Poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation for prolonged circulation half-life and enhanced cell internalization
PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their the...
Saved in:
Published in | Bioactive materials Vol. 6; no. 9; pp. 2688 - 2697 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.09.2021
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pHe-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations.
[Display omitted]
•The poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation are developed for cancer therapy.•DePEGylation of nanoformulations triggered by tumor microenvironment exhibit enhanced tumor cell internalization.•The dePEGylation strategy exhibits promising prospects for clinical application of nanomedicines. |
---|---|
AbstractList | PEGylation has been widely applied to prolong the circulation times of nanomedicines
the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pH
)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pH
-responsive PEG-
-PLG and MMP-sensitive PEG-
-PLG. The corresponding smart nanoformulations PEG-
-PLG-Pt and PEG-
-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-
-PLG-Pt and PEG-
-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pH
or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations. PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pHe-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations. PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly( l -glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pH e )-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pH e -responsive PEG- pH e -PLG and MMP-sensitive PEG- MMP -PLG. The corresponding smart nanoformulations PEG- pH e -PLG-Pt and PEG- MMP -PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG- pH e -PLG-Pt and PEG- MMP -PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pH e or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations. Image 1 • The poly( l -glutamic acid)-cisplatin nanoformulations with detachable PEGylation are developed for cancer therapy. • DePEGylation of nanoformulations triggered by tumor microenvironment exhibit enhanced tumor cell internalization. • The dePEGylation strategy exhibits promising prospects for clinical application of nanomedicines. PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pH e-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations.PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pH e-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations. PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pHe-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations. [Display omitted] •The poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation are developed for cancer therapy.•DePEGylation of nanoformulations triggered by tumor microenvironment exhibit enhanced tumor cell internalization.•The dePEGylation strategy exhibits promising prospects for clinical application of nanomedicines. |
Author | Zou, Haoyang Xu, Weiguo Jiang, Zhongyu Zhuang, Xiuli Feng, Xiangru |
Author_xml | – sequence: 1 givenname: Zhongyu surname: Jiang fullname: Jiang, Zhongyu organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China – sequence: 2 givenname: Xiangru surname: Feng fullname: Feng, Xiangru organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China – sequence: 3 givenname: Haoyang surname: Zou fullname: Zou, Haoyang organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China – sequence: 4 givenname: Weiguo surname: Xu fullname: Xu, Weiguo email: wgxu@ciac.ac.cn organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China – sequence: 5 givenname: Xiuli surname: Zhuang fullname: Zhuang, Xiuli email: zhuangxl@ciac.ac.cn organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33665501$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUs1u1DAQjlARLaWvAD6WQxY7cX58AKmqSqlUiR5A4mZNJpNdr7z24nhblbfgjXF2t1XLpdLI9ni-H2lm3mYHzjvKsg-CzwQX9aflrDMeMK4gzgpeiBlPUcpX2VEhqyIXSv06ePI-zE7Gcck5F006ePMmOyzLuq4qLo6yvzfe3p_afG43EVYGGaDpP-ZoxrWFaBxz4Pzgw2ozpd6N7M7EBespAi6gs8RuLi7vdzWWcGwdvPVuTj1DE3DPYguwQ27NQAxcz8gtwOEEIWuZcZGCA2v-bLHvstcD2JFO9vdx9vPrxY_zb_n198ur87PrHCspYk4VSoQCgXdFocqaD7xSqsdWtqJFSaIUohyoGKqq4JJQ9rzjAkXdtV0NqXycXe10ew9LvQ5mBeFeezB6--HDXEOIBi3pumxK5H2PQw2y4qVSLeKQMtVRPzRV0vqy01pvuhX1SC4GsM9En1ecWei5v9VNq6qmaJPA6V4g-N8bGqNemXHqDjjym1EXUrVSCS5Vgr5_6vVo8jDTBPi8A2Dw4xho0GjitrXJ2lgtuJ7WSC_14xrpaY00T1HKxG_-4z9YvMw82zEpze3WUNAjGpombQJhTI01L2r8A9227Bk |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2023_05_024 crossref_primary_10_1002_agt2_568 crossref_primary_10_1002_mabi_202200577 crossref_primary_10_1016_j_carbpol_2023_121255 crossref_primary_10_2174_2468187313666230106104528 crossref_primary_10_1007_s00210_023_02608_0 crossref_primary_10_1002_smtd_202301121 crossref_primary_10_1016_j_jddst_2023_104759 crossref_primary_10_1002_wnan_1828 crossref_primary_10_2174_1567201820666230116164511 crossref_primary_10_1002_mog2_67 crossref_primary_10_1016_j_biomaterials_2022_121793 crossref_primary_10_1021_acsami_2c09064 crossref_primary_10_1002_smll_202208241 |
Cites_doi | 10.1166/jbn.2016.2152 10.1002/adma.201906024 10.1016/j.cclet.2020.04.029 10.1038/s41587-019-0135-x 10.1016/j.addr.2015.09.012 10.1016/j.scib.2019.04.017 10.1039/C6RA19753A 10.1039/C8NH00417J 10.1002/adma.201807557 10.1002/smtd.201700307 10.1038/s41467-017-02390-7 10.1021/acs.nanolett.0c02515 10.1021/jacs.5b09602 10.1021/acsnano.0c05541 10.1016/j.cmpb.2010.01.007 10.1016/j.jconrel.2014.12.022 10.1016/j.pharmthera.2006.05.006 10.1039/C8PY00810H 10.1080/10717544.2017.1388451 10.1002/adma.201902604 10.1007/s12274-019-2319-6 10.1021/acsami.6b00825 10.1016/j.msec.2018.10.092 10.1002/advs.201903642 10.1002/anie.201903277 10.1016/j.actbio.2019.05.007 10.1002/adma.201701170 10.1021/acsami.5b10241 10.1002/adma.201606628 10.1021/acs.biomac.8b00290 10.1021/mp500108p 10.1016/j.jconrel.2018.12.013 10.1016/j.cclet.2019.12.001 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 [The Author/The Authors]. 2021 [The Author/The Authors] 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 [The Author/The Authors]. – notice: 2021 [The Author/The Authors] 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2021.01.034 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 2697 |
ExternalDocumentID | oai_doaj_org_article_6373c0ddcf6a4503998ccfcf69bedf75 PMC7895728 33665501 10_1016_j_bioactmat_2021_01_034 S2452199X21000463 |
Genre | Journal Article |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY NPM PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c541t-e5c4ca2ca0b229360f0599dc84818c4e13113fe2f55204ec4d0b01c16b8b6ae13 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:25:58 EDT 2025 Thu Aug 21 18:26:21 EDT 2025 Fri Jul 11 09:32:01 EDT 2025 Mon Jul 21 06:07:02 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 02:11:25 EDT 2025 Wed May 17 00:09:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Prolonged circulation time Detachable PEGylation Platinum chemotherapy Enhanced cell uptake Poly(l-glutamic acid) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 [The Author/The Authors]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-e5c4ca2ca0b229360f0599dc84818c4e13113fe2f55204ec4d0b01c16b8b6ae13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/6373c0ddcf6a4503998ccfcf69bedf75 |
PMID | 33665501 |
PQID | 2498491049 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6373c0ddcf6a4503998ccfcf69bedf75 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895728 proquest_miscellaneous_2498491049 pubmed_primary_33665501 crossref_citationtrail_10_1016_j_bioactmat_2021_01_034 crossref_primary_10_1016_j_bioactmat_2021_01_034 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2021_01_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2021 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Jiang, Feng, Xu, Zhuang, Ding, Cheng (bib22) 2020; 51 Trang, Zhang, Yumul, Zeng, Stone, Wo, Dominguez, Cochran, Simmons, Ryan, Lyon, Senter, Levengood (bib14) 2019; 37 Sun, Shen, Xu, Li, Liu, Cao, Yang, Xia, Wang (bib13) 2015; 137 Chen, Ding, Wang, Cheng, Ji, Zhuang, Chen (bib19) 2017; 29 Jiang, Chen, Cui, Zhuang, Ding, Chen (bib12) 2018; 2 Liu, Li, Ding, Chen (bib23) 2020; 31 Chen, Luo, Xue, Han, Liu, Zhang, Yin, Wang, Cun, Gou, He, Tang (bib15) 2019; 92 Ren, Sun, Sun, Cui, Hong, Rao, Li, Yu, Kan, Mao (bib28) 2020; 32 Kong, Campbell, Kros (bib1) 2019; 4 Wu, Qin, Xu, Wang, Liu, Ren, Zhou, Chen, Yang, Li, Zhao, Huang, Pourtaheri, Kang, Kamata, Chen, He, Wen, Chen, Lu (bib2) 2019; 31 Yu, Tang, Zhang, Song, Zhanga, Yang, Ahmad, Chen (bib18) 2015; 205 Saravanakumar, Park, Kim, Park, Pramanick, Kim, Kim (bib9) 2018; 19 Feng, Xu, Liu, Li, Chen (bib17) 2020 Shariati, Lollo, Matha, Descamps, Vanhove, Van de Sande, Willaert, Balcaen, Vanhaecke, Benoit, Ceelen, De Smedt, Remaut (bib36) 2020; 12 Yang, Yu, Chen, Meng, Ma, Yu, Li, Li, Liu, Zhang, Xiao, Yu (bib21) 2020; 14 Mi, Cabral, Kataoka (bib8) 2020; 32 Yu, Cen, He, Wang, Wang, Ying, Li, Jacobson, Wang, Wang, Lin, Tian, Zhou, Ni, Li, Chen (bib5) 2019; 58 Zhao, Shao, Lu, Deng, Wu (bib10) 2016; 8 Nishiyama, Kataoka (bib25) 2006; 112 Yang, Yu, Huang, Chen, Wu, Wang, Qi, Miao, Qiu (bib16) 2019; 96 Qi, Wang, Bruno, Xiao, Yu, Li, Lauffer, Wei, Chen, Kang, Song, Yang, Huang, Detappe, Matulonis, Pepin, Hemann, Birrer, Ghoroghchian (bib37) 2017; 8 Suk, Xu, Kim, Hanes, Ensign (bib4) 2016; 99 Gao, Wang, Wang, Liu, Liu, Ye, Wang, Wang, Chen, Jiang, Ou, van Hest, Peng, Tu (bib26) 2020; 7 Chen, Jiang, Xu, Sun, Zhuang, Ding, Chen (bib35) 2020; 20 Huang, Sun, Shen, Zhang, Gao, Duan (bib31) 2016; 8 Zhang, Lu, Tian, Li, Hou, Wang, Sun, Shi, Lu (bib34) 2019; 12 Xu, Wang, Guo, Chen, Lin, Wu, Tian, Chen (bib29) 2019; 295 Sun, Zhou, Qiu, Shen (bib7) 2017; 29 Zhang, Huo, Zhou, Xie (bib20) 2010; 99 Zheng, Liu, Chen, Xu, Li, Ding (bib27) 2020; 31 Kulkarni, Haldar, Nahire, Katti, Ambre, Muhonen, Shabb, Padi, Singh, Borowicz, Shrivastava, Katti, Reindl, Guo, Mallik (bib30) 2014; 11 Yang, Lai (bib3) 2015; 7 Aujard-Catot, Nguyen, Bijani, Pratviel, Bonduelle (bib32) 2018; 9 Fang, Xue, Gao, Lu, Yang, Jiang, He, Shi (bib11) 2017; 24 Yu, Tang, Li, Song, Zhang, Zhang, Yang, Sun, Deng, Chen (bib24) 2016; 12 Bonduelle, Makni, Severac, Piedra-Arroni, Serpentini, Lecommandoux, Pratviel (bib33) 2016; 6 Yin, Wang, Ren, Shen, Chen, Liu, Liu (bib6) 2019; 64 Chen (10.1016/j.bioactmat.2021.01.034_bib19) 2017; 29 Ren (10.1016/j.bioactmat.2021.01.034_bib28) 2020; 32 Yin (10.1016/j.bioactmat.2021.01.034_bib6) 2019; 64 Yang (10.1016/j.bioactmat.2021.01.034_bib21) 2020; 14 Yu (10.1016/j.bioactmat.2021.01.034_bib5) 2019; 58 Trang (10.1016/j.bioactmat.2021.01.034_bib14) 2019; 37 Yang (10.1016/j.bioactmat.2021.01.034_bib16) 2019; 96 Zhang (10.1016/j.bioactmat.2021.01.034_bib20) 2010; 99 Xu (10.1016/j.bioactmat.2021.01.034_bib29) 2019; 295 Aujard-Catot (10.1016/j.bioactmat.2021.01.034_bib32) 2018; 9 Mi (10.1016/j.bioactmat.2021.01.034_bib8) 2020; 32 Sun (10.1016/j.bioactmat.2021.01.034_bib13) 2015; 137 Yu (10.1016/j.bioactmat.2021.01.034_bib18) 2015; 205 Zheng (10.1016/j.bioactmat.2021.01.034_bib27) 2020; 31 Huang (10.1016/j.bioactmat.2021.01.034_bib31) 2016; 8 Jiang (10.1016/j.bioactmat.2021.01.034_bib22) 2020; 51 Kulkarni (10.1016/j.bioactmat.2021.01.034_bib30) 2014; 11 Zhang (10.1016/j.bioactmat.2021.01.034_bib34) 2019; 12 Feng (10.1016/j.bioactmat.2021.01.034_bib17) 2020 Kong (10.1016/j.bioactmat.2021.01.034_bib1) 2019; 4 Shariati (10.1016/j.bioactmat.2021.01.034_bib36) 2020; 12 Jiang (10.1016/j.bioactmat.2021.01.034_bib12) 2018; 2 Suk (10.1016/j.bioactmat.2021.01.034_bib4) 2016; 99 Liu (10.1016/j.bioactmat.2021.01.034_bib23) 2020; 31 Yang (10.1016/j.bioactmat.2021.01.034_bib3) 2015; 7 Fang (10.1016/j.bioactmat.2021.01.034_bib11) 2017; 24 Chen (10.1016/j.bioactmat.2021.01.034_bib35) 2020; 20 Nishiyama (10.1016/j.bioactmat.2021.01.034_bib25) 2006; 112 Wu (10.1016/j.bioactmat.2021.01.034_bib2) 2019; 31 Saravanakumar (10.1016/j.bioactmat.2021.01.034_bib9) 2018; 19 Yu (10.1016/j.bioactmat.2021.01.034_bib24) 2016; 12 Zhao (10.1016/j.bioactmat.2021.01.034_bib10) 2016; 8 Sun (10.1016/j.bioactmat.2021.01.034_bib7) 2017; 29 Chen (10.1016/j.bioactmat.2021.01.034_bib15) 2019; 92 Gao (10.1016/j.bioactmat.2021.01.034_bib26) 2020; 7 Bonduelle (10.1016/j.bioactmat.2021.01.034_bib33) 2016; 6 Qi (10.1016/j.bioactmat.2021.01.034_bib37) 2017; 8 |
References_xml | – volume: 99 start-page: 306 year: 2010 end-page: 314 ident: bib20 article-title: PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Comput publication-title: Meth. Prog. Bio. – volume: 37 start-page: 761 year: 2019 end-page: 765 ident: bib14 article-title: A coiled-coil masking domain for selective activation of therapeutic antibodies publication-title: Nat. Biotechnol. – volume: 92 start-page: 205 year: 2019 end-page: 218 ident: bib15 article-title: Cisplatin-loaded polymeric complex micelles with a modulated drug/copolymer ratio for improved in vivo performance publication-title: Acta Biomater. – volume: 137 start-page: 15217 year: 2015 end-page: 15224 ident: bib13 article-title: Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1903642 year: 2020 ident: bib26 article-title: Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy publication-title: Adv. Sci. – volume: 205 start-page: 89 year: 2015 end-page: 97 ident: bib18 article-title: Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy publication-title: J. Contr. Release – volume: 4 start-page: 378 year: 2019 end-page: 387 ident: bib1 article-title: DePEGylation strategies to increase cancer nanomedicine efficacy publication-title: Nanoscale Horiz – volume: 96 start-page: 96 year: 2019 end-page: 104 ident: bib16 article-title: Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance publication-title: Mat. Sci. Eng. C-Mater. – volume: 31 start-page: 1178 year: 2020 end-page: 1182 ident: bib27 article-title: Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery publication-title: Chin. Chem. Lett. – volume: 12 start-page: 889 year: 2019 end-page: 896 ident: bib34 article-title: Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides publication-title: Nano Res – volume: 31 start-page: 1807557 year: 2019 ident: bib2 article-title: A bioinspired platform for effective delivery of protein therapeutics to the central nervous system publication-title: Adv. Mater. – volume: 8 start-page: 2166 year: 2017 ident: bib37 article-title: Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer publication-title: Nat. Commun. – volume: 19 start-page: 2202 year: 2018 end-page: 2213 ident: bib9 article-title: Miktoarm amphiphilic block copolymer with singlet oxygen-labile stereospecific beta-aminoacrylate junction: synthesis, self-assembly, and photodynamically triggered drug release publication-title: Biomacromolecules – volume: 58 start-page: 8799 year: 2019 end-page: 8803 ident: bib5 article-title: Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 3001 year: 2020 end-page: 3014 ident: bib23 article-title: Controlled synthesis of polypeptides publication-title: Chin. Chem. Lett. – volume: 295 start-page: 153 year: 2019 end-page: 163 ident: bib29 article-title: Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy publication-title: J. Contr. Release – volume: 8 start-page: 6400 year: 2016 end-page: 6410 ident: bib10 article-title: Tumor acidity-induced sheddable polyethylenimine-poly(trimethylene carbonate)/DNA/polyethylene glycol-2,3-dimethylmaleicanhydride ternary complex for efficient and safe gene delivery publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 22 year: 2017 end-page: 32 ident: bib11 article-title: Cleavable PEGylation: a strategy for overcoming the "PEG dilemma" in efficient drug delivery publication-title: Drug Deliv. – volume: 64 start-page: 679 year: 2019 end-page: 689 ident: bib6 article-title: Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics publication-title: Sci. Bull. – volume: 8 start-page: 1360 year: 2016 end-page: 1370 ident: bib31 article-title: Altered cell cycle arrest by multifunctional drug-loaded enzymatically-triggered nanoparticles publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 13536 year: 2020 end-page: 13547 ident: bib21 article-title: Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging publication-title: ACS Nano – volume: 51 start-page: 901 year: 2020 end-page: 910 ident: bib22 article-title: Calcium phosphate-cured nanocluster of poly(L-glutamic acid)-cisplatin and arsenic trioxide for synergistic chemotherapy of peritoneal metastasis of ovarian cancer publication-title: Acta Polym. Sin. – volume: 12 start-page: 69 year: 2016 end-page: 78 ident: bib24 article-title: Cisplatin loaded poly(L-glutamic acid)- publication-title: J. Biomed. Nanotechnol. – volume: 32 start-page: 1906024 year: 2020 ident: bib28 article-title: A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy publication-title: Adv. Mater. – volume: 29 start-page: 1606628 year: 2017 ident: bib7 article-title: Rational design of cancer nanomedicine: nanoproperty integration and synchronization publication-title: Adv. Mater. – volume: 7 start-page: 655 year: 2015 end-page: 677 ident: bib3 article-title: Anti-PEG immunity: emergence, characteristics, and unaddressed questions publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 32 start-page: 1902604 year: 2020 ident: bib8 article-title: Ligand-installed nanocarriers toward precision therapy publication-title: Adv. Mater. – volume: 11 start-page: 2390 year: 2014 end-page: 2399 ident: bib30 article-title: MMP-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer publication-title: Mol. Pharm. – volume: 2 start-page: 1700307 year: 2018 ident: bib12 article-title: Advances in stimuli-responsive polypeptide nanogels publication-title: Small Methods – volume: 99 start-page: 28 year: 2016 end-page: 51 ident: bib4 article-title: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery publication-title: Adv. Drug Deliv. Rev. – volume: 29 start-page: 1701170 year: 2017 ident: bib19 article-title: Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors publication-title: Adv. Mater. – year: 2020 ident: bib17 article-title: Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy publication-title: Sci. Bull. – volume: 9 year: 2018 ident: bib32 article-title: Cd publication-title: Polym. Chem. – volume: 20 start-page: 6191− year: 2020 end-page: 6198 ident: bib35 article-title: Spatiotemporally targeted nanomedicine overcomes hypoxia-induced drug resistance of tumor cells after disrupting neovasculature publication-title: Nano Lett. – volume: 12 start-page: 29024 year: 2020 end-page: 29036 ident: bib36 article-title: Synergy between intraperitoneal aerosolization (PIPAC) and cancer nanomedicine: cisplatin-loaded polyarginine-hyaluronic acid nanocarriers efficiently eradicate peritoneal metastasis of advanced human ovarian cancer publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 84694 year: 2016 end-page: 84697 ident: bib33 article-title: Smart metallopoly(L-glutamic acid) polymers: reversible helix-to-coil transition at neutral pH publication-title: RSC Adv. – volume: 112 start-page: 630 year: 2006 end-page: 648 ident: bib25 article-title: Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery publication-title: Pharmacol. Therapeut. – volume: 12 start-page: 69 year: 2016 ident: 10.1016/j.bioactmat.2021.01.034_bib24 article-title: Cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for potential cancer therapy: preparation, in vitro and in vivo evaluation publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2016.2152 – volume: 32 start-page: 1906024 year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib28 article-title: A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy publication-title: Adv. Mater. doi: 10.1002/adma.201906024 – volume: 31 start-page: 3001 year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib23 article-title: Controlled synthesis of polypeptides publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.04.029 – volume: 51 start-page: 901 year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib22 article-title: Calcium phosphate-cured nanocluster of poly(L-glutamic acid)-cisplatin and arsenic trioxide for synergistic chemotherapy of peritoneal metastasis of ovarian cancer publication-title: Acta Polym. Sin. – volume: 37 start-page: 761 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib14 article-title: A coiled-coil masking domain for selective activation of therapeutic antibodies publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0135-x – volume: 12 start-page: 29024 year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib36 article-title: Synergy between intraperitoneal aerosolization (PIPAC) and cancer nanomedicine: cisplatin-loaded polyarginine-hyaluronic acid nanocarriers efficiently eradicate peritoneal metastasis of advanced human ovarian cancer publication-title: ACS Appl. Mater. Interfaces – volume: 99 start-page: 28 year: 2016 ident: 10.1016/j.bioactmat.2021.01.034_bib4 article-title: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.09.012 – volume: 64 start-page: 679 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib6 article-title: Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.04.017 – volume: 6 start-page: 84694 year: 2016 ident: 10.1016/j.bioactmat.2021.01.034_bib33 article-title: Smart metallopoly(L-glutamic acid) polymers: reversible helix-to-coil transition at neutral pH publication-title: RSC Adv. doi: 10.1039/C6RA19753A – volume: 4 start-page: 378 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib1 article-title: DePEGylation strategies to increase cancer nanomedicine efficacy publication-title: Nanoscale Horiz doi: 10.1039/C8NH00417J – volume: 31 start-page: 1807557 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib2 article-title: A bioinspired platform for effective delivery of protein therapeutics to the central nervous system publication-title: Adv. Mater. doi: 10.1002/adma.201807557 – volume: 2 start-page: 1700307 year: 2018 ident: 10.1016/j.bioactmat.2021.01.034_bib12 article-title: Advances in stimuli-responsive polypeptide nanogels publication-title: Small Methods doi: 10.1002/smtd.201700307 – volume: 8 start-page: 2166 year: 2017 ident: 10.1016/j.bioactmat.2021.01.034_bib37 article-title: Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer publication-title: Nat. Commun. doi: 10.1038/s41467-017-02390-7 – volume: 7 start-page: 655 year: 2015 ident: 10.1016/j.bioactmat.2021.01.034_bib3 article-title: Anti-PEG immunity: emergence, characteristics, and unaddressed questions publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 20 start-page: 6191− year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib35 article-title: Spatiotemporally targeted nanomedicine overcomes hypoxia-induced drug resistance of tumor cells after disrupting neovasculature publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02515 – volume: 137 start-page: 15217 year: 2015 ident: 10.1016/j.bioactmat.2021.01.034_bib13 article-title: Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09602 – volume: 14 start-page: 13536 year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib21 article-title: Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging publication-title: ACS Nano doi: 10.1021/acsnano.0c05541 – volume: 99 start-page: 306 year: 2010 ident: 10.1016/j.bioactmat.2021.01.034_bib20 article-title: PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Comput publication-title: Meth. Prog. Bio. doi: 10.1016/j.cmpb.2010.01.007 – volume: 205 start-page: 89 year: 2015 ident: 10.1016/j.bioactmat.2021.01.034_bib18 article-title: Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2014.12.022 – volume: 112 start-page: 630 year: 2006 ident: 10.1016/j.bioactmat.2021.01.034_bib25 article-title: Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery publication-title: Pharmacol. Therapeut. doi: 10.1016/j.pharmthera.2006.05.006 – year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib17 article-title: Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy publication-title: Sci. Bull. – volume: 9 year: 2018 ident: 10.1016/j.bioactmat.2021.01.034_bib32 article-title: Cd2+ coordination: an efficient structuring switch for polypeptide polymers publication-title: Polym. Chem. doi: 10.1039/C8PY00810H – volume: 24 start-page: 22 year: 2017 ident: 10.1016/j.bioactmat.2021.01.034_bib11 article-title: Cleavable PEGylation: a strategy for overcoming the "PEG dilemma" in efficient drug delivery publication-title: Drug Deliv. doi: 10.1080/10717544.2017.1388451 – volume: 32 start-page: 1902604 year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib8 article-title: Ligand-installed nanocarriers toward precision therapy publication-title: Adv. Mater. doi: 10.1002/adma.201902604 – volume: 12 start-page: 889 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib34 article-title: Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides publication-title: Nano Res doi: 10.1007/s12274-019-2319-6 – volume: 8 start-page: 6400 year: 2016 ident: 10.1016/j.bioactmat.2021.01.034_bib10 article-title: Tumor acidity-induced sheddable polyethylenimine-poly(trimethylene carbonate)/DNA/polyethylene glycol-2,3-dimethylmaleicanhydride ternary complex for efficient and safe gene delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00825 – volume: 96 start-page: 96 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib16 article-title: Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance publication-title: Mat. Sci. Eng. C-Mater. doi: 10.1016/j.msec.2018.10.092 – volume: 7 start-page: 1903642 year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib26 article-title: Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy publication-title: Adv. Sci. doi: 10.1002/advs.201903642 – volume: 58 start-page: 8799 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib5 article-title: Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903277 – volume: 92 start-page: 205 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib15 article-title: Cisplatin-loaded polymeric complex micelles with a modulated drug/copolymer ratio for improved in vivo performance publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.05.007 – volume: 29 start-page: 1701170 year: 2017 ident: 10.1016/j.bioactmat.2021.01.034_bib19 article-title: Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors publication-title: Adv. Mater. doi: 10.1002/adma.201701170 – volume: 8 start-page: 1360 year: 2016 ident: 10.1016/j.bioactmat.2021.01.034_bib31 article-title: Altered cell cycle arrest by multifunctional drug-loaded enzymatically-triggered nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10241 – volume: 29 start-page: 1606628 year: 2017 ident: 10.1016/j.bioactmat.2021.01.034_bib7 article-title: Rational design of cancer nanomedicine: nanoproperty integration and synchronization publication-title: Adv. Mater. doi: 10.1002/adma.201606628 – volume: 19 start-page: 2202 year: 2018 ident: 10.1016/j.bioactmat.2021.01.034_bib9 article-title: Miktoarm amphiphilic block copolymer with singlet oxygen-labile stereospecific beta-aminoacrylate junction: synthesis, self-assembly, and photodynamically triggered drug release publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00290 – volume: 11 start-page: 2390 year: 2014 ident: 10.1016/j.bioactmat.2021.01.034_bib30 article-title: MMP-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer publication-title: Mol. Pharm. doi: 10.1021/mp500108p – volume: 295 start-page: 153 year: 2019 ident: 10.1016/j.bioactmat.2021.01.034_bib29 article-title: Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2018.12.013 – volume: 31 start-page: 1178 year: 2020 ident: 10.1016/j.bioactmat.2021.01.034_bib27 article-title: Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.12.001 |
SSID | ssj0001700007 |
Score | 2.311859 |
Snippet | PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the... PEGylation has been widely applied to prolong the circulation times of nanomedicines the steric shielding effect, which consequently improves the intratumoral... PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2688 |
SubjectTerms | Detachable PEGylation Enhanced cell uptake Platinum chemotherapy Poly(l-glutamic acid) Prolonged circulation time |
Title | Poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation for prolonged circulation half-life and enhanced cell internalization |
URI | https://dx.doi.org/10.1016/j.bioactmat.2021.01.034 https://www.ncbi.nlm.nih.gov/pubmed/33665501 https://www.proquest.com/docview/2498491049 https://pubmed.ncbi.nlm.nih.gov/PMC7895728 https://doaj.org/article/6373c0ddcf6a4503998ccfcf69bedf75 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQqHwECjISBzhEJI7jJNwAtVRIoB6otDfLHjtsqsipuumhP4N_3Jk4u9rAYS9IuWwcr-zMOPPGeXnD2LtGVNY6I9LM4CKX4JrUYiKS1tbjw69Vopp0un_8VOeX8vuqXO2V-iJOWJQHjjfuoyqqAjLnoFVGlhnG0xqgxV-N9a6tJvVSjHl7ydRVFIWh6EeV5WQpiE2xWpC7bDcYGBETYoYo8km4s5CL0DQp-C8i1L8I9G8i5V5kOnvMHs2Qkn-OU3nCHvhwzP5cDP3d-54o6SOVnOcGOvchhW5zTey3wIMJAwHWuXzXhtOOLCdGKazpcyp-cfrtLrZxvI7jsPoh_PaOQ3cDcy--Nn2b9l3ruQmO-7CeCAWcXgfwLm429vOXnk_Z5dnpr6_n6Vx-IYVS5mPqS5BgBJjMCgQFKmtJy8UBCfDXID0J9RStF21Zikx6kI42VSFXtrbKYPMzdhSG4F8wXpuqyKXFx0kFEhFGXfnCIPYhbyjRvglT2zuvYdYmpxIZvd6S0K70zmSaTKYzPAqZsGzX8TrKcxzu8oVMu7uc9LWnE-h1evY6fcjrEvZp6xh6hioRguBfdYdH8HbrShoXM5nEBD_cbjTmwrVEACebhD2PrrUbZ1EohelknrBq4XSLiSxbQreeBMOruikrUb_8HzN_xR7SVCLN7oQdjTe3_jXistG-mZbgPU8bOrE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28l-glutamic+acid%29-cisplatin+nanoformulations+with+detachable+PEGylation+for+prolonged+circulation+half-life+and+enhanced+cell+internalization&rft.jtitle=Bioactive+materials&rft.au=Jiang%2C+Zhongyu&rft.au=Feng%2C+Xiangru&rft.au=Zou%2C+Haoyang&rft.au=Xu%2C+Weiguo&rft.date=2021-09-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=6&rft.issue=9&rft.spage=2688&rft_id=info:doi/10.1016%2Fj.bioactmat.2021.01.034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |