Poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation for prolonged circulation half-life and enhanced cell internalization

PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their the...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 6; no. 9; pp. 2688 - 2697
Main Authors Jiang, Zhongyu, Feng, Xiangru, Zou, Haoyang, Xu, Weiguo, Zhuang, Xiuli
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.09.2021
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pHe-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations. [Display omitted] •The poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation are developed for cancer therapy.•DePEGylation of nanoformulations triggered by tumor microenvironment exhibit enhanced tumor cell internalization.•The dePEGylation strategy exhibits promising prospects for clinical application of nanomedicines.
AbstractList PEGylation has been widely applied to prolong the circulation times of nanomedicines the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pH )-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pH -responsive PEG- -PLG and MMP-sensitive PEG- -PLG. The corresponding smart nanoformulations PEG- -PLG-Pt and PEG- -PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG- -PLG-Pt and PEG- -PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pH or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations.
PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pHe-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations.
PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly( l -glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pH e )-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pH e -responsive PEG- pH e -PLG and MMP-sensitive PEG- MMP -PLG. The corresponding smart nanoformulations PEG- pH e -PLG-Pt and PEG- MMP -PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG- pH e -PLG-Pt and PEG- MMP -PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pH e or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations. Image 1 • The poly( l -glutamic acid)-cisplatin nanoformulations with detachable PEGylation are developed for cancer therapy. • DePEGylation of nanoformulations triggered by tumor microenvironment exhibit enhanced tumor cell internalization. • The dePEGylation strategy exhibits promising prospects for clinical application of nanomedicines.
PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pH e-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations.PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pH e-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations.
PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pHe-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations. [Display omitted] •The poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation are developed for cancer therapy.•DePEGylation of nanoformulations triggered by tumor microenvironment exhibit enhanced tumor cell internalization.•The dePEGylation strategy exhibits promising prospects for clinical application of nanomedicines.
Author Zou, Haoyang
Xu, Weiguo
Jiang, Zhongyu
Zhuang, Xiuli
Feng, Xiangru
Author_xml – sequence: 1
  givenname: Zhongyu
  surname: Jiang
  fullname: Jiang, Zhongyu
  organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
– sequence: 2
  givenname: Xiangru
  surname: Feng
  fullname: Feng, Xiangru
  organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
– sequence: 3
  givenname: Haoyang
  surname: Zou
  fullname: Zou, Haoyang
  organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
– sequence: 4
  givenname: Weiguo
  surname: Xu
  fullname: Xu, Weiguo
  email: wgxu@ciac.ac.cn
  organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
– sequence: 5
  givenname: Xiuli
  surname: Zhuang
  fullname: Zhuang, Xiuli
  email: zhuangxl@ciac.ac.cn
  organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33665501$$D View this record in MEDLINE/PubMed
BookMark eNqFUs1u1DAQjlARLaWvAD6WQxY7cX58AKmqSqlUiR5A4mZNJpNdr7z24nhblbfgjXF2t1XLpdLI9ni-H2lm3mYHzjvKsg-CzwQX9aflrDMeMK4gzgpeiBlPUcpX2VEhqyIXSv06ePI-zE7Gcck5F006ePMmOyzLuq4qLo6yvzfe3p_afG43EVYGGaDpP-ZoxrWFaBxz4Pzgw2ozpd6N7M7EBespAi6gs8RuLi7vdzWWcGwdvPVuTj1DE3DPYguwQ27NQAxcz8gtwOEEIWuZcZGCA2v-bLHvstcD2JFO9vdx9vPrxY_zb_n198ur87PrHCspYk4VSoQCgXdFocqaD7xSqsdWtqJFSaIUohyoGKqq4JJQ9rzjAkXdtV0NqXycXe10ew9LvQ5mBeFeezB6--HDXEOIBi3pumxK5H2PQw2y4qVSLeKQMtVRPzRV0vqy01pvuhX1SC4GsM9En1ecWei5v9VNq6qmaJPA6V4g-N8bGqNemXHqDjjym1EXUrVSCS5Vgr5_6vVo8jDTBPi8A2Dw4xho0GjitrXJ2lgtuJ7WSC_14xrpaY00T1HKxG_-4z9YvMw82zEpze3WUNAjGpombQJhTI01L2r8A9227Bk
CitedBy_id crossref_primary_10_1016_j_jconrel_2023_05_024
crossref_primary_10_1002_agt2_568
crossref_primary_10_1002_mabi_202200577
crossref_primary_10_1016_j_carbpol_2023_121255
crossref_primary_10_2174_2468187313666230106104528
crossref_primary_10_1007_s00210_023_02608_0
crossref_primary_10_1002_smtd_202301121
crossref_primary_10_1016_j_jddst_2023_104759
crossref_primary_10_1002_wnan_1828
crossref_primary_10_2174_1567201820666230116164511
crossref_primary_10_1002_mog2_67
crossref_primary_10_1016_j_biomaterials_2022_121793
crossref_primary_10_1021_acsami_2c09064
crossref_primary_10_1002_smll_202208241
Cites_doi 10.1166/jbn.2016.2152
10.1002/adma.201906024
10.1016/j.cclet.2020.04.029
10.1038/s41587-019-0135-x
10.1016/j.addr.2015.09.012
10.1016/j.scib.2019.04.017
10.1039/C6RA19753A
10.1039/C8NH00417J
10.1002/adma.201807557
10.1002/smtd.201700307
10.1038/s41467-017-02390-7
10.1021/acs.nanolett.0c02515
10.1021/jacs.5b09602
10.1021/acsnano.0c05541
10.1016/j.cmpb.2010.01.007
10.1016/j.jconrel.2014.12.022
10.1016/j.pharmthera.2006.05.006
10.1039/C8PY00810H
10.1080/10717544.2017.1388451
10.1002/adma.201902604
10.1007/s12274-019-2319-6
10.1021/acsami.6b00825
10.1016/j.msec.2018.10.092
10.1002/advs.201903642
10.1002/anie.201903277
10.1016/j.actbio.2019.05.007
10.1002/adma.201701170
10.1021/acsami.5b10241
10.1002/adma.201606628
10.1021/acs.biomac.8b00290
10.1021/mp500108p
10.1016/j.jconrel.2018.12.013
10.1016/j.cclet.2019.12.001
ContentType Journal Article
Copyright 2021 The Authors
2021 [The Author/The Authors].
2021 [The Author/The Authors] 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 [The Author/The Authors].
– notice: 2021 [The Author/The Authors] 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2021.01.034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 2697
ExternalDocumentID oai_doaj_org_article_6373c0ddcf6a4503998ccfcf69bedf75
PMC7895728
33665501
10_1016_j_bioactmat_2021_01_034
S2452199X21000463
Genre Journal Article
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c541t-e5c4ca2ca0b229360f0599dc84818c4e13113fe2f55204ec4d0b01c16b8b6ae13
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:25:58 EDT 2025
Thu Aug 21 18:26:21 EDT 2025
Fri Jul 11 09:32:01 EDT 2025
Mon Jul 21 06:07:02 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 02:11:25 EDT 2025
Wed May 17 00:09:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Prolonged circulation time
Detachable PEGylation
Platinum chemotherapy
Enhanced cell uptake
Poly(l-glutamic acid)
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 [The Author/The Authors].
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e5c4ca2ca0b229360f0599dc84818c4e13113fe2f55204ec4d0b01c16b8b6ae13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/6373c0ddcf6a4503998ccfcf69bedf75
PMID 33665501
PQID 2498491049
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6373c0ddcf6a4503998ccfcf69bedf75
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895728
proquest_miscellaneous_2498491049
pubmed_primary_33665501
crossref_citationtrail_10_1016_j_bioactmat_2021_01_034
crossref_primary_10_1016_j_bioactmat_2021_01_034
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2021_01_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2021
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Jiang, Feng, Xu, Zhuang, Ding, Cheng (bib22) 2020; 51
Trang, Zhang, Yumul, Zeng, Stone, Wo, Dominguez, Cochran, Simmons, Ryan, Lyon, Senter, Levengood (bib14) 2019; 37
Sun, Shen, Xu, Li, Liu, Cao, Yang, Xia, Wang (bib13) 2015; 137
Chen, Ding, Wang, Cheng, Ji, Zhuang, Chen (bib19) 2017; 29
Jiang, Chen, Cui, Zhuang, Ding, Chen (bib12) 2018; 2
Liu, Li, Ding, Chen (bib23) 2020; 31
Chen, Luo, Xue, Han, Liu, Zhang, Yin, Wang, Cun, Gou, He, Tang (bib15) 2019; 92
Ren, Sun, Sun, Cui, Hong, Rao, Li, Yu, Kan, Mao (bib28) 2020; 32
Kong, Campbell, Kros (bib1) 2019; 4
Wu, Qin, Xu, Wang, Liu, Ren, Zhou, Chen, Yang, Li, Zhao, Huang, Pourtaheri, Kang, Kamata, Chen, He, Wen, Chen, Lu (bib2) 2019; 31
Yu, Tang, Zhang, Song, Zhanga, Yang, Ahmad, Chen (bib18) 2015; 205
Saravanakumar, Park, Kim, Park, Pramanick, Kim, Kim (bib9) 2018; 19
Feng, Xu, Liu, Li, Chen (bib17) 2020
Shariati, Lollo, Matha, Descamps, Vanhove, Van de Sande, Willaert, Balcaen, Vanhaecke, Benoit, Ceelen, De Smedt, Remaut (bib36) 2020; 12
Yang, Yu, Chen, Meng, Ma, Yu, Li, Li, Liu, Zhang, Xiao, Yu (bib21) 2020; 14
Mi, Cabral, Kataoka (bib8) 2020; 32
Yu, Cen, He, Wang, Wang, Ying, Li, Jacobson, Wang, Wang, Lin, Tian, Zhou, Ni, Li, Chen (bib5) 2019; 58
Zhao, Shao, Lu, Deng, Wu (bib10) 2016; 8
Nishiyama, Kataoka (bib25) 2006; 112
Yang, Yu, Huang, Chen, Wu, Wang, Qi, Miao, Qiu (bib16) 2019; 96
Qi, Wang, Bruno, Xiao, Yu, Li, Lauffer, Wei, Chen, Kang, Song, Yang, Huang, Detappe, Matulonis, Pepin, Hemann, Birrer, Ghoroghchian (bib37) 2017; 8
Suk, Xu, Kim, Hanes, Ensign (bib4) 2016; 99
Gao, Wang, Wang, Liu, Liu, Ye, Wang, Wang, Chen, Jiang, Ou, van Hest, Peng, Tu (bib26) 2020; 7
Chen, Jiang, Xu, Sun, Zhuang, Ding, Chen (bib35) 2020; 20
Huang, Sun, Shen, Zhang, Gao, Duan (bib31) 2016; 8
Zhang, Lu, Tian, Li, Hou, Wang, Sun, Shi, Lu (bib34) 2019; 12
Xu, Wang, Guo, Chen, Lin, Wu, Tian, Chen (bib29) 2019; 295
Sun, Zhou, Qiu, Shen (bib7) 2017; 29
Zhang, Huo, Zhou, Xie (bib20) 2010; 99
Zheng, Liu, Chen, Xu, Li, Ding (bib27) 2020; 31
Kulkarni, Haldar, Nahire, Katti, Ambre, Muhonen, Shabb, Padi, Singh, Borowicz, Shrivastava, Katti, Reindl, Guo, Mallik (bib30) 2014; 11
Yang, Lai (bib3) 2015; 7
Aujard-Catot, Nguyen, Bijani, Pratviel, Bonduelle (bib32) 2018; 9
Fang, Xue, Gao, Lu, Yang, Jiang, He, Shi (bib11) 2017; 24
Yu, Tang, Li, Song, Zhang, Zhang, Yang, Sun, Deng, Chen (bib24) 2016; 12
Bonduelle, Makni, Severac, Piedra-Arroni, Serpentini, Lecommandoux, Pratviel (bib33) 2016; 6
Yin, Wang, Ren, Shen, Chen, Liu, Liu (bib6) 2019; 64
Chen (10.1016/j.bioactmat.2021.01.034_bib19) 2017; 29
Ren (10.1016/j.bioactmat.2021.01.034_bib28) 2020; 32
Yin (10.1016/j.bioactmat.2021.01.034_bib6) 2019; 64
Yang (10.1016/j.bioactmat.2021.01.034_bib21) 2020; 14
Yu (10.1016/j.bioactmat.2021.01.034_bib5) 2019; 58
Trang (10.1016/j.bioactmat.2021.01.034_bib14) 2019; 37
Yang (10.1016/j.bioactmat.2021.01.034_bib16) 2019; 96
Zhang (10.1016/j.bioactmat.2021.01.034_bib20) 2010; 99
Xu (10.1016/j.bioactmat.2021.01.034_bib29) 2019; 295
Aujard-Catot (10.1016/j.bioactmat.2021.01.034_bib32) 2018; 9
Mi (10.1016/j.bioactmat.2021.01.034_bib8) 2020; 32
Sun (10.1016/j.bioactmat.2021.01.034_bib13) 2015; 137
Yu (10.1016/j.bioactmat.2021.01.034_bib18) 2015; 205
Zheng (10.1016/j.bioactmat.2021.01.034_bib27) 2020; 31
Huang (10.1016/j.bioactmat.2021.01.034_bib31) 2016; 8
Jiang (10.1016/j.bioactmat.2021.01.034_bib22) 2020; 51
Kulkarni (10.1016/j.bioactmat.2021.01.034_bib30) 2014; 11
Zhang (10.1016/j.bioactmat.2021.01.034_bib34) 2019; 12
Feng (10.1016/j.bioactmat.2021.01.034_bib17) 2020
Kong (10.1016/j.bioactmat.2021.01.034_bib1) 2019; 4
Shariati (10.1016/j.bioactmat.2021.01.034_bib36) 2020; 12
Jiang (10.1016/j.bioactmat.2021.01.034_bib12) 2018; 2
Suk (10.1016/j.bioactmat.2021.01.034_bib4) 2016; 99
Liu (10.1016/j.bioactmat.2021.01.034_bib23) 2020; 31
Yang (10.1016/j.bioactmat.2021.01.034_bib3) 2015; 7
Fang (10.1016/j.bioactmat.2021.01.034_bib11) 2017; 24
Chen (10.1016/j.bioactmat.2021.01.034_bib35) 2020; 20
Nishiyama (10.1016/j.bioactmat.2021.01.034_bib25) 2006; 112
Wu (10.1016/j.bioactmat.2021.01.034_bib2) 2019; 31
Saravanakumar (10.1016/j.bioactmat.2021.01.034_bib9) 2018; 19
Yu (10.1016/j.bioactmat.2021.01.034_bib24) 2016; 12
Zhao (10.1016/j.bioactmat.2021.01.034_bib10) 2016; 8
Sun (10.1016/j.bioactmat.2021.01.034_bib7) 2017; 29
Chen (10.1016/j.bioactmat.2021.01.034_bib15) 2019; 92
Gao (10.1016/j.bioactmat.2021.01.034_bib26) 2020; 7
Bonduelle (10.1016/j.bioactmat.2021.01.034_bib33) 2016; 6
Qi (10.1016/j.bioactmat.2021.01.034_bib37) 2017; 8
References_xml – volume: 99
  start-page: 306
  year: 2010
  end-page: 314
  ident: bib20
  article-title: PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Comput
  publication-title: Meth. Prog. Bio.
– volume: 37
  start-page: 761
  year: 2019
  end-page: 765
  ident: bib14
  article-title: A coiled-coil masking domain for selective activation of therapeutic antibodies
  publication-title: Nat. Biotechnol.
– volume: 92
  start-page: 205
  year: 2019
  end-page: 218
  ident: bib15
  article-title: Cisplatin-loaded polymeric complex micelles with a modulated drug/copolymer ratio for improved in vivo performance
  publication-title: Acta Biomater.
– volume: 137
  start-page: 15217
  year: 2015
  end-page: 15224
  ident: bib13
  article-title: Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1903642
  year: 2020
  ident: bib26
  article-title: Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy
  publication-title: Adv. Sci.
– volume: 205
  start-page: 89
  year: 2015
  end-page: 97
  ident: bib18
  article-title: Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy
  publication-title: J. Contr. Release
– volume: 4
  start-page: 378
  year: 2019
  end-page: 387
  ident: bib1
  article-title: DePEGylation strategies to increase cancer nanomedicine efficacy
  publication-title: Nanoscale Horiz
– volume: 96
  start-page: 96
  year: 2019
  end-page: 104
  ident: bib16
  article-title: Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance
  publication-title: Mat. Sci. Eng. C-Mater.
– volume: 31
  start-page: 1178
  year: 2020
  end-page: 1182
  ident: bib27
  article-title: Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery
  publication-title: Chin. Chem. Lett.
– volume: 12
  start-page: 889
  year: 2019
  end-page: 896
  ident: bib34
  article-title: Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides
  publication-title: Nano Res
– volume: 31
  start-page: 1807557
  year: 2019
  ident: bib2
  article-title: A bioinspired platform for effective delivery of protein therapeutics to the central nervous system
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2166
  year: 2017
  ident: bib37
  article-title: Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer
  publication-title: Nat. Commun.
– volume: 19
  start-page: 2202
  year: 2018
  end-page: 2213
  ident: bib9
  article-title: Miktoarm amphiphilic block copolymer with singlet oxygen-labile stereospecific beta-aminoacrylate junction: synthesis, self-assembly, and photodynamically triggered drug release
  publication-title: Biomacromolecules
– volume: 58
  start-page: 8799
  year: 2019
  end-page: 8803
  ident: bib5
  article-title: Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 3001
  year: 2020
  end-page: 3014
  ident: bib23
  article-title: Controlled synthesis of polypeptides
  publication-title: Chin. Chem. Lett.
– volume: 295
  start-page: 153
  year: 2019
  end-page: 163
  ident: bib29
  article-title: Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy
  publication-title: J. Contr. Release
– volume: 8
  start-page: 6400
  year: 2016
  end-page: 6410
  ident: bib10
  article-title: Tumor acidity-induced sheddable polyethylenimine-poly(trimethylene carbonate)/DNA/polyethylene glycol-2,3-dimethylmaleicanhydride ternary complex for efficient and safe gene delivery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 22
  year: 2017
  end-page: 32
  ident: bib11
  article-title: Cleavable PEGylation: a strategy for overcoming the "PEG dilemma" in efficient drug delivery
  publication-title: Drug Deliv.
– volume: 64
  start-page: 679
  year: 2019
  end-page: 689
  ident: bib6
  article-title: Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics
  publication-title: Sci. Bull.
– volume: 8
  start-page: 1360
  year: 2016
  end-page: 1370
  ident: bib31
  article-title: Altered cell cycle arrest by multifunctional drug-loaded enzymatically-triggered nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 13536
  year: 2020
  end-page: 13547
  ident: bib21
  article-title: Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging
  publication-title: ACS Nano
– volume: 51
  start-page: 901
  year: 2020
  end-page: 910
  ident: bib22
  article-title: Calcium phosphate-cured nanocluster of poly(L-glutamic acid)-cisplatin and arsenic trioxide for synergistic chemotherapy of peritoneal metastasis of ovarian cancer
  publication-title: Acta Polym. Sin.
– volume: 12
  start-page: 69
  year: 2016
  end-page: 78
  ident: bib24
  article-title: Cisplatin loaded poly(L-glutamic acid)-
  publication-title: J. Biomed. Nanotechnol.
– volume: 32
  start-page: 1906024
  year: 2020
  ident: bib28
  article-title: A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606628
  year: 2017
  ident: bib7
  article-title: Rational design of cancer nanomedicine: nanoproperty integration and synchronization
  publication-title: Adv. Mater.
– volume: 7
  start-page: 655
  year: 2015
  end-page: 677
  ident: bib3
  article-title: Anti-PEG immunity: emergence, characteristics, and unaddressed questions
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 32
  start-page: 1902604
  year: 2020
  ident: bib8
  article-title: Ligand-installed nanocarriers toward precision therapy
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2390
  year: 2014
  end-page: 2399
  ident: bib30
  article-title: MMP-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer
  publication-title: Mol. Pharm.
– volume: 2
  start-page: 1700307
  year: 2018
  ident: bib12
  article-title: Advances in stimuli-responsive polypeptide nanogels
  publication-title: Small Methods
– volume: 99
  start-page: 28
  year: 2016
  end-page: 51
  ident: bib4
  article-title: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 29
  start-page: 1701170
  year: 2017
  ident: bib19
  article-title: Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors
  publication-title: Adv. Mater.
– year: 2020
  ident: bib17
  article-title: Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy
  publication-title: Sci. Bull.
– volume: 9
  year: 2018
  ident: bib32
  article-title: Cd
  publication-title: Polym. Chem.
– volume: 20
  start-page: 6191−
  year: 2020
  end-page: 6198
  ident: bib35
  article-title: Spatiotemporally targeted nanomedicine overcomes hypoxia-induced drug resistance of tumor cells after disrupting neovasculature
  publication-title: Nano Lett.
– volume: 12
  start-page: 29024
  year: 2020
  end-page: 29036
  ident: bib36
  article-title: Synergy between intraperitoneal aerosolization (PIPAC) and cancer nanomedicine: cisplatin-loaded polyarginine-hyaluronic acid nanocarriers efficiently eradicate peritoneal metastasis of advanced human ovarian cancer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 84694
  year: 2016
  end-page: 84697
  ident: bib33
  article-title: Smart metallopoly(L-glutamic acid) polymers: reversible helix-to-coil transition at neutral pH
  publication-title: RSC Adv.
– volume: 112
  start-page: 630
  year: 2006
  end-page: 648
  ident: bib25
  article-title: Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery
  publication-title: Pharmacol. Therapeut.
– volume: 12
  start-page: 69
  year: 2016
  ident: 10.1016/j.bioactmat.2021.01.034_bib24
  article-title: Cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for potential cancer therapy: preparation, in vitro and in vivo evaluation
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2016.2152
– volume: 32
  start-page: 1906024
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib28
  article-title: A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906024
– volume: 31
  start-page: 3001
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib23
  article-title: Controlled synthesis of polypeptides
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.04.029
– volume: 51
  start-page: 901
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib22
  article-title: Calcium phosphate-cured nanocluster of poly(L-glutamic acid)-cisplatin and arsenic trioxide for synergistic chemotherapy of peritoneal metastasis of ovarian cancer
  publication-title: Acta Polym. Sin.
– volume: 37
  start-page: 761
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib14
  article-title: A coiled-coil masking domain for selective activation of therapeutic antibodies
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0135-x
– volume: 12
  start-page: 29024
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib36
  article-title: Synergy between intraperitoneal aerosolization (PIPAC) and cancer nanomedicine: cisplatin-loaded polyarginine-hyaluronic acid nanocarriers efficiently eradicate peritoneal metastasis of advanced human ovarian cancer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 99
  start-page: 28
  year: 2016
  ident: 10.1016/j.bioactmat.2021.01.034_bib4
  article-title: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.09.012
– volume: 64
  start-page: 679
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib6
  article-title: Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.04.017
– volume: 6
  start-page: 84694
  year: 2016
  ident: 10.1016/j.bioactmat.2021.01.034_bib33
  article-title: Smart metallopoly(L-glutamic acid) polymers: reversible helix-to-coil transition at neutral pH
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19753A
– volume: 4
  start-page: 378
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib1
  article-title: DePEGylation strategies to increase cancer nanomedicine efficacy
  publication-title: Nanoscale Horiz
  doi: 10.1039/C8NH00417J
– volume: 31
  start-page: 1807557
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib2
  article-title: A bioinspired platform for effective delivery of protein therapeutics to the central nervous system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807557
– volume: 2
  start-page: 1700307
  year: 2018
  ident: 10.1016/j.bioactmat.2021.01.034_bib12
  article-title: Advances in stimuli-responsive polypeptide nanogels
  publication-title: Small Methods
  doi: 10.1002/smtd.201700307
– volume: 8
  start-page: 2166
  year: 2017
  ident: 10.1016/j.bioactmat.2021.01.034_bib37
  article-title: Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02390-7
– volume: 7
  start-page: 655
  year: 2015
  ident: 10.1016/j.bioactmat.2021.01.034_bib3
  article-title: Anti-PEG immunity: emergence, characteristics, and unaddressed questions
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 20
  start-page: 6191−
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib35
  article-title: Spatiotemporally targeted nanomedicine overcomes hypoxia-induced drug resistance of tumor cells after disrupting neovasculature
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02515
– volume: 137
  start-page: 15217
  year: 2015
  ident: 10.1016/j.bioactmat.2021.01.034_bib13
  article-title: Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09602
– volume: 14
  start-page: 13536
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib21
  article-title: Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05541
– volume: 99
  start-page: 306
  year: 2010
  ident: 10.1016/j.bioactmat.2021.01.034_bib20
  article-title: PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Comput
  publication-title: Meth. Prog. Bio.
  doi: 10.1016/j.cmpb.2010.01.007
– volume: 205
  start-page: 89
  year: 2015
  ident: 10.1016/j.bioactmat.2021.01.034_bib18
  article-title: Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2014.12.022
– volume: 112
  start-page: 630
  year: 2006
  ident: 10.1016/j.bioactmat.2021.01.034_bib25
  article-title: Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery
  publication-title: Pharmacol. Therapeut.
  doi: 10.1016/j.pharmthera.2006.05.006
– year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib17
  article-title: Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy
  publication-title: Sci. Bull.
– volume: 9
  year: 2018
  ident: 10.1016/j.bioactmat.2021.01.034_bib32
  article-title: Cd2+ coordination: an efficient structuring switch for polypeptide polymers
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY00810H
– volume: 24
  start-page: 22
  year: 2017
  ident: 10.1016/j.bioactmat.2021.01.034_bib11
  article-title: Cleavable PEGylation: a strategy for overcoming the "PEG dilemma" in efficient drug delivery
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2017.1388451
– volume: 32
  start-page: 1902604
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib8
  article-title: Ligand-installed nanocarriers toward precision therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902604
– volume: 12
  start-page: 889
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib34
  article-title: Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides
  publication-title: Nano Res
  doi: 10.1007/s12274-019-2319-6
– volume: 8
  start-page: 6400
  year: 2016
  ident: 10.1016/j.bioactmat.2021.01.034_bib10
  article-title: Tumor acidity-induced sheddable polyethylenimine-poly(trimethylene carbonate)/DNA/polyethylene glycol-2,3-dimethylmaleicanhydride ternary complex for efficient and safe gene delivery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00825
– volume: 96
  start-page: 96
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib16
  article-title: Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance
  publication-title: Mat. Sci. Eng. C-Mater.
  doi: 10.1016/j.msec.2018.10.092
– volume: 7
  start-page: 1903642
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib26
  article-title: Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903642
– volume: 58
  start-page: 8799
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib5
  article-title: Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903277
– volume: 92
  start-page: 205
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib15
  article-title: Cisplatin-loaded polymeric complex micelles with a modulated drug/copolymer ratio for improved in vivo performance
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.05.007
– volume: 29
  start-page: 1701170
  year: 2017
  ident: 10.1016/j.bioactmat.2021.01.034_bib19
  article-title: Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701170
– volume: 8
  start-page: 1360
  year: 2016
  ident: 10.1016/j.bioactmat.2021.01.034_bib31
  article-title: Altered cell cycle arrest by multifunctional drug-loaded enzymatically-triggered nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10241
– volume: 29
  start-page: 1606628
  year: 2017
  ident: 10.1016/j.bioactmat.2021.01.034_bib7
  article-title: Rational design of cancer nanomedicine: nanoproperty integration and synchronization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606628
– volume: 19
  start-page: 2202
  year: 2018
  ident: 10.1016/j.bioactmat.2021.01.034_bib9
  article-title: Miktoarm amphiphilic block copolymer with singlet oxygen-labile stereospecific beta-aminoacrylate junction: synthesis, self-assembly, and photodynamically triggered drug release
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00290
– volume: 11
  start-page: 2390
  year: 2014
  ident: 10.1016/j.bioactmat.2021.01.034_bib30
  article-title: MMP-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500108p
– volume: 295
  start-page: 153
  year: 2019
  ident: 10.1016/j.bioactmat.2021.01.034_bib29
  article-title: Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2018.12.013
– volume: 31
  start-page: 1178
  year: 2020
  ident: 10.1016/j.bioactmat.2021.01.034_bib27
  article-title: Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.12.001
SSID ssj0001700007
Score 2.311859
Snippet PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the...
PEGylation has been widely applied to prolong the circulation times of nanomedicines the steric shielding effect, which consequently improves the intratumoral...
PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2688
SubjectTerms Detachable PEGylation
Enhanced cell uptake
Platinum chemotherapy
Poly(l-glutamic acid)
Prolonged circulation time
Title Poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation for prolonged circulation half-life and enhanced cell internalization
URI https://dx.doi.org/10.1016/j.bioactmat.2021.01.034
https://www.ncbi.nlm.nih.gov/pubmed/33665501
https://www.proquest.com/docview/2498491049
https://pubmed.ncbi.nlm.nih.gov/PMC7895728
https://doaj.org/article/6373c0ddcf6a4503998ccfcf69bedf75
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQqHwECjISBzhEJI7jJNwAtVRIoB6otDfLHjtsqsipuumhP4N_3Jk4u9rAYS9IuWwcr-zMOPPGeXnD2LtGVNY6I9LM4CKX4JrUYiKS1tbjw69Vopp0un_8VOeX8vuqXO2V-iJOWJQHjjfuoyqqAjLnoFVGlhnG0xqgxV-N9a6tJvVSjHl7ydRVFIWh6EeV5WQpiE2xWpC7bDcYGBETYoYo8km4s5CL0DQp-C8i1L8I9G8i5V5kOnvMHs2Qkn-OU3nCHvhwzP5cDP3d-54o6SOVnOcGOvchhW5zTey3wIMJAwHWuXzXhtOOLCdGKazpcyp-cfrtLrZxvI7jsPoh_PaOQ3cDcy--Nn2b9l3ruQmO-7CeCAWcXgfwLm429vOXnk_Z5dnpr6_n6Vx-IYVS5mPqS5BgBJjMCgQFKmtJy8UBCfDXID0J9RStF21Zikx6kI42VSFXtrbKYPMzdhSG4F8wXpuqyKXFx0kFEhFGXfnCIPYhbyjRvglT2zuvYdYmpxIZvd6S0K70zmSaTKYzPAqZsGzX8TrKcxzu8oVMu7uc9LWnE-h1evY6fcjrEvZp6xh6hioRguBfdYdH8HbrShoXM5nEBD_cbjTmwrVEACebhD2PrrUbZ1EohelknrBq4XSLiSxbQreeBMOruikrUb_8HzN_xR7SVCLN7oQdjTe3_jXistG-mZbgPU8bOrE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28l-glutamic+acid%29-cisplatin+nanoformulations+with+detachable+PEGylation+for+prolonged+circulation+half-life+and+enhanced+cell+internalization&rft.jtitle=Bioactive+materials&rft.au=Jiang%2C+Zhongyu&rft.au=Feng%2C+Xiangru&rft.au=Zou%2C+Haoyang&rft.au=Xu%2C+Weiguo&rft.date=2021-09-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=6&rft.issue=9&rft.spage=2688&rft_id=info:doi/10.1016%2Fj.bioactmat.2021.01.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon