Barbieri (58812_CR26) 2022; 35
F Santini (58812_CR18) 2021; 26
BH Wokke (58812_CR12) 2016; 53
58812_CR27
M Barbieri (58812_CR25) 2021; 89
N Azzabou (58812_CR14) 2015; 41
58812_CR29
H Reyngoudt (58812_CR13) 2022; 13
58812_CR23
MT Hooijmans (58812_CR28) 2020; 52
58812_CR24
J Bogdanov (58812_CR7) 2021; 1
J Pauly (58812_CR22) 1991; 10
MJC Smeulders (58812_CR2) 2010; 31
LI-K Lin (58812_CR33) 1989; 45
GJ Strijkers (58812_CR3) 2019; 6
S Majumdar (58812_CR16) 1986; 3
RA McGregor (58812_CR1) 2014; 3
58812_CR4
S Klein (58812_CR30) 2010; 29
JM Bland (58812_CR32) 1986; 327
S Mavrogeni (58812_CR9) 2017; 47
KR Keene (58812_CR19) 2020; 84
B Marty (58812_CR17) 2016; 29
S Lloyd (58812_CR31) 1982; 28
M Farrow (58812_CR5) 2021; 33
ZPJ Rostron (58812_CR8) 2022; 23
RM Lebel (58812_CR21) 2010; 64
JD Biglands (58812_CR15) 2020; 30
K Hornik (58812_CR20) 1991; 4
MA Yoon (58812_CR6) 2018; 287
References_xml – volume: 53
  start-page: 38
  year: 2016
  end-page: 43
  ident: CR12
  article-title: T2 relaxation times are increased in Skeletal muscle of DMD but not BMD patients
  publication-title: Muscle Nerve
  doi: 10.1002/mus.24679
– volume: 1
  start-page: 301
  year: 2021
  end-page: 308
  ident: CR7
  article-title: Fatty degeneration of the rotator cuff: Pathogenesis, clinical implications, and future treatment
  publication-title: JSES Rev. Rep. Tech.
– volume: 3
  start-page: 9
  year: 2014
  ident: CR1
  article-title: It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life
  publication-title: Longev. Heal.
  doi: 10.1186/2046-2395-3-9
– ident: CR4
– volume: 3
  start-page: 397
  year: 1986
  end-page: 417
  ident: CR16
  article-title: Errors in the measurements of T2 using multiple-echo MRI techniques. I. Effects of radiofrequency pulse imperfections
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910030305
– volume: 47
  start-page: e12843
  issue: 12
  year: 2017
  ident: CR9
  article-title: Oedema-fibrosis in Duchenne Muscular dystrophy: Role of cardiovascular magnetic resonance imaging
  publication-title: Eur. J. Clin. Investig.
  doi: 10.1111/eci.12843
– volume: 13
  start-page: 1850
  issue: 3
  year: 2022
  end-page: 1863
  ident: CR13
  article-title: Three-year quantitative magnetic resonance imaging and phosphorus magnetic resonance spectroscopy study in lower limb muscle in dysferlinopathy
  publication-title: J. Cachexia, Sarcopenia Muscle.
  doi: 10.1002/jcsm.12987
– volume: 41
  start-page: 645
  issue: 3
  year: 2015
  end-page: 653
  ident: CR14
  article-title: Validation of a generic approach to muscle water T2 determination at 3T in fat-infiltrated skeletal muscle
  publication-title: J. Mag. Resonance Imaging.
  doi: 10.1002/jmri.24613
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: CR20
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
– volume: 52
  start-page: 407
  year: 2020
  end-page: 417
  ident: CR28
  article-title: Quantitative MRI reveals microstructural changes in the upper leg muscles after running a marathon
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27106
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: CR33
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 30
  start-page: 6603
  year: 2020
  end-page: 6613
  ident: CR15
  article-title: MRI in acute muscle tears in athletes: can quantitative T2 and DTI predict return to play better than visual assessment?
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06999-z
– ident: CR29
– volume: 89
  start-page: 80
  year: 2021
  end-page: 92
  ident: CR25
  article-title: A deep learning approach for magnetic resonance fingerprinting: Scaling capabilities and good training practices investigated by simulations
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2021.07.013
– ident: CR27
– ident: CR23
– volume: 84
  start-page: 2656
  year: 2020
  end-page: 2670
  ident: CR19
  article-title: T2 relaxation-time mapping in healthy and diseased skeletal muscle using extended phase graph algorithms
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28290
– volume: 35
  start-page: e4670
  issue: 4
  year: 2022
  ident: CR26
  article-title: Circumventing the curse of dimensionality in magnetic resonance fingerprinting through a deep learning approach
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4670
– volume: 287
  start-page: 235
  year: 2018
  end-page: 246
  ident: CR6
  article-title: Multiparametric MR imaging of age-related changes in healthy thigh muscles
  publication-title: Radiology
  doi: 10.1148/radiol.2017171316
– volume: 29
  start-page: 431
  year: 2016
  end-page: 443
  ident: CR17
  article-title: Simultaneous muscle water T2 and fat fraction mapping using transverse relaxometry with stimulated echo compensation
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3459
– volume: 10
  start-page: 53
  year: 1991
  end-page: 65
  ident: CR22
  article-title: Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm (NMR imaging)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.75611
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  ident: CR30
  article-title: Elastix: A toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 23
  start-page: 944
  year: 2022
  ident: CR8
  article-title: Effects of a targeted resistance intervention compared to a sham intervention on gluteal muscle hypertrophy, fatty infiltration and strength in people with hip osteoarthritis: Analysis of secondary outcomes from a randomised clinical trial
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-022-05907-4
– volume: 10
  start-page: 1258
  year: 2019
  end-page: 1265
  ident: CR10
  article-title: Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12473
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: CR31
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 6
  start-page: 1
  year: 2019
  end-page: 30
  ident: CR3
  article-title: Exploration of new contrasts, targets, and MR imaging and spectroscopy techniques for neuromuscular disease—A workshop report of working group 3 of the biomedicine and molecular biosciences COST action BM1304 MYO-MRI
  publication-title: J. Neuromuscul. Dis.
  doi: 10.3233/JND-180333
– volume: 33
  start-page: 291
  year: 2021
  end-page: 301
  ident: CR5
  article-title: The effect of ageing on skeletal muscle as assessed by quantitative MR imaging: An association with frailty and muscle strength
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/s40520-020-01530-2
– volume: 24
  start-page: 393
  year: 2014
  end-page: 401
  ident: CR11
  article-title: Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: Effects of age and disease progression
  publication-title: Neuromuscul. Disord. NMD
  doi: 10.1016/j.nmd.2013.12.012
– volume: 26
  start-page: 630387
  issue: 12
  year: 2021
  ident: CR18
  article-title: Fast open-source toolkit for water T2 mapping in the presence of fat from multi-echo spin-echo acquisitions for muscle MRI
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.630387
– volume: 64
  start-page: 1005
  year: 2010
  end-page: 1014
  ident: CR21
  article-title: Transverse relaxometry with stimulated echo compensation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22487
– volume: 327
  start-page: 307
  issue: 8476
  year: 1986
  end-page: 310
  ident: CR32
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 31
  start-page: 1252
  year: 2010
  end-page: 1255
  ident: CR2
  article-title: Reliability of in vivo determination of forearm muscle volume using 3.0 T magnetic resonance imaging
  publication-title: J. Magn. Reson. Imaging JMRI
  doi: 10.1002/jmri.22153
– ident: CR24
– volume: 28
  start-page: 129
  year: 1982
  ident: 58812_CR31
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 3
  start-page: 397
  year: 1986
  ident: 58812_CR16
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910030305
– volume: 10
  start-page: 53
  year: 1991
  ident: 58812_CR22
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.75611
– volume: 13
  start-page: 1850
  issue: 3
  year: 2022
  ident: 58812_CR13
  publication-title: J. Cachexia, Sarcopenia Muscle.
  doi: 10.1002/jcsm.12987
– volume: 26
  start-page: 630387
  issue: 12
  year: 2021
  ident: 58812_CR18
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.630387
– volume: 30
  start-page: 6603
  year: 2020
  ident: 58812_CR15
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06999-z
– volume: 4
  start-page: 251
  year: 1991
  ident: 58812_CR20
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
– volume: 47
  start-page: e12843
  issue: 12
  year: 2017
  ident: 58812_CR9
  publication-title: Eur. J. Clin. Investig.
  doi: 10.1111/eci.12843
– volume: 33
  start-page: 291
  year: 2021
  ident: 58812_CR5
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/s40520-020-01530-2
– volume: 35
  start-page: e4670
  issue: 4
  year: 2022
  ident: 58812_CR26
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4670
– volume: 6
  start-page: 1
  year: 2019
  ident: 58812_CR3
  publication-title: J. Neuromuscul. Dis.
  doi: 10.3233/JND-180333
– volume: 1
  start-page: 301
  year: 2021
  ident: 58812_CR7
  publication-title: JSES Rev. Rep. Tech.
– ident: 58812_CR24
– volume: 53
  start-page: 38
  year: 2016
  ident: 58812_CR12
  publication-title: Muscle Nerve
  doi: 10.1002/mus.24679
– volume: 29
  start-page: 431
  year: 2016
  ident: 58812_CR17
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3459
– volume: 287
  start-page: 235
  year: 2018
  ident: 58812_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.2017171316
– volume: 3
  start-page: 9
  year: 2014
  ident: 58812_CR1
  publication-title: Longev. Heal.
  doi: 10.1186/2046-2395-3-9
– volume: 84
  start-page: 2656
  year: 2020
  ident: 58812_CR19
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28290
– ident: 58812_CR4
– volume: 64
  start-page: 1005
  year: 2010
  ident: 58812_CR21
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22487
– volume: 31
  start-page: 1252
  year: 2010
  ident: 58812_CR2
  publication-title: J. Magn. Reson. Imaging JMRI
  doi: 10.1002/jmri.22153
– volume: 29
  start-page: 196
  year: 2010
  ident: 58812_CR30
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 24
  start-page: 393
  year: 2014
  ident: 58812_CR11
  publication-title: Neuromuscul. Disord. NMD
  doi: 10.1016/j.nmd.2013.12.012
– volume: 45
  start-page: 255
  year: 1989
  ident: 58812_CR33
  publication-title: Biometrics
  doi: 10.2307/2532051
– ident: 58812_CR29
  doi: 10.48550/arXiv.2302.06352
– ident: 58812_CR23
– volume: 89
  start-page: 80
  year: 2021
  ident: 58812_CR25
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2021.07.013
– volume: 327
  start-page: 307
  issue: 8476
  year: 1986
  ident: 58812_CR32
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– ident: 58812_CR27
– volume: 52
  start-page: 407
  year: 2020
  ident: 58812_CR28
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27106
– volume: 23
  start-page: 944
  year: 2022
  ident: 58812_CR8
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-022-05907-4
– volume: 41
  start-page: 645
  issue: 3
  year: 2015
  ident: 58812_CR14
  publication-title: J. Mag. Resonance Imaging.
  doi: 10.1002/jmri.24613
– volume: 10
  start-page: 1258
  year: 2019
  ident: 58812_CR10
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12473
SSID ssj0000529419
Score 2.442983
Snippet This work presents a deep learning approach for rapid and accurate muscle water T 2 with subject-specific fat T 2 calibration using multi-spin-echo...
This work presents a deep learning approach for rapid and accurate muscle water T with subject-specific fat T calibration using multi-spin-echo acquisitions....
This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions....
Abstract This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8253
SubjectTerms 631/1647/245/1628
639/166/985
Algorithms
Brain
Calibration
Computer applications
Correlation coefficient
Deep Learning
Dictionaries
Humanities and Social Sciences
Image Processing, Computer-Assisted - methods
Information processing
Magnetic Resonance Imaging - methods
multidisciplinary
Muscles - diagnostic imaging
Neural networks
Phantoms, Imaging
Science
Science (multidisciplinary)
Water
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F03aVGht1ZkLcle6ZiWhlBoTwnkJvQYpYHGedim5N4f3hnZu832eSkLPqxmQGhGnm88L8ZepbZJbfBKoOcVhLbZCh_qLDKayjYk9Ehaqkb--Kk9ONIfjpvjG6O-KCdsag88HdyuDxSIIj0k05_BtEbaGgCySjXoUrqHNu-GMzV19ZZW13auklkos9ujpaJqMqlFY9CqCblhiUrD_t-hzF-TJX-KmBZDtH-P3Z0RJN-bdn6f3YLuAbs9zZS8fsi-7fEEcMHncRAnfNU1nCM85dn3Az8be-TkXxFmXvFDyc88NWk44fRNlvdjoE8znEowKY0IWQYiQlmSZ01y5FSTwksqouiRUwC-Q7mPl-PpnAH2iB3tvz98dyDmUQsiNroeBCBKCQraGAkxIYRA1GTrgNZcLnMAr5RMGmqPj2gAX5BJ6eRRCk3IMVlQj9lWd97BU8b9wkQLoGNClmCjX8hMIAXZYop5UbF6dewuzn3IaRzGF1fi4cq4SVQOReWKqJys2Os1z8XUheOv1G9JmmtK6qBd_kC9crNeuX_pVcV2Vrrg5mvdO7T3CDiX6JRV7OV6GS8kRVl8B-djoWkK7kKaJ5PqrHdCUVirl7hiNpRqY6ubK93p59L0m1r7SfxV7M1K_37s689n8ex_nMU2uyPp4lDCktlhW8PVCM8Riw3hRbl23wE9ZTCN
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGX0nfcpkWF3lqRtSw_dCppaQiF9pTA3oSe20Dj3axtSu754Z2RZYftIyz4sJoB2TOa-aQZzRDyzlWlq4wuGOy8DBMySKZNHlgAV1kZBzuSCm8jf_tenZyJr8tymQ7cupRWOdnEaKjd2uIZ-SGYWvD1NeDhj5tLhl2jMLqaWmjcJfewdBluvuplPZ-xYBRL5DLdlVkUzWEH_grvlHHBygZ8G-M7_iiW7f8X1vw7ZfKPuGl0R8ePyMOEI-nRKPjH5I5vn5D7Y2fJq6fk-og67zc0NYVY0al2OAWQSoPuenoxdMBJfwHY3NJTTi80lmpYUTyZpd1g8ICG4kVMTCYClh6JQKK4v0ZpUryZQmNCIuuAk3mwpFTby-E85YE9I2fHX04_n7DUcIHZUuQ984BVTOEraxE3AZAA7CRzAz6d18F4XRTcCZ9reNjGg5l0hXDae1-aYJ30xXOy165bv0-oXjRWei-sAxYjrV7wgFAF2KyzYZGRfPrsyqZq5NgU46eKUfGiUaOoFIhKRVEpnpH3M89mrMVxK_UnlOZMiXW04x_r7UqlZam0wTAnWjkElsE3VcNlDm8UCpd7ITNyMOmCSou7UzeqmJG38zAsS4y16Navh0hTRvQFNC9G1ZlngrFYKWoYaXaUamequyPt-Y9Y-hsL_HH4ZeTDpH838_r_t3h5-2u8Ig84LglMSGoOyF6_HfxrwFq9eRMX1G9dTiiT
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lIvgifnu2SgTfNHqbze5tHkSqWIpQn3rQt5CPyVlo99rbXbTv_cOdye6enJ6CLNzDZgZymZnML5v5YOxVKItQOpsLPHk5oXTUwrosioiusnQBTyQlZSMffy2P5urLaXG6w8Z2R8MCNluPdtRPar46f_vj6voDGvz7PmW8etegE6JEMalEUaHDErgl30LPNKNWDscD3O9rfUutMj3kzmxn3fBPqYz_Nuz5Zwjlb_eoyT0d3mN3B1zJD3pFuM92oH7AbvedJq8fspsDHgAu-dAkYsHHWuIcQSuPtmn5RdcgJ_-O4HPFTyS_sFS6YcHpSy1vOkcfbDglZlJwEbK0RIQSpvM2SZdTpgpPAYqiQU4BuLjc-qvubIgLe8Tmh59PPh2JoQGD8IXKWgGIXVwOpfeEoxBYIJbSmUMfL2fRgc1zGRRkFn98BbhthlwFCwCFiz5oyB-z3XpZw1PG7bTyGkD5gCxOezuVkaALsvng43TCsnHZjR-qk1OTjHOTbsnzyvSiMigqk0Rl5IS9XvNc9rU5_kn9kaS5pqS62unFcrUwg5ka6-jak3Y9ApoRqrKSOsN_FPOQgdITtj_qghl11SAKQBg6w6PahL1cD6OZ0t2LrWHZJZoioTGkedKrznomdDer1QxHqg2l2pjq5kh99i2VAqeCfxKfCXsz6t-vef19LZ79H_keuyPJRChgqdpnu-2qg-eIxVr3IhnYT-S6MA8
  priority: 102
  providerName: Scholars Portal
Title A deep learning approach for fast muscle water T2 mapping with subject specific fat T2 calibration from multi-spin-echo acquisitions
URI https://link.springer.com/article/10.1038/s41598-024-58812-2
https://www.ncbi.nlm.nih.gov/pubmed/38589478
https://www.proquest.com/docview/3034567118
https://www.proquest.com/docview/3035078228
https://pubmed.ncbi.nlm.nih.gov/PMC11002020
https://doaj.org/article/ab954973013242fe868291eeef3d1e49
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1RfBF_Ha1HhF80-DtbnY3ebweLeWgRbSFewv5PAv2rt7uIr77hzuT_ZDTKsjBHlxmILczmfkl8xFC3riycKXROYOdl2FcBsm0SQML4CpL42BHUmI18tl5eXrJF8tiuUeyoRYmJu3HlpbRTA_ZYe9rcDRYDJZxVghwSgzM7gG2bsc0vnk5H89VMHLFU9nXx0xzcQvrjg-Krfpvw5d_pkn-FiuNLujkAbnfY0c662b7kOz59SNyt7tN8vtj8mNGnfc3tL8IYkWHfuEUgCkNum7odVsDJ_0GAHNLLzJ6rbE9w4riaSytW4OHMhSLLzGBCFgaJAIp4p4aJUixGoXGJERWAyfzYD2ptl_bqz736wm5PDm-mJ-y_pIFZgueNswDPjG5L61FrATgAfCSTA348awKxus8zxz3qYaHFR5Mo8u50977wgTrpM-fkv31Zu2fE6qnwkrvuXXAYqTV0ywgPAE262yYJiQdXruyfQdyvAjji4qR8FyoTlQKRKWiqFSWkLcjz03Xf-Of1EcozZESe2fHHzbblep1SWmDoU20bAgmgxelyGQK_yjkLvVcJuRw0AXVL-hagacHqFnBdiwhr8dhWIoYX9Frv2kjTRERF9A861RnnAnGXyWvYETsKNXOVHdH1lefY7tvbOqXwSch7wb9-zWvv7-LF_9H_pLcy3CJYFKSOCT7zbb1rwBvNWZC7lTLakIOZrPFpwV8Hx2ff_g4ictuEs8w4HnGxU9A3ixN
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAosEJ1g1Xq8d-4BQC61S2kYIpVJvy74cKtEkjR1VvfN7-I3M-FWFR29VpByyO9HaMzvz7c4L4LVLYpcYHXE8eRkuszzj2oQ5z9FUJsbhiSShbOTDUTI8kp-P4-M1-NXmwlBYZasTK0XtZpbuyDdR1aKtHyAe_jA_49Q1iryrbQuNWiz2_cU5HtmK93ufkL9vhNjdGX8c8qarALexDEvu0SCbyCfWEjhAa4kAIQsNGi4xyI3XUSSc9KHGL5t61AUukk5772OTW5f5CP_3BqzLCKFCD9a3d0Zfvna3OuQ3k2HWZOf0o3SzQAtJWWxC8jhFa8rFigWsGgX8C93-HaT5h6e2MoC7d-FOg1zZVi1q92DNT-_DzbqX5cUD-LnFnPdz1rShmLC2WjlDWMxyXZTsdFkgJTtHeLtgY8FONRWHmDC6C2bF0tCVEKPUTwpfQpKSJqEM0Yme5IdRLgyrQiB5gZTco-5m2p4tT5rIs4dwdC3MeAS96WzqnwDT_dRm3kvrkMRkVvdFTuAIyayzeT-AsH3tyjb1z6kNxw9V-eGjVNWsUsgqVbFKiQDedjTzuvrHlbO3iZvdTKrcXf0wW0xUowiUNuRYJb1KUDb3aZKKLMQnyiMXepkFsNHKgmrUSaEuhT-AV90wKgLy7uipny2rOXGF93DO41p0upWQ9zeTAxxJV4RqZamrI9OT71WxcSopKPATwLtW_i7X9f938fTqx3gJt4bjwwN1sDfafwa3BW0PCodKN6BXLpb-OSK90rxotheDb9e9o38Dm8toNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0CpFIC4Vz7KlgJHgBFay3vcBoUKJWgoVh1bKzfgxDpVokmYTVb3zVXwdM97dVOHRWxUph3gm8u487Xkx9tLlmcuNTgSevIxIK18JbWIvPJrK3Dg8keRUjfzlMN87Tj8Ns-Ea-9XVwlBaZacTg6J2E0t35D1UtWjrC_SHe75Ni_i6O3g3PRM0QYoird04jYZFDuDiHI9v9dv9XaT1KykHH48-7Il2woCwWRrPBaBxNgnk1pKjgJYTnYUqNmjEZOEN6CSRLoVY45ctAfWCS1KnASAz3roKEvzfG-xmkaDZRFkqhsXyfociaGlctXU6_aTs1WgrqZ5NpiIr0a4KuWILw8iAf_m5f6dr_hGzDaZwcJdttD4s32mY7h5bg_F9dquZannxgP3c4Q5gytuBFCPe9S3n6CBzr-s5P13UiMnP0dGd8SPJTzW1iRhxuhXm9cLQ5RCnIlBKZEKUOQEhN9HZnjiJU1UMD8mQokZMAajFubZni5M2B-0hO74WUjxi6-PJGB4zrvulrQBS6xDFVFb3pSc3CdGss74fsbh77cq2ndBpIMcPFSLySakaUikklQqkUjJir5c406YPyJXQ74maS0jq4R1-mMxGqlUJShsKsZKGJafWQ5mXsorxiXziYkiriG13vKBaxVKrSzGI2IvlMqoEivPoMUwWASYLnh_CbDass9wJxYGrtMCVcoWpVra6ujI--R7ajlNzQYmfiL3p-O9yX_9_F1tXP8ZzdhvlWH3ePzx4wu5Ikg7Kiyq32fp8toCn6PLNzbMgW5x9u25h_g0_FmsE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+approach+for+fast+muscle+water+T2+mapping+with+subject+specific+fat+T2+calibration+from+multi-spin-echo+acquisitions&rft.jtitle=Scientific+reports&rft.au=Barbieri%2C+Marco&rft.au=Hooijmans%2C+Melissa+T.&rft.au=Moulin%2C+Kevin&rft.au=Cork%2C+Tyler+E.&rft.date=2024-04-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-58812-2&rft.externalDocID=10_1038_s41598_024_58812_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon